WO2018062067A1 - 樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法 - Google Patents

樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法 Download PDF

Info

Publication number
WO2018062067A1
WO2018062067A1 PCT/JP2017/034448 JP2017034448W WO2018062067A1 WO 2018062067 A1 WO2018062067 A1 WO 2018062067A1 JP 2017034448 W JP2017034448 W JP 2017034448W WO 2018062067 A1 WO2018062067 A1 WO 2018062067A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin film
temperature
polymer
resin
Prior art date
Application number
PCT/JP2017/034448
Other languages
English (en)
French (fr)
Inventor
村上 俊秀
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201780056721.6A priority Critical patent/CN109715711B/zh
Priority to US16/334,075 priority patent/US10882244B2/en
Priority to JP2018526829A priority patent/JP6406479B2/ja
Priority to EP17856020.7A priority patent/EP3521348A4/en
Priority to KR1020197008137A priority patent/KR102411710B1/ko
Publication of WO2018062067A1 publication Critical patent/WO2018062067A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2347/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Derivatives of such polymers

Definitions

  • the present invention relates to a resin film; a barrier film and a conductive film provided with the resin film; and a method for producing the resin film, the barrier film, and the conductive film.
  • a resin film made of a resin containing a polymer having an alicyclic structure and having crystallinity a technique for promoting crystallization of at least a part of the polymer by heating the resin film is known. (See Patent Documents 1 and 2).
  • a resin film made of a resin containing a crystallized polymer is usually excellent in heat resistance. Further, it is expected that the strength of the resin film is improved according to the degree of crystallinity.
  • the obtained resin film may not have the bending resistance as excellent as expected.
  • the bending resistance of the resin film refers to the resistance of the resin film to a bending test over many times.
  • the resin film when the resin film is used for a conductive film, a stress difference is generated between the resin film and the conductive layer when a conductive layer for the conductive film is provided on the resin film. In order to reduce such a stress difference, the resin film is required to have excellent bending resistance. Similarly, when the resin film is used for a barrier film, the resin film is required to have excellent bending resistance.
  • the present invention was devised in view of the above-described problems, and is a resin film excellent in strength and excellent in bending resistance; a barrier film and a conductive film provided with the resin film; and It aims at providing the manufacturing method of the resin film of this, a barrier film, and an electroconductive film.
  • the present inventor has studied to solve the above-mentioned problems, and the uniformity of the thickness of the resin film is the reason why the bending resistance of the resin film obtained after the promotion of crystallization is not as excellent as expected. Found that is involved. Furthermore, even if a resin film with excellent thickness uniformity is used, the uniformity of thickness has decreased after the promotion of crystallization. It also turned out to occur. Furthermore, as a result of intensive studies, the present inventors have found that if the thickness unevenness value calculated by a predetermined calculation formula is 5% or less, it is possible to provide a resin film having sufficiently excellent bending resistance. .
  • the present invention has been completed based on such findings. That is, the present invention is as follows.
  • the polymer containing the alicyclic structure is a hydride of a ring-opening polymer of dicyclopentadiene. The resin film as described in [1].
  • the internal haze of the resin film is 3% or less.
  • the resin film is an optical film.
  • T1 [° C.] (5 ⁇ Tg + 5 ⁇ Tpc) / 10 (2)
  • Tg is the glass transition temperature of the polymer
  • Tpc is the crystallization peak temperature of the polymer
  • the heat fixing temperature Tts is in the range of the third temperature T3 or higher and the fourth temperature T4 or lower,
  • the heat setting time tts for performing the heat setting step is 90 seconds or less.
  • a method for producing a conductive film comprising a step of forming a conductive layer on the resin film according to any one of [1] to [4].
  • a method for producing a barrier film comprising a step of forming a barrier layer on the resin film according to any one of [1] to [4].
  • a resin film having excellent strength and bending resistance; a barrier film and a conductive film provided with the resin film; and a method for producing the resin film, the barrier film, and the conductive film. can be provided.
  • FIG. 1 is a plan view schematically showing an example of a holding device.
  • FIG. 2 is a plan view schematically showing an example of the holding device.
  • FIG. 3 is a front view schematically showing an example of a resin film manufacturing apparatus.
  • FIG. 4 is a plan view schematically showing an example of a resin film manufacturing apparatus.
  • FIG. 5 is a plan view schematically showing a part of the link device.
  • FIG. 6 is a plan view schematically showing a part of the link device.
  • FIG. 7 is a cross-sectional view schematically showing an example of a film forming apparatus capable of forming a barrier layer as an inorganic layer by a CVD method.
  • FIG. 8 is a graph in which the preheating temperature Tph and the preheating time tph in Tables 2 and 4 are plotted.
  • the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll.
  • the upper limit of the length is not particularly limited, but is usually 100,000 times or less with respect to the width.
  • the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
  • the longitudinal direction of a long film is usually parallel to the film conveyance direction in the production line.
  • the MD direction is the film transport direction in the production line, and is usually parallel to the longitudinal direction of the long film.
  • the TD direction (traverse direction) is a direction parallel to the film surface and perpendicular to the MD direction, and is usually parallel to the width direction of the long film.
  • the resin film of the present invention is a resin film made of a resin containing a polymer having an alicