WO2020174893A1 - Ceramic structure - Google Patents

Ceramic structure Download PDF

Info

Publication number
WO2020174893A1
WO2020174893A1 PCT/JP2020/000611 JP2020000611W WO2020174893A1 WO 2020174893 A1 WO2020174893 A1 WO 2020174893A1 JP 2020000611 W JP2020000611 W JP 2020000611W WO 2020174893 A1 WO2020174893 A1 WO 2020174893A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear portion
linear
ceramic
ceramic structure
intersection
Prior art date
Application number
PCT/JP2020/000611
Other languages
French (fr)
Japanese (ja)
Inventor
峻 有馬
光司 本田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020217025974A priority Critical patent/KR20210116564A/en
Priority to CN202080015363.6A priority patent/CN113454414B/en
Priority to JP2020520680A priority patent/JP6746827B1/en
Publication of WO2020174893A1 publication Critical patent/WO2020174893A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge

Definitions

  • the present invention relates to a structure formed by combining ceramic linear portions.
  • the present applicant has previously found that a plurality of first linear filament portions made of ceramics extending in one direction and a plurality of ceramic linear filaments extending in a direction intersecting with the first linear filament portions.
  • a ceramic grid having a second linear portion was proposed (see Patent Documents 1 and 2).
  • the second filament is arranged on the first filament at any of the intersections. It has a rectangular through hole in plan view.
  • Patent Document 1 Japanese Patent Laid-Open No. 2018_1884340
  • Patent Document 2 JP 20 18-1 9 3 2 7 4
  • the ceramic lattice bodies described in Patent Documents 1 and 2 have high strength and excellent spalling resistance due to the lattice structure.
  • the strength along the direction parallel to the lattice is extremely high.
  • further improvement in strength may be required in the diagonal direction of the lattice.
  • an object of the present invention is to improve a structure composed of a plurality of ceramic linear portions, and more specifically, to provide the structure with higher strength and high heat shock resistance. To do.
  • the present invention is directed to a plurality of ceramic first linear portions extending in one direction and a plurality of ceramic first linear portions extending in a direction intersecting the first linear portions. ⁇ 02020/174893 2 (:171?2020/000611
  • the second linear portion, and the third linear portion made of ceramics that passes along the diagonal of the quadrilateral defined by the intersection of the first linear portion and the second linear portion.
  • FIG. 1 is a plan view showing an embodiment of a ceramic structure of the present invention.
  • Fig. 2 is a perspective view of the ceramic structure shown in Fig. 1, viewed from the top side.
  • Fig. 3 is a perspective view of the ceramic structure shown in Fig. 1 as seen from the lower surface side.
  • Fig. 4 is a cross-sectional view taken along the line 8_8 in Fig. 1.
  • Fig. 5 is a sectional view taken along the line _ _ in Fig. 1.
  • Fig. 6 is a cross-sectional view of the third filament portion in the ceramic structure shown in Fig. 1.
  • Figs. 7(a) and 7() are cross-sectional views of the first linear portion and the second linear portion in the ceramic structure shown in Fig. 1, respectively.
  • FIG. 8 (8) is a plan view showing another embodiment of the ceramic structure of the present invention
  • FIG. 8 (13) is a sectional view taken along line 8 — 8 in FIG. 8 (a ). Is.
  • FIG. 9 ( 3 ) is a plan view showing still another embodiment of the ceramic structure of the present invention
  • FIG. 9 (13) is a sectional view taken along line 8 — 8 in FIG. 9 (a ). Is a figure
  • FIG. 1 to 7 show one embodiment of the ceramic structure of the present invention.
  • the ceramic structure (hereinafter also simply referred to as “structure”) 1 shown in these figures has a flat plate shape, and has a first surface 13 and a second surface facing it. ⁇ 02020/174893 3 ( ⁇ 171?2020/000611
  • the structure 1 of the present embodiment has a plurality of ceramic first linear portions 10 extending in the one direction X.
  • the respective first linear portions 10 are substantially straight and extend parallel to each other. The intervals between the adjacent first linear portions 10 are almost equal.
  • the structure 1 has a plurality of second filament portions 20 made of ceramics and extending in a vertical direction that is a direction different from the X direction.
  • Each second linear portion 20 is straight and extends parallel to each other. The intervals between the adjacent second linear portions 20 are almost equal. Since the X direction is different from the vertical direction, the first linear portion 10 and the second linear portion 20 intersect.
  • the crossing angle between the two linear sections 10 and 20 can be set according to the specific application of the ceramic structure 1. For example, the angle of intersection of the second linear portion 20 with the first linear portion 10 can be 90 degrees. Alternatively, as shown in Fig.
  • the first linear portion 10 and the second linear portion 20 are It is also possible to change the intersection angle 0 formed by the angle within the range of 60 degrees ⁇ 40 degrees or 90 degrees ⁇ 40 degrees.
  • a grid having quadrangular apertures is formed in the plan view of the structure 1.
  • Fig. 1 shows a state in which a lattice having diamond-shaped openings is formed by the intersection of the first linear portion 10 and the second linear portion 20.
  • the shape can be a quadrangle other than the rhombus, for example, a rectangle or a square not shown.
  • the [001 1] structure 1 further has a plurality of third linear portions 30 made of ceramics.
  • Each third linear portion 30 is straight and extends parallel to each other.
  • the third linear portion 30 extends along a direction different from both the extending direction X of the first linear portion 10 and the extending direction of the second linear portion 20.
  • Each of the third linear portions 30 is arranged so as to pass on the diagonal line of the quadrilateral defined by the intersection of the first linear portions and the second linear portions.
  • FIG. 1 shows a state in which a substantially equilateral triangular through hole 3 is formed.
  • the third linear portion 30 is a quadrilateral diagonal line defined by the intersection of the first linear portion and the second linear portion. Since it is arranged so as to pass above, it is preferable that the first to third linear portions 10 0, 20 0 and 30 0 always intersect at one intersection 2 in the plan view of the structure 1. .. In other words, it is preferable that, among the three linear portions 1 0, 2 0, 3 0, the intersection portion where only two linear portions intersect does not substantially exist in the structure 1. ..
  • the structure 1 in which the triangular through holes are formed by using the three types of linear portions in combination has a high strength in the three directions of the X direction, the ridge direction and the directional direction. Becomes Therefore, the anisotropy of strength reduction is less than that of the lattice bodies described in Patent Documents 1 and 2 which have high strength along the two directions.
  • the through-hole 3 is a substantially equilateral triangle as shown in FIG. 1, the sides of the equilateral triangle are substantially equal in length, and the first to third filament portions 10 and 20, Since it is formed by any one of the 30, it is almost equivalent in strength. Therefore, the anisotropy of the strength decrease is further reduced, and the strength is almost equal in all directions.
  • the structure of the present embodiment it is possible to easily form the small through holes as compared with the lattice bodies described in Patent Documents 1 and 2. Therefore, when the structure of the present embodiment is used as a setter also called, for example, a shelf plate or a floor plate, which is used when baking an object to be fired, an object to be baked having a smaller size is mounted on the structure. It is possible to place it. This means that by firing it, chip monolithic ceramic capacitors Is particularly advantageous when producing
  • the structure of the present embodiment can have a smaller mass than that of the lattice bodies described in Patent Documents 1 and 2, when the structure has the same strength. As a result, when the structure of the present embodiment is used as a setter, the structure is set during firing. ⁇ 02020/174893 5 ((171?2020/000611
  • the third linear portion 30 is located on the first surface 13 side, and the first line is on the second surface 1 side.
  • Article 10 is located.
  • the second linear portion 20 is arranged on the third linear portion 30 and the first linear portion 10 is arranged on the second linear portion 20.
  • the third linear portion 30 and the second linear portion 20 are located on the third linear portion 30 at any intersection 2.
  • Two linear parts 20 are arranged. That is, at intersection 2, the structure Of the set, the second linear section 20 located relatively on the second surface 1 side is located on the third linear section 30 located relatively on the first surface 13 side. Has been done.
  • the second linear portion 20 and the first linear portion 10 are arranged so that, at any intersection 2, the first linear portion 1 is located on the second linear portion 20. 0 is allocated. That is, at intersection 2, the structure The first linear portion 10 located relatively on the side of the second surface 1 is arranged on the second linear portion 20 located relatively on the side of the first surface 13 of the set. Has been done.
  • the thickness at the intersecting portion 2 is the thickness of the first linear portion 10 at the portion other than the intersecting portion, the thickness of the second linear portion 20 and the thickness of the third linear portion 30. It may be larger than the sum. Alternatively, the thickness at the intersecting portion 2 is the thickness of the first filament portion 10, the thickness of the second filament portion 20 and the thickness of the third filament portion 30 at portions other than the intersection portion. It may be the same as the sum or may be smaller than the sum. Therefore, the maximum thickness part of the structure 1 exists at the intersection 2 or exists at a portion other than the intersection.
  • the third linear portion 30 has a constant width ⁇ /3 in plan view at positions other than the intersection 2.
  • the third linear portion 30 has a cross-sectional shape along the thickness direction in the direction orthogonal to the longitudinal direction thereof, as shown in FIG. 6, which is located on the first surface 13 side of the ceramic structure 1. It is defined by one surface 303 and a second surface 30 s located on the second surface 1 sill side of the ceramic structure 1.
  • the cross section of the third linear portion 30 along the thickness direction in the direction orthogonal to the longitudinal direction is such that the straight portion 30 and both end portions of the straight portion 30 It has a shape that is composed of a convex curved part 30 and a part.
  • the first surface 303 of the third linear portion 30 has a flat cross section in the thickness direction of the linear linear portion 30.
  • the flat surface is substantially parallel to the in-plane direction of the ceramic structure 1.
  • the second surface 30 of the third linear portion 30 has a cross section in the thickness direction of the linear portion 30 that is convex from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a curved shape.
  • the first linear portion 10 and the second linear portion 20 are also other than the intersection 2. At the position, it has a constant width ⁇ /1, ⁇ /2 in plan view.
  • the widths ⁇ /1 and ⁇ /2 may be the same or different from each other.
  • the widths ⁇ /1 and ⁇ /2 may be the same as or different from the width ⁇ /3 of the third linear portion 30. In manufacturing Structure 1, it is convenient to make ⁇ 1, ⁇ /2, and ⁇ /3 the same.
  • the first linear portion 10 and the second linear portion 20 have a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction thereof as shown in FIGS. 7 ( 3 ) and ().
  • the second surface 1013, 2013 of the first linear portion 10 and the second linear portion 20 has a cross section in the thickness direction from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a curved surface that is convex toward the swell. This curved surface shape may be the same as or different from the curved surface shape of the third linear portion 30.
  • the first surface 1 ⁇ 3 of the first linear portions 1 ⁇ and second line ridges 20, 2_Rei 3 and the second surface 1 013, 20 spoon has become symmetrical
  • the first linear portion 10 and the second linear portion 20 have a circular or elliptical cross-sectional shape along the thickness direction in the direction orthogonal to the longitudinal direction. ⁇ 02020/174893 7 ⁇ (: 171-12020/000611
  • the straight line portion 30 in the third linear portion 30 is the
  • each first surface 303 is located on the flat surface. Since the 1st surface 3 0 3 forms the 1st surface 13 in the ceramic structure 1, the fact that all the 1st surfaces 3 0 3 lie on the plane means that the 1st surface in the structure 1 It means that 1 3 is a flat surface. Therefore, when the structure 1 is mounted such that the first surface 13 thereof contacts the flat mounting surface, the entire area of the first surface 13 contacts the mounting surface.
  • first linear portion 10 and the second linear portion 20 are separated from the flat surface between two adjacent intersecting portions 2. It has a shape that Therefore, a space 3 is formed between the first linear portion 10 and the second linear portion 20 and the plane between two adjacent intersecting portions 2.
  • the second surface 1 of the structure 1 is composed of the second surface 1 0 13 of the first linear portion 10 having a convex curved surface shape as shown in Fig. 7(a). Therefore, the surface is uneven, not flat.
  • the three kinds of linear portions 10 0 20 0 30 are integrated. “Integrated” means that, in observing the cross section of the intersection 2, the three types of linear portions 10, 20, and 30 are continuous structures as ceramics.
  • the through holes 3 formed in the structure 1 by the intersections of the three types of linear portions 10, 20, and 30 have the same size and the same shape.
  • the through holes 3 are regularly arranged.
  • the third linear portion 30 has the highest position of the second surface 30 in the third linear portion 30 at a position other than the intersection 2; They are the same along the direction in which the linear portions 30 extend.
  • the highest position of the second surface 20 sill in the second linear strip portion 20 is the highest position of the second linear strip portion 20 in the portion other than the intersection 2.
  • the lowest position of the first surface 20 3 in the second linear portion 20 is the same position as the second linear portion 20 along the extending direction of the second linear portion 20 except the intersection 2. ..
  • the highest position of the second surface 10 13 in the first linear portion 10 is at either the position of the intersection 2 or the position other than the intersection 2. However, they are located at the same position along the extending direction of the first linear portion 10.
  • the lowest position of the first surface 10 3 in the first linear portion 10 is the same position as the first linear portion 10 along the extending direction of the first linear portion 10 except the intersection 2. ..
  • the third linear portion 30 and the second linear portion 20 are The apex of the convex curved portion 30 of the linear portion 30 and the downward convex curve of the circular or elliptical shape of the second linear portion 20, that is, the first surface 2 0 3 Only the top is touching.
  • the third linear portion 30 and the second linear portion 20 are in a state of point contact or surface contact close to point contact.
  • the second linear portion 20 and the first linear portion 10 are the tops of the upwardly convex curves in the circular or elliptical shape of the second linear portion 20, that is, the second surface 20
  • the structure 1 has improved spalling resistance due to the three kinds of linear portions 10, 20, and 30 being in such a contact state. The reason for this is that there are three types of filaments 1 0, 2 0,
  • the thickness of the intersection 2 is 0, the thickness of the first linear portion 10 at positions other than the intersection 2, and the thickness of the second linear portion 2 at positions other than the intersection 2. It is the sum of the thickness 0 of 0 and the thickness 3 of the third linear portion 30 at positions other than the intersection 2 (D 1 + D 2 + D 3), preferably 0 ⁇ 02020/174893 9 ((171?2020/000611
  • the point contact condition is such that it is less than 0.0.
  • the structure 1 may be manufactured by the method described below.
  • the ceramic structure 1 having the above structure is used as, for example, a setter for firing a body to be fired, by placing the body to be fired on the first surface 13 of the structure 1, Since the first surface 13 is a flat surface, it is suitable for placing an object to be fired, which requires flatness.
  • the object to be fired that requires flatness include small chip-shaped electronic parts such as multilayer ceramic capacitors. Since these small electronic components are required not to be caught by the setter during the firing process, it is advantageous that the first surface 13 of the structure 1 is flat.
  • the object to be fired makes contact only with the first linear portion 10 which is a member forming the first surface 13, the contact area between the structure 1 and the object to be fired is significantly reduced, which It becomes easy to rapidly heat and cool the object to be fired.
  • the structure 1 is formed by the intersection of the three types of linear portions 10, 20, 20 and 30 and the plurality of through holes 3 are formed, the heat capacity is small, and from this point as well It is easy to heat and cool the body rapidly.
  • the structure 1 has good air permeability due to the presence of the plurality of through holes 3, this also facilitates rapid cooling of the body to be fired. The good air permeability becomes more remarkable due to the fact that the second linear portion 20 floats between the adjacent intersections 2.
  • the structure 1 since the three kinds of linear portions 10, 20, and 30 are integrated at the intersection portion 2, the structure 1 has sufficient strength.
  • the second surface (1) is an uneven surface due to the curved surface of the first linear portion (10).
  • the electronic component of this leader size has unevenness on the surface on which it is placed.
  • it is advantageous from the viewpoint of enhancing degreasing property.
  • one surface thereof is flat and the other surface is flat.
  • the mounting surface is uneven, it is advantageous in that the mounting surface can be used properly according to the type of the object to be fired.
  • Ding 1 and Ding 2 are It is preferably not more than 200,000 and more preferably not more than 200!111. There is no particular limit to the size relationship between Ding 1, Ding 2, and Ding 3.
  • the thickness D at the intersection 2 is preferably at least 0.5 or more with respect to (Ding 1 + Ding 2 + Ding 3)! .0 or less, provided that More preferably, it is not less than 500! And not more than 20!.
  • the cross-sectional shape of the first linear portion 10 and the second linear portion 20 in the thickness direction is elliptical
  • an elliptical shape It is preferable that the short axis of the above-mentioned is aligned with the thickness direction of the structure 1 and the long axis of the ellipse is aligned with the plane direction of the structure 1 from the viewpoint that the object to be fired can be placed successfully.
  • the ratio of major axis/minor axis is preferably independently 1 or more and 5 or less, and more preferably 1 or more and 3 or less.
  • the elliptical or circular cross-sectional shape of the first linear portion 10 and the second linear portion 20 in the thickness direction also contributes to improving the strength of the structure 1.
  • the triangular through holes 3 formed in the ceramic structure 1 have an area of 10
  • the ratio of the total area of the through holes 3 to the apparent area of the ceramic structure 1 in plan view is preferably 1% or more and 80% or less, and 3% or more and 70% or less. More preferably, it is more preferably 10% or more and 70% or less. This ratio is obtained by cutting the ceramic structure 1 in a plan view and cutting it into a rectangle of any size. ⁇ 0 2020/174893 1 1 ⁇ (: 171? 2020 /000611
  • the area of each through hole 3 can be measured by image analysis of a microscope observation image of the structure 1.
  • the width ⁇ / 3 of the third linear portion 30 is 50 0 or more 1
  • the widths ⁇ /1, ⁇ 2 of the first linear portion 10 and the second linear portion 20 are independently 50 or more 1 It is preferable that The following is more preferable. There is no particular limitation on the magnitude relation between the values of ⁇ / 1, ⁇ / 2 and ⁇ / 3.
  • the distance 0 3 between the strips 30 is preferably 100 or more and 1 0 111 ⁇ ! or less, It is further preferable that On the other hand, the distance 0 between the adjacent first linear portions 10 and the distance 0 2 between the second linear portions 20 are
  • 0 1, 0 2 and 0 3 may be the same as or different from each other. From the viewpoint of manufacturing the structure 1, it is convenient that the mouths 1, 0 2 and 0 3 are the same.
  • the ceramic material forming the ceramic structure 1 can be used as the ceramic material forming the ceramic structure 1.
  • examples thereof include alumina, silicon carbide, silicon nitride, zirconia, mullite, zircon, cordierite, aluminum titanate, magnesium titanate, magnesia, titanium diboride, and boron nitride.
  • These ceramic materials can be used alone or in combination of two or more.
  • it is preferably made of ceramics containing alumina, mullite, cordierite, zirconia or silicon carbide.
  • zirconia completely stabilized by the addition of yttria can be used in order to make Structure 1 more suitable for use at high temperature firing. Sudden heating and cooling of the ceramic structure 1 ⁇ 02020/174893 12 ((171?2020/000611
  • silicon carbide As the ceramic material, it is particularly preferable to use silicon carbide as the ceramic material. Since silicon carbide may react with the material to be fired, when silicon carbide is used as the ceramic material, it is preferable to coat the surface with a ceramic material having low reactivity such as zirconia. As the raw material powder of the ceramic material constituting the structure 1, it is preferable to use a powder having a particle size of 0.1 or more and 200 or less in consideration of the viscosity and the easiness of baking when formed into a paste.
