WO2018062069A1 - ガラスパネルユニットの製造方法、およびガラス窓の製造方法 - Google Patents

ガラスパネルユニットの製造方法、およびガラス窓の製造方法 Download PDF

Info

Publication number
WO2018062069A1
WO2018062069A1 PCT/JP2017/034450 JP2017034450W WO2018062069A1 WO 2018062069 A1 WO2018062069 A1 WO 2018062069A1 JP 2017034450 W JP2017034450 W JP 2017034450W WO 2018062069 A1 WO2018062069 A1 WO 2018062069A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
panel unit
substrate
glass panel
gas
Prior art date
Application number
PCT/JP2017/034450
Other languages
English (en)
French (fr)
Inventor
長谷川 和也
阿部 裕之
将 石橋
野中 正貴
瓜生 英一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/338,409 priority Critical patent/US11299422B2/en
Priority to EP17856022.3A priority patent/EP3521255B1/en
Priority to JP2018542534A priority patent/JP6775205B2/ja
Publication of WO2018062069A1 publication Critical patent/WO2018062069A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67339Working the edges of already assembled units
    • E06B3/6736Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a method for manufacturing a glass panel unit having heat insulation and a method for manufacturing a glass window having heat insulation.
  • Patent Document 1 describes a method of manufacturing a glass panel unit having heat insulation properties by bonding a first substrate and a second substrate with a sealing material. A gas adsorbent is disposed between the first substrate and the second substrate along the sealing material.
  • the gas adsorbing material is arranged in a line along the sealing material, and the gas adsorbing material is located at a location that is difficult for the user to visually recognize.
  • the present invention provides a method for producing a glass panel unit in which a gas adsorbing material can be arranged at a location that is difficult to be visually recognized, and the arrangement of the gas adsorbing material can be prevented from affecting the adhesiveness of the sealing material. And a glass window manufacturing method.
  • At least a first substrate made of a glass plate has a first surface in one of its thickness directions, and a second substrate made of at least a glass plate has one of its thickness directions.
  • An adsorbent arrangement step in which a gas adsorbent is arranged on one or both of the second surfaces, the first surface of the first substrate, and the second surface of the second substrate are sealed.
  • a joining step in which the materials are joined in an airtight manner.
  • the gas adsorbent is arranged to have a shape in which relatively high portions and low portions are alternately arranged, and in the joining step, the gas adsorbent having the shape is Located along the encapsulant.
  • the method for manufacturing a glass window according to an aspect of the present invention includes a fitting step of fitting a window frame into the glass panel unit manufactured by the method for manufacturing a glass panel unit according to one aspect of the present invention.
  • FIG. 1 is a schematic perspective view showing one process of the glass panel unit manufacturing method of the first embodiment.
  • FIG. 2 is a schematic plan view showing one process of the manufacturing method.
  • 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a partially cutaway schematic plan view showing an assembly formed by the above manufacturing method.
  • FIG. 5 is a schematic plan view showing a glass panel unit formed by the above manufacturing method.
  • 6 is a cross-sectional view taken along line BB in FIG.
  • FIG. 7 is a flowchart showing the same manufacturing method.
  • FIG. 8 is a schematic view of a gas adsorbent disposed in a modification of the manufacturing method described above.
  • FIG. 9 is a schematic plan view showing one process of the method for manufacturing the glass panel unit of the second embodiment.
  • FIG. 10 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 11 is a schematic plan view showing an assembly formed by the above manufacturing method.
  • FIG. 12 is a schematic plan view which shows the glass panel unit formed with the manufacturing method of the glass panel unit of 3rd embodiment.
  • 13 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 14 is a flowchart showing the same manufacturing method.
  • FIG. 15 is a schematic plan view showing a glass window including the glass panel unit of the first embodiment.
  • FIG. 16 is a flowchart showing a manufacturing method of the glass window.
  • Glass panel unit (First embodiment) The glass panel unit 90 of 1st embodiment and its manufacturing method are demonstrated based on FIGS. 1-7.
  • the glass panel unit 90 of the first embodiment includes a first panel 10, a second panel 20, a frame body 500, a plurality (multiple) pillars 7, and a getter 40.
  • the first panel 10 includes a flat glass plate 105 and a coating 106 that covers the first side of the glass plate 105 in the thickness direction.
  • the material of the glass plate 105 is, for example, soda lime glass, high strain point glass, chemically tempered glass, alkali-free glass, quartz glass, neoceram, or physically tempered glass.
  • the coating 106 is, for example, a heat ray reflective film, but may be a film having other physical characteristics.
  • an appropriate coating may be applied to the second side (the side opposite to the first side) instead of the first side in the thickness direction of the glass plate 105, or the thickness direction of the glass plate 15.
  • An appropriate coating may be applied to each of the first side and the second side.
  • first surface 10 a one surface in the thickness direction of the first panel 10 (hereinafter referred to as “first surface 10 a”) is configured by the surface of the coating 106.
  • first surface 10 a of the first panel 10 is constituted by one surface in the thickness direction of the glass plate 105.
  • the 1st panel 10 should just be comprised with the glass plate 105 at least.
  • the first panel 10 is transparent as a whole, but may be translucent or non-transparent.
  • the second panel 20 is composed of a flat glass plate 205.
  • One surface in the thickness direction of the second panel 20 (hereinafter referred to as “second surface 20 a”) is configured by one surface in the thickness direction of the glass plate 205.
  • the 2nd panel 20 should just be comprised with the glass plate 205 at least, and the appropriate coating may be given to the both sides of the thickness direction of the glass plate 205, or one side.
  • the material of the glass plate 205 is, for example, soda lime glass, high strain point glass, chemically tempered glass, alkali-free glass, quartz glass, neoceram, or physically tempered glass.
  • the second panel 20 is transparent as a whole, but may be translucent or non-transparent.
  • the frame body 500 exhibits a sealing function because the sealing material 5 including glass frit (see FIG. 1 and the like) is once melted and solidified, and the first panel 10 positioned opposite to each other It is located in a state of being sandwiched between the second panels 20.
  • the frame 500 is airtightly joined over the entire periphery with respect to the peripheral portion of the first surface 10 a of the first panel 10, and is entirely connected to the peripheral portion of the second surface 20 a of the second panel 20. It is joined airtight over the circumference.
  • the decompression space 600 surrounded by the first panel 10, the second panel 20, and the frame body 500 is formed in an airtight manner.
  • the first surface 10 a of the first panel 10 faces the decompression space 600
  • the second surface 20 a of the second panel 20 faces the decompression space 600.
  • the plurality of pillars 7 are positioned in a state of being sandwiched between the first panel 10 and the second panel 20 positioned to face each other.
  • the plurality of pillars 7 are surrounded by the frame body 500. That is, the plurality of pillars 7 are disposed in the decompression space 600.
  • Each pillar 7 is in contact with the first surface 10a of the first panel 10 and the second surface 20a of the second panel 20, so that the interval between the first panel 10 and the second panel 20 is maintained at a predetermined interval.
  • each pillar 7 schematically show each configuration.
  • the size and shape of each pillar 7, the interval between adjacent pillars 7, the thickness of the first panel 10 and the second panel 20, the volume of the decompression space 600 are different from the actual ones.
  • the number of pillars 7 is not limited to the number shown. It is possible that the pillar 7 is not disposed between the first panel 10 and the second panel 20.
  • the getter 40 is positioned between the first panel 10 and the second panel 20 so as to be surrounded by the frame body 500 (that is, so as to be positioned in the decompression space 600). It is arranged in.
  • the getter 40 and the first surface 10a of the first panel 10 are not in contact with each other.
  • the getter 40 is formed in a linear shape using a gas adsorbent 4 (see FIG. 1 and the like) having a property of adsorbing a gas such as nitrogen or oxygen.
  • the getter 40 can also be arranged on the first surface 10a of the first panel 10.
  • the getter 40 and the second surface 20 a of the second panel 20 are provided in a non-contact manner, and a gap is formed between the getter 40 and the second panel 20.
  • the getter 40 may be disposed on both the first surface 10 a of the first panel 10 and the second surface 20 a of the second panel 20.
  • the getter 40 has a frame shape slightly smaller than the frame body 500 so as to be positioned at a slight distance inside the frame body 500. Is provided.
  • the getter 40 may be provided in a line shape along the frame body 500, and is not limited to a rectangular frame shape in which four linear portions are continuous as illustrated.
  • the getter 40 may be provided on the entire circumference along the frame body 500 and a part (one or a plurality of places) of the getter 40 may be divided.
  • the getter 40 may be provided along only the short side portion of the rectangular frame 500, and may be provided along the long side portion. It is possible that it is provided only along.
  • the getter 40 is not uniform in height from the surface on which the getter 40 is arranged (the second surface 20a of the second panel 20), and the relatively high portion 40a and the low portion 40b are along one direction (the frame 500). (Along) having an alternating wavy shape. In the drawing, the getter 40 is schematically represented so that only the upper surface thereof is rippled.
  • first manufacturing method a method for manufacturing the glass panel unit of the first embodiment
  • an assembly 9 including a decompressed first space 61 and a second space 62 that is airtightly partitioned from the first space 61 is formed.
  • the glass panel unit 90 shown in FIGS. 5 and 6 is obtained.
  • the decompressed first space 61 constitutes a decompressed space 600 of the glass panel unit 90.
  • the assembly 9 is formed using the first substrate 1, the second substrate 2, the sealing material 5, the plurality of pillars 7, and the gas adsorbing material 4.
  • the first substrate 1 includes a flat glass plate 15 and a coating 16 that covers the first side in the thickness direction of the glass plate 15 (see FIG. 3).
  • a part of the first substrate 1 is cut out to form the first panel 10.
  • a part of the first surface 1a of the first substrate 1 is cut away, whereby the first surface 10a of the first panel 10 is formed.
  • a portion of the glass plate 15 is cut away to form the glass plate 105 of the first panel 10, and a portion of the coating 16 is cut off to form the coating 106 of the first panel 10. .
  • the second substrate 2 is composed of a flat glass plate 25 (see FIG. 3).
  • a part of the second substrate 2 (glass plate 25) is cut away to form the second panel 20 (glass plate 205).
  • a part of the second surface 2a of the second substrate 2 is cut away, whereby the second surface 20a of the second panel 20 is formed.
  • the sealing material 5 includes a frame-shaped outer peripheral portion 51 and a linear partition portion 52 that partitions a space inside the outer peripheral portion 51 (see FIG. 4).
  • the space inside the outer peripheral portion 51 is partitioned into a first side portion and a second side portion via a partition portion 52.
  • the entire sealing material 5 is cut in a straight line along the partition portion 52, whereby the frame body 500 is formed.
  • the first manufacturing method includes a sealing material arranging step S1, an adsorbent arranging step S2, a pillar mounting step S3, a joining step S4, and a cutting step S5 (see FIG. 7).
  • the assembly 9 is formed through the sealing material arranging step S1, the adsorbing material arranging step S2, the pillar mounting step S3, and the joining step S4. Furthermore, by passing through cutting process S5, the part is cut out from the assembly 9, and the glass panel unit 90 is formed.
  • any process may be performed previously and at least 2 process of these processes may be performed simultaneously.
  • the sealing material 5 may be applied to the first surface 1 a of the first substrate 1, or may be applied to both the first surface 1 a of the first substrate 1 and the second surface 2 a of the second substrate 2. There is also a possibility.
  • the outer peripheral portion 51 may be applied to the first substrate 1 and the partition portion 52 may be applied to the second substrate 2, or the outer peripheral portion 51 may be applied to the second substrate 2 and the partition portion 52 may be applied to the first substrate 1. It may also be applied to. As will be described later, the outer peripheral portion 51 and the partition portion 52 are provided so as to melt at different temperatures. The outer peripheral portion 51 and the partition portion 52 have different softening points.
  • the paste-like gas adsorbent 4 is applied on the second surface 2a of the second substrate 2 in a linear (frame-like) form.
  • the part to which the gas adsorbent 4 is applied is a part on the first side partitioned by the partition part 52 in the region surrounded by the outer peripheral part 51 on the second surface 2a.
  • the paste-like gas adsorbent 4 is applied using, for example, a dispenser.
  • the height of each part of the gas adsorbing material 4 at the time when the application is completed can be adjusted by various conditions such as the speed at which the dispenser moves, the trajectory, the application amount of the gas adsorbing material 4 from the dispenser, and the application speed. .
  • the top of the gas adsorbent 4 applied on the second surface 2a of the second substrate 2 has a corrugated shape. That is, the gas adsorbent 4 applied on the second surface 2a in the adsorbent arrangement step S2 has a uniform height from the second surface 2a of the second substrate 2 in the same manner as the finally formed getter 40. Instead, it has a corrugated shape in which relatively high portions 4a and low portions 4b are alternately arranged along one direction (along the sealing material 5).
  • the height of the gas adsorbent 4 means the height from the surface on which the gas adsorbent 4 is applied.
  • the height of the gas adsorbent 4 means the height from the second surface 2 a of the gas adsorbent 4.
  • the height of the gas adsorbent 4 means the height of the gas adsorbent 4 from the first surface 1 a.
  • the ratio of the height of the relatively high portion 4a and the low portion 4b can be adjusted according to various conditions.
  • the gas adsorbent 4 in a corrugated form, it is also preferable to apply the gas adsorbent 4 in a dot shape so as to be connected linearly along one direction. According to this means, a high portion 4a is formed at each spot applied in the form of dots, and a low portion 4b is formed between adjacent high portions 4a.
  • the means for arranging the gas adsorbing material 4 is not limited to the dispenser, and other means such as an ink jet method and a printing method can also be used.
  • a gas adsorbent 4 having a high viscosity it is preferable to form the gas adsorbent 4 in a linear shape by a dot printing technique using an ink jet printer instead of using a dispenser.
  • a linear gas adsorbent 4 is formed as a whole by connecting a large number of dot-like portions sprayed using an ink jet printer.
  • each dot-shaped portion constitutes a high portion 4 a of the gas adsorbent 4, and a portion therebetween constitutes a low portion 4 b of the gas adsorbent 4.
  • the linear gas adsorbent 4 can be easily formed so as to have a wave shape.
  • a plurality of pillars 7 are mounted on the second surface 2a of the second substrate 2 in a predetermined pattern.
  • the portion on which the plurality of pillars 7 are mounted is the first side portion (the side on which the gas adsorbent 4 is disposed) partitioned by the partition portion 52 in the region surrounded by the outer peripheral portion 51 on the second surface 2a. The same part).
  • the sealing material 5 (the outer peripheral portion 51) is formed on the second surface 2a of the second substrate 2 as shown in FIG.
  • the partition part 52), the gas adsorbent 4, and the plurality of pillars 7 are arranged.
  • An exhaust hole 81 is formed in the second substrate 2 so as to penetrate in the thickness direction.
  • the exhaust hole 81 is a portion on the second side partitioned by the partition 52 in the region surrounded by the outer peripheral portion 51 of the second surface 2a (the side opposite to the side where the gas adsorbent 4 and each pillar 7 are arranged).
  • the part is open.
  • the joining process S4 will be described. After the sealing material arranging step S1, the adsorbing material arranging step S2, and the pillar mounting step S3 are completed, the joining step S4 is performed.
  • the joining step S4 includes a first heating step S41, a decompression step S42, and a second heating step S43.
  • the first substrate 1 and the second substrate 2 are set with the sealing material 5 and the pillars 7 sandwiched therebetween, and the whole is heated in the sealing furnace in this state.
  • the temperature in the sealing furnace is set to a predetermined temperature (first melting temperature) equal to or higher than the softening point of the outer peripheral portion 51.
  • first melting temperature a predetermined temperature
  • the first substrate 1 and the second substrate 2 are hermetically bonded via the outer peripheral portion 51 by solidifying the outer peripheral portion 51 once melted in the furnace at the first melting temperature. At this time, the partition part 52 is not melted.
  • the solvent in the outer peripheral portion 51 is decomposed and the gas is desorbed from the outer peripheral portion 51. Since an elongated and narrow gap is formed between the outer peripheral portion 51 and the gas adsorbent 4, gas tends to stay in this gap. If the gas stays in the gap, decomposition of the solvent in the sealing material 5 (outer peripheral portion 51) and desorption of the gas from the sealing material 5 may be hindered. As a result, adhesion of the sealing material 5 may occur. May affect sex.
  • the gas adsorbent 4 is provided in a corrugated shape in which the high portions 4a and the low portions 4b are alternately arranged, so that the gas desorbed from the outer peripheral portion 51 is low in the low portions 4b. It is easy to come out through. As a result, the gas adsorbent 4 can be disposed in a sufficient amount at a location that is difficult for the user to visually recognize (a location close to the outer peripheral portion 51), and gas is present in the gap between the outer peripheral portion 51 and the gas adsorbent 4. It is possible to suppress the retention.
  • an internal space 6 that is airtightly surrounded by the outer peripheral portion 51 is formed (see FIG. 2 and the like).
  • the internal space 6 is partitioned into a first space 61 and a second space 62 through a partition part 52.
  • the first space 61 and the second space 62 can be ventilated with each other.
  • the first space 61 is a space where the gas adsorbent 4 and the plurality of pillars 7 are located.
  • the second space 62 is a space in which the exhaust hole 81 is opened.
  • the exhaust hole 81 is a hole that allows the second space 62 to communicate with the external space.
  • a decompression step S42 is performed.
  • the air in the internal space 6 (the first space 61 and the second space 62) is discharged to the outside through the exhaust hole 81, and the entire internal space 6 has a predetermined degree of vacuum (for example, 0.1 Pa or less). The degree of vacuum is reduced.
  • Exhaust work through the exhaust hole 81 is performed using, for example, a vacuum pump through an exhaust pipe 82 (see FIG. 1) connected to the second substrate 2 so as to communicate with the exhaust hole 81.
  • 2nd heating process S43 is performed after decompression process S42.
  • the partition portion 52 is once melted at a predetermined temperature (second melting temperature) equal to or higher than the softening point of the partition portion 52 while maintaining the reduced pressure state of the internal space 6, and between the outer peripheral portion 51 and the outer periphery portion 51.
  • second melting temperature a predetermined temperature
  • the partition 52 is deformed so as to close the gap, it is solidified in this state (see FIG. 4).
  • the decompressed first space 61 is surrounded by the deformed partition portion 52 and a part of the outer peripheral portion 51, and is hermetically sealed with the outside.
  • the deformed partition portion 52 functions as a partition that hermetically separates the decompressed internal space 6 into the first space 61 and the second space 62.
  • the second melting temperature for melting the partition portion 52 is set to a temperature higher than the first melting temperature for melting the outer peripheral portion 51.
  • the softening point of the partition part 52 is higher than the softening point of the outer peripheral part 51.
  • the second heating step S43 when the partition part 52 constituting a part of the sealing material 5 is melted, the solvent in the partition part 52 is decomposed and the gas is desorbed from the partition part 52. Since a narrow and narrow gap is formed between the partition portion 52 and the gas adsorbent 4 adjacent thereto, the gas tends to stay in this gap. If the gas stays in the gap, decomposition of the solvent in the sealing material 5 (partition part 52) and desorption of the gas from the sealing material 5 may be hindered. May affect sex.
  • the gas adsorbent 4 positioned along the partition portion 52 has a corrugated shape in which the high portions 4a and the low portions 4b are alternately arranged.
  • the released gas is easy to escape through the low portions 4b at various places.
  • sufficient gas adsorbent 4 can be disposed in a location that is difficult for the user to visually recognize (location adjacent to the partition portion 52), and gas remains in the gap between the partition portion 52 and the gas adsorbent 4. It can be suppressed.
  • the assembly 9 including the decompressed first space 61 as shown in FIG. 4 is obtained through the steps described above.
  • the cutting step S5 After the joining step S4 is completed (after the second heating step S43 is completed), the cutting step S5 is performed.
  • the assembly 9 taken out from the sealing furnace is cut along a virtual cutting line L1 as shown in FIG. 4 and has a portion having the first space 61 and a second space 62. It is physically separated into parts.
  • the cutting line L1 is preferably set so as to pass through the partition portion 52 over its entire length.
  • One of the separated parts of the assembly 9 is provided as a glass panel unit 90 in which a decompression space 600 (first space 61) is formed.
  • a decompression space 600 first space 61
  • one part (part facing the first space 61) separated along the cutting line L1 in the outer peripheral part 51 and the part separated along the cutting line L1 in the partition part 52.
  • One part (the part facing the first space 61) forms a rectangular frame 500.
  • the exhaust hole 81 is provided in the second substrate 2, but the exhaust hole 81 may be provided in at least one of the first substrate 1 and the second substrate 2.
  • the exhaust holes 81 may be formed in the first substrate 1, or the exhaust holes 81 may be formed in both the first substrate 1 and the second substrate 2.
  • the assembly 9 In the first manufacturing method, a part of the assembly 9 is cut out to obtain the glass panel unit 90.
  • the assembly 9 can be provided as a glass panel unit 90 without part of the cut.
  • the partition portion 52 is not provided in the assembly 9 and the exhaust hole 81 is formed by a known appropriate method while maintaining the internal space 6 surrounded by the outer peripheral portion 51 in a state where the pressure is reduced through the exhaust hole 81. What is necessary is just to seal. In this case, the entire internal space 6 sealed in a decompressed state constitutes the decompressed space 600 of the glass panel unit 90.
  • the internal space 6 of the assembly 9 is partitioned so as to include a plurality (two) of first spaces 61, and a plurality (two) of glass panels are formed from the assembly 9. This is a manufacturing method for obtaining the unit 90.
  • the sealing material 5 (the outer peripheral portion 51 and the outer peripheral portion 51 and the second substrate 2 is passed between the first substrate 1 and the second substrate 2 through the sealing material placement step S1, the adsorbent placement step S2, and the pillar mounting step S3.
  • the partition 52) and the plurality of pillars 7 are sandwiched.
  • the sealing material 5 forms two first spaces 61 and one second space 62 between the first substrate 1 and the second substrate 2.
  • the two first spaces 61 and the one second space 62 can be ventilated with each other.
  • the partition portion 52 of the second embodiment includes a wall portion 52 a that partitions one of the two first spaces 61 between the first space 61 and the second space 62, and the other first of the two first spaces 61. It includes a wall portion 52b that partitions the space 61 and the second space 62, and a wall portion 52c that partitions one of the first space 61 and the other first space 61.
  • the wall 52a has a ventilation path, and the first space 61 and the second space 62 can be ventilated through the ventilation path.
  • the wall part 52b has a ventilation path, and the other first space 61 and the second space 62 can be ventilated through the ventilation path.
  • the position, number and shape of the air passage are not limited to the illustrated form.
  • a plurality of (many) pillars 7 and two gas adsorbents 4 are arranged in each of the two first spaces 61.
  • the two gas adsorbents 4 are a linear (straight line) gas adsorbent 4 positioned along the outer peripheral portion 51 and a linear (straight line) gas adsorbent 4 positioned along the partition portion 52. .
  • the gas adsorbent 4 along the partition portion 52 is located on both sides of the partition portion 52 (linear wall portion 52 c).
  • the gas adsorbent 4 along the outer peripheral portion 51 and the gas adsorbent 4 along the partition portion 52 are formed separately from each other, but they may be formed in a single line.
  • Each gas adsorbent 4 is not uniform in height, and has a corrugated shape in which relatively high portions 4a and low portions 4b are alternately arranged along one direction.
  • the whole is heated in the state shown in FIGS. 9 and 10, and the first substrate 1 and the second substrate 2 are hermetically sealed by solidifying after the outer peripheral portion 51 of the sealing material 5 is once melted. Joined (first heating step S41). At this time, the partition part 52 (wall parts 52a, 52b, 52c) is not melted.
  • the solvent in the outer peripheral portion 51 is decomposed and gas is desorbed from the outer peripheral portion 51, but the gas adsorbent 4 adjacent to the outer peripheral portion 51 has a high portion 4a and a low portion 4b. Since it has an alternating wave shape, it is easy for the desorbed gas to escape through the low portions 4b. As a result, the gas adsorbent 4 is disposed at a location that is difficult for the user to visually recognize (location close to the outer peripheral portion 51), and the gas is prevented from staying in the gap between the outer peripheral portion 51 and the gas adsorbent 4. Can do.
  • the partition portion 52 is once melted at a predetermined temperature equal to or higher than the softening point of the partition portion 52 (wall portions 52a, 52b, 52c) while maintaining the reduced pressure state of the internal space 6, so that the partition portion 52 is closed. Is deformed (second heating step S43). By solidifying the partition 52 in a deformed state, as shown in FIG. 11, the two decompressed first spaces 61 are sealed.
  • the partition part 52 constituting a part of the sealing material 5 when the partition part 52 constituting a part of the sealing material 5 is melted, the solvent in the partition part 52 is decomposed, and the gas is desorbed from the partition part 52.
  • the gas adsorbents 4 located on both sides of the partition 52 (wall 52c) each have a corrugated shape, so that the desorbed gas easily escapes on both sides. Thereby, the gas adsorbent 4 is disposed at a location that is difficult for the user to visually recognize (location adjacent to the partition portion 52), and the gas is prevented from staying in the gap between the partition portion 52 and the gas adsorbent 4. Can do.
  • the assembly 9 obtained as described above is cut along a virtual cutting line L1 as shown in FIG. 11, and the two parts having the first space 61 and the second space It is physically separated into a part having 62.
  • Two portions having the first space 61 are each provided as a glass panel unit 90.
  • the glass panel unit 90A of the third embodiment has a third panel 30 that is positioned facing the first panel 10, and the first panel 10 and the third panel.
  • the frame body 55 which joins 30 peripheral parts to each other in an airtight manner is provided.
  • the third panel 30 only needs to be made of at least a glass plate, and an appropriate panel can be used.
  • the third panel 30 is transparent as a whole, but may be translucent or non-transparent.
  • a sealed space 602 is formed between the opposing surfaces 10 b and 30 b of the first panel 10 and the third panel 30.
  • the third panel 30 may be positioned to face one of the first panel 10 and the second panel 20. Although illustration is omitted, when the third panel 30 is positioned facing the second panel 20, the frame body 55 is joined to the peripheral edges of the second panel 20 and the third panel 30, and the second panel 20. A sealed space 602 is formed between the first panel 30 and the third panel 30.
  • a frame-like spacer 56 having a hollow is further arranged inside the frame body 55.
  • the hollow portion of the spacer 56 is filled with a desiccant 57.
  • the spacer 56 is formed of a metal such as aluminum and has a through hole 561 on the inner peripheral side thereof.
  • the hollow portion of the spacer 56 communicates with the space 602 through the through hole 561.
  • the desiccant 57 is, for example, silica gel.
  • the frame 55 is preferably formed of a highly airtight resin such as silicon resin or butyl rubber.
  • the space 602 is a space sealed by the first panel 10 (or the second panel 20), the third panel 30, and the frame body 55.
  • the space 602 is filled with a dry gas.
  • the dry gas is, for example, a dry rare gas such as argon, dry air, or the like.
  • the dry air includes air that has been sealed in the space 602 and then dried by the action of the desiccant 57.
  • the pressure was reduced until a predetermined degree of vacuum was reached between the third panel 30 and the second panel 20 (or the first panel 10) located at both ends in the thickness direction.
  • a decompression space 600 and a space 602 filled with a dry gas are interposed.
  • 90 A of glass panel units of 3rd embodiment exhibit still higher heat insulation.
  • the manufacturing method of the glass panel unit of the third embodiment includes a second joining step S6 in addition to the steps of the first manufacturing method.
  • the second bonding step S6 includes a frame 55 for one panel of the first panel 10 formed using the first substrate 1 and the second panel 20 formed using the second substrate 2.
  • the third panel 30 is arranged so as to sandwich the spacer 56 therebetween, and the one panel and the third panel 30 are joined via the frame body 55.
  • the manufacturing method of the glass panel unit of 3rd embodiment was demonstrated as a method of laminating
  • FIG. 15 shows a glass window 900 in which a window frame 91 is fitted into the glass panel unit 90 of the first embodiment.
  • the glass window 900 has a structure in which a rectangular frame-shaped window frame 91 is fitted in a peripheral portion of a glass panel unit 90 having a rectangular shape in plan view, and has high heat insulating properties.
  • the getter 40 is preferably hidden behind the window frame 91 when viewed from the front.
  • the method for manufacturing the glass window 900 includes a fitting step S ⁇ b> 7 for fitting the window frame 91 into the glass panel unit 90 in addition to the steps of the first manufacturing method.
  • the object into which the window frame 91 is fitted is not limited to the glass panel unit 90 of the first embodiment. That is, the window frame 91 is similarly fitted to the glass panel unit 90 which is multi-faced from the assembly 9 as in the second embodiment and the glass panel unit 90A having a three-layer structure as in the third embodiment. Can be included. Also in this case, a glass window 900 having high heat insulation is obtained.
  • the method for manufacturing the glass panel unit of the first embodiment includes an adsorbent arranging step S2 and a joining step S4.
  • the adsorbent arranging step S2 is a gas adsorbent on one or both of the first surface 1a that the first substrate 1 has in one of its thickness directions and the second surface 2a that the second substrate 2 has in one of its thickness directions.
  • 4 is a process in which 4 is arranged.
  • the first substrate 1 is made of at least a glass plate 15.
  • the second substrate 2 is composed of at least a glass plate 25.
  • the joining step S ⁇ b> 4 is a step in which the first surface 1 a of the first substrate 1 and the second surface 2 a of the second substrate 2 are joined airtightly via the sealing material 5.
  • the gas adsorbent 4 is arranged so as to have a shape in which relatively high portions 4a and low portions 4b are alternately arranged.
  • the gas adsorbent 4 having the shape is positioned along the sealing material 5.
  • a sufficient amount of the gas adsorbing material 4 can be disposed in a place that is difficult to be visually recognized, and the gas is disposed in the lower portion 4b of the gas adsorbing material 4. By passing, it is possible to suppress the gas from staying between the gas adsorbing material 4 and the sealing material 5 and affecting the adhesiveness of the sealing material 5.
  • the shape is a wave shape in which high portions 4a and low portions 4b are alternately arranged.
  • gas passes between the gas adsorption material 4 and the sealing material 5 when gas passes the low part 4b of the corrugated gas adsorption material 4.
  • FIG. Staying is suppressed.
  • an elongated gap is formed between the sealing material 5 and the gas adsorbing material 4 in the joining step S4.
  • sufficient quantity of the gas adsorbent 4 can be arrange
  • the sealing material 5 includes a frame-shaped outer peripheral portion 51.
  • the gas adsorbent 4 having the shape is heated until the outer peripheral portion 51 is melted in a state of being positioned along the outer peripheral portion 51.
  • the sealing material 5 is a partition that partitions the frame-shaped outer peripheral portion 51 and the space inside the outer peripheral portion 51. Part 52 is included.
  • the gas adsorbent 4 having the above shape is heated in a state where the gas adsorbent 4 is positioned along the partition portion 52 until the partition portion 52 is melted.
  • the partition portion 52 is melted in a state where the gas adsorbent 4 having the shape is located on both sides of the partition portion 52. Until heated.
  • the manufacturing method of the glass panel unit of the sixth embodiment even if the gas is desorbed from the partition part 52 by heating, the gas stays between the gas adsorbent 4 and the partition part 52 on both sides. Is suppressed.
  • the gas adsorbent 4 having the shape is formed by dot printing in the adsorbent arrangement step S2.
  • the manufacturing method of the glass panel unit of the seventh embodiment it is possible to easily form the gas adsorbent 4 having a shape in which relatively high portions 4a and low portions 4b are alternately arranged.
  • the gas adsorbent 4 having a shape in which a large number of relatively high portions 4a and low portions 4b are alternately arranged can be easily formed.
  • the manufacturing method of the glass panel unit according to the ninth aspect further includes a second joining step S6 in any one of the first to eighth aspects.
  • the second bonding step S6 the first panel 10 formed using the first substrate 1 and the second panel 20 formed using the second substrate 2 are connected to the second panel 20 via the frame 55. This is a process of joining the three panels 30.
  • the manufacturing method of the glass panel unit of the ninth embodiment it is possible to manufacture a glass panel unit 90A having higher heat insulation.
  • the manufacturing method of the glass window of the 1st form is a fitting process which inserts the window frame 91 in the glass panel unit 90,90A manufactured with the manufacturing method of the glass panel unit of any one form from 1st to 9th. S7 is provided.
  • the glass window 900 with high heat insulation can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

ガラスパネルユニットを製造するにあたり、視認されにくい箇所に気体吸着材を配置し、かつ、気体吸着材の配置が封止材の接着性に影響を及ぼすことを抑える。第一基板(1)がその厚み方向の一方に有する面と、第二基板(2)がその厚み方向の一方に有する面の、一方または両方に気体吸着材(4)を配置する。気体吸着材(4)は、相対的に高い部分と低い部分が交互に並んだ形状を有する。気体吸着材(4)は、第一基板(1)と第二基板(2)を接合させる封止材(5)に沿って位置する。

Description

ガラスパネルユニットの製造方法、およびガラス窓の製造方法
 本発明は、断熱性を有するガラスパネルユニットの製造方法、および断熱性を有するガラス窓の製造方法に関する。
 特許文献1には、第一基板と第二基板を封止材で接合させ、断熱性を有するガラスパネルユニットを製造する方法が記載されている。第一基板と第二基板の間には、封止材に沿うように気体吸着材が配されている。
 上記した従来のガラスパネルユニットの製造方法では、気体吸着材が封止材に沿って線状に配されており、ユーザーに視認されにくい箇所に気体吸着材が位置している。
 しかし、上記した従来のガラスパネルユニットの製造方法では、互いに近接して位置する気体吸着材と封止材の間に、隙間が形成される。そのため、封止材からガスが脱離すると、吸着材と封止材の間の隙間内にガスが滞留しやすい。この隙間内のガスの滞留が、封止材の接着性に影響を及ぼすおそれがある。
日本国特許出願公開番号2016-69232
 本発明は、視認されにくい箇所に気体吸着材を配置することができ、かつ、この気体吸着材の配置が封止材の接着性に影響を及ぼすことを抑えることができるガラスパネルユニットの製造方法、およびガラス窓の製造方法を提案することを、目的とする。
 本発明の一様態に係るガラスパネルユニットの製造方法は、少なくともガラス板からなる第一基板がその厚み方向の一方に有する第一面と、少なくともガラス板からなる第二基板がその厚み方向の一方に有する第二面の、一方または両方に気体吸着材が配される吸着材配置工程と、前記第一基板が有する前記第一面と、前記第二基板が有する前記第二面が、封止材を介して気密に接合される接合工程とを含む。
 前記吸着材配置工程では、前記気体吸着材が、相対的に高い部分と低い部分が交互に並んだ形状を有するように配され、前記接合工程では、前記形状を有する前記気体吸着材が、前記封止材に沿って位置する。
 本発明の一様態に係るガラス窓の製造方法は、本発明の一態様に係るガラスパネルユニットの製造方法で製造されたガラスパネルユニットに、窓枠を嵌め込む嵌め込み工程を備える。
図1は、第一実施形態のガラスパネルユニットの製造方法の一過程を示す概略斜視図である。 図2は、同上の製造方法の一過程を示す概略平面図である。 図3は、図2のA-A線断面図である。 図4は、同上の製造方法で形成される組立品を示す一部破断された概略平面図である。 図5は、同上の製造方法で形成されるガラスパネルユニットを示す概略平面図である。 図6は、図5のB-B線断面図である。 図7は、同上の製造方法を示すフロー図である。 図8は、同上の製造方法の変形例で配される気体吸着材の概略図である。 図9は、第二実施形態のガラスパネルユニットの製造方法の一過程を示す概略平面図である。 図10は、図9のC-C線断面図である。 図11は、同上の製造方法で形成される組立品を示す概略平面図である。 図12は、第三実施形態のガラスパネルユニットの製造方法で形成されるガラスパネルユニットを示す概略平面図である。 図13は、図12のD-D線断面図である。 図14は、同上の製造方法を示すフロー図である。 図15は、第一実施形態のガラスパネルユニットを備えるガラス窓を示す概略平面図である。 図16は、同上のガラス窓の製造方法を示すフロー図である。
 [ガラスパネルユニット]
 (第一実施形態)
 第一実施形態のガラスパネルユニット90およびこれの製造方法について、図1から図7に基づいて説明する。
 図5、図6に示すように、第一実施形態のガラスパネルユニット90は、第一パネル10、第二パネル20、枠体500、複数(多数)のピラー7、およびゲッター40を備える。
 第一パネル10は、平板状のガラス板105と、ガラス板105の厚み方向の第一の側を覆うコーティング106を備える。ガラス板105の材料は、例えばソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラスである。
 コーティング106は、たとえば熱線反射膜であるが、他の物理特性を有する膜でもよい。第一パネル10において、ガラス板105の厚み方向の第一の側ではなく第二の側(第一の側と反対側)に適宜のコーティングが施されてもよいし、ガラス板15の厚み方向の第一の側と第二の側のそれぞれに適宜のコーティングが施されてもよい。
 第一実施形態のガラスパネルユニット90において、第一パネル10の厚み方向の一方の面(以下「第一面10a」という。)は、コーティング106の表面で構成されている。ガラス板105にコーティング106が施されてない場合には、第一パネル10の第一面10aは、ガラス板105の厚み方向の一方の面で構成される。第一パネル10は、少なくともガラス板105で構成されていればよい。第一パネル10は、全体として透明であるが、半透明または非透明でもよい。
 第二パネル20は、平板状のガラス板205で構成されている。第二パネル20の厚み方向の一方の面(以下「第二面20a」という。)は、ガラス板205の厚み方向の一方の面で構成されている。第二パネル20は、少なくともガラス板205で構成されていればよく、ガラス板205の厚み方向の両側または片側に、適宜のコーティングが施されることも有り得る。ガラス板205の材料は、例えばソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラスである。第二パネル20は、全体として透明であるが、半透明または非透明でもよい。
 枠体500は、ガラスフリットを含む封止材5(図1等参照)がいったん溶融した後に固化したことで、封止機能を発揮したものであり、互いに対向して位置する第一パネル10と第二パネル20の間に挟み込まれた状態で、位置する。枠体500は、第一パネル10が有する第一面10aの周縁部に対して全周に亘って気密に接合され、かつ、第二パネル20が有する第二面20aの周縁部に対して全周に亘って気密に接合されている。
 第一実施形態のガラスパネルユニット90においては、第一パネル10と第二パネル20と枠体500で囲まれた減圧空間600が、気密に形成されている。第一パネル10の第一面10aが減圧空間600に面し、第二パネル20の第二面20aが減圧空間600に面している。
 複数のピラー7は、互いに対向して位置する第一パネル10と第二パネル20の間に挟み込まれた状態で、位置する。複数のピラー7は、枠体500に囲まれて位置する。すなわち、複数のピラー7は減圧空間600に配置されている。各ピラー7が、第一パネル10の第一面10aと第二パネル20の第二面20aに接触することで、第一パネル10と第二パネル20の間隔が所定間隔に維持される。
 図1から図6では、各構成を概略的に示している。たとえば、各ピラー7の寸法形状、隣接するピラー7の間隔、第一パネル10と第二パネル20の厚み、減圧空間600の容積等は、実際のものとは異なる。ピラー7の個数についても、図示の個数に限定されない。第一パネル10と第二パネル20の間にピラー7が配置されないことも有り得る。
 ゲッター40は、第一パネル10と第二パネル20の間において枠体500に囲まれて位置するように(つまり減圧空間600の中に位置するように)、第二パネル20の第二面20aに配されている。ゲッター40と第一パネル10の第一面10aとは、非接触である。ゲッター40は、窒素、酸素等の気体を吸着する性質を有する気体吸着材4(図1等参照)を用いて、線状に形成されている。
 ゲッター40は、第一パネル10の第一面10aに配されることも可能である。この場合、ゲッター40と、第二パネル20の第二面20aとが非接触に設けられ、ゲッター40と第二パネル20の間に隙間が形成される。ゲッター40が、第一パネル10の第一面10aと第二パネル20の第二面20aの両方に配されることも可能である。
 図5に示すように、第一実施形態のガラスパネルユニット90において、ゲッター40は、枠体500の内側に僅かな距離をあけて位置するように、枠体500よりも一回り小さな枠状に設けられている。
 ゲッター40は、枠体500に沿って線状に設けられていればよく、図示のような、4つの直線部分が連続した矩形枠状の形態に限定されない。たとえば、ゲッター40が枠体500に沿って全周に設けられ、かつ、その一部分(一箇所または複数箇所)が分断された形状でもよい。また、ゲッター40が枠体500の全周に沿って設けられることは必須でなく、たとえば矩形状である枠体500の短辺部分にだけ沿うように設けられることも有り得るし、長辺部分にだけ沿うように設けられることも有り得る。
 ゲッター40は、自身が配置される面(第二パネル20の第二面20a)からの高さが均一ではなく、相対的に高い部分40aと低い部分40bが一方向に沿って(枠体500に沿って)交互に並んだ波型の形状を有する。図中では、ゲッター40を、その上面だけが波打つように概略的に表している。
 次に、第一実施形態のガラスパネルユニットの製造方法(以下、単に「第一製造方法」という。)について説明する。
 第一製造方法では、図4に示すような、減圧された第一空間61とこれとは気密に仕切られた第二空間62を備える組立品9を形成し、この組立品9から、第二空間62を含む部分を切除することで、図5と図6に示すガラスパネルユニット90を得る。減圧された第一空間61が、ガラスパネルユニット90の減圧空間600を構成する。
 組立品9は、第一基板1、第二基板2、封止材5、複数のピラー7、および気体吸着材4を用いて形成されている。
 第一基板1は、平板状のガラス板15と、ガラス板15の厚み方向の第一の側を覆うコーティング16を備える(図3参照)。後述の切断工程S5において、第一基板1からその一部が切除されることで、第一パネル10が形成される。このとき、第一基板1の第一面1aからその一部が切除されることで、第一パネル10の第一面10aが形成される。ガラス板15からその一部が切除されることで、第一パネル10のガラス板105が形成され、コーティング16からその一部が切除されることで、第一パネル10のコーティング106が形成される。
 第二基板2は、平板状のガラス板25で構成されている(図3参照)。後述の切断工程S5において、第二基板2(ガラス板25)からその一部が切除されることで、第二パネル20(ガラス板205)が形成される。このとき、第二基板2の第二面2aからその一部が切除されることで、第二パネル20の第二面20aが形成される。
 封止材5は、枠状の外周部51と、外周部51の内側の空間を仕切る一直線状の仕切り部52を含む(図4参照)。外周部51の内側の空間は、仕切り部52を介して、第一側の部分と第二側の部分に仕切られる。封止材5の全体が仕切り部52に沿って一直線状に切断されることで、枠体500が形成される。
 以下、第一製造方法が備える各工程について、さらに詳しく説明する。
 第一製造方法は、封止材配置工程S1、吸着材配置工程S2、ピラー実装工程S3、接合工程S4および切断工程S5を含む(図7参照)。封止材配置工程S1、吸着材配置工程S2、ピラー実装工程S3および接合工程S4を経ることで、組立品9が形成される。さらに切断工程S5を経ることで、組立品9からその一部が切除され、ガラスパネルユニット90が形成される。
 封止材配置工程S1、吸着材配置工程S2、およびピラー実装工程S3は、いずれの工程が先に行われてもよいし、これらの工程のうち少なくとも二つの工程が同時に行われてもよい。
 まず、封止材配置工程S1について説明する。
 封止材配置工程S1では、図1に示すように、第二基板2がその厚み方向の一方に有する第二面2a上に、低融点のガラスフリットを含む封止材5(即ち外周部51と仕切り部52)が塗布される。この時点の封止材5では、外周部51と仕切り部52の間に、隙間が設けられている。封止材5は、第一基板1の第一面1aに塗布されることも有り得るし、第一基板1の第一面1aと第二基板2の第二面2aの両方に塗布されることも有り得る。たとえば外周部51が第一基板1に塗布され、仕切り部52が第二基板2に塗布されることも有り得るし、外周部51が第二基板2に塗布され、仕切り部52が第一基板1に塗布されることも有り得る。後述するように、外周部51と仕切り部52は、互いに異なる温度で溶融するように設けられている。外周部51と仕切り部52は、互いに軟化点が異なる。
 次に、吸着材配置工程S2について説明する。
 吸着材配置工程S2では、第二基板2の第二面2a上に、ペースト状の気体吸着材4が線状(枠状)の形態で塗布される。気体吸着材4が塗布される部分は、第二面2a上の外周部51に囲まれる領域のうち、仕切り部52によって仕切られた第一側の部分である。
 ペースト状の気体吸着材4は、たとえばディスペンサーを用いて塗布される。塗布が完了した時点での気体吸着材4の各所の高さは、ディスペンサーが移動する速度、軌跡、ディスペンサーからの気体吸着材4の塗布量、塗布速度等の各種条件で、調整することができる。
 第一製造方法では、第二基板2の第二面2a上において塗布された気体吸着材4の頂部が波型の形状を有するように、各種の条件が選択される。つまり、吸着材配置工程S2において第二面2a上に塗布された気体吸着材4は、最終的に形成されるゲッター40と同様に、第二基板2の第二面2aからの高さが均一ではなく、相対的に高い部分4aと低い部分4bが一方向に沿って(封止材5に沿って)交互に並んだ波型の形状を有する。
 気体吸着材4の高さは、その気体吸着材4が塗布される面からの高さを意味する。気体吸着材4が第二基板2の第二面2a上に塗布される場合には、気体吸着材4の高さは、気体吸着材4の第二面2aからの高さを意味する。気体吸着材4が第一基板1の第一面1a上に塗布される場合には、気体吸着材4の高さは、気体吸着材4の第一面1aからの高さを意味する。相対的に高い部分4aと低い部分4bの高さの比は、各種の条件によって調整可能である。
 気体吸着材4を波型に設けるために、気体吸着材4を、一方向に沿って線状に繋がるように点状に塗布していくことも好ましい。この手段によれば、点状に塗布された各箇所に高い部分4aが形成され、隣接する高い部分4aの間に低い部分4bが形成される。
 気体吸着材4を配する手段はディスペンサーに限定されず、インクジェット法、印刷法など、他の手段を用いることも可能である。
 特に、気体吸着材4として粘度の高いものを使用する場合には、ディスペンサーを用いるのでなく、インクジェットプリンターを用いたドット印刷の手法によって、気体吸着材4を線状に形成することが好ましい。この場合、図8に概略的に示す変形例のように、インクジェットプリンターを用いて吹き付けられた多数のドット状の部分が連なることで、全体として線状の気体吸着材4が形成される。ドット印刷の手法で形成された気体吸着材4において、ドット状の各部分が気体吸着材4の高い部分4aを構成し、その間の部分が気体吸着材4の低い部分4bを構成する。この手法によれば、線状の気体吸着材4を、波型の形状を有するように簡易に形成することができる。
 次に、ピラー実装工程S3について説明する。
 ピラー実装工程S3では、第二基板2の第二面2aに、複数のピラー7が所定のパターンで実装される。複数のピラー7が実装される部分は、第二面2a上の外周部51に囲まれる領域のうち、仕切り部52によって仕切られた第一側の部分(気体吸着材4が配置される側と同じ部分)である。
 封止材配置工程S1、吸着材配置工程S2、およびピラー実装工程S3が完了した時点で、図1に示すように、第二基板2の第二面2a上に封止材5(外周部51、仕切り部52)、気体吸着材4、および複数のピラー7が配置される。第二基板2には、その厚み方向に貫通するように排気孔81が形成されている。排気孔81は、第二面2aの外周部51に囲まれる領域のうち、仕切り部52によって仕切られた第二側の部分(気体吸着材4と各ピラー7が配される側とは反対側の部分)に、開口している。
 次に、接合工程S4について説明する。封止材配置工程S1、吸着材配置工程S2、およびピラー実装工程S3が完了した後に、接合工程S4が行われる。
 接合工程S4は、第一加熱工程S41、減圧工程S42および第二加熱工程S43を含む。
 第一加熱工程S41では、第一基板1と第二基板2が、封止材5と各ピラー7を挟み込んだ状態でセットされ、この状態で封止炉内において全体が加熱される。
 第一加熱工程S41では、封止炉内の温度が、外周部51の軟化点以上の所定温度(第一溶融温度)に設定される。第一溶融温度の炉内で外周部51がいったん溶融した後に固化することで、第一基板1と第二基板2は、外周部51を介して気密に接合される。このとき仕切り部52は溶融されない。
 第一加熱工程S41においては、封止材5の一部を構成する外周部51が溶融するときに、外周部51中の溶媒が分解され、外周部51からガスが脱離する。外周部51と気体吸着材4の間には、細長くて幅狭の隙間が形成されているので、この隙間にガスが滞留しやすい。この隙間にガスが滞留すると、封止材5(外周部51)中の溶媒の分解と、封止材5からのガスの脱離が阻害されるおそれがあり、結果として封止材5の接着性に影響を及ぼすおそれがある。
 しかし、第一製造方法では、気体吸着材4を、高い部分4aと低い部分4bが交互に並んだ波型の形状に設けているので、外周部51から脱離したガスは各所の低い部分4bを通じて抜けやすくなっている。これにより、ユーザーに視認されにくい箇所(外周部51に近接した箇所)に気体吸着材4を十分な量で配置することができ、かつ、外周部51と気体吸着材4の間の隙間にガスが滞留することは抑えることができる。
 互いに接合された第一基板1と第二基板2の間には、外周部51によって気密に囲まれた内部空間6が形成される(図2等参照)。内部空間6は、仕切り部52を介して、第一空間61と第二空間62に仕切られる。第一加熱工程S41が完了した時点において、第一空間61と第二空間62は互いに通気可能である。
 第一空間61は、気体吸着材4と複数のピラー7が位置する空間である。第二空間62は、排気孔81が開口する空間である。排気孔81は、第二空間62を外部空間に連通させる孔である。
 第一加熱工程S41の後に、減圧工程S42が行われる。
 減圧工程S42では、内部空間6(第一空間61と第二空間62)の空気が、排気孔81を介して外部に排出され、内部空間6の全体が所定の真空度(例えば0.1Pa以下の真空度)に至るまで減圧される。
 排気孔81を通じての排気作業は、排気孔81と連通するように第二基板2に接続された排気管82(図1参照)を介して、例えば真空ポンプを用いて行われる。
 減圧工程S42の後に、第二加熱工程S43が行われる。
 第二加熱工程S43では、内部空間6の減圧状態を維持したまま、仕切り部52の軟化点以上の所定温度(第二溶融温度)で仕切り部52がいったん溶融され、外周部51との間の隙間を塞ぐように仕切り部52が変形した後に、この状態で固化される(図4参照)。これにより、減圧された第一空間61は、変形した仕切り部52と、外周部51の一部によってその全周を囲まれ、外部との間で通気不能に密閉される。変形した仕切り部52は、減圧された内部空間6を、第一空間61と第二空間62に気密に隔てる隔壁として、機能する。
 仕切り部52を溶融させる第二溶融温度は、外周部51を溶融させる第一溶融温度よりも高い温度に設定されている。仕切り部52の軟化点は、外周部51の軟化点よりも高い温度である。これにより、第一加熱工程S41で第一基板1と第二基板2が接合される際に、仕切り部52が変形することが抑えられる。
 第二加熱工程S43において、封止材5の一部を構成する仕切り部52が溶融するときにも、仕切り部52中の溶媒が分解され、仕切り部52からガスが脱離する。仕切り部52とこれに隣接する気体吸着材4の間には、細長くて幅狭の隙間が形成されているので、この隙間にガスが滞留しやすい。この隙間にガスが滞留すると、封止材5(仕切り部52)中の溶媒の分解と、封止材5からのガスの脱離が阻害されるおそれがあり、結果として封止材5の接着性に影響を及ぼすおそれがある。
 これに対して、第一製造方法では、仕切り部52に沿って位置する気体吸着材4が、高い部分4aと低い部分4bが交互に並んだ波型の形状を有するので、仕切り部52から脱離したガスは、各所の低い部分4bを通じて抜けやすくなっている。これにより、ユーザーに視認されにくい箇所(仕切り部52に近接した箇所)に十分な気体吸着材4を配置することができ、かつ、仕切り部52と気体吸着材4の間の隙間にガスが滞留することは抑えることができる。
 以上、説明した各工程を経ることで、図4に示すような、減圧された第一空間61を備える組立品9が得られる。
 次に、切断工程S5について説明する。接合工程S4が完了した後(第二加熱工程S43が完了した後)に、切断工程S5が行われる。
 切断工程S5では、封止炉から取り出された組立品9が、図4に示すような仮想的な切断線L1に沿って切断され、第一空間61を有する部分と、第二空間62を有する部分とに、物理的に分離される。切断線L1は、仕切り部52をその全長に亘って通過するように設定されることが好ましい。
 組立品9のうち、分離された一方の部分が、減圧空間600(第一空間61)が形成されたガラスパネルユニット90として提供される。ガラスパネルユニット90においては、外周部51のうち切断線L1に沿って分離された一方の部分(第一空間61に面する部分)と、仕切り部52のうち切断線L1に沿って分離された一方の部分(第一空間61に面する部分)とで、矩形状の枠体500が構成される。
 第一製造方法では、排気孔81が第二基板2に設けられているが、排気孔81は、第一基板1と第二基板2の少なくとも一方に設けられていればよい。排気孔81が第一基板1に形成されることも有り得るし、排気孔81が第一基板1と第二基板2の両方に形成されることも有り得る。
 第一製造方法では、組立品9からその一部を切除してガラスパネルユニット90を得ているが、組立品9を一部切除することなくガラスパネルユニット90として提供することも可能である。この場合には、組立品9に仕切り部52を設けず、外周部51に囲まれた内部空間6を、排気孔81を通じて減圧された状態で維持しながら、公知の適宜方法で排気孔81を封止すればよい。この場合には、減圧状態で封止された内部空間6の全体が、ガラスパネルユニット90の減圧空間600を構成する。
 (第二実施形態)
 第二実施形態のガラスパネルユニット90およびこれの製造方法について、図9から図11に基づいて説明する。但し、上記した第一実施形態と同様の構成については、同一符号を付して詳しい説明を省略する。
 第二実施形態のガラスパネルユニットの製造方法は、組立品9の内部空間6を、複数(二つ)の第一空間61を含むように仕切り、組立品9から複数(二つ)のガラスパネルユニット90を得る製造方法である。
 図9、図10には、封止材配置工程S1、吸着材配置工程S2、およびピラー実装工程S3を経て、第一基板1と第二基板2の間に封止材5(外周部51および仕切り部52)と複数のピラー7が挟み込まれた状態を示している。この状態において、封止材5は、第一基板1と第二基板2の間に、二つの第一空間61と一つの第二空間62を形成している。二つの第一空間61と一つの第二空間62は、互いに通気可能である。
 第二実施形態の仕切り部52は、二つの第一空間61のうち一方の第一空間61と第二空間62の間を仕切る壁部52aと、二つの第一空間61のうち他方の第一空間61と第二空間62の間を仕切る壁部52bと、一方の第一空間61と他方の第一空間61を仕切る壁部52cを含む。この時点において壁部52aは通気路を有し、該通気路を通じて、一方の第一空間61と第二空間62が互いに通気可能である。同様に、壁部52bは通気路を有し、該通気路を通じて、他方の第一空間61と第二空間62が互いに通気可能である。通気路の位置、数および形状は、図示の形態に限定されない。
 二つの第一空間61のそれぞれに、複数(多数)のピラー7と、二つの気体吸着材4が配置されている。二つの気体吸着材4は、外周部51に沿って位置する線状(一直線状)の気体吸着材4と、仕切り部52に沿って位置する線状(一直線状)の気体吸着材4である。内部空間6において、仕切り部52(線状の壁部52c)を挟んだ両側に、仕切り部52に沿った気体吸着材4が位置している。第一空間61において、外周部51に沿う気体吸着材4と、仕切り部52に沿う気体吸着材4は、互いに分離して形成されているが、両者が一つながりに形成されることも有り得る。
 各気体吸着材4は、その高さが均一ではなく、相対的に高い部分4aと低い部分4bが一方向に沿って交互に並んだ波型の形状を有する。
 接合工程S4では、図9、図10に示す状態で全体が加熱され、封止材5の外周部51がいったん溶融された後に固化することで、第一基板1と第二基板2が気密に接合される(第一加熱工程S41)。このとき仕切り部52(壁部52a,52b,52c)は溶融されない。
 第一加熱工程S41において、外周部51中の溶媒が分解され、外周部51からのガスの脱離が生じるが、外周部51に隣接する気体吸着材4は、高い部分4aと低い部分4bが交互に並んだ波型の形状を有するので、脱離したガスは、各所の低い部分4bを通じて抜けやすくなっている。これにより、ユーザーに視認されにくい箇所(外周部51に近接した箇所)に気体吸着材4を配置し、かつ、外周部51と気体吸着材4の間の隙間にガスが滞留することは抑えることができる。
 次いで、内部空間6の空気が、第二空間62に開口する排気孔81を介して外部に排出され、内部空間6の全体が所定の真空度に至るまで減圧される(減圧工程S42)。
 その後、内部空間6の減圧状態を維持したまま、仕切り部52(壁部52a,52b,52c)の軟化点以上の所定温度で仕切り部52がいったん溶融され、通気路を塞ぐように仕切り部52が変形する(第二加熱工程S43)。仕切り部52が変形した状態で固化されることにより、図11に示すように、減圧された二つの第一空間61がそれぞれ密閉される。
 第二加熱工程S43において、封止材5の一部を構成する仕切り部52が溶融するときにも、仕切り部52中の溶媒が分解されて、仕切り部52からのガスの脱離が生じる。これに対して、仕切り部52(壁部52c)を挟んで両側に位置する気体吸着材4は、それぞれが波型の形状を有するので、脱離したガスは両側に抜けやすくなっている。これにより、ユーザーに視認されにくい箇所(仕切り部52に近接した箇所)に気体吸着材4を配置し、かつ、仕切り部52と気体吸着材4の間の隙間にガスが滞留することは抑えることができる。
 切断工程S5では、以上のようにして得られた組立品9が、図11に示すような仮想的な切断線L1に沿って切断され、第一空間61を有する二つの部分と、第二空間62を有する部分とに、物理的に分離される。第一空間61を有する二つの部分が、それぞれガラスパネルユニット90として提供される。
 (第三実施形態)
 第三実施形態のガラスパネルユニット90Aおよびにこれの製造方法ついて、図12から図14に基づいて説明する。但し、上記した第一実施形態のガラスパネルユニット90と同様の構成については、同一符号を付して詳しい説明を省略する。
 第三実施形態のガラスパネルユニット90Aは、第一実施形態のガラスパネルユニット90の構成に加えて、第一パネル10に対向して位置する第三パネル30と、第一パネル10と第三パネル30の互いの周縁部を全周に亘って気密に接合する枠体55を備える。