  • the ceramic materials forming the three kinds of linear portions 10, 20, and 30 may be the same or different. From the viewpoint of increasing the unity of the three types of linear portions 1 0, 2 0, 3 0 at the intersection 2, the ceramic materials forming the linear portions 1 0, 2 0, 3 0 are the same. I like that.
  • a raw material powder of a ceramic material is prepared, and the raw material powder is mixed with a medium such as water and a binder to prepare a paste for producing a linear portion.
  • the same binder as that conventionally used for this type of paste can be used.
  • examples thereof include polyvinyl alcohol, polyethylene glycol, polyethylene oxide, dextrin, soda and ammonium ligninsulfonate, carboxymethylcellulose, ethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, alginic acid.
  • Sodium and ammonium epoxy resins, phenolic resins, gum arabic, polyvinyl butyral, acrylic polymers such as polyacrylic acid and polyacrylic amide, thickening polysaccharides such as xanthan gum and guar gum, gelatin, agar and bectin.
  • Gelling agents vinyl acetate resin emulsions, wax emulsions, and inorganic binders such as alumina sol and silica sol. Two or more of these may be mixed and used. ⁇ 02020/174893 13 ((171?2020/000611
  • the viscosity of the paste is preferably high at the temperature at the time of application from the viewpoint that the structure 1 having the structure of the present embodiment can be produced successfully.
  • the viscosity of the paste should be 1. a 3 or more 5.0
  • IV! 33 or less It is preferably IV! 33 or less, more preferably 1.7 IV! 33 or more and 3.0 IV! 3-or less.
  • the viscosity of the paste was measured 4 minutes after the start of measurement at a rotation speed of 0.3 ", using a cone-plate type rotary viscometer or rheometer.
  • the ratio of the ceramic raw material powder in the paste is 20% by mass or more 8
  • the proportion of the medium in the paste is preferably 15% by mass or more and 60% by mass or less, and more preferably 20% by mass or more and 55% by mass or less.
  • the proportion of the binder in the paste is preferably 1% by mass or more and 40% by mass or less, and more preferably 5% by mass or more and 25% by mass or less.
  • the paste may contain, as a viscosity modifier, a thickener, a coagulant, a thixotropic agent, and the like.
  • the thickener include polyethylene glycol fatty acid ester, alkylallyl sulfonic acid, alkyl ammonium salt, ethyl vinyl ether/maleic anhydride copolymer, fumed silica, proteins such as albumin and the like.
  • the binder has a thickening effect and thus may be classified as a thickener, but when more strict viscosity adjustment is required, a thickener not separately classified as a binder is used. Agents can be used.
  • coagulant examples include polyacrylic amide, polyacrylic acid ester, aluminum sulfate, polyaluminum chloride and the like.
  • thixotropic agents include fatty acid amides, oxidized polyolefins, and polyether ester type surfactants.
  • solvent for preparing the paste alcohol, acetone, ethyl acetate and the like are used in addition to water, and two or more kinds of these may be mixed.
  • Glycerin such as trimethylene glycol and tetramethylene glycol, glycerin, butanediol, phthalic acid, adipic acid, phosphoric acid and the like.
  • the lubricant include liquid paraffin, micro wax, hydrocarbon type such as synthetic paraffin, higher fatty acid, fatty acid amide and the like.
  • the dispersant include sodium or ammonium polycarboxylic acid, acrylic acid-based, polyethylenimine, and phosphoric acid-based.
  • Sedimentation inhibitors include polyamine amine salts, bentonite, aluminum stearate and the like. ..! Adjusting agents include sodium hydroxide, aqueous ammonia, oxalic acid, acetic acid, hydrochloric acid.
  • the third paste which is the paste used for forming the third filament coated body, contains the above-mentioned third raw material powder of the ceramic material, a medium, and a binder.
  • Various coating devices such as a small extruder and a printing machine can be used to form the third filament coating material using the third paste.
  • a second paste is used to form a plurality of line-shaped second coated bodies so as to intersect the line-shaped third coated body. Form parallel to each other and linearly.
  • the second linear strip coated body corresponds to the second linear strip portion 20 in the target structure 1.
  • the second paste may have the same composition as the third paste, and contains the second raw material powder of the ceramic material, the medium and the binder.
  • the same coating device as that used for the third filament coating can be used to form the second filament coating.
  • the medium is removed from the second filament coated body and dried to further increase the viscosity of the second filament coated body. This operation can be performed in the same manner as the operation for the filamentary third coated body.
  • the first linear strip coated body corresponds to the first linear strip portion 10 of the target structure 1.
  • the same composition as the second paste and/or the third paste can be used, and it contains the first raw material powder of the ceramic material, the medium and the binder.
  • the same coating device as that used for the second line coated body and the third line coated body can be used to form the first line coated body.
  • the medium is then removed from the first filament coating material and dried to further increase the viscosity of the first filament coating object. This operation can be performed in the same manner as the operation for the second line coated body and/or the third line coated body.
  • the formation of the filament 3rd coated body and the removal of the medium, the formation of the filament 2nd coated body and the removal of the medium, and the formation of the filament 1st coated body and the removal of the medium are sequentially performed.
  • the structure in which the second linear section 20 is located on the third linear section 30 and the first linear section 10 is located on the second linear section 20. 1 is obtained successfully.
  • the pre-fired structure thus obtained is separated from the substrate, placed in a firing furnace, and fired. By this firing, the target ceramic structure 1 is obtained. Firing can generally be performed in the atmosphere.
  • the firing temperature may be selected as appropriate depending on the type of raw material powder of the ceramic material. The same applies to the firing time.
  • the ceramic structure 1 is preferably used as a setter for degreasing or baking ceramic products such as shelves and floor boards, and can also be used as a kiln tool other than the setter, for example, a jar or a beam. Further, it can be used for applications other than kiln tools, for example, various jigs such as filters and catalyst carriers, and various structural materials. In this case, it is general to place the object to be fired on the second surface 1 which is the uneven surface of the structure 1, but depending on the type of object to be fired, the first surface 1 3 You may mount the to-be-baked body on it.
  • chip monolithic ceramic capacitors When performing the firing process in the process of manufacturing electronic components such as ceramics and monolithic ceramic inductors, place the firing target on the first surface 1 3 which is a flat surface. ⁇ 02020/174893 16 ⁇ (: 171?2020/000611
  • the setter on which the object to be fired is placed may fire the object to be fired, or another structure that may be another ceramic structure 1 or a lid on the object to prevent the object to be fired from scattering. You may place the body on it and bake it.
  • the ceramic structures 1 on which the objects to be fired are placed may be stacked in a plurality of stages and may be fired. A spacer may be placed and baked.
  • the ceramic structure 1 has the ceramic structure 1 mounted on a mounting portion of another ceramic tray, and the body to be fired is mounted on the ceramic structure 1 to form a unit with this. It is also applicable to a mode in which a plurality of units are fired in a stacked state.
  • FIGS. 8(a) and (13) and FIGS. 9(a) and (10) the same members as those in FIGS. 1 to 7 are denoted by the same reference numerals.
  • the ceramic structure 1 of the embodiment shown in Figs. 8(a) and 8(c) shows how the first, second and third linear portions 10, 20 and 30 are laminated. It is different from the embodiment shown in FIG. Specifically, the second linear portion 20 is arranged on the first linear portion 10, and the third linear portion 30 is arranged on the second linear portion 20. The third linear portion 30 is arranged so as to pass on the diagonal line of the quadrangle defined by the intersection of the first linear portion and the second linear portion.
  • the first linear portion 10, the second linear portion 20 and the third linear portion 30 intersect at one intersection 2. Then, at any intersection 2, the second linear portion 20 is arranged on the first linear portion 10. Further, at any intersection 2, the third linear section 30 is arranged on the second linear section 20.
  • the first linear portion 10 has a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction, which is the first surface 1 3 of the ceramic structure 1. ⁇ 02020/174893 17 ⁇ (: 171?2020/000611
  • the first linear portion 10 has a straight line portion 10 and a straight line portion 10 at a portion other than the crossing portion 2 in a cross section along the thickness direction in a direction orthogonal to the longitudinal direction. It has a shape composed of a convex curved portion 10 having both ends of the portion 10 as ends.
  • the cross section of the linear portion 10 in the thickness direction is a flat surface. The flat surface is substantially parallel to the in-plane direction of the ceramic structure 1.
  • the second surface 10 of the first linear portion 10 has a cross section in the thickness direction of the linear portion 10 from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a convex curved surface shape.
  • the cross sections of the second linear section 20 and the third linear section 30 have a circular or elliptical shape in a portion other than the intersection 2.
  • the ceramic structure 1 of the embodiment shown in FIGS. 9(a) and 9() is also shown in FIG.
  • the method of stacking the first, second, and third linear portions 10 20, 20 and 30 is the same as the embodiment shown in FIG. Specifically, the third linear portion 30 is arranged on the second linear portion 20 and the first linear portion 1 0 is arranged on the third linear portion 30. The third linear portion 30 is arranged so as to pass on the diagonal line of the quadrangle defined by the intersection of the first linear portion and the second linear portion. ing.
  • the first linear portion 10, the second linear portion 20 and the third linear portion 30 intersect at one intersection 62. Then, at any intersection 2, the third linear portion 30 is arranged on the second linear portion 20. Furthermore, at any intersection 2, the first linear portion 10 is arranged on the third linear portion 30.
  • the second filament portion 20 has a cross-sectional shape along the thickness direction in the direction orthogonal to the longitudinal direction, which is the first surface 1 3 of the ceramic structure 1. It is defined by the first surface 203 located on the side and the second surface 20 surface located on the side of the second surface 1 of the ceramic structure 1.
  • the second linear portion 20 has a cross section along the thickness direction in a direction orthogonal to its longitudinal direction at a portion other than the intersection portion 2. ⁇ 02020/174893 18 ⁇ (: 171?2020/000611
  • the first surface 208 of the second linear portion 20 has a flat cross section in the thickness direction of the linear portion 20.
  • the flat surface is substantially parallel to the in-plane direction of the ceramic structure 1.
  • the second surface 20 of the second linear portion 20 has a cross section in the thickness direction of the linear portion 20 from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a convex curved surface shape.
  • their cross sections have a circular or elliptical shape in a portion other than the intersection 2.
  • the shape of the ceramic structure of each of the embodiments described above is not particularly limited in plan view, and may be, for example, a circular shape, an elliptical shape, a rectangular shape, or the like. Alternatively, it may have a contour that is a combination of straight lines and curved lines. If the ceramic structure has a straight side at least in part of its contour, one of the first, second, and third linear sections 10, 20, 20 It is preferable that the ridges are arranged in parallel with the straight side portions from the viewpoint of more strongly maintaining impact resistance near the straight side portions of the ceramic structure. Further, it is preferable that the straight side portion intersects with the intersecting portion at any position of the straight side portion from the viewpoint of preventing chipping due to chipping at the end portion of the ceramic structure.
  • the first linear portion 10 or the third linear portion 30 is arranged in parallel with the straight side portion.
  • the second linear portion 20 and the straight side portion are not less than 10 degrees and not more than 80 degrees or not less than 100 degrees and not more than 170 degrees, and particularly not less than 20 degrees and not more than 70 degrees or 11
  • Propagation of defects such as cracks generated in the ceramic structure 1 is that they intersect at an angle of 0 degrees or more and 160 degrees or less, particularly 30 degrees or more and 60 degrees or less, or 105 degrees or more and 150 degrees. From the viewpoint of effectively preventing ⁇ 02020/174893 19 ⁇ (: 171?2020/000611
  • the first linear portion 10 or the third linear portion 30 may be arranged in parallel with the straight side portion.
  • the fact that the second linear portion 20 intersects with the straight side portion at the angle described above is more effective from the viewpoint of effectively preventing the propagation of defects such as cracks generated in the ceramic structure 18. preferable.
  • the third linear portions 30 are arranged in parallel with the straight side portions.
  • the second linear portion intersects with the straight side portion at the above-mentioned angle from the viewpoint of effectively preventing the propagation of defects such as cracks generated in the ceramic structure 1.
  • the ceramic structure of each of the above-described embodiments may be provided with an outer frame (not shown) on the outer periphery of the structure for the purpose of improving its strength.
  • the outer frame may be integrally formed from the same material as the structure, or may be manufactured separately from the structure and joined by a predetermined joining means.
  • the outer frame may have a constant width, or may have a wide portion and a narrow portion. If the width of the outer frame is constant, the width is 0. The following is preferable. If the width of the outer frame is not constant, the width is 1 at the widest part. The following is preferable, and in the narrowest part
  • the present invention has been described above based on its preferred embodiments, the present invention is not limited to the above embodiments.
  • three types of linear portions which are composed of the first, second, and third linear portions 10, 20, and 30, are used, and three layers form one unit.
  • two or more repeating units composed of the first, second and third linear portions 10, 20 and 30 are laminated to form a structure. May be formed.
  • the first linear portion 10 is arranged below the third linear portion 30 or the third linear portion 10 is arranged above the third linear portion 10. You may arrange a line part.
  • the first linear portion 10 ⁇ 02020/174893 20 ((171?2020/000611
  • the third linear portion 30 may be arranged on the lower side, or the first linear portion 10 may be arranged on the third linear portion 30. Further, similarly, in the embodiment shown in FIG. 9( a ), the first linear portion 10 is arranged below the second linear portion 20 and the first linear portion 10 is arranged. You may arrange
  • part means “part by mass”.
  • the morphology of the ceramic structure, the number of laminated filaments, the distance between filaments, the mass, etc. are as shown in Table 1.
  • the flat plate-shaped ceramic structure 1 shown in FIG. 1 was manufactured.
  • a paste was prepared by mixing 1.1 parts of a carboxylic acid-based dispersant (molecular weight 12000) with 26.1 parts of water and defoaming. The viscosity of the paste was 2.0 ⁇ 9 a-3 at 25 °.
  • the structure before firing was separated from the resin substrate, and then placed in an air-fired furnace. Degreasing and firing were performed in this firing furnace to obtain a rectangular ceramic structure having the shape shown in Fig. 1.
  • the firing temperature was 1600 ° and the firing time was 3 hours. ⁇ 02020/174893 21 ((171?2020/000611
  • the first linear portion 10 of the structure thus obtained has a width 1 of 4 25 and a thickness 1 of 400
  • the second linear portion 20 of the structure has a width ⁇ / 2 is 4 2
  • thickness 2 is 41
  • the third linear portion 30 of the structure has width ⁇ / 3 of 4 2 5 and thickness 3 of 4 10. It was The thickness of the intersection 2 was 1160.
  • Example 1 Using the same paste as in Example 1 as the raw material, the diameter ⁇ . Using a small extruder with a nozzle of 25 ° ⁇ , form a linear strip No. 1 coated body on a resin substrate and continue to intersect it with a linear strip No. 2 coated body and linear strip No. 3 The coated body was formed. The angle of intersection between the filament-shaped second coated body and the filament-shaped first coated body was set to 60° so that a diamond-shaped crystal was formed. The line-shaped third coated body was designed to pass on the shorter diagonal line of the diamond-shaped diagonal lines. Otherwise in the same manner as in Example 1, a rectangular ceramic structure having the shape shown in FIG. 8(a) was obtained. The specifications of the obtained structure are shown in Table 1 below. In this structure, the third linear portion was parallel to the straight side portion.
  • Example 2 Using the same paste as in Example 1 as the raw material, the diameter ⁇ . Using a small extruder having the nozzle of 25° ⁇ , form a line 2nd coated body on the resin substrate, and then continue to intersect the line 3rd coated body and line 1st line. The coated body was formed. The angle of intersection between the filament-shaped second coated body and the filament-shaped first coated body was set to 60° so that a diamond-shaped crystal was formed. The line-shaped third coated body was designed to pass on the shorter diagonal line of the diamond-shaped diagonal lines. Other than that, as in the case of Example 1, as shown in FIG. ⁇ 0 2020/174893 22 ⁇ (: 171? 2020 /000611
  • a rectangular ceramic structure having the shape shown in a) was obtained.
  • the specifications of the obtained structure are shown in Table 1 below.
  • the third linear portion was parallel to the straight side portion.
  • Example 2 Using the same paste as in Example 1 as the raw material, the diameter ⁇ . Using a small extruder with the nozzle of No. 2, under the environment of 25 ° , the first linear filament coating was formed on the resin substrate, and then the second linear filament coating was formed orthogonal thereto. On this, a linear first coating and a linear second coating were formed, and a lattice-shaped pre-fired structure consisting of a total of four layers of coating was obtained.
  • the first linear portions and the second linear portions is set to orthogonal to that angle 9 0 °, the crossing angle of the linear edge portion and the ridges are ⁇ ° and (parallel) to 9 0 ° (Cartesian) It was arranged so that A rectangular ceramic structure was obtained in the same manner as in Example 1 except for the above. The specifications of the obtained structure are shown in Table 1 below.
  • Example 2 Using the same paste as in Example 1 as the raw material, the diameter ⁇ . Using a small extruder with the nozzle of No. 2, under the environment of 25 ° , the first linear filament coating was formed on the resin substrate, and then the second linear filament coating was formed orthogonal thereto. A linear first coating body was formed thereon, and a lattice-shaped pre-fired structure consisting of a total of three layers of coating bodies was obtained. The first linear part and the second linear part are orthogonal to each other at 90 ° , and the crossing angle between the side part and each linear part is 0 ° (parallel) or 90 ° (orthogonal). did . A rectangular ceramic structure was obtained in the same manner as in Example 1 except for the above. The specifications of the obtained structure are shown in Table 1 below.
  • Ceramic structures were obtained in the same manner as in Examples 1 to 3 and Comparative Example 2 except that the width of the filaments and the distance between the filaments were as shown in Table 1.
  • the thermal shock resistance temperature is defined as the upper temperature limit of the furnace that maintains durability without cracking.
  • the strength of the obtained ceramic structure was evaluated.
  • the strength when bent in a direction parallel to the straight side portion where the third linear portion intersects was obtained.
  • the strength when bent in a direction orthogonal to the first linear portion having two layers was obtained.
  • a 4-point bending test was used for strength evaluation. The 4-point bending test conformed to the test method of room temperature bending strength of fine ceramics. At this time, the cross-sectional area was calculated from the width and thickness of the structure.
  • the mass can be lightened in the example, even though the width and the interval of the filaments are the same in the example and the comparative example. Moreover, it can be seen that the example is superior to the comparative example in thermal shock resistance and strength, although the mass is lighter.
  • Example 1 the strength in Strength Evaluation 2 was a slight decrease of 12% compared to the strength in Strength Evaluation 1, but in Comparative Example 2 it was decreased by 13.5%, showing a large anisotropy. Was observed. Therefore, it was found that the examples also have excellent strength anisotropy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

A ceramic structure (1) comprises: a plurality of first ceramic linear parts (10) that extend in one direction; a plurality of second ceramic linear parts (20) that extend in a direction intersecting with the first linear parts (10); and a third ceramic linear part (30) that passes on the diagonal of a quadrangle defined by the intersection of the first linear parts (10) and the second linear parts (20). A plurality of triangular through-holes, which are each defined by the first linear parts (10), the second linear parts (20), and the third linear part (30), are formed.

Description

\¥02020/174893 1 卩(:17 2020/000611 \¥02020/174893 1 卩 (: 17 2020/000611
明 細 書 Specification
発明の名称 : セラミックス構造体 Title of invention: Ceramic structure
技術分野 Technical field
[0001 ] 本発明は、 セラミックス製の線条部を組み合わせて形成された構造体に関 する。 The present invention relates to a structure formed by combining ceramic linear portions.
背景技術 Background technology
[0002] 本出願人は先に、 一方向に向けて延びるセラミックス製の複数の第 1の線 条部と、 該第 1の線条部と交差する方向に向けて延びるセラミックス製の複 数の第 2の線条部とを有するセラミックス格子体を提案した (特許文献 1及 び 2参照) 。 このセラミックス格子体における第 1の線条部と第 2の線条部 との交差部は、 いずれの該交差部においても、 第 1の線条部上に第 2の線条 部が配された状態になっており、 平面視において矩形の貫通孔を有している [0002] The present applicant has previously found that a plurality of first linear filament portions made of ceramics extending in one direction and a plurality of ceramic linear filaments extending in a direction intersecting with the first linear filament portions. A ceramic grid having a second linear portion was proposed (see Patent Documents 1 and 2). At the intersection of the first and second filaments in this ceramic grid, the second filament is arranged on the first filament at any of the intersections. It has a rectangular through hole in plan view.
先行技術文献 Prior art documents
特許文献 Patent literature
[0003] 特許文献 1 :特開 2 0 1 8 _ 1 8 4 3 0 4号公報 [0003] Patent Document 1: Japanese Patent Laid-Open No. 2018_1884340
特許文献 2 :特開 2 0 1 8 - 1 9 3 2 7 4号公報 Patent Document 2: JP 20 18-1 9 3 2 7 4
発明の概要 Summary of the invention
[0004] 特許文献 1及び 2に記載のセラミックス格子体は、 その格子構造に起因し て、 高強度で且つ耐スポーリング性に優れたものとなる。 特に、 格子と平行 な方向に沿う強度は極めて高いものとなる。 しかし、 格子の対角線方向に関 しては、 更なる強度の向上が求められる場合がある。 [0004] The ceramic lattice bodies described in Patent Documents 1 and 2 have high strength and excellent spalling resistance due to the lattice structure. In particular, the strength along the direction parallel to the lattice is extremely high. However, further improvement in strength may be required in the diagonal direction of the lattice.
[0005] したがって本発明の課題は、 セラミックス製の複数の線条部から構成され る構造体の改良にあり、 更に詳しくは該構造体を一層高強度で且つ高耐熱衝 撃性を有するものにすることにある。 [0005] Therefore, an object of the present invention is to improve a structure composed of a plurality of ceramic linear portions, and more specifically, to provide the structure with higher strength and high heat shock resistance. To do.
[0006] 本発明は、 一方向に向けて延びるセラミックス製の複数の第 1の線条部と 、 該第 1の線条部と交差する方向に向けて延びるセラミックス製の複数の第 \¥02020/174893 2 卩(:171?2020/000611 The present invention is directed to a plurality of ceramic first linear portions extending in one direction and a plurality of ceramic first linear portions extending in a direction intersecting the first linear portions. \¥02020/174893 2 (:171?2020/000611
2の線条部と、 第 1の線条部と第 2の線条部とが交差することで画成される 四辺形の対角線上を通るセラミックス製の第 3の線条部とを有し、 The second linear portion, and the third linear portion made of ceramics that passes along the diagonal of the quadrilateral defined by the intersection of the first linear portion and the second linear portion. ,
第 1の線条部、 第 2の線条部及び第 3の線条部によって画成される複数の 三角形の貫通孔が形成されている、 板状のセラミックス構造体を提供するこ とによって前記の課題を解決したものである。 By providing a plate-shaped ceramic structure having a plurality of triangular through holes defined by the first linear portion, the second linear portion and the third linear portion, It is a solution to the problem.
図面の簡単な説明 Brief description of the drawings
[0007] [図 1]図 1は、 本発明のセラミックス構造体の一実施形態を示す平面図である [0007] [FIG. 1] FIG. 1 is a plan view showing an embodiment of a ceramic structure of the present invention.
[図 2]図 2は、 図 1 に示すセラミックス構造体を上面側から見た斜視図である [Fig. 2] Fig. 2 is a perspective view of the ceramic structure shown in Fig. 1, viewed from the top side.
[図 3]図 3は、 図 1 に示すセラミックス構造体を下面側から見た斜視図である [Fig. 3] Fig. 3 is a perspective view of the ceramic structure shown in Fig. 1 as seen from the lower surface side.
[図 4]図 4は、 図 1 における八 _八線断面図である。 [Fig. 4] Fig. 4 is a cross-sectional view taken along the line 8_8 in Fig. 1.
[図 5]図 5は、 図 1 における巳 _巳線断面図である。 [Fig. 5] Fig. 5 is a sectional view taken along the line _ _ in Fig. 1.
[図 6]図 6は、 図 1 に示すセラミックス構造体における第 3の線条部の横断面 図である。 [Fig. 6] Fig. 6 is a cross-sectional view of the third filament portion in the ceramic structure shown in Fig. 1.
[図 7]図 7 ( a ) 及び (匕) はそれぞれ、 図 1 に示すセラミックス構造体にお ける第 1の線条部及び第 2の線条部の横断面図である。 [Fig. 7] Figs. 7(a) and 7() are cross-sectional views of the first linear portion and the second linear portion in the ceramic structure shown in Fig. 1, respectively.
[図 8]図 8 ( 8 ) は、 本発明のセラミックス構造体の別の一実施形態を示す平 面図であり、 図 8 ( 13 ) は、 図 8 ( a ) における八 _八線断面図である。 [FIG. 8] FIG. 8 (8) is a plan view showing another embodiment of the ceramic structure of the present invention, and FIG. 8 (13) is a sectional view taken along line 8 — 8 in FIG. 8 (a ). Is.
[図 9]図 9 ( 3 ) は、 本発明のセラミックス構造体の更に別の一実施形態を示 す平面図であり、 図 9 ( 13 ) は、 図 9 ( a ) における八 _八線断面図である [FIG. 9] FIG. 9 ( 3 ) is a plan view showing still another embodiment of the ceramic structure of the present invention, and FIG. 9 (13) is a sectional view taken along line 8 — 8 in FIG. 9 (a ). Is a figure
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0008] 以下本発明を、 その好ましい実施形態に基づき図面を参照しながら説明す る。 図 1ないし図 7には、 本発明のセラミックス構造体の一実施形態が示さ れている。 これらの図に示すセラミックス構造体 (以下、 単に 「構造体」 と もいう。 ) 1は平板状のものであり、 第 1面 1 3と、 これに対向する第 2面 \¥02020/174893 3 卩(:171?2020/000611 [0008] Hereinafter, the present invention will be described based on its preferred embodiments with reference to the drawings. 1 to 7 show one embodiment of the ceramic structure of the present invention. The ceramic structure (hereinafter also simply referred to as “structure”) 1 shown in these figures has a flat plate shape, and has a first surface 13 and a second surface facing it. \\02020/174893 3 (¥171?2020/000611
1 13とを有している。 1 13 and.
[0009] 本実施形態の構造体 1は、 一方向 Xに向けて延びるセラミックス製の複数 の第 1の線条部 1 〇を有する。 それぞれの第 1の線条部 1 0は、 ほぼ直線を しており互いに平行に延びている。 隣り合う第 1の線条部 1 0の間隔はほぼ 等しくなっている。 [0009] The structure 1 of the present embodiment has a plurality of ceramic first linear portions 10 extending in the one direction X. The respective first linear portions 10 are substantially straight and extend parallel to each other. The intervals between the adjacent first linear portions 10 are almost equal.
[0010] 構造体 1は、 X方向と異なる方向である丫方向に向けて延びるセラミック ス製の複数の第 2の線条部 2 0を有する。 それぞれの第 2の線条部 2 0は、 直線をしており互いに平行に延びている。 隣り合う第 2の線条部 2 0の間隔 はほぼ等しくなっている。 X方向と丫方向とは異なる方向なので、 第 1の線 条部 1 0と第 2の線条部 2 0とは交差している。 両線条部 1 〇, 2 0の交差 角度は、 セラミックス構造体 1の具体的な用途に応じて設定することができ る。 例えば第 1の線条部 1 0に対して、 第 2の線条部 2 0の交差角度を 9 0 度とすることができる。 あるいは図 1 に示すとおり、 第 1の線条部 1 0を基 準として反時計回りの方向に沿って見たときに、 第 1の線条部 1 0と第 2の 線条部 2 0とのなす交差角度 0を 6 0度 ± 4 0度、 あるいは 9 0度 ± 4 0度 の範囲で変更させることもできる。 複数の第 1の線条部 1 〇と、 複数の第 2 の線条部 2 0とが交差していることによって、 構造体 1の平面視において、 四辺形の開孔部を有する格子が形成される。 図 1では、 菱形の形状をした開 孔部を有する格子が、 第 1の線条部 1 〇と第 2の線条部 2 0との交差によっ て形成された状態が示されているが、 形状は菱形のほかの四辺形、 例えば図 示しない長方形や正方形も取り得る。 The structure 1 has a plurality of second filament portions 20 made of ceramics and extending in a vertical direction that is a direction different from the X direction. Each second linear portion 20 is straight and extends parallel to each other. The intervals between the adjacent second linear portions 20 are almost equal. Since the X direction is different from the vertical direction, the first linear portion 10 and the second linear portion 20 intersect. The crossing angle between the two linear sections 10 and 20 can be set according to the specific application of the ceramic structure 1. For example, the angle of intersection of the second linear portion 20 with the first linear portion 10 can be 90 degrees. Alternatively, as shown in Fig. 1, when viewed along the counterclockwise direction with the first linear portion 10 as the reference, the first linear portion 10 and the second linear portion 20 are It is also possible to change the intersection angle 0 formed by the angle within the range of 60 degrees ± 40 degrees or 90 degrees ± 40 degrees. When the plurality of first linear portions 10 and the plurality of second linear portions 20 intersect each other, a grid having quadrangular apertures is formed in the plan view of the structure 1. To be done. Although Fig. 1 shows a state in which a lattice having diamond-shaped openings is formed by the intersection of the first linear portion 10 and the second linear portion 20. The shape can be a quadrangle other than the rhombus, for example, a rectangle or a square not shown.
[001 1 ] 構造体 1は、 更に、 セラミックス製の複数の第 3の線条部 3 0も有する。 The [001 1] structure 1 further has a plurality of third linear portions 30 made of ceramics.
それぞれの第 3の線条部 3 0は、 直線をしており互いに平行に延びている。 第 3の線条部 3 0は、 第 1の線条部 1 0の延びる方向 X及び第 2の線条部 2 0の延びる方向丫のいずれとも異なる方向である 方向に沿って延びている 。 それぞれの第 3の線条部 3 0は、 第 1の線条部と第 2の線条部とが交差す ることで画成される四辺形の対角線上を通るように配置されている。 その結 果、 本実施形態の構造体 1 には、 第 1の線条部 1 〇、 第 2の線条部 2 0及び \¥02020/174893 4 卩(:17 2020/000611 Each third linear portion 30 is straight and extends parallel to each other. The third linear portion 30 extends along a direction different from both the extending direction X of the first linear portion 10 and the extending direction of the second linear portion 20. Each of the third linear portions 30 is arranged so as to pass on the diagonal line of the quadrilateral defined by the intersection of the first linear portions and the second linear portions. As a result, in the structure 1 of the present embodiment, the first linear portion 10 and the second linear portion 20 and \¥02020/174893 4 (: 17 2020/000611
第 3の線条部 3 0によって画成される複数の三角形の貫通孔 3が形成されて いる。 図 1では、 略正三角形の貫通孔 3が形成されている状態が示されてい る。 A plurality of triangular through holes 3 defined by the third linear portions 30 are formed. FIG. 1 shows a state in which a substantially equilateral triangular through hole 3 is formed.
[0012] 上述のとおり、 構造体 1 においては、 第 3の線条部 3 0が、 第 1の線条部 と第 2の線条部とが交差することで画成される四辺形の対角線上を通るよう に配置されているので、 構造体 1の平面視において第 1ないし第 3の線条部 1 0 , 2 0 , 3 0は必ず 1つの交差部 2で交差していることが好ましい。 換 言すれば、 3つの線条部 1 0 , 2 0 , 3 0のうち、 2つの線条部のみが交差 している交差部は構造体 1 には実質的に存在していないことが好ましい。 [0012] As described above, in the structure 1, the third linear portion 30 is a quadrilateral diagonal line defined by the intersection of the first linear portion and the second linear portion. Since it is arranged so as to pass above, it is preferable that the first to third linear portions 10 0, 20 0 and 30 0 always intersect at one intersection 2 in the plan view of the structure 1. .. In other words, it is preferable that, among the three linear portions 1 0, 2 0, 3 0, the intersection portion where only two linear portions intersect does not substantially exist in the structure 1. ..
[0013] 本実施形態のように、 3種類の線条部を組み合わせて用い、 三角形の貫通 孔が形成された構造体 1は、 X方向、 丫方向及び 方向の 3方向に沿う強度 が高いものとなる。 したがって、 2方向に沿う強度が高い特許文献 1及び 2 に記載の格子体に比べて、 強度低下の異方性が少なくなる。 特に、 図 1 に示 すとおり貫通孔 3が略正三角形である場合、 該正三角形の各辺は、 その長さ はほぼ等しく、 且つ第 1ないし第 3の線条部 1 0 , 2 0 , 3 0のうちのいず れか一つで形成されているので、 強度的にほぼ等価である。 したがって、 強 度低下の異方性が一層少なくなり、 すべての方向において概ね等しい強度を 示す。 [0013] As in the present embodiment, the structure 1 in which the triangular through holes are formed by using the three types of linear portions in combination has a high strength in the three directions of the X direction, the ridge direction and the directional direction. Becomes Therefore, the anisotropy of strength reduction is less than that of the lattice bodies described in Patent Documents 1 and 2 which have high strength along the two directions. In particular, when the through-hole 3 is a substantially equilateral triangle as shown in FIG. 1, the sides of the equilateral triangle are substantially equal in length, and the first to third filament portions 10 and 20, Since it is formed by any one of the 30, it is almost equivalent in strength. Therefore, the anisotropy of the strength decrease is further reduced, and the strength is almost equal in all directions.
[0014] その上、 本実施形態の構造体によれば、 特許文献 1及び 2に記載の格子体 に比べて小さな貫通孔を容易に形成することができる。 したがって、 本実施 形態の構造体を、 例えば被焼成体を焼成するときに用いられる、 棚板や敷板 などとも呼ばれるセッターとして用いる場合には、 一層小さなサイズの被焼 成体を該構造体上に載置することが可能である。 このことは、 焼成によって チップ積層セラミックコンデンサ
Figure imgf000006_0001
を製造する場合に特に有利で ある。
[0014] Furthermore, according to the structure of the present embodiment, it is possible to easily form the small through holes as compared with the lattice bodies described in Patent Documents 1 and 2. Therefore, when the structure of the present embodiment is used as a setter also called, for example, a shelf plate or a floor plate, which is used when baking an object to be fired, an object to be baked having a smaller size is mounted on the structure. It is possible to place it. This means that by firing it, chip monolithic ceramic capacitors
Figure imgf000006_0001
Is particularly advantageous when producing
[0015] しかも、 本実施形態の構造体は、 特許文献 1及び 2に記載の格子体と同等 の強度を発現させる場合に、 該格子体よりも質量を軽くすることができる。 その結果、 本実施形態の構造体をセッターとして用いると、 焼成時に、 該構 \¥02020/174893 5 卩(:171?2020/000611 Moreover, the structure of the present embodiment can have a smaller mass than that of the lattice bodies described in Patent Documents 1 and 2, when the structure has the same strength. As a result, when the structure of the present embodiment is used as a setter, the structure is set during firing. \¥02020/174893 5 ((171?2020/000611
造体中での温度むらが少なくなり、 耐熱衝撃性が向上するという利点もある There is also an advantage that temperature unevenness in the body is reduced and thermal shock resistance is improved.
[0016] 図 4及び図 5に示すとおり、 構造体 1 においては、 第 1面 1 3側に第 3の 線条部 3 0が位置しており、 第 2面 1 匕側に第 1の線条部 1 〇が位置してい る。 そして、 第 3の線条部 3 0上に第 2の線条部 2 0が配置され、 且つ第 2 の線条部 2 0上に第 1の線条部 1 0が配置されている。 更に、 図 1ないし図 5に示すとおり、 第 3の線条部 3 0と第 2の線条部 2 0とは、 いずれの交差 部 2においても、 第 3の線条部 3 0上に第 2の線条部 2 0が配されている。 つまり、 交差部 2においては、 構造体
Figure imgf000007_0001
1 匕のうち、 相対 的に第 1面 1 3側に位置する第 3の線条部 3 0上に、 相対的に第 2面 1 匕側 に位置する第 2の線条部 2 0が配されている。 これに加えて、 第 2の線条部 2 0と第 1の線条部 1 0とは、 いずれの交差部 2においても、 第 2の線条部 2 0上に第 1の線条部 1 0が配されている。 つまり、 交差部 2においては、 構造体
Figure imgf000007_0002
1 匕のうち、 相対的に第 1面 1 3側に位置する第 2の線条部 2 0上に、 相対的に第 2面 1 匕側に位置する第 1の線条部 1 0が 配されている。
As shown in FIGS. 4 and 5, in the structure 1, the third linear portion 30 is located on the first surface 13 side, and the first line is on the second surface 1 side. Article 10 is located. Then, the second linear portion 20 is arranged on the third linear portion 30 and the first linear portion 10 is arranged on the second linear portion 20. Further, as shown in FIGS. 1 to 5, the third linear portion 30 and the second linear portion 20 are located on the third linear portion 30 at any intersection 2. Two linear parts 20 are arranged. That is, at intersection 2, the structure
Figure imgf000007_0001
Of the set, the second linear section 20 located relatively on the second surface 1 side is located on the third linear section 30 located relatively on the first surface 13 side. Has been done. In addition to this, the second linear portion 20 and the first linear portion 10 are arranged so that, at any intersection 2, the first linear portion 1 is located on the second linear portion 20. 0 is allocated. That is, at intersection 2, the structure
Figure imgf000007_0002
The first linear portion 10 located relatively on the side of the second surface 1 is arranged on the second linear portion 20 located relatively on the side of the first surface 13 of the set. Has been done.
[0017] 交差部 2における厚みは、 該交差部以外の部位における第 1の線条部 1 0 の厚み、 第 2の線条部 2 0の厚み及び第 3の線条部 3 0の厚みの総和よりも 大きくなっていてもよい。 あるいは、 交差部 2における厚みは、 該交差部以 外の部位における第 1の線条部 1 0の厚み、 第 2の線条部 2 0の厚み及び第 3の線条部 3 0の厚みの総和と同じであるか、 又は該総和よりも小さくなっ ていてもよい。 したがって、 構造体 1の最大厚み部は、 交差部 2に存在して いるか、 又は交差部以外の部位に存在している。 [0017] The thickness at the intersecting portion 2 is the thickness of the first linear portion 10 at the portion other than the intersecting portion, the thickness of the second linear portion 20 and the thickness of the third linear portion 30. It may be larger than the sum. Alternatively, the thickness at the intersecting portion 2 is the thickness of the first filament portion 10, the thickness of the second filament portion 20 and the thickness of the third filament portion 30 at portions other than the intersection portion. It may be the same as the sum or may be smaller than the sum. Therefore, the maximum thickness part of the structure 1 exists at the intersection 2 or exists at a portion other than the intersection.
[0018] 図 6に示すとおり、 第 3の線条部 3 0は、 交差部 2以外の位置において、 平面視して一定の幅 \^/ 3を有している。 第 3の線条部 3 0は、 その長手方向 に直交する方向での厚み方向に沿った断面形状が、 図 6に示すとおり、 セラ ミックス構造体 1の第 1面 1 3側に位置する第 1面 3 0 3と、 セラミックス 構造体 1の第 2面 1 匕側に位置する第 2面 3 0匕とで画成される。 詳細には \¥02020/174893 6 卩(:171?2020/000611 As shown in FIG. 6, the third linear portion 30 has a constant width \^/3 in plan view at positions other than the intersection 2. The third linear portion 30 has a cross-sectional shape along the thickness direction in the direction orthogonal to the longitudinal direction thereof, as shown in FIG. 6, which is located on the first surface 13 side of the ceramic structure 1. It is defined by one surface 303 and a second surface 30 s located on the second surface 1 sill side of the ceramic structure 1. In detail \¥02020/174893 6 卩 (: 171?2020/000611