 第三パネル30は、第一パネル10および第二パネル20と同様に、少なくともガラス板で構成されていればよく、適宜のパネルを用いることが可能である。第三パネル30は、全体として透明であるが、半透明または非透明でもよい。
 第一パネル10と第三パネル30の互いの対向面10b,30bの間には、密閉された空間602が形成されている。
 第三パネル30は、第一パネル10と第二パネル20のうち一方のパネルに対向して位置すればよい。図示は省略するが、第三パネル30が第二パネル20に対向して位置する場合、枠体55は、第二パネル20と第三パネル30の互いの周縁部に接合され、第二パネル20と第三パネル30の間に、密閉された空間602が形成される。
 図13に示すように、枠体55の内側には、中空を有する枠状のスペーサー56がさらに配置されている。スペーサー56の中空部分には、乾燥剤57が充填されている。
 スペーサー56はアルミニウム等の金属で形成され、貫通孔561をその内周側に有する。スペーサー56の中空部分は、貫通孔561を介して空間602に連通する。乾燥剤57は、たとえばシリカゲルである。枠体55は、たとえばシリコン樹脂、ブチルゴム等の高気密性の樹脂で形成されることが好ましい。
 空間602は、第一パネル10(または第二パネル20)と第三パネル30と枠体55とで密閉された空間である。空間602には、乾燥ガスが充填される。乾燥ガスは、たとえばアルゴン等の乾燥した希ガス、乾燥空気等である。乾燥空気には、空間602に封入された後に乾燥剤57の作用で乾燥した空気も含まれる。
 第三実施形態のガラスパネルユニット90Aにおいては、その厚み方向の両端に位置する第三パネル30と第二パネル20(または第一パネル10)の間に、所定の真空度に至るまで減圧された減圧空間600と、乾燥ガスが充填された空間602が介在する。これにより、第三実施形態のガラスパネルユニット90Aは、さらに高い断熱性を発揮する。
 図14に示すように、第三実施形態のガラスパネルユニットの製造方法は、第一製造方法の各工程に加えて、第二接合工程S6を含んでいる。
 第二接合工程S6は、第一基板1を用いて形成された第一パネル10と、第二基板2を用いて形成された第二パネル20のうち一方のパネルに対して、枠体55とスペーサー56を間に挟み込むように第三パネル30を配し、この一方のパネルと第三パネル30を、枠体55を介して接合させる工程である。
 なお、第三実施形態のガラスパネルユニットの製造方法を、第一実施形態のガラスパネルユニット90に第三パネル30を積層させる方法として説明したが、第二実施形態のガラスパネルユニット90に対して、第三パネル30を同様に積層させることも可能である。
 [ガラス窓]
 図15には、第一実施形態のガラスパネルユニット90に対して窓枠91を嵌め込んだガラス窓900を示している。ガラス窓900は、平面視矩形状であるガラスパネルユニット90の周縁部に、矩形枠状の窓枠91が嵌め込まれた構造であり、高い断熱性を有する。ガラス窓900においては、正面から視たときにゲッター40が窓枠91に隠れることが好ましい。
 図16に示すように、ガラス窓900を製造する方法は、第一製造方法の各工程に加えて、ガラスパネルユニット90に窓枠91を嵌め込む嵌め込み工程S7を含んでいる。
 窓枠91を嵌め込む対象は、第一実施形態のガラスパネルユニット90に限定されない。つまり、第二実施形態のように組立品9から多面取りされるガラスパネルユニット90と、第三実施形態のような三層構造のガラスパネルユニット90Aに対しても、窓枠91を同様に嵌め込むことが可能である。この場合も、高い断熱性を有するガラス窓900が得られる。
 [効果]
 上述した各実施形態から明らかなように、第1の形態のガラスパネルユニットの製造方法は、吸着材配置工程S2と接合工程S4を含む。
 吸着材配置工程S2は、第一基板1がその厚み方向の一方に有する第一面1aと、第二基板2がその厚み方向の一方に有する第二面2aの、一方または両方に気体吸着材4が配される工程である。第一基板1は、少なくともガラス板15からなる。第二基板2は、少なくともガラス板25からなる。接合工程S4は、第一基板1が有する第一面1aと、第二基板2が有する第二面2aが、封止材5を介して気密に接合される工程である。
 吸着材配置工程S2では、気体吸着材4が、相対的に高い部分4aと低い部分4bが交互に並んだ形状を有するように配される。接合工程S4では、前記形状を有する気体吸着材4が、封止材5に沿って位置する。
 したがって、第1の形態のガラスパネルユニットの製造方法によれば、視認されにくい箇所に十分な量の気体吸着材4を配置することができ、かつ、気体吸着材4の低い部分4bをガスが通過することで、気体吸着材4と封止材5の間にガスが滞留して封止材5の接着性に影響を及ぼすことが、抑えられる。
 第2の形態のガラスパネルユニットの製造方法では、第1の形態において、前記形状は、高い部分4aと低い部分4bが交互に並んだ波型の形状である。
 したがって、第2の形態のガラスパネルユニットの製造方法によれば、波型の気体吸着材4の低い部分4bをガスが通過することによって、気体吸着材4と封止材5の間にガスが滞留することが抑えられる。
 第3の形態のガラスパネルユニットの製造方法では、第1または第2の形態において、接合工程S4では、封止材5と気体吸着材4の間に、細長い隙間が形成される。
 したがって、第3の形態のガラスパネルユニットの製造方法によれば、より視認されにくい箇所に十分な量の気体吸着材4を配置することができ、かつ、気体吸着材4の配置が封止材5の接着性に影響を及ぼすことは抑えられる。
 第4の形態のガラスパネルユニットの製造方法では、第1から第3のいずれか一つの形態において、封止材5は、枠状の外周部51を含む。接合工程S4では、前記形状を有する気体吸着材4が、外周部51に沿って位置する状態で、外周部51が溶融するまで加熱される。
 したがって、第4の形態のガラスパネルユニットの製造方法によれば、加熱によって外周部51からガスが脱離しても、このガスが気体吸着材4と外周部51の間に滞留することは抑えられる。
 第5の形態のガラスパネルユニットの製造方法では、第1から第3のいずれか一つの形態において、封止材5は、枠状の外周部51と、外周部51の内側の空間を仕切る仕切り部52を含む。接合工程S4では、前記形状を有する気体吸着材4が、仕切り部52に沿って位置する状態で、仕切り部52が溶融するまで加熱される。
 したがって、第5の形態のガラスパネルユニットの製造方法によれば、加熱によって仕切り部52からガスが脱離しても、このガスが気体吸着材4と仕切り部52の間に滞留することは抑えられる。
 第6の形態のガラスパネルユニットの製造方法では、第5の形態において、接合工程S4では、前記形状を有する気体吸着材4が、仕切り部52の両側に位置する状態で、仕切り部52が溶融するまで加熱される。
 したがって、第6の形態のガラスパネルユニットの製造方法によれば、加熱によって仕切り部52からガスが脱離しても、このガスが、両側の気体吸着材4と仕切り部52の間に滞留することは抑えられる。
 第7の形態のガラスパネルユニットの製造方法では、第1から第6のいずれか一つの形態において、吸着材配置工程S2で、前記形状を有する気体吸着材4をドット印刷により形成する。
 したがって、第7の形態のガラスパネルユニットの製造方法によれば、相対的に高い部分4aと低い部分4bが交互に並んだ形状を有する気体吸着材4を、簡易に形成することができる。
 第8の形態のガラスパネルユニットの製造方法では、第7の形態において、前記ドット印刷では、多数のドット状の部分が連なって線状の気体吸着材4が形成され、ドット状の各部分が高い部分4aを構成する。
 したがって、第8の形態のガラスパネルユニットの製造方法によれば、相対的に高い部分4aと低い部分4bが交互に多数並んだ形状を有する気体吸着材4を、簡易に形成することができる。
 第9の形態のガラスパネルユニットの製造方法では、第1から第8のいずれか一つの形態において、第二接合工程S6をさらに含む。第二接合工程S6は、第一基板1を用いて形成された第一パネル10と、第二基板2を用いて形成された第二パネル20の一方に対して、枠体55を介して第三パネル30を接合する工程である。
 したがって、第9の形態のガラスパネルユニットの製造方法によれば、さらに断熱性の高いガラスパネルユニット90Aを製造することができる。
 第1の形態のガラス窓の製造方法は、第1から第9のいずれか一つの形態のガラスパネルユニットの製造方法で製造されたガラスパネルユニット90,90Aに、窓枠91を嵌め込む嵌め込み工程S7を備える。
 したがって、第1の形態のガラス窓の製造方法によれば、断熱性の高いガラス窓900を製造することができる。
 1 第一基板
 1a 第一面
 10 第一パネル
 15 ガラス板
 2 第二基板
 2a 第二面
 25 ガラス板
 20 第二パネル
 30 第三パネル
 4 気体吸着材
 4a 高い部分
 4b 低い部分
 5 封止材
 51 外周部
 52 仕切り部
 55 枠体
 90 ガラスパネルユニット
 90A ガラスパネルユニット
 91 窓枠
 900 ガラス窓
 S2 吸着材配置工程
 S4 接合工程
 S6 第二接合工程
 S7 嵌め込み工程