、 第 3の線条部 30は、 その長手方向に直交する方向での厚み方向に沿った 断面が、 交差部 2以外の部位において、 直線部 30 と、 該直線部 30八の 両端部を端部とする凸形の曲線部 30巳とから構成される形状を有している 。 その結果、 第 3の線条部 30の第 1面 3〇 3は、 §亥線条部 30の厚み方向 での断面が平坦面になっている。 該平坦面は、 セラミックス構造体 1の面内 方向と略平行になっている。 一方、 第 3の線条部 30の第 2面 30 は、 該 線条部 30の厚み方向での断面が、 セラミックス構造体 1の第 1面 1 3から 第 2面 1 匕に向けた凸の曲面形状をしている。 The cross section of the third linear portion 30 along the thickness direction in the direction orthogonal to the longitudinal direction is such that the straight portion 30 and both end portions of the straight portion 30 It has a shape that is composed of a convex curved part 30 and a part. As a result, the first surface 303 of the third linear portion 30 has a flat cross section in the thickness direction of the linear linear portion 30. The flat surface is substantially parallel to the in-plane direction of the ceramic structure 1. On the other hand, the second surface 30 of the third linear portion 30 has a cross section in the thickness direction of the linear portion 30 that is convex from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a curved shape.
[0019] 第 3の線条部 30と同様に、 図 7 (a) 及び (匕) に示すとおり、 第 1の 線条部 1 〇及び第 2の線条部 20も、 交差部 2以外の位置において、 平面視 して一定の幅 \^/1 , \^/2を有している。 幅 \^/1 , \^/2は、 互いに同じでもよ く、 あるいは異なっていてもよい。 また、 幅 \^/1 , \^/2は、 第 3の線条部 3 0の幅 \^/3と同じであってもよく、 あるいは異なっていてもよい。 構造体 1 の製造上は、 \^1、 \^/2及び \^/3は同一とすることが簡便である。 第 1の線 条部 1 0及び第 2の線条部 20は、 その長手方向に直交する方向での厚み方 向に沿った断面形状が、 図 7 (3) 及び ( に示すとおり、 セラミックス 構造体
Figure imgf000008_0001
203と、 セラミックス 構造体 1の第 2面 1 匕側に位置する第 2面 1 0匕, 20匕とで画成される。 第 1の線条部 1 〇及び第 2の線条部 20の第 1面 1 〇 3, 2〇 3は、 厚み方 向での断面が、 セラミックス構造体 1の第 2面 1 匕から第 1面 1 3に向けた 凸の曲面形状になっている。 一方、 第 1の線条部 1 〇及び第 2の線条部 20 の第 2面 1 013, 2013は、 厚み方向での断面が、 セラミックス構造体 1の 第 1面 1 3から第 2面 1 匕に向けた凸の曲面形状をしている。 この曲面形状 は、 第 3の線条部 30における曲面形状と同じであってもよく、 あるいは異 なっていてもよい。 本実施形態においては、 第 1の線条部 1 〇及び第 2の線 条部 20の第 1面 1 〇 3, 2〇 3と第 2面 1 013, 20匕とは対称形になっ ており、 その結果、 第 1の線条部 1 〇及び第 2の線条部 20は、 その長手方 向に直交する方向での厚み方向に沿った断面形状が、 円形又は楕円形になっ \¥02020/174893 7 卩(:171?2020/000611
[0019] Similar to the third linear portion 30, as shown in Figs. 7(a) and (匕), the first linear portion 10 and the second linear portion 20 are also other than the intersection 2. At the position, it has a constant width \^/1, \^/2 in plan view. The widths \^/1 and \^/2 may be the same or different from each other. The widths \^/1 and \^/2 may be the same as or different from the width \^/3 of the third linear portion 30. In manufacturing Structure 1, it is convenient to make \^1, \^/2, and \^/3 the same. The first linear portion 10 and the second linear portion 20 have a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction thereof as shown in FIGS. 7 ( 3 ) and (). body
Figure imgf000008_0001
It is defined by 203 and the second surface of the ceramic structure 1, which is located on the side of the second surface and the second surface of the ceramic structure. First surface 1 〇 3 of the first linear portions 1 〇 and second linear portions 20, 2_Rei 3, a cross section in the thickness Direction, first from the second surface 1 spoon of the ceramic structure 1 1 It has a convex curved shape toward the surface 13. On the other hand, the second surface 1013, 2013 of the first linear portion 10 and the second linear portion 20 has a cross section in the thickness direction from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a curved surface that is convex toward the swell. This curved surface shape may be the same as or different from the curved surface shape of the third linear portion 30. In the present embodiment, the first surface 1 〇 3 of the first linear portions 1 〇 and second line ridges 20, 2_Rei 3 and the second surface 1 013, 20 spoon has become symmetrical As a result, the first linear portion 10 and the second linear portion 20 have a circular or elliptical cross-sectional shape along the thickness direction in the direction orthogonal to the longitudinal direction. \¥02020/174893 7 卩 (: 171-12020/000611
ている。 ing.
[0020] 図 5に示すとおり、 第 3の線条部 3 0における直線部 3 0八、 すなわち第 [0020] As shown in FIG. 5, the straight line portion 30 in the third linear portion 30 is the
1面 1 0 3を載置面として平面 上に載置したとき、 各第 1面 3 0 3はすべ て平面 上に位置する。 第 1面 3 0 3は、 セラミックス構造体 1 における第 1面 1 3をなすものであるから、 各第 1面 3 0 3がすべて平面 上に位置す ることは、 構造体 1 における第 1面 1 3が平坦面になっていることを意味す る。 したがって構造体 1 を、 その第 1面 1 3が、 平坦な載置面と当接するよ うに載置した場合には、 該第 1面 1 3の全域が載置面と接することとなる。 When one surface 103 is placed on a flat surface as a mounting surface, each first surface 303 is located on the flat surface. Since the 1st surface 3 0 3 forms the 1st surface 13 in the ceramic structure 1, the fact that all the 1st surfaces 3 0 3 lie on the plane means that the 1st surface in the structure 1 It means that 1 3 is a flat surface. Therefore, when the structure 1 is mounted such that the first surface 13 thereof contacts the flat mounting surface, the entire area of the first surface 13 contacts the mounting surface.
[0021 ] 図 5に示すとおり、 第 3の線条部 3 0における直線部 3 0八、 すなわち第 [0021] As shown in FIG. 5, the straight line portion 30 in the third linear portion 30
1面 3 0 3を載置面として平面 上に載置したとき、 第 1の線条部 1 0及び 第 2の線条部 2 0は、 隣り合う 2つの交差部 2の間において平面 から離間 する形状をしている。 したがって、 隣り合う 2つの交差部 2の間において、 第 1の線条部 1 〇及び第 2の線条部 2 0と平面 との間には空間 3が形成さ れる。 When the first surface 3 0 3 is placed on a flat surface as a mounting surface, the first linear portion 10 and the second linear portion 20 are separated from the flat surface between two adjacent intersecting portions 2. It has a shape that Therefore, a space 3 is formed between the first linear portion 10 and the second linear portion 20 and the plane between two adjacent intersecting portions 2.
[0022] —方、 構造体 1 における第 2面 1 匕は、 図 7 ( a ) に示すとおり凸の曲面 形状になっている第 1の線条部 1 0の第 2面 1 0 13から構成されているので 、 平坦面ではなく、 凹凸面となっている。 [0022] On the other hand, the second surface 1 of the structure 1 is composed of the second surface 1 0 13 of the first linear portion 10 having a convex curved surface shape as shown in Fig. 7(a). Therefore, the surface is uneven, not flat.
[0023] 構造体 1 における交差部 2において、 3種類の線条部 1 0 , 2 0 , 3 0は 一体化している。 「一体化している」 とは、 交差部 2の断面を観察において 、 3種類の線条部 1 0 , 2 0 , 3 0間が、 セラミックスとして連続した構造 体となっていることをいう。 3種類の線条部 1 0 , 2 0 , 3 0の交差によっ て構造体 1 に形成されている各貫通孔 3は同寸法であり、 且つ同形をしてい る。 貫通孔 3は規則的に配置されている。 [0023] At the intersection 2 of the structure 1, the three kinds of linear portions 10 0 20 0 30 are integrated. “Integrated” means that, in observing the cross section of the intersection 2, the three types of linear portions 10, 20, and 30 are continuous structures as ceramics. The through holes 3 formed in the structure 1 by the intersections of the three types of linear portions 10, 20, and 30 have the same size and the same shape. The through holes 3 are regularly arranged.
[0024] 第 3の線条部 3 0は、 交差部 2以外の部位において、 該第 3の線条部 3 0 における第 2面 3 0匕の最高位置、 すなわち頂部の位置が、 該第 3の線条部 3 0の延びる方向に沿って同じになっている。 [0024] The third linear portion 30 has the highest position of the second surface 30 in the third linear portion 30 at a position other than the intersection 2; They are the same along the direction in which the linear portions 30 extend.
第 2の線条部 2 0に関しては、 交差部 2以外の部位において、 該第 2の線 条部 2 0における第 2面 2 0匕の最高位置は、 該第 2の線条部 2 0の延びる \¥02020/174893 8 卩(:171?2020/000611 Regarding the second linear strip portion 20, the highest position of the second surface 20 sill in the second linear strip portion 20 is the highest position of the second linear strip portion 20 in the portion other than the intersection 2. Extend \¥02020/174893 8 卩 (: 171?2020/000611
方向に沿って互いに同じ位置になっている。 第 2の線条部 2 0における第 1 面 2 0 3の最低位置は、 交差部 2以外の部位において、 該第 2の線条部 2 0 の延びる方向に沿って互いに同じ位置になっている。 They are in the same position along the direction. The lowest position of the first surface 20 3 in the second linear portion 20 is the same position as the second linear portion 20 along the extending direction of the second linear portion 20 except the intersection 2. ..
更に、 第 1の線条部 1 0に関しては、 該第 1の線条部 1 0における第 2面 1 0 13の最高位置は、 交差部 2の位置及び交差部 2以外の位置のいずれにお いても、 第 1の線条部 1 0の延びる方向に沿って互いに同じ位置になってい る。 第 1の線条部 1 0における第 1面 1 0 3の最低位置は、 交差部 2以外の 部位において、 第 1の線条部 1 0の延びる方向に沿って互いに同じ位置にな っている。 Further, regarding the first linear portion 10, the highest position of the second surface 10 13 in the first linear portion 10 is at either the position of the intersection 2 or the position other than the intersection 2. However, they are located at the same position along the extending direction of the first linear portion 10. The lowest position of the first surface 10 3 in the first linear portion 10 is the same position as the first linear portion 10 along the extending direction of the first linear portion 10 except the intersection 2. ..
[0025] 図 4及び図 5に示すとおり、 構造体 1の交差部 2を縦断面視したときに、 第 3の線条部 3 0と第 2の線条部 2 0とは、 第 3の線条部 3 0における凸形 の曲線部 3 0巳の頂部と、 第 2の線条部 2 0における円形又は楕円形におけ る下向きに凸の曲線の頂部、 すなわち第 1面 2 0 3の頂部のみが接触してい る。 換言すれば、 第 3の線条部 3 0と第 2の線条部 2 0とは点接触又は点接 触に近い面接触をした状態になっている。 第 2の線条部 2 0と第 1の線条部 1 0とは、 第 2の線条部 2 0における円形又は楕円形における上向きに凸の 曲線の頂部、 すなわち第 2面 2 0匕の頂部と、 第 1の線条部 1 0における円 形又は楕円形における下向きに凸の曲線の頂部、 すなわち第 1面 1
Figure imgf000010_0001
の頂 咅6のみが接触している。 3種類の線条部 1 0 , 2 0 , 3 0がこのような接触 状態になっていることで、 構造体 1はその耐スポーリング性が高まることが 本発明者の検討の結果判明した。 この理由は、 3種類の線条部 1 0 , 2 0 ,
As shown in FIGS. 4 and 5, when the cross section 2 of the structure 1 is viewed in a longitudinal section, the third linear portion 30 and the second linear portion 20 are The apex of the convex curved portion 30 of the linear portion 30 and the downward convex curve of the circular or elliptical shape of the second linear portion 20, that is, the first surface 2 0 3 Only the top is touching. In other words, the third linear portion 30 and the second linear portion 20 are in a state of point contact or surface contact close to point contact. The second linear portion 20 and the first linear portion 10 are the tops of the upwardly convex curves in the circular or elliptical shape of the second linear portion 20, that is, the second surface 20 The top and the top of the downward convex curve in the circular or elliptical shape of the first linear portion 10, that is, the first surface 1
Figure imgf000010_0001
Only the top 6 of is in contact. As a result of the study by the present inventors, it was found that the structure 1 has improved spalling resistance due to the three kinds of linear portions 10, 20, and 30 being in such a contact state. The reason for this is that there are three types of filaments 1 0, 2 0,
3 0が点接触又はそれに近い面接触をして結合していることで、 これらの線 条部 1 0 , 2 0 , 3 0が過度に強固に結合しにくくなり、 そのことに起因し て急速な加熱及び/又は冷却時に生じる体積変化を緩和できるからであると 考えられる。 この観点から、 交差部 2は、 その厚み丁〇が、 交差部 2以外の 位置における第 1の線条部 1 0の厚み丁 1 と、 交差部 2以外の位置における 第 2の線条部 2 0の厚み丁 2と、 交差部 2以外の位置における第 3の線条部 3 0の厚み丁 3との和である (丁 1 +丁 2 +丁3) に対して、 好ましくは 0 \¥02020/174893 9 卩(:171?2020/000611 Since 30 is connected by making point contact or surface contact close to it, it becomes difficult for these linear portions 10, 20, 0, 30 to bond excessively firmly, and as a result, rapid contact is possible. It is considered that this is because it is possible to alleviate the volume change that occurs at the time of heating and/or cooling. From this point of view, the thickness of the intersection 2 is 0, the thickness of the first linear portion 10 at positions other than the intersection 2, and the thickness of the second linear portion 2 at positions other than the intersection 2. It is the sum of the thickness 0 of 0 and the thickness 3 of the third linear portion 30 at positions other than the intersection 2 (D 1 + D 2 + D 3), preferably 0 \¥02020/174893 9 ((171?2020/000611
. 5以上·! . 0以下、 更に好ましくは〇. 8以上·! . 0以下、 一層好ましく は〇. 9以上·! . 0以下となるような程度の点接触状態となっている。 .5 or more! 0.0 or less, more preferably 〇 or more! 0.0 or less, more preferably 0.9 or more! The point contact condition is such that it is less than 0.0.
[0026] 第 1の線条部 1 0と第 2の線条部 2 0と第 3の線条部 3 0とを、 点接触又 は点接触に近い面接触をした状態にするためには、 例えば後述する方法で構 造体 1 を製造すればよい。 [0026] In order to bring the first linear portion 10 and the second linear portion 20 and the third linear portion 30 into point contact or surface contact close to point contact, For example, the structure 1 may be manufactured by the method described below.
[0027] 以上の構成を有するセラミックス構造体 1は、 これを例えば被焼成体の焼 成用セッターとして用いた場合、 該構造体 1の第 1面 1 3に被焼成体を載置 すれば、 該第 1面 1 3は平坦面であることから、 平坦性を求められる被焼成 体の載置に好適なものとなる。 平坦性を求められる被焼成体としては、 例え ば積層セラミックコンデンサ等の小型のチップ状電子部品などが挙げられる 。 これらの小型電子部品は、 焼成工程においてセッターに引っ掛からないこ とが必要とされるので、 構造体 1の第 1面 1 3が平坦であることは有利であ る。 また、 被焼成体は、 第 1面 1 3を構成する部材である第 1の線条部 1 0 のみ接触するので、 構造体 1 と被焼成体との接触面積が大幅に低減し、 それ によって被焼成体の急激な加熱及び冷却を行いやすくなる。 また、 構造体 1 は 3種類の線条部 1 0 , 2 0 , 3 0の交差によって形成されており複数の貫 通孔 3が形成されているので、 熱容量が小さく、 その点からも被焼成体の急 激な加熱及び冷却を行いやすい。 更に構造体 1は、 複数の貫通孔 3が存在し ていることに起因して通気性が良好なので、 このことによっても被焼成体の 急激な冷却を行いやすい。 良好な通気性は、 隣り合う交差部 2どうしの間に おいて第 2の線条部 2 0が浮いていることによって一層顕著なものとなる。 しかも構造体 1 においては、 3種類の線条部 1 0 , 2 0 , 3 0が交差部 2に おいて一体化しているので、 充分な強度を有するものである。 When the ceramic structure 1 having the above structure is used as, for example, a setter for firing a body to be fired, by placing the body to be fired on the first surface 13 of the structure 1, Since the first surface 13 is a flat surface, it is suitable for placing an object to be fired, which requires flatness. Examples of the object to be fired that requires flatness include small chip-shaped electronic parts such as multilayer ceramic capacitors. Since these small electronic components are required not to be caught by the setter during the firing process, it is advantageous that the first surface 13 of the structure 1 is flat. Further, since the object to be fired makes contact only with the first linear portion 10 which is a member forming the first surface 13, the contact area between the structure 1 and the object to be fired is significantly reduced, which It becomes easy to rapidly heat and cool the object to be fired. Further, since the structure 1 is formed by the intersection of the three types of linear portions 10, 20, 20 and 30 and the plurality of through holes 3 are formed, the heat capacity is small, and from this point as well It is easy to heat and cool the body rapidly. Further, since the structure 1 has good air permeability due to the presence of the plurality of through holes 3, this also facilitates rapid cooling of the body to be fired. The good air permeability becomes more remarkable due to the fact that the second linear portion 20 floats between the adjacent intersections 2. Moreover, in the structure 1, since the three kinds of linear portions 10, 20, and 30 are integrated at the intersection portion 2, the structure 1 has sufficient strength.
[0028] 一方、 構造体 1の第 2面 1 匕には、
Figure imgf000011_0001
オーダーの被焼成体を載置するこ とが有利である。 第 2面 1 匕は、 第 1の線条部 1 0の曲面に起因する凹凸面 となっているところ、 この才ーダーのサイズの電子部品は、 それが載置され る面に凹凸を有することが、 脱脂性を高める観点から有利だからである。
[0028] On the other hand, in the second surface of the structure 1
Figure imgf000011_0001
It is advantageous to place an order object to be fired. The second surface (1) is an uneven surface due to the curved surface of the first linear portion (10).The electronic component of this leader size has unevenness on the surface on which it is placed. However, it is advantageous from the viewpoint of enhancing degreasing property.
[0029] このように本実施形態の構造体 1は、 その一方の面が平坦であり、 他方の \¥02020/174893 10 卩(:171?2020/000611 [0029] As described above, in the structure 1 of the present embodiment, one surface thereof is flat and the other surface is flat. \¥02020/174893 10 ((171?2020/000611
面が凹凸面になっていることから、 被焼成体の種類に応じて載置面を使い分 けることができるという点で有利である。 Since the surface is uneven, it is advantageous in that the mounting surface can be used properly according to the type of the object to be fired.
[0030] 上述した各種の有利な効果を一層顕著なものとする観点から、 丁 3の値は [0030] From the viewpoint of making the various advantageous effects mentioned above more remarkable, the value of Ding 3 is
、 5 0 〇!以上 5〇!〇!以下であることが好ましく、 2 0 0 〇!以上 2〇! 111以 下であることが更に好ましい。 一方、 丁 1及び丁 2の値は、 それぞれ独立に 、
Figure imgf000012_0001
以下であることが好ましく、 2 0 0 〇!以上 2〇! 111以 下であることが更に好ましい。 丁 1 と丁 2と丁 3との値の大小関係に特に制 限はない。
, 500! or more and 500!! or less, and more preferably 200! or more and 20!111 or less. On the other hand, the values of Ding 1 and Ding 2 are
Figure imgf000012_0001
It is preferably not more than 200,000 and more preferably not more than 200!111. There is no particular limit to the size relationship between Ding 1, Ding 2, and Ding 3.
[0031 ] 同様の観点から、 交差部 2における厚み丁〇は、 (丁 1 +丁 2 +丁3) に 対して、 好ましくは〇. 5以上·! . 0以下であることを条件として、 2 0
Figure imgf000012_0002
5 0 〇!以上 2〇! 以下であるこ とが更に好ましい。
[0031] From the same viewpoint, the thickness D at the intersection 2 is preferably at least 0.5 or more with respect to (Ding 1 + Ding 2 + Ding 3)! .0 or less, provided that
Figure imgf000012_0002
More preferably, it is not less than 500! And not more than 20!.
[0032] また、 第 1の線条部 1 0及び第 2の線条部 2 0の厚み方向での断面形状 ( 図 7 (3) 及び (匕) 参照) が楕円形である場合、 楕円形の短軸が構造体 1 の厚み方向に一致し、 且つ楕円形の長軸が構造体 1の平面方向に一致するこ とが、 被焼成体の載置を首尾よく行える点から好ましい。 この場合、 長軸/ 短軸の比率は、 それぞれ独立に、 1以上 5以下であることが好ましく、 1以 上 3以下であることが更に好ましい。 また、 第 1の線条部 1 〇及び第 2の線 条部 2 0の厚み方向での断面形状が楕円形又は円形であることは、 構造体 1 の強度向上にも寄与している。 [0032] In addition, when the cross-sectional shape of the first linear portion 10 and the second linear portion 20 in the thickness direction (see Fig. 7 (3) and (bath)) is elliptical, an elliptical shape It is preferable that the short axis of the above-mentioned is aligned with the thickness direction of the structure 1 and the long axis of the ellipse is aligned with the plane direction of the structure 1 from the viewpoint that the object to be fired can be placed successfully. In this case, the ratio of major axis/minor axis is preferably independently 1 or more and 5 or less, and more preferably 1 or more and 3 or less. In addition, the elliptical or circular cross-sectional shape of the first linear portion 10 and the second linear portion 20 in the thickness direction also contributes to improving the strength of the structure 1.
[0033] セラミックス構造体 1 に形成された三角形の貫通孔 3は、 その面積が 1 0
Figure imgf000012_0003
[0033] The triangular through holes 3 formed in the ceramic structure 1 have an area of 10
Figure imgf000012_0003
とが、 構造体 1の熱容量を低下させる点や、 通気性を向上させる点、 及び構 造体 1の強度維持の点から好ましい。 また、 平面視におけるセラミックス構 造体 1の見かけの面積に対する貫通孔 3の面積の総和の割合は、 1 %以上 8 0 %以下であることが好ましく、 3 %以上 7 0 %以下であることが更に好ま しく、 1 0 %以上 7 0 %以下であることが一層好ましい。 この割合は、 セラ ミックス構造体 1 を平面視して、 任意の大きさの矩形に切り取り、 その矩形 \¥0 2020/174893 1 1 卩(:171? 2020 /000611 Are preferable from the viewpoint of reducing the heat capacity of the structure 1, improving the air permeability, and maintaining the strength of the structure 1. The ratio of the total area of the through holes 3 to the apparent area of the ceramic structure 1 in plan view is preferably 1% or more and 80% or less, and 3% or more and 70% or less. More preferably, it is more preferably 10% or more and 70% or less. This ratio is obtained by cutting the ceramic structure 1 in a plan view and cutting it into a rectangle of any size. \¥0 2020/174893 1 1 卩 (: 171? 2020 /000611
内に含まれる貫通孔 3の面積の総和を算出し、 その総和を矩形の面積で除し 1 0 0を乗じて算出される。 また、 各貫通孔 3の面積は、 構造体 1の顕微鏡 観察像を画像解析することで測定できる。 It is calculated by calculating the sum of the areas of the through holes 3 included therein, dividing the sum by the area of the rectangle, and multiplying by 100. The area of each through hole 3 can be measured by image analysis of a microscope observation image of the structure 1.
[0034] 貫通孔 3の面積に関連して、 第 3の線条部 3 0の幅 \^/ 3は 5 0 以上 1 [0034] In relation to the area of the through hole 3, the width \^/ 3 of the third linear portion 30 is 50 0 or more 1
0 〇!以下であることが好ましく、 7 5 〇!以上 1 〇! 以下であることが更 に好ましい。 一方、 第 1の線条部 1 0及び第 2の線条部 2 0の幅 \^/ 1 , \^ 2 は、 それぞれ独立に、 5〇 以上 1
Figure imgf000013_0001
以下であることが好ましく、 7
Figure imgf000013_0002
以下であることが更に好ましい。 \^/ 1 と \^/ 2と \^/ 3との値 の大小関係に特に制限はない。
It is preferably 0! or less, more preferably 7500! or more and 10! or less. On the other hand, the widths \^/1, \^ 2 of the first linear portion 10 and the second linear portion 20 are independently 50 or more 1
Figure imgf000013_0001
It is preferable that
Figure imgf000013_0002
The following is more preferable. There is no particular limitation on the magnitude relation between the values of \^/ 1, \^/ 2 and \^/ 3.
[0035] 第 1、 第 2及び第 3の線条部 1 0 , 2 0 , 3 0の幅\^/ 1 , \^/ 2 , \^/ 3との 関連において、 隣り合う第 3の線条部 3 0間の距離 0 3は、 1 0 0 以上 1 0 111〇!以下であることが好ましく、
Figure imgf000013_0003
以下であること が更に好ましい。 一方、 隣り合う第 1の線条部 1 0間の距離口 1及び第 2の 線条部 2 0間の距離 0 2は、 それぞれ独立に、
Figure imgf000013_0004
[0035] In relation to the widths \^/ 1, \^/ 2, \^/ 3 of the first, second and third linear portions 1 0, 2 0, 3 0, adjacent third lines The distance 0 3 between the strips 30 is preferably 100 or more and 1 0 111 〇! or less,
Figure imgf000013_0003
It is further preferable that On the other hand, the distance 0 between the adjacent first linear portions 10 and the distance 0 2 between the second linear portions 20 are
Figure imgf000013_0004
であることが好ましく、 1 5 0 01以上 5 01 01以下であることが更に好まし い。 0 1、 0 2及び 0 3は、 互いに同じであってもよく、 あるいは異なって いてもよい。 構造体 1の製造上は、 口 1、 0 2及び 0 3は同一とすることが 簡便である。 Is more preferable, and it is more preferable that it is 1 500 1 or more and 5 01 01 or less. 0 1, 0 2 and 0 3 may be the same as or different from each other. From the viewpoint of manufacturing the structure 1, it is convenient that the mouths 1, 0 2 and 0 3 are the same.
[0036] セラミックス構造体 1 を構成するセラミックス素材としては、 種々のもの を用いることができる。 例えば、 アルミナ、 炭化ケイ素、 窒化ケイ素、 ジル コニア、 ムライ ト、 ジルコン、 コージェライ ト、 チタン酸アルミニウム、 チ タン酸マグネシウム、 マグネシア、 二硼化チタン、 窒化ホウ素などが挙げら れる。 これらのセラミックス素材は、 1種を単独で又は 2種以上を組み合わ せて用いることができる。 特に、 アルミナ、 ムライ ト、 コージェライ ト、 ジ ルコニア又は炭化ケイ素を含むセラミックスからなることが好ましい。 ジル コニアを含むセラミックスを用いる場合には、 構造体 1 を高温焼成での使用 により適したものとするため、 イッ トリア添加により完全安定化したジルコ ニアなどを用いることができる。 セラミックス構造体 1 を急激な加熱及び冷 \¥02020/174893 12 卩(:171?2020/000611 Various materials can be used as the ceramic material forming the ceramic structure 1. Examples thereof include alumina, silicon carbide, silicon nitride, zirconia, mullite, zircon, cordierite, aluminum titanate, magnesium titanate, magnesia, titanium diboride, and boron nitride. These ceramic materials can be used alone or in combination of two or more. In particular, it is preferably made of ceramics containing alumina, mullite, cordierite, zirconia or silicon carbide. When ceramics containing zirconia are used, zirconia completely stabilized by the addition of yttria can be used in order to make Structure 1 more suitable for use at high temperature firing. Sudden heating and cooling of the ceramic structure 1 \¥02020/174893 12 ((171?2020/000611
却に付す場合には、 セラミックス素材として炭化ケイ素を用いることが特に 好ましい。 なお炭化ケイ素は、 被焼成体との反応の懸念があることから、 セ ラミックス素材として炭化ケイ素を用いる場合には、 表面をジルコニア等の 反応性の低いセラミックス素材でコートすることが好ましい。 構造体 1 を構 成するセラミックス素材の原料粉としては、 ペーストにした場合の粘性や焼 結されやすさを考慮すると、 〇. 1 以上 2 0 0 以下の粒径のものを 用いることが好ましい。 3種類の線条部 1 0 , 2 0 , 3 0を構成するセラミ ックス素材は同じでもよく、 あるいは異なっていてもよい。 交差部 2におけ る 3種類の線条部 1 0 , 2 0 , 3 0の一体性を高くする観点からは、 各線条 部 1 0 , 2 0 , 3 0を構成するセラミックス素材は同じであることが好まし い。 In the case of use, it is particularly preferable to use silicon carbide as the ceramic material. Since silicon carbide may react with the material to be fired, when silicon carbide is used as the ceramic material, it is preferable to coat the surface with a ceramic material having low reactivity such as zirconia. As the raw material powder of the ceramic material constituting the structure 1, it is preferable to use a powder having a particle size of 0.1 or more and 200 or less in consideration of the viscosity and the easiness of baking when formed into a paste. The ceramic materials forming the three kinds of linear portions 10, 20, and 30 may be the same or different. From the viewpoint of increasing the unity of the three types of linear portions 1 0, 2 0, 3 0 at the intersection 2, the ceramic materials forming the linear portions 1 0, 2 0, 3 0 are the same. I like that.
[0037] 次に、 本実施形態のセラミックス構造体 1 の好適な製造方法について説明 する。 本製造方法においては、 まずセラミックス素材の原料粉を用意し、 該 原料粉を、 水等の媒体及び結合剤と混合して線条部製造用のペーストを調製 する。 Next, a preferred method for manufacturing the ceramic structure 1 of the present embodiment will be described. In the present manufacturing method, first, a raw material powder of a ceramic material is prepared, and the raw material powder is mixed with a medium such as water and a binder to prepare a paste for producing a linear portion.
[0038] 結合剤としては、 この種のぺーストに従来用いられたものと同様のものを 用いることができる。 その例としてはポリビニルアルコール、 ポリエチレン グリコール、 ポリエチレンオキシド、 デキストリン、 リグニンスルホン酸ソ —ダ及びアンモニウム、 カルボキシメチルセルロース、 エチルセルロース、 ヒ ドロキシプロピルメチルセルロース、 カルボキシメチルセルロース、 ヒ ド ロキシエチルセルロース、 ヒ ドロキシエチルメチルセルロース、 アルギン酸 ナトリウム及びアンモニウム、 エポキシ樹脂、 フエノール樹脂、 アラビアゴ ム、 ポリビニルプチラール、 ポリアクリル酸及びポリアクリルアミ ドなどの アクリル系ポリマー、 キサンタンガム及びグアガムなどの増粘多糖体類、 ゼ ラチン、 寒天及びべクチンなどのゲル化剤、 酢酸ビニル樹脂エマルジョン、 ワックスエマルジョン、 並びにアルミナゾル及びシリカゾルなどの無機バイ ンダーなどが挙げられる。 これらのうちの 2種類以上を混合して用いてもよ い。 \¥02020/174893 13 卩(:171?2020/000611 [0038] As the binder, the same binder as that conventionally used for this type of paste can be used. Examples thereof include polyvinyl alcohol, polyethylene glycol, polyethylene oxide, dextrin, soda and ammonium ligninsulfonate, carboxymethylcellulose, ethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, alginic acid. Sodium and ammonium, epoxy resins, phenolic resins, gum arabic, polyvinyl butyral, acrylic polymers such as polyacrylic acid and polyacrylic amide, thickening polysaccharides such as xanthan gum and guar gum, gelatin, agar and bectin. Gelling agents, vinyl acetate resin emulsions, wax emulsions, and inorganic binders such as alumina sol and silica sol. Two or more of these may be mixed and used. \¥02020/174893 13 ((171?2020/000611
[0039] ペーストの粘度は、 塗布時の温度において高粘度であることが、 本実施形 態の構造を有する構造体 1 を首尾よく製造し得る点から好ましい。 詳細には 、 ペーストの粘度は、 塗布時の温度において、 1 .
Figure imgf000015_0001
a 3以上 5 . 0
[0039] The viscosity of the paste is preferably high at the temperature at the time of application from the viewpoint that the structure 1 having the structure of the present embodiment can be produced successfully. In detail, the viscosity of the paste should be 1.
Figure imgf000015_0001
a 3 or more 5.0
IV! 3 3以下であることが好ましく、 1 . 7 IV! 3 3以上 3 . 0 IV! 3 - 以下であることが更に好ましい。 ペーストの粘度は、 コーンプレート型 回転式粘度計又はレオメーターを用いて、 回転数〇. 3 「 にて測定開始 後 4分時の測定値を用いた。 It is preferably IV! 33 or less, more preferably 1.7 IV! 33 or more and 3.0 IV! 3-or less. The viscosity of the paste was measured 4 minutes after the start of measurement at a rotation speed of 0.3 ", using a cone-plate type rotary viscometer or rheometer.
[0040] ペーストにおけるセラミックス素材の原料粉の割合は、 2 0質量%以上 8 [0040] The ratio of the ceramic raw material powder in the paste is 20% by mass or more 8
5質量%以下であることが好ましく、 3 5質量%以上 7 5質量%以下である ことが更に好ましい。 ペーストにおける媒体の割合は、 1 5質量%以上 6 0 質量%以下であることが好ましく、 2 0質量%以上 5 5質量%以下であるこ とが更に好ましい。 ペーストにおける結合剤の割合は、 1質量%以上 4 0質 量%以下であることが好ましく、 5質量%以上 2 5質量%以下であることが 更に好ましい。 It is preferably 5% by mass or less, more preferably 35% by mass or more and 75% by mass or less. The proportion of the medium in the paste is preferably 15% by mass or more and 60% by mass or less, and more preferably 20% by mass or more and 55% by mass or less. The proportion of the binder in the paste is preferably 1% by mass or more and 40% by mass or less, and more preferably 5% by mass or more and 25% by mass or less.
[0041 ] ペーストには、 粘性調整剤として、 増粘剤、 凝集剤、 チクソトロピック剤 などを含有させることができる。 増粘剤の例としては、 ポリエチレングリコ —ル脂肪酸エステル、 アルキルアリルスルホン酸、 アルキルアンモニウム塩 、 エチルビニルエーテル ·無水マレイン酸コポリマー、 フユームドシリカ、 アルブミンなどのタンパク質などが挙げられる。 多くの場合、 結合剤は、 増 粘効果があるため、 増粘剤に分類されることがあるが、 更に厳密な粘性調整 が必要とされる場合には、 別途、 結合剤に分類されない増粘剤を用いること ができる。 凝集剤の例として、 ポリアクリルアミ ド、 ポリアクリル酸エステ ル、 硫酸アルミニウム、 ポリ塩化アルミニウムなどが挙げられる。 チクソト ロピック剤の例として、 脂肪酸アミ ド、 酸化ポリオレフィン、 ポリエーテル エステル型界面活性剤などが挙げられる。 ペースト調製用の溶媒としては、 水以外にも、 アルコール、 アセトン及び酢酸エチルなどが用いられ、 これら を 2種類以上混合してもよい。 また吐出量を安定させるために、 可塑剤、 潤 滑剤、 分散剤、 沈降抑制剤、 ! !調整剤などを添加してもよい。 可塑剤には \¥02020/174893 14 卩(:171?2020/000611 [0041] The paste may contain, as a viscosity modifier, a thickener, a coagulant, a thixotropic agent, and the like. Examples of the thickener include polyethylene glycol fatty acid ester, alkylallyl sulfonic acid, alkyl ammonium salt, ethyl vinyl ether/maleic anhydride copolymer, fumed silica, proteins such as albumin and the like. In many cases, the binder has a thickening effect and thus may be classified as a thickener, but when more strict viscosity adjustment is required, a thickener not separately classified as a binder is used. Agents can be used. Examples of the coagulant include polyacrylic amide, polyacrylic acid ester, aluminum sulfate, polyaluminum chloride and the like. Examples of thixotropic agents include fatty acid amides, oxidized polyolefins, and polyether ester type surfactants. As the solvent for preparing the paste, alcohol, acetone, ethyl acetate and the like are used in addition to water, and two or more kinds of these may be mixed. Further, in order to stabilize the discharge amount, a plasticizer, a lubricant, a dispersant, a sedimentation inhibitor, a !! Plasticizer \¥02020/174893 14 卩 (: 171?2020/000611
、 トリメチレングリコール、 テトラメチレングリコールなどのグリコール系 、 グリセリン、 ブタンジオール、 フタル酸系、 アジピン酸系、 リン酸系など が挙げられる。 潤滑剤には、 流動パラフィン、 マイクロワックス、 合成パラ フィンなどの炭化水素系、 高級脂肪酸、 脂肪酸アミ ドなどが挙げられる。 分 散剤には、 ポリカルボン酸ナトリウム若しくはアンモニウム塩、 アクリル酸 系、 ポリイチレンイミン、 リン酸系などが挙げられる。 沈降抑制剤には、 ポ リアマイ ドアミン塩、 ベントナイ ト、 ステアリン酸アルミニウムなどが挙げ られる。 !·!調整剤には、 水酸化ナトリウム、 アンモニア水、 シュウ酸、 酢 酸、 塩酸などが挙げられる。 Glycerin such as trimethylene glycol and tetramethylene glycol, glycerin, butanediol, phthalic acid, adipic acid, phosphoric acid and the like. Examples of the lubricant include liquid paraffin, micro wax, hydrocarbon type such as synthetic paraffin, higher fatty acid, fatty acid amide and the like. Examples of the dispersant include sodium or ammonium polycarboxylic acid, acrylic acid-based, polyethylenimine, and phosphoric acid-based. Sedimentation inhibitors include polyamine amine salts, bentonite, aluminum stearate and the like. ..! Adjusting agents include sodium hydroxide, aqueous ammonia, oxalic acid, acetic acid, hydrochloric acid.
[0042] 得られたペーストを用い、 平坦な基板上に、 複数条の線条第 3塗工体を互 いに平行に且つ直線状に形成する。 線条第 3塗工体は、 目的とする構造体 1 における第 3の線条部 3 0に対応するものである。 線条第 3塗工体の形成に 用いられるぺーストである第 3ぺーストは、 上述したセラミックス素材の第 3原料粉、 媒体及び結合剤を含むものである。 第 3ペーストを用いた線条第 3塗工体の形成には、 小型押し出し機や印刷機などの種々の塗布装置を用い ることができる。 [0042] Using the obtained paste, a plurality of linear third line coated bodies are formed in parallel and linearly on a flat substrate. The third line-shaped coated body corresponds to the third line-shaped portion 30 in the target structure 1. The third paste, which is the paste used for forming the third filament coated body, contains the above-mentioned third raw material powder of the ceramic material, a medium, and a binder. Various coating devices such as a small extruder and a printing machine can be used to form the third filament coating material using the third paste.
[0043] 線条第 3塗工体から媒体が除去されたら、 次いで、 第 2ペーストを用い、 該線条第 3塗工体と交差するように、 複数条の線条第 2塗工体を互いに平行 に且つ直線状に形成する。 線条第 2塗工体は、 目的とする構造体 1 における 第 2の線条部 2 0に対応するものである。 第 2ペーストとしては、 第 3ペー ストと同様の組成のものを用いることができ、 セラミックス素材の第 2原料 粉、 媒体及び結合剤を含むものである。 線条第 2塗工体の形成には、 線条第 3塗工体と同様の塗布装置を用いることができる。 線条第 2塗工体が形成さ れたら、 次いで該線条第 2塗工体から媒体を除去して乾燥させ、 該線条第 2 塗工体の粘度を一層高める操作を行う。 この操作は、 線条第 3塗工体に対し て行う操作と同様に行うことができる。 [0043] After the medium is removed from the line-shaped third coated body, a second paste is used to form a plurality of line-shaped second coated bodies so as to intersect the line-shaped third coated body. Form parallel to each other and linearly. The second linear strip coated body corresponds to the second linear strip portion 20 in the target structure 1. The second paste may have the same composition as the third paste, and contains the second raw material powder of the ceramic material, the medium and the binder. The same coating device as that used for the third filament coating can be used to form the second filament coating. After the second filament coated body is formed, the medium is removed from the second filament coated body and dried to further increase the viscosity of the second filament coated body. This operation can be performed in the same manner as the operation for the filamentary third coated body.
[0044] 線条第 2塗工体から媒体が除去されたら、 次いで、 第 1ぺーストを用い、 線条第 2塗工体及び線条第 3塗工体と交差するように、 複数条の線条第 1塗 \¥02020/174893 15 卩(:171?2020/000611 [0044] After the medium is removed from the filament-shaped second coated body, a plurality of filaments are then applied using the first paste so as to intersect the filament-second coated body and the filament-shaped third coated body. Stroke first coating \¥02020/174893 15 卩(: 171?2020/000611