Claims (10)

  1.  少なくともガラス板からなる第一基板がその厚み方向の一方に有する第一面と、少なくともガラス板からなる第二基板がその厚み方向の一方に有する第二面の、一方または両方に気体吸着材が配される吸着材配置工程と、
     前記第一基板が有する前記第一面と、前記第二基板が有する前記第二面が、封止材を介して気密に接合される接合工程とを含み、
     前記吸着材配置工程では、前記気体吸着材が、相対的に高い部分と低い部分が交互に並んだ形状を有するように配され、
     前記接合工程では、前記形状を有する前記気体吸着材が、前記封止材に沿って位置する
     ことを特徴とするガラスパネルユニットの製造方法。
  2.  前記形状は、前記高い部分と前記低い部分が交互に並んだ波型の形状である
     ことを特徴とする請求項1に記載のガラスパネルユニットの製造方法。
  3.  前記接合工程では、前記封止材と前記気体吸着材の間に、細長い隙間が形成される
     ことを特徴とする請求項1または2に記載のガラスパネルユニットの製造方法。
  4.  前記封止材は、枠状の外周部を含み、
     前記接合工程では、前記形状を有する前記気体吸着材が、前記外周部に沿って位置する状態で、前記外周部が溶融するまで加熱される
     ことを特徴とする請求項1から3のいずれか一項に記載のガラスパネルユニットの製造方法。
  5.  前記封止材は、枠状の外周部と、前記外周部の内側の空間を仕切る仕切り部を含み、
     前記接合工程では、前記形状を有する前記気体吸着材が、前記仕切り部に沿って位置する状態で、前記仕切り部が溶融するまで加熱される
     ことを特徴とする請求項1から3のいずれか一項に記載のガラスパネルユニットの製造方法。
  6.  前記接合工程では、前記形状を有する前記気体吸着材が、前記仕切り部の両側に位置する状態で、前記仕切り部が溶融するまで加熱される
     ことを特徴とする請求項5に記載のガラスパネルユニットの製造方法。
  7.  前記吸着材配置工程では、前記形状を有する前記気体吸着材を、ドット印刷により形成する
     ことを特徴とする請求項1から6のいずれか一項に記載のガラスパネルユニットの製造方法。
  8.  前記ドット印刷では、多数のドット状の部分が連なって線状の前記気体吸着材が形成され、ドット状の各部分が前記高い部分を構成する
     ことを特徴とする請求項7に記載のガラスパネルユニットの製造方法。
  9.  前記第一基板を用いて形成された第一パネルと、前記第二基板を用いて形成された第二パネルの一方に対して、枠体を介して第三パネルを接合させる第二接合工程を、さらに含む
     ことを特徴とする請求項1から8のいずれか一項に記載のガラスパネルユニットの製造方法。
  10.  請求項1から9のいずれか一項に記載のガラスパネルユニットの製造方法で製造されたガラスパネルユニットに、窓枠を嵌め込む嵌め込み工程を備える
     ことを特徴とするガラス窓の製造方法。
PCT/JP2017/034450 2016-09-30 2017-09-25 ガラスパネルユニットの製造方法、およびガラス窓の製造方法 WO2018062069A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/338,409 US11299422B2 (en) 2016-09-30 2017-09-25 Method for producing insulating glass unit and method for producing glass window
EP17856022.3A EP3521255B1 (en) 2016-09-30 2017-09-25 Method for producing insulating glass unit and method for producing glass window
JP2018542534A JP6775205B2 (ja) 2016-09-30 2017-09-25 ガラスパネルユニットの製造方法、およびガラス窓の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194689 2016-09-30
JP2016-194689 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062069A1 true WO2018062069A1 (ja) 2018-04-05

Family

ID=61763445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034450 WO2018062069A1 (ja) 2016-09-30 2017-09-25 ガラスパネルユニットの製造方法、およびガラス窓の製造方法

Country Status (4)

Country Link
US (1) US11299422B2 (ja)
EP (1) EP3521255B1 (ja)
JP (2) JP6775205B2 (ja)
WO (1) WO2018062069A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786124A4 (en) * 2018-04-26 2021-05-26 Panasonic Intellectual Property Management Co., Ltd. GLASS PANEL UNIT ASSEMBLY, GLASS PANEL UNIT PRODUCTION PROCESS, GLASS PANEL UNIT IN MANUFACTURING, GLASS PANEL UNIT
EP3786123A4 (en) * 2018-04-26 2021-06-16 Panasonic Intellectual Property Management Co., Ltd. GLASS PANEL UNIT, GLASS PANEL UNIT SEMI-FINISHED PRODUCT, GLASS PANEL UNIT ASSEMBLY, AND GLASS PANEL UNIT MANUFACTURING PROCESS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116194358A (zh) 2020-09-30 2023-05-30 株式会社理光 履带式行走体及行走装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137612A (ja) * 2001-10-25 2003-05-14 Nippon Sheet Glass Co Ltd ガラスパネルとその製法
JP2007200801A (ja) * 2006-01-30 2007-08-09 Toppan Printing Co Ltd トップエミッション型有機エレクトロルミネッセンス素子
WO2016143328A1 (ja) * 2015-03-11 2016-09-15 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法およびガラス窓の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182567A (ja) 2002-12-05 2004-07-02 Nippon Sheet Glass Co Ltd 真空ガラスパネルの製造方法、及び該製造方法により製造された真空ガラスパネル
JP2005231930A (ja) * 2004-02-18 2005-09-02 Nippon Sheet Glass Co Ltd ガラスパネルの製造方法、及びその製造方法により製造されたガラスパネル
JP4787054B2 (ja) * 2006-04-10 2011-10-05 株式会社アルバック 封着パネルおよびプラズマディスプレイパネルの製造方法
JP2008091150A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 画像表示装置の製造方法
JP2008091253A (ja) * 2006-10-03 2008-04-17 Toshiba Corp 画像表示装置の製造方法および画像表示装置
CN112282593A (zh) 2013-03-04 2021-01-29 松下知识产权经营株式会社 多层玻璃和多层玻璃的制备方法
JP6124188B2 (ja) 2013-03-04 2017-05-10 パナソニックIpマネジメント株式会社 複層ガラス、及び複層ガラスの製造方法
JP6395080B2 (ja) 2014-09-30 2018-09-26 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
WO2017169253A1 (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 ガラスパネルユニット及びガラス窓

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137612A (ja) * 2001-10-25 2003-05-14 Nippon Sheet Glass Co Ltd ガラスパネルとその製法
JP2007200801A (ja) * 2006-01-30 2007-08-09 Toppan Printing Co Ltd トップエミッション型有機エレクトロルミネッセンス素子
WO2016143328A1 (ja) * 2015-03-11 2016-09-15 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法およびガラス窓の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786124A4 (en) * 2018-04-26 2021-05-26 Panasonic Intellectual Property Management Co., Ltd. GLASS PANEL UNIT ASSEMBLY, GLASS PANEL UNIT PRODUCTION PROCESS, GLASS PANEL UNIT IN MANUFACTURING, GLASS PANEL UNIT
EP3786123A4 (en) * 2018-04-26 2021-06-16 Panasonic Intellectual Property Management Co., Ltd. GLASS PANEL UNIT, GLASS PANEL UNIT SEMI-FINISHED PRODUCT, GLASS PANEL UNIT ASSEMBLY, AND GLASS PANEL UNIT MANUFACTURING PROCESS
US11428041B2 (en) 2018-04-26 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit assembly, method for manufacturing glass panel unit, work in progress of glass panel unit, and glass panel unit
US12071371B2 (en) 2018-04-26 2024-08-27 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit, work in progress of glass panel unit, glass panel unit assembly, and method for manufacturing glass panel unit

Also Published As

Publication number Publication date
EP3521255B1 (en) 2023-11-01
US20200010361A1 (en) 2020-01-09
JP6775205B2 (ja) 2020-10-28
US11299422B2 (en) 2022-04-12
JP2020164419A (ja) 2020-10-08
EP3521255A1 (en) 2019-08-07
EP3521255A4 (en) 2019-09-25
EP3521255C0 (en) 2023-11-01
JPWO2018062069A1 (ja) 2019-07-25
JP6994675B2 (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6994675B2 (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
TWI617732B (zh) 玻璃平板單元及玻璃窗
EP3508460B1 (en) Glass panel unit and glass window
JP6507461B2 (ja) ガラスパネルユニットの製造方法およびガラス窓の製造方法
WO2017056416A1 (ja) ガラスパネルユニットの製造方法、及びガラス窓の製造方法
WO2016152052A1 (ja) ガラスパネルユニット、ガラス窓、およびガラスパネルユニットの製造方法
JP6735509B2 (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
JP7113298B2 (ja) ガラスパネルユニットの製造方法及びガラス窓の製造方法
US20200039866A1 (en) Glass panel unit manufacturing method, glass panel unit, and glass window with same
JP6771183B2 (ja) ガラスパネルユニットおよびこれを備えたガラス窓
US11187027B2 (en) Manufacturing method of glass panel unit and manufacturing method of glass window
JP7126130B2 (ja) ガラスパネルユニット及びガラス窓
WO2017169677A1 (ja) ガラスパネルユニット及びこれを備える建具
JP7228819B2 (ja) ガラスパネルユニットを得るための組立て品及びガラスパネルユニットの製造方法
JP6709964B2 (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
JP7165866B2 (ja) ガラスパネルユニット及びガラスパネルユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856022

Country of ref document: EP

Effective date: 20190430