エ体を互いに平行に且つ直線状に形成する。 線条第 1塗工体は、 目的とする 構造体 1 における第 1の線条部 1 〇に対応するものである。 第 1ぺーストと しては、 第 2ぺースト及び/又は第 3ぺーストと同様の組成のものを用いる ことができ、 セラミックス素材の第 1原料粉、 媒体及び結合剤を含むもので ある。 線条第 1塗工体の形成には、 線条第 2塗工体及び線条第 3塗工体と同 様の塗布装置を用いることができる。 線条第 1塗工体が形成されたら、 次い で該線条第 1塗工体から媒体を除去して乾燥させ、 該線条第 1塗工体の粘度 を一層高める操作を行う。 この操作は、 線条第 2塗工体及び/又は線条第 3 塗工体に対して行う操作と同様に行うことができる。 このように、 線条第 3 塗工体の形成及び媒体の除去と、 線条第 2塗工体の形成及び媒体の除去と、 線条第 1塗工体の形成及び媒体の除去とを順次行うことで、 第 3の線条部 3 0上に第 2の線条部 2 0が位置し、 且つ第 2の線条部 2 0上に第 1の線条部 1 0が位置する構造体 1が首尾よく得られる。 (D) Form the bodies parallel to each other and in a straight line. The first linear strip coated body corresponds to the first linear strip portion 10 of the target structure 1. As the first paste, the same composition as the second paste and/or the third paste can be used, and it contains the first raw material powder of the ceramic material, the medium and the binder. The same coating device as that used for the second line coated body and the third line coated body can be used to form the first line coated body. After the first filament coating material is formed, the medium is then removed from the first filament coating material and dried to further increase the viscosity of the first filament coating object. This operation can be performed in the same manner as the operation for the second line coated body and/or the third line coated body. In this manner, the formation of the filament 3rd coated body and the removal of the medium, the formation of the filament 2nd coated body and the removal of the medium, and the formation of the filament 1st coated body and the removal of the medium are sequentially performed. By doing so, the structure in which the second linear section 20 is located on the third linear section 30 and the first linear section 10 is located on the second linear section 20. 1 is obtained successfully.
[0045] このようにして得られた焼成前構造体は、 これを基板から剥離して焼成炉 内に載置して焼成を行う。 この焼成によって目的とするセラミックス構造体 1が得られる。 焼成は一般に大気下で行うことができる。 焼成温度は、 セラ ミックス素材の原料粉の種類に応じて適切な温度を選択すればよい。 焼成時 間に関しても同様である。 The pre-fired structure thus obtained is separated from the substrate, placed in a firing furnace, and fired. By this firing, the target ceramic structure 1 is obtained. Firing can generally be performed in the atmosphere. The firing temperature may be selected as appropriate depending on the type of raw material powder of the ceramic material. The same applies to the firing time.
[0046] 以上の方法によって、 目的とするセラミックス構造体 1が得られる。 この セラミックス構造体 1は、 棚板や敷板など、 セラミックス製品の脱脂又は焼 成用セッターとして好適に用いられるほか、 セッター以外の窯道具、 例えば 匣やビームとしても用いることができる。 更に、 窯道具以外の用途、 例えば フィルター、 触媒担体などの各種の治具や各種構造材として用いることもで きる。 この場合、 構造体 1 における凹凸面である第 2面 1 匕上に被焼成体を 載置することが一般的であるが、 被焼成体の種類によっては、 平坦面である 第 1面 1 3上に被焼成体を載置してもよい。 例えばチップ積層セラミックコ ンデンサ
Figure imgf000017_0001
や積層セラミックインダクタ等の電子部品の製造過程 における焼成工程を行う場合には、 被焼成体を、 平坦面である第 1面 1 3上 \¥02020/174893 16 卩(:171?2020/000611
By the above method, the intended ceramic structure 1 is obtained. The ceramic structure 1 is preferably used as a setter for degreasing or baking ceramic products such as shelves and floor boards, and can also be used as a kiln tool other than the setter, for example, a jar or a beam. Further, it can be used for applications other than kiln tools, for example, various jigs such as filters and catalyst carriers, and various structural materials. In this case, it is general to place the object to be fired on the second surface 1 which is the uneven surface of the structure 1, but depending on the type of object to be fired, the first surface 1 3 You may mount the to-be-baked body on it. For example, chip monolithic ceramic capacitors
Figure imgf000017_0001
When performing the firing process in the process of manufacturing electronic components such as ceramics and monolithic ceramic inductors, place the firing target on the first surface 1 3 which is a flat surface. \¥02020/174893 16 卩 (: 171?2020/000611
に載置することが好ましい。 被焼成体を載置したセッターは、 該被焼成体を 焼成させることもあれば、 被焼成体が飛散しないように更にその上に別のセ ラミックス構造体 1や蓋体となり得る別の構造体を載置して焼成させてもよ い。 また、 焼成工程の効率化のため、 被焼成体を載置したセラミックス構造 体 1 を複数段に重ねて焼成してもよいし、 複数段に重ねたセラミックス構造 体 1 どうしの間にブロック状のスぺーサを置いて焼成してもよい。 その他、 セラミックス構造体 1は、 該セラミックス構造体 1 を、 別のセラミックスト レイの搭載部に載置し、 該セラミックス構造体 1上に被焼成体を載置して、 これと 1ユニッ トとし、 複数のユニッ トを積み重ねた状態下に焼成する態様 などにも適用可能である。 It is preferable to mount it on. The setter on which the object to be fired is placed may fire the object to be fired, or another structure that may be another ceramic structure 1 or a lid on the object to prevent the object to be fired from scattering. You may place the body on it and bake it. In addition, in order to improve the efficiency of the firing process, the ceramic structures 1 on which the objects to be fired are placed may be stacked in a plurality of stages and may be fired. A spacer may be placed and baked. In addition, the ceramic structure 1 has the ceramic structure 1 mounted on a mounting portion of another ceramic tray, and the body to be fired is mounted on the ceramic structure 1 to form a unit with this. It is also applicable to a mode in which a plurality of units are fired in a stacked state.
[0047] 次に、 本発明のセラミックス構造体の別の実施形態について図 8 ( 3 ) 及 び (匕) 並びに図 9 ( a ) 及び (匕) を参照しながら説明する。 これらの実 施形態については、 先に述べた実施形態と異なる点についてのみ説明し、 特 に説明しない点については、 先に述べた実施形態についての説明が適宜適用 される。 また、 図 8 ( a ) 及び ( 13 ) 並びに図 9 ( a ) 及び ( 1〇) において 、 図 1ないし図 7と同じ部材には同じ符号を付してある。 Next, another embodiment of the ceramic structure of the present invention will be described with reference to FIGS. 8 (3) and (bath) and FIGS. 9 (a) and (bath). Regarding these embodiments, only the points different from the above-described embodiments will be described, and regarding the points that are not particularly described, the description of the above-described embodiments is appropriately applied. Further, in FIGS. 8(a) and (13) and FIGS. 9(a) and (10), the same members as those in FIGS. 1 to 7 are denoted by the same reference numerals.
[0048] 図 8 ( a ) 及び (匕) に示す実施形態のセラミックス構造体 1 は、 第 1 、 第 2及び第 3の線条部 1 0 , 2 0 , 3 0の積層の仕方が、 図 1 に示す実施 形態と相違している。 詳細には、 第 1の線条部 1 0上に第 2の線条部 2 0が 配置され、 第 2の線条部 2 0上に第 3の線条部 3 0が配置されている。 第 3 の線条部 3 0は、 第 1の線条部と第 2の線条部とが交差することで画成され る四辺形の対角線上を通るように配置されている。 [0048] The ceramic structure 1 of the embodiment shown in Figs. 8(a) and 8(c) shows how the first, second and third linear portions 10, 20 and 30 are laminated. It is different from the embodiment shown in FIG. Specifically, the second linear portion 20 is arranged on the first linear portion 10, and the third linear portion 30 is arranged on the second linear portion 20. The third linear portion 30 is arranged so as to pass on the diagonal line of the quadrangle defined by the intersection of the first linear portion and the second linear portion.
[0049] 第 1の線条部 1 0、 第 2の線条部 2 0及び第 3の線条部 3 0は 1つの交差 部 2で交差している。 そして、 いずれの交差部 2においても、 第 1の線条部 1 0上に第 2の線条部 2 0が配されている。 更に、 いずれの交差部 2におい ても、 第 2の線条部 2 0上に第 3の線条部 3 0が配されている。 [0049] The first linear portion 10, the second linear portion 20 and the third linear portion 30 intersect at one intersection 2. Then, at any intersection 2, the second linear portion 20 is arranged on the first linear portion 10. Further, at any intersection 2, the third linear section 30 is arranged on the second linear section 20.
[0050] 図 8 ( b ) に示すとおり、 第 1の線条部 1 〇は、 その長手方向に直交する 方向での厚み方向に沿った断面形状が、 セラミックス構造体 1の第 1面 1 3 \¥02020/174893 17 卩(:171?2020/000611 [0050] As shown in Fig. 8 (b ), the first linear portion 10 has a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction, which is the first surface 1 3 of the ceramic structure 1. \¥02020/174893 17 卩(: 171?2020/000611
側に位置する第 1面 1
Figure imgf000019_0001
と、 セラミックス構造体 1の第 2面 1 匕側に位置 する第 2面 1 0匕とで画成される。 詳細には、 第 1の線条部 1 0は、 その長 手方向に直交する方向での厚み方向に沿った断面が、 交差部 2以外の部位に おいて、 直線部 1 0 と、 該直線部 1 0 の両端部を端部とする凸形の曲線 部 1 0巳とから構成される形状を有している。 その結果、 第 1の線条部 1 〇
Figure imgf000019_0002
該線条部 1 0の厚み方向での断面が平坦面になっている 。 該平坦面は、 セラミックス構造体 1の面内方向と略平行になっている。 一 方、 第 1の線条部 1 〇の第 2面 1 0 は、 該線条部 1 0の厚み方向での断面 が、 セラミックス構造体 1の第 1面 1 3から第 2面 1 匕に向けた凸の曲面形 状をしている。 一方、 第 2の線条部 2 0及び第 3の線条部 3 0に関しては、 それらの断面が、 交差部 2以外の部位において、 円形又は楕円形の形状を有 している。
Side 1 located on side 1
Figure imgf000019_0001
And the second surface 10 sq. located on the second surface 1 sq. side of the ceramic structure 1. Specifically, the first linear portion 10 has a straight line portion 10 and a straight line portion 10 at a portion other than the crossing portion 2 in a cross section along the thickness direction in a direction orthogonal to the longitudinal direction. It has a shape composed of a convex curved portion 10 having both ends of the portion 10 as ends. As a result, the first linear part 10
Figure imgf000019_0002
The cross section of the linear portion 10 in the thickness direction is a flat surface. The flat surface is substantially parallel to the in-plane direction of the ceramic structure 1. On the other hand, the second surface 10 of the first linear portion 10 has a cross section in the thickness direction of the linear portion 10 from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a convex curved surface shape. On the other hand, the cross sections of the second linear section 20 and the third linear section 30 have a circular or elliptical shape in a portion other than the intersection 2.
[0051 ] 図 9 ( a ) 及び (匕) に示す実施形態のセラミックス構造体 1 巳も、 図 8 The ceramic structure 1 of the embodiment shown in FIGS. 9(a) and 9() is also shown in FIG.
( a ) 及び ( に示す実施形態のセラミックス構造体 1 と同様に、 第 1 、 第 2及び第 3の線条部 1 0 , 2 0 , 3 0の積層の仕方が、 図 1 に示す実施 形態と相違している。 詳細には、 第 2の線条部 2 0上に第 3の線条部 3 0が 配置され、 第 3の線条部 3 0上に第 1の線条部 1 0が配置されている。 第 3 の線条部 3 0は、 第 1の線条部と第 2の線条部とが交差することで画成され る四辺形の対角線上を通るように配置されている。 Similar to the ceramic structure 1 of the embodiment shown in (a) and (), the method of stacking the first, second, and third linear portions 10 20, 20 and 30 is the same as the embodiment shown in FIG. Specifically, the third linear portion 30 is arranged on the second linear portion 20 and the first linear portion 1 0 is arranged on the third linear portion 30. The third linear portion 30 is arranged so as to pass on the diagonal line of the quadrangle defined by the intersection of the first linear portion and the second linear portion. ing.
[0052] 第 1の線条部 1 0、 第 2の線条部 2 0及び第 3の線条部 3 0は 1つの交差 咅6 2で交差している。 そして、 いずれの交差部 2においても、 第 2の線条部 2 0上に第 3の線条部 3 0が配されている。 更に、 いずれの交差部 2におい ても、 第 3の線条部 3 0上に第 1の線条部 1 0が配されている。 [0052] The first linear portion 10, the second linear portion 20 and the third linear portion 30 intersect at one intersection 62. Then, at any intersection 2, the third linear portion 30 is arranged on the second linear portion 20. Furthermore, at any intersection 2, the first linear portion 10 is arranged on the third linear portion 30.
[0053] 図 9 ( b ) に示すとおり、 第 2の線条部 2 0は、 その長手方向に直交する 方向での厚み方向に沿った断面形状が、 セラミックス構造体 1の第 1面 1 3 側に位置する第 1面 2 0 3と、 セラミックス構造体 1の第 2面 1 匕側に位置 する第 2面 2 0匕とで画成される。 詳細には、 第 2の線条部 2 0は、 その長 手方向に直交する方向での厚み方向に沿った断面が、 交差部 2以外の部位に \¥02020/174893 18 卩(:171?2020/000611 As shown in FIG. 9 (b ), the second filament portion 20 has a cross-sectional shape along the thickness direction in the direction orthogonal to the longitudinal direction, which is the first surface 1 3 of the ceramic structure 1. It is defined by the first surface 203 located on the side and the second surface 20 surface located on the side of the second surface 1 of the ceramic structure 1. Specifically, the second linear portion 20 has a cross section along the thickness direction in a direction orthogonal to its longitudinal direction at a portion other than the intersection portion 2. \¥02020/174893 18 卩 (: 171?2020/000611
おいて、 直線部 2 0 と、 該直線部 2 0 の両端部を端部とする凸形の曲線 部 2 0巳とから構成される形状を有している。 その結果、 第 2の線条部 2 0 の第 1面 2 0 8は、 該線条部 2 0の厚み方向での断面が平坦面になっている 。 該平坦面は、 セラミックス構造体 1の面内方向と略平行になっている。 一 方、 第 2の線条部 2 0の第 2面 2 0 は、 該線条部 2 0の厚み方向での断面 が、 セラミックス構造体 1の第 1面 1 3から第 2面 1 匕に向けた凸の曲面形 状をしている。 第 2の線条部 3 0及び第 1の線条部 1 0に関しては、 それら の断面が、 交差部 2以外の部位において、 円形又は楕円形の形状を有してい る。 In addition, it has a shape composed of a straight line portion 20 and a convex curved line portion 20 having end portions at both ends of the straight line portion 20. As a result, the first surface 208 of the second linear portion 20 has a flat cross section in the thickness direction of the linear portion 20. The flat surface is substantially parallel to the in-plane direction of the ceramic structure 1. On the other hand, the second surface 20 of the second linear portion 20 has a cross section in the thickness direction of the linear portion 20 from the first surface 13 to the second surface 1 of the ceramic structure 1. It has a convex curved surface shape. Regarding the second linear portion 30 and the first linear portion 10, their cross sections have a circular or elliptical shape in a portion other than the intersection 2.
[0054] 以上の図 8 ( a ) 及び (匕) 並びに図 9 ( a ) 及び (匕) に示す実施形態 によっても、 図 1ないし図 7に示す実施形態と同様の効果が奏される。 [0054] The same effects as those of the embodiment shown in Figs. 1 to 7 are also obtained by the embodiments shown in Figs. 8(a) and (swell) and Figs. 9(a) and 9(s).
[0055] 次に、 上述した各実施形態に共通する事項について説明する。 上述した各 実施形態のセラミックス構造体は、 平面視での形状に特に制限はなく、 例え ば円形、 楕円形又は矩形などであり得る。 あるいは、 直線と曲線とを組み合 わせた輪郭を有していてもよい。 セラミックス構造体がその輪郭の少なくと も一部に直線辺部を有する場合には、 第 1、 第 2及び第 3の線条部 1 0 , 2 0 , 3 0のうちのいずれか一つの線条部が、 直線辺部と平行に配置されてい ることが、 セラミックス構造体の直線辺部近傍の対衝撃性をより強固に保持 する観点から好ましい。 また、 直線辺部は、 該直線辺部のいずれかの位置で 前記の交差部と交わることが、 セラミックス構造体の端部におけるチッピン グに起因する欠けを防止する観点から好ましい。 Next, items common to the above-described embodiments will be described. The shape of the ceramic structure of each of the embodiments described above is not particularly limited in plan view, and may be, for example, a circular shape, an elliptical shape, a rectangular shape, or the like. Alternatively, it may have a contour that is a combination of straight lines and curved lines. If the ceramic structure has a straight side at least in part of its contour, one of the first, second, and third linear sections 10, 20, 20 It is preferable that the ridges are arranged in parallel with the straight side portions from the viewpoint of more strongly maintaining impact resistance near the straight side portions of the ceramic structure. Further, it is preferable that the straight side portion intersects with the intersecting portion at any position of the straight side portion from the viewpoint of preventing chipping due to chipping at the end portion of the ceramic structure.
[0056] 特に、 図 1 に示す実施形態のセラミックス構造体 1の場合には、 第 1の線 条部 1 0又は第 3の線条部 3 0が、 直線辺部と平行に配置されていることが 好ましい。 この場合、 第 2の線条部 2 0は、 直線辺部と 1 0度以上 8 0度以 下又は 1 0 0度以上 1 7 0度以下、 特に 2 0度以上 7 0度以下又は 1 1 0度 以上 1 6 0度以下、 とりわけ 3 0度以上 6 0度以下又は 1 0 5度以上 1 5 0 度の角度で交わっていることが、 セラミックス構造体 1 に生じたクラック等 の欠陥の伝播を効果的に阻止する観点から好ましい。 \¥02020/174893 19 卩(:171?2020/000611 [0056] Particularly, in the case of the ceramic structure 1 of the embodiment shown in Fig. 1, the first linear portion 10 or the third linear portion 30 is arranged in parallel with the straight side portion. Is preferred. In this case, the second linear portion 20 and the straight side portion are not less than 10 degrees and not more than 80 degrees or not less than 100 degrees and not more than 170 degrees, and particularly not less than 20 degrees and not more than 70 degrees or 11 Propagation of defects such as cracks generated in the ceramic structure 1 is that they intersect at an angle of 0 degrees or more and 160 degrees or less, particularly 30 degrees or more and 60 degrees or less, or 105 degrees or more and 150 degrees. From the viewpoint of effectively preventing \¥02020/174893 19 卩 (: 171?2020/000611
図 8 ( 3 ) に示す実施形態のセラミックス構造体 1 の場合には、 第 1の 線条部 1 0又は第 3の線条部 3 0が、 直線辺部と平行に配置されていること が好ましい。 この場合、 第 2の線条部 2 0は、 直線辺部と上述の角度で交わ っていることがセラミックス構造体 1 八に生じたクラック等の欠陥の伝播を 効果的に阻止する観点からより好ましい。 In the case of the ceramic structure 1 of the embodiment shown in FIG. 8 (3), the first linear portion 10 or the third linear portion 30 may be arranged in parallel with the straight side portion. preferable. In this case, the fact that the second linear portion 20 intersects with the straight side portion at the angle described above is more effective from the viewpoint of effectively preventing the propagation of defects such as cracks generated in the ceramic structure 18. preferable.
図 9 ( 3 ) に示す実施形態のセラミックス構造体 1 巳の場合には、 第 3の 線条部 3 0が、 直線辺部と平行に配置されていることが好ましい。 この場合 、 第 2の線条部は、 直線辺部と上述の角度で交わっていることがセラミック ス構造体 1 巳に生じたクラック等の欠陥の伝播を効果的に阻止する観点から 好ましい。 In the case of the ceramic structure 1m of the embodiment shown in FIG. 9 ( 3 ), it is preferable that the third linear portions 30 are arranged in parallel with the straight side portions. In this case, it is preferable that the second linear portion intersects with the straight side portion at the above-mentioned angle from the viewpoint of effectively preventing the propagation of defects such as cracks generated in the ceramic structure 1.
[0057] また、 上述した各実施形態のセラミックス構造体は、 その強度を向上させ る目的で、 該構造体の外周に外枠 (図示せず) を設けてもよい。 この外枠は 該構造体と同じ材料から一体的に形成してもよく、 あるいは該構造体とは別 途製造しておき、 所定の接合手段で接合してもよい。 外枠は、 その幅が一定 であってもよく、 あるいは幅が広い部位と狭い部位とを有していてもよい。 外枠の幅が一定である場合、 当該幅は、 〇. 4
Figure imgf000021_0001
以下である ことが好ましい。 外枠の幅が一定でない場合、 当該幅は、 最も広い部位にお いて 1
Figure imgf000021_0002
以下であることが好ましく、 最も狭い部位において
Further, the ceramic structure of each of the above-described embodiments may be provided with an outer frame (not shown) on the outer periphery of the structure for the purpose of improving its strength. The outer frame may be integrally formed from the same material as the structure, or may be manufactured separately from the structure and joined by a predetermined joining means. The outer frame may have a constant width, or may have a wide portion and a narrow portion. If the width of the outer frame is constant, the width is 0.
Figure imgf000021_0001
The following is preferable. If the width of the outer frame is not constant, the width is 1 at the widest part.
Figure imgf000021_0002
The following is preferable, and in the narrowest part
〇. 5 01 01以上 1 01 01以下であることが好ましい。 〇 It is preferable that it is not less than 5 01 01 and not more than 1 01 01.
[0058] 以上、 本発明をその好ましい実施形態に基づき説明したが、 本発明は前記 実施形態に制限されない。 例えば、 前記の各実施形態においては、 第 1、 第 2及び第 3の線条部 1 0 , 2 0 , 3 0から構成される 3種類の線条部を用い て、 3層で一単位となる構造体が形成されていたが、 これに代えて、 第 1、 第 2及び第 3の線条部 1 0 , 2 0 , 3 0とから構成される繰り返し単位を 2 以上積層して構造体を形成してもよい。 Although the present invention has been described above based on its preferred embodiments, the present invention is not limited to the above embodiments. For example, in each of the above-described embodiments, three types of linear portions, which are composed of the first, second, and third linear portions 10, 20, and 30, are used, and three layers form one unit. However, instead of this structure, two or more repeating units composed of the first, second and third linear portions 10, 20 and 30 are laminated to form a structure. May be formed.
[0059] また、 図 1 に示す実施形態において、 第 3の線条部 3 0の下に第 1の線条 部 1 0を配置したり、 第 1の線条部 1 0上に第 3の線条部を配置したりして もよい。 同様に、 図 8 ( a ) に示す実施形態において、 第 1の線条部 1 0の \¥02020/174893 20 卩(:171?2020/000611 Further, in the embodiment shown in FIG. 1, the first linear portion 10 is arranged below the third linear portion 30 or the third linear portion 10 is arranged above the third linear portion 10. You may arrange a line part. Similarly, in the embodiment shown in FIG. 8( a ), the first linear portion 10 \¥02020/174893 20 ((171?2020/000611
下側に第 3の線条部 3 0を配置したり、 第 3の線条部 3 0上に第 1の線条部 1 〇を配置したりしてもよい。 更に同様に、 図 9 ( a ) に示す実施形態にお いて、 第 2の線条部 2 0の下側に第 1の線条部 1 〇を配置したり、 第 1の線 条部 1 〇上に第 2の線条部 2 0を配置したりしてもよい。 The third linear portion 30 may be arranged on the lower side, or the first linear portion 10 may be arranged on the third linear portion 30. Further, similarly, in the embodiment shown in FIG. 9( a ), the first linear portion 10 is arranged below the second linear portion 20 and the first linear portion 10 is arranged. You may arrange|position the 2nd linear part 20 above.
実施例 Example
[0060] 以下、 実施例により本発明を更に詳細に説明する。 しかしながら本発明の 範囲は、 かかる実施例に制限されない。 特に断らない限り、 「部」 は 「質量 部」 を意味する。 また、 セラミックス構造体の形態、 線条体の積層数、 線条 体間の距離、 質量などは表 1 に示すとおりとした。 [0060] Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the invention is not limited to such examples. Unless otherwise specified, "part" means "part by mass". The morphology of the ceramic structure, the number of laminated filaments, the distance between filaments, the mass, etc. are as shown in Table 1.
[0061 ] 〔実施例 1〕 [0061] [Example 1]
本実施例では、 図 1 に示す平板状のセラミックス構造体 1 を製造した。 In this example, the flat plate-shaped ceramic structure 1 shown in FIG. 1 was manufactured.
( 1 ) 線条塗工体形成用のペーストの調製 (1) Preparation of paste for forming filament coating
平均粒径〇. 8 の 8モル%イッ トリア添加完全安定化ジルコニア粉 6 5 . 3部と、 水系結合剤としてメチルセルロース系バインダー 5 . 0部と、 可塑剤として、 グリセリン 2 . 5部と、 ポリカルボン酸系分散剤 (分子量 1 2 0 0 0 ) 1 . 1部と、 水 2 6 . 1部とを混合し、 脱泡してぺーストを調製 した。 ぺーストの粘度は 2 5 °〇において 2 . 0^\9 a - 3であった。 Fully stabilized zirconia powder with 8 mol% yttria having an average particle size of 0.8 65.3 parts, methyl cellulose binder 5.0 parts as a water-based binder, and glycerin 2.5 parts as a plasticizer, A paste was prepared by mixing 1.1 parts of a carboxylic acid-based dispersant (molecular weight 12000) with 26.1 parts of water and defoaming. The viscosity of the paste was 2.0^\9 a-3 at 25 °.
( 2 ) 線条塗工体の形成 (2) Formation of filament coating
前記のペーストを原料とし、 直径〇. 8
Figure imgf000022_0001
のノズルを有する小型押し出 し機を用いて 2 5 °〇の環境下、 樹脂基板上に線条第 3塗工体を形成し、 引き 続きそれに交差する線条第 2塗工体及び線条第 1塗工体を形成した。 線条第 2塗工体と線条第 1塗工体との交差角度は 6 0度とし、 菱形の格子が形成さ れるようにした。 線条第 3塗工体は、 菱形の対角線のうち、 短い方の対角線 上を通るようにした。 このようにして焼成前構造体を得た。
Using the above paste as a raw material, diameter 0.8
Figure imgf000022_0001
Using a small extruder with a nozzle of 2°, form a line 3rd coated body on the resin substrate under the environment of 25° and continue to intersect the line 2nd coated body and the line. A first coated body was formed. The intersecting angle between the second filament-coated body and the first filament-coated body was set to 60° so that a rhombic lattice was formed. The line-shaped third coated body was designed to pass on the shorter diagonal line of the diamond-shaped diagonal lines. In this way, a pre-fired structure was obtained.
( 3 ) 焼成工程 (3) Firing process
乾燥後の焼成前構造体を樹脂基板から剥離した後、 大気焼成炉内に載置し た。 この焼成炉内で脱脂及び焼成を行い、 図 1 に示す形状の矩形のセラミッ クス構造体を得た。 焼成温度は 1 6 0 0 °〇とし、 焼成時間は 3時間とした。 \¥02020/174893 21 卩(:171?2020/000611 After drying, the structure before firing was separated from the resin substrate, and then placed in an air-fired furnace. Degreasing and firing were performed in this firing furnace to obtain a rectangular ceramic structure having the shape shown in Fig. 1. The firing temperature was 1600 ° and the firing time was 3 hours. \\02020/174893 21 ((171?2020/000611
得られた構造体における諸元を以下の表 1 に示す。 この構造体においては、 第 3の線条部が、 直線辺部と平行になっていた。 The specifications of the obtained structure are shown in Table 1 below. In this structure, the third linear portion was parallel to the straight side portion.
こうして得られた構造体における第 1の線条部 1 0は、 幅 1が 4 2 5 厚み丁 1が 4 0 0 であり、 該構造体における第 2の線条部 2 0は、 幅 \^/ 2が 4 2 0 、 厚み丁 2が 4 1 〇 であり、 該構造体における第 3 の線条部 3 0は、 幅 \^/ 3が 4 2 5 、 厚み丁 3が 4 1 〇 であった。 交 差部 2の厚み丁〇は 1 1 6 0 であった。 The first linear portion 10 of the structure thus obtained has a width 1 of 4 25 and a thickness 1 of 400, and the second linear portion 20 of the structure has a width \^ / 2 is 4 2 0, thickness 2 is 41 0, and the third linear portion 30 of the structure has width \^/ 3 of 4 2 5 and thickness 3 of 4 10. It was The thickness of the intersection 2 was 1160.
[0062] 〔実施例 2〕 [Example 2]
本実施例では、 図 8 ( 3 ) に示す平板状のセラミックス構造体 1 を製造 した。 In this example, a flat plate-shaped ceramic structure 1 shown in FIG. 8 ( 3 ) was manufactured.
実施例 1 と同様のペーストを原料とし、 直径〇.
Figure imgf000023_0001
のノズルを有する 小型押し出し機を用いて 2 5 °〇の環境下、 樹脂基板上に線条第 1塗工体を形 成し、 引き続きそれに交差する線条第 2塗工体及び線条第 3塗工体を形成し た。 線条第 2塗工体と線条第 1塗工体との交差角度は 6 0度とし、 菱形の格 子が形成されるようにした。 線条第 3塗工体は、 菱形の対角線のうち、 短い 方の対角線上を通るようにした。 それ以外は実施例 1 と同様にして、 図 8 ( a ) に示す形状の矩形のセラミックス構造体を得た。 得られた構造体におけ る諸元を以下の表 1 に示す。 この構造体においては、 第 3の線条部が、 直線 辺部と平行になっていた。
Using the same paste as in Example 1 as the raw material, the diameter 〇.
Figure imgf000023_0001
Using a small extruder with a nozzle of 25 ° 〇, form a linear strip No. 1 coated body on a resin substrate and continue to intersect it with a linear strip No. 2 coated body and linear strip No. 3 The coated body was formed. The angle of intersection between the filament-shaped second coated body and the filament-shaped first coated body was set to 60° so that a diamond-shaped crystal was formed. The line-shaped third coated body was designed to pass on the shorter diagonal line of the diamond-shaped diagonal lines. Otherwise in the same manner as in Example 1, a rectangular ceramic structure having the shape shown in FIG. 8(a) was obtained. The specifications of the obtained structure are shown in Table 1 below. In this structure, the third linear portion was parallel to the straight side portion.
[0063] 〔実施例 3〕 [0063] [Example 3]
本実施例では、 図 9 ( 3 ) に示す平板状のセラミックス構造体 1 巳を製造 した。 In this example, a flat ceramic structure 1 shown in FIG. 9 ( 3 ) was manufactured.
実施例 1 と同様のペーストを原料とし、 直径〇.
Figure imgf000023_0002
のノズルを有する 小型押し出し機を用いて 2 5 °〇の環境下、 樹脂基板上に線条第 2塗工体を形 成し、 引き続きそれに交差する線条第 3塗工体及び線条第 1塗工体を形成し た。 線条第 2塗工体と線条第 1塗工体との交差角度は 6 0度とし、 菱形の格 子が形成されるようにした。 線条第 3塗工体は、 菱形の対角線のうち、 短い 方の対角線上を通るようにした。 それ以外は実施例 1 と同様にして、 図 9 ( \¥0 2020/174893 22 卩(:171? 2020 /000611
Using the same paste as in Example 1 as the raw material, the diameter 〇.
Figure imgf000023_0002
Using a small extruder having the nozzle of 25°○, form a line 2nd coated body on the resin substrate, and then continue to intersect the line 3rd coated body and line 1st line. The coated body was formed. The angle of intersection between the filament-shaped second coated body and the filament-shaped first coated body was set to 60° so that a diamond-shaped crystal was formed. The line-shaped third coated body was designed to pass on the shorter diagonal line of the diamond-shaped diagonal lines. Other than that, as in the case of Example 1, as shown in FIG. \¥0 2020/174893 22 卩 (: 171? 2020 /000611
a) に示す形状の矩形のセラミックス構造体を得た。 得られた構造体におけ る諸元を以下の表 1 に示す。 この構造体においては、 第 3の線条部が、 直線 辺部と平行になっていた。 A rectangular ceramic structure having the shape shown in a) was obtained. The specifications of the obtained structure are shown in Table 1 below. In this structure, the third linear portion was parallel to the straight side portion.
[0064] 〔比較例 1〕 [0064] [Comparative Example 1]
本比較例では格子状のセラミックス構造体を製造した。 In this comparative example, a lattice-shaped ceramic structure was manufactured.
実施例 1 と同様のペーストを原料とし、 直径〇.
Figure imgf000024_0001
のノズルを有する 小型押し出し機を用いて 2 5 °〇の環境下、 樹脂基板上に線条第 1塗工体を形 成し、 引き続きそれに直交する線条第 2塗工体を形成した。 その上に、 線条 第 1塗工体及び線条第 2塗工体を形成し、 合計で 4層の塗工体からなる格子 状の焼成前構造体を得た。 第 1の線条部と第 2の線条部は、 9 0 ° で直交す る角度とし、 直線辺部と各条部の交差角度は〇° (平行) ないし 9 0 ° (直 交) となるよう配置した。 それ以外は実施例 1 と同様にして矩形のセラミッ クス構造体を得た。 得られた構造体における諸元を以下の表 1 に示す。
Using the same paste as in Example 1 as the raw material, the diameter 〇.
Figure imgf000024_0001
Using a small extruder with the nozzle of No. 2, under the environment of 25 ° , the first linear filament coating was formed on the resin substrate, and then the second linear filament coating was formed orthogonal thereto. On this, a linear first coating and a linear second coating were formed, and a lattice-shaped pre-fired structure consisting of a total of four layers of coating was obtained. The first linear portions and the second linear portions is set to orthogonal to that angle 9 0 °, the crossing angle of the linear edge portion and the ridges are 〇 ° and (parallel) to 9 0 ° (Cartesian) It was arranged so that A rectangular ceramic structure was obtained in the same manner as in Example 1 except for the above. The specifications of the obtained structure are shown in Table 1 below.
[0065] 〔比較例 2〕 [Comparative Example 2]
本比較例では格子状のセラミックス構造体を製造した。 In this comparative example, a lattice-shaped ceramic structure was manufactured.
実施例 1 と同様のペーストを原料とし、 直径〇.
Figure imgf000024_0002
のノズルを有する 小型押し出し機を用いて 2 5 °〇の環境下、 樹脂基板上に線条第 1塗工体を形 成し、 引き続きそれに直交する線条第 2塗工体を形成した。 その上に、 線条 第 1塗工体を形成し、 合計で 3層の塗工体からなる格子状の焼成前構造体を 得た。 第 1の線条部と第 2の線条部は、 9 0 ° で直行する角度とし、 辺部と 各条部の交差角度は 0 ° (平行) ないし 9 0 ° (直交) となるよう配置した 。 それ以外は実施例 1 と同様にして矩形のセラミックス構造体を得た。 得ら れた構造体における諸元を以下の表 1 に示す。
Using the same paste as in Example 1 as the raw material, the diameter 〇.
Figure imgf000024_0002
Using a small extruder with the nozzle of No. 2, under the environment of 25 ° , the first linear filament coating was formed on the resin substrate, and then the second linear filament coating was formed orthogonal thereto. A linear first coating body was formed thereon, and a lattice-shaped pre-fired structure consisting of a total of three layers of coating bodies was obtained. The first linear part and the second linear part are orthogonal to each other at 90 ° , and the crossing angle between the side part and each linear part is 0 ° (parallel) or 90 ° (orthogonal). did . A rectangular ceramic structure was obtained in the same manner as in Example 1 except for the above. The specifications of the obtained structure are shown in Table 1 below.
[0066] 〔実施例 4ないし 6並びに比較例 3及び 4〕 [Examples 4 to 6 and Comparative Examples 3 and 4]
線条体の幅及び線条体間の距離を表 1 に示すとおりとする以外は、 実施例 1ないし 3及び比較例 2と同様にしてセラミックス構造体を得た。 Ceramic structures were obtained in the same manner as in Examples 1 to 3 and Comparative Example 2 except that the width of the filaments and the distance between the filaments were as shown in Table 1.
[0067] 〔評価〕 [0067] [Evaluation]
実施例及び比較例で得られたセラミックス構造体について、 以下の方法で \¥02020/174893 23 卩(:171?2020/000611 For the ceramic structures obtained in the examples and comparative examples, the following method was used. \\02020/174893 23 ((171?2020/000611
耐熱衝撃温度及び強度を測定した。 それらの結果を表 1 に示す。 The thermal shock resistance temperature and strength were measured. The results are shown in Table 1.
[0068] 〔耐熱衝撃温度〕 [0068] [Heat-resistant shock temperature]
焼成炉にセラミックス構造体を入れ、 1時間保持後、 一気に大気中に取り 出し急冷する。 室温までセラミックス構造体が戻った後の亀裂の有無を確認 する。 評価は 2 0 0 °〇から開始し、 亀裂がない場合は更に焼成炉の設定温度 を 2 5 °〇上げて、 再度試験を繰り返す。 亀裂が入らずに耐久を保持した炉の 温度上限値を、 耐熱衝撃温度とする。 Put the ceramic structure in the firing furnace, hold it for 1 hour, and then immediately take it out into the atmosphere and quench it. Check for cracks after the ceramic structure has returned to room temperature. The evaluation starts from 200 ° 〇, and if there is no crack, raise the set temperature of the firing furnace by 25 ° 〇 and repeat the test. The thermal shock resistance temperature is defined as the upper temperature limit of the furnace that maintains durability without cracking.
[0069] 〔強度評価 1〕 [0069] [Strength Evaluation 1]
得られたセラミックス構造体に対して、 強度評価を行った。 実施例で得ら れたセラミックス構造体に対しては、 第 3の線条部が交わる直線辺部に平行 な方向に曲げたときの強度を求めた。 比較例で得られたセラミックス構造体 に対しては、 2層備わった第 1の線条部に直交する方向に曲げたときの強度 を求めた。 強度評価は 4点曲げ試験を採用した。 4点曲げ試験は、 」 I 3 6 0 1 : 2 0 0 8ファインセラミックスの室温曲げ強さ試験方法に準拠 した。 この際、 断面積は、 構造体の幅及び厚さから計算した。 The strength of the obtained ceramic structure was evaluated. For the ceramic structures obtained in the examples, the strength when bent in a direction parallel to the straight side portion where the third linear portion intersects was obtained. For the ceramic structures obtained in the comparative examples, the strength when bent in a direction orthogonal to the first linear portion having two layers was obtained. A 4-point bending test was used for strength evaluation. The 4-point bending test conformed to the test method of room temperature bending strength of fine ceramics. At this time, the cross-sectional area was calculated from the width and thickness of the structure.
[0070] 〔強度評価 2〕 [0070] [Strength evaluation 2]
得られたセラミックス構造体に対して、 実施例 1 と比較例 2に対しては、 強度評価 1 に対して直交する方向での強度も測定した。 For the obtained ceramic structures, for Example 1 and Comparative Example 2, the strength in the direction orthogonal to Strength Evaluation 1 was also measured.
[0071 ] [0071]
〔¾二 [¾ji
Figure imgf000026_0002
Figure imgf000026_0002
Figure imgf000026_0001
Figure imgf000026_0001
\¥0 2020/174893 25 卩(:171? 2020 /000611 \\0 2020/174893 25 卩 (: 171? 2020 /000611
ることが判る。 また、 線条体の幅及び間隔が実施例及び比較例で同じである にもかかわらず、 実施例の方が質量を軽くできることも判る。 しかも、 実施 例の方が、 質量が軽いにもかかわらず、 比較例よりも耐熱衝撃性及び強度に 優れることも判る。 I understand that It is also found that the mass can be lightened in the example, even though the width and the interval of the filaments are the same in the example and the comparative example. Moreover, it can be seen that the example is superior to the comparative example in thermal shock resistance and strength, although the mass is lighter.
また、 実施例 1では強度評価 1での強度に対し、 強度評価 2の強度は一 2 %という僅かな低下であったが、 比較例 2は一 3 5 %も低下し、 大きな異方 性が観察された。 したがって、 実施例は強度異方性にも優れていることが判 った。 Further, in Example 1, the strength in Strength Evaluation 2 was a slight decrease of 12% compared to the strength in Strength Evaluation 1, but in Comparative Example 2 it was decreased by 13.5%, showing a large anisotropy. Was observed. Therefore, it was found that the examples also have excellent strength anisotropy.
産業上の利用可能性 Industrial availability
[0073] 本発明によれば、 従来よりも強度が高いセラミックス構造体が得られる。 According to the present invention, it is possible to obtain a ceramic structure having higher strength than conventional ones.
また本発明によれば、 従来よりも耐熱衝撃性が高いセラミックス構造体が得 られる。 Further, according to the present invention, a ceramic structure having a higher thermal shock resistance than the conventional one can be obtained.

Claims

\¥02020/174893 26 卩(:171?2020/000611 請求の範囲 \¥02020/174893 26 range (: 171?2020/000611 Claims
[請求項 1 ] —方向に向けて延びるセラミックス製の複数の第 1の線条部と、 該 第 1の線条部と交差する方向に向けて延びるセラミックス製の複数の 第 2の線条部と、 第 1の線条部と第 2の線条部とが交差することで画 成される四辺形の対角線上を通るセラミックス製の第 3の線条部とを 有し、 [Claim 1] — A plurality of first filament portions made of ceramics extending in a direction and a plurality of second filament portions made of ceramics extending in a direction intersecting with the first filament portions. And a third filament portion made of ceramics that passes on the diagonal of a quadrangle defined by the intersection of the first filament portion and the second filament portion,
第 1の線条部、 第 2の線条部及び第 3の線条部によって画成される 複数の三角形の貫通孔が形成されている、 板状のセラミックス構造体 A plate-shaped ceramic structure in which a plurality of triangular through holes defined by the first linear portion, the second linear portion and the third linear portion are formed.
[請求項 2] 第 3の線条部上に第 2の線条部が配置され、 第 2の線条部上に第 1 の線条部が配置されている、 請求項 1 に記載のセラミックス構造体。 [Claim 2] The ceramic according to claim 1, wherein the second linear portion is arranged on the third linear portion, and the first linear portion is arranged on the second linear portion. Structure.
[請求項 3] 第 1の線条部、 第 2の線条部及び第 3の線条部は 1つの交差部で交 差しており、 [Claim 3] The first linear portion, the second linear portion, and the third linear portion intersect at one intersection,
いずれの前記交差部においても、 第 3の線条部上に第 2の線条部が 配されており、 At any of the intersections, the second linear portion is arranged on the third linear portion,
いずれの前記交差部においても、 第 2の線条部上に第 1の線条部が 配されている、 請求項 2に記載のセラミックス構造体。 3. The ceramic structure according to claim 2, wherein the first linear portion is arranged on the second linear portion at any of the intersections.
[請求項 4] 第 2の線条部は、 その断面が、 前記交差部以外の部位において、 円 形又は楕円形の形状を有しており、 [Claim 4] The cross section of the second linear portion has a circular or elliptical shape in a portion other than the intersecting portion,
第 1の線条部は、 その断面が、 前記交差部以外の部位において、 円 形又は楕円形の形状を有している、 請求項 3に記載のセラミックス構 造体。 4. The ceramic structure according to claim 3, wherein a cross section of the first linear portion has a circular shape or an elliptical shape at a portion other than the intersecting portion.
[請求項 5] 第 1の線条部上に第 2の線条部が配置され、 第 2の線条部上に第 3 の線条部が配置されている、 請求項 1 に記載のセラミックス構造体。 [Claim 5] The ceramic according to claim 1, wherein the second linear portion is arranged on the first linear portion, and the third linear portion is arranged on the second linear portion. Structure.
[請求項 6] 第 1の線条部、 第 2の線条部及び第 3の線条部は 1つの交差部で交 差しており、 [Claim 6] The first linear portion, the second linear portion, and the third linear portion intersect at one intersection,
いずれの前記交差部においても、 第 1の線条部上に第 2の線条部が 配されており、 \¥02020/174893 27 卩(:171?2020/000611 At any of the intersections, the second linear portion is arranged on the first linear portion, \\02020/174893 27 卩 (: 171?2020/000611
いずれの前記交差部においても、 第 2の線条部上に第 3の線条部が 配されている、 請求項 5に記載のセラミックス構造体。 6. The ceramic structure according to claim 5, wherein at any of the intersecting portions, the third linear portion is arranged on the second linear portion.
[請求項 7] 第 2の線条部は、 その断面が、 前記交差部以外の部位において、 円 形又は楕円形の形状を有しており、 [Claim 7] The cross section of the second linear portion has a circular or elliptical shape in a portion other than the intersecting portion,
第 3の線条部は、 その断面が、 前記交差部以外の部位において、 円 形又は楕円形の形状を有している、 請求項 6に記載のセラミックス構 造体。 7. The ceramic structure according to claim 6, wherein a cross section of the third linear portion has a circular shape or an elliptical shape at a portion other than the intersecting portion.
[請求項 8] 平面視での輪郭の少なくとも一部に直線辺部を有しており、 [Claim 8] At least a part of the contour in plan view has a straight side portion,
第 1の線条部、 第 2の線条部及び第 3の線条部のうちのいずれか一 つの線条部が前記直線部と平行に配置されている、 請求項 1ないし 7 のいずれか一項に記載のセラミックス構造体。 8. The linear portion of any one of the first linear portion, the second linear portion and the third linear portion is arranged in parallel with the linear portion, according to any one of claims 1 to 7. The ceramic structure according to item 1.
[請求項 9] 第 1の線条部又は第 3の線条部が前記直線辺部と平行に配置されて いる、 請求項 8に記載のセラミックス構造体。 [Claim 9] The ceramic structure according to claim 8, wherein the first linear portion or the third linear portion is arranged in parallel with the straight side portion.
[請求項 10] 第 1の線条部、 第 2の線条部及び第 3の線条部とから構成される繰 り返し単位が 2以上積層されている請求項 1ないし 9のいずれか一項 に記載のセラミツクス構造体。 [Claim 10] Any one of claims 1 to 9 in which two or more repeating units composed of the first linear portion, the second linear portion and the third linear portion are laminated. A ceramic structure according to item 4.
PCT/JP2020/000611 2019-02-28 2020-01-10 Ceramic structure WO2020174893A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217025974A KR20210116564A (en) 2019-02-28 2020-01-10 ceramic structure
CN202080015363.6A CN113454414B (en) 2019-02-28 2020-01-10 Ceramic structure
JP2020520680A JP6746827B1 (en) 2019-02-28 2020-01-10 Ceramic structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035599 2019-02-28
JP2019-035599 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020174893A1 true WO2020174893A1 (en) 2020-09-03

Family

ID=72238401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000611 WO2020174893A1 (en) 2019-02-28 2020-01-10 Ceramic structure

Country Status (5)

Country Link
JP (1) JP6952170B2 (en)
KR (1) KR20210116564A (en)
CN (1) CN113454414B (en)
TW (1) TWI760679B (en)
WO (1) WO2020174893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353526B1 (en) 2023-03-28 2023-09-29 株式会社ノリタケカンパニーリミテド Baking jig

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167600U (en) * 1988-05-16 1989-11-24
JPH0510998U (en) * 1991-07-19 1993-02-12 石塚硝子株式会社 Baking setter
JPH1179853A (en) * 1997-09-09 1999-03-23 Tosoh Corp Setter for baking and its production
JP2000009389A (en) * 1998-06-19 2000-01-14 Nichias Corp Shelf plate for firing ceramics
KR101355119B1 (en) * 2012-07-16 2014-01-24 에스케이씨 주식회사 Ceramic setter of plate type

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313658B2 (en) * 2006-03-07 2013-10-09 日本碍子株式会社 Ceramic structure and manufacturing method thereof
JP6564401B2 (en) * 2015-01-19 2019-08-21 三井金属鉱業株式会社 Ceramic lattice
JP6410758B1 (en) 2016-05-24 2018-10-24 三井金属鉱業株式会社 Ceramic lattice
WO2018066281A1 (en) * 2016-10-06 2018-04-12 三井金属鉱業株式会社 Ceramic lattice
JP6259943B1 (en) 2017-05-17 2018-01-10 三井金属鉱業株式会社 Ceramic lattice

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167600U (en) * 1988-05-16 1989-11-24
JPH0510998U (en) * 1991-07-19 1993-02-12 石塚硝子株式会社 Baking setter
JPH1179853A (en) * 1997-09-09 1999-03-23 Tosoh Corp Setter for baking and its production
JP2000009389A (en) * 1998-06-19 2000-01-14 Nichias Corp Shelf plate for firing ceramics
KR101355119B1 (en) * 2012-07-16 2014-01-24 에스케이씨 주식회사 Ceramic setter of plate type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353526B1 (en) 2023-03-28 2023-09-29 株式会社ノリタケカンパニーリミテド Baking jig

Also Published As

Publication number Publication date
TW202033480A (en) 2020-09-16
TWI760679B (en) 2022-04-11
CN113454414B (en) 2022-12-23
JP6952170B2 (en) 2021-10-20
CN113454414A (en) 2021-09-28
KR20210116564A (en) 2021-09-27
JP2020189785A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6564401B2 (en) Ceramic lattice
JP6410758B1 (en) Ceramic lattice
JP6259943B1 (en) Ceramic lattice
KR102227122B1 (en) Ceramic grating
WO2020174893A1 (en) Ceramic structure
JP6746827B1 (en) Ceramic structure
JP6608499B2 (en) Ceramic lattice
CN109689594B (en) Ceramic grid body
JP2019081695A (en) Ceramic lattice body
JP6883680B2 (en) Ceramic lattice
JP2020073432A (en) Ceramic lattice body
WO2024034256A1 (en) Firing jig comprising setter and base plate
JP6423160B2 (en) Honeycomb structure
WO2024034257A1 (en) Firing jig comprising setter and bottom plate
JP3051872U (en) Setter with legs for firing electronic components
JP2016175789A (en) Honeycomb structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020520680

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217025974

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762793

Country of ref document: EP

Kind code of ref document: A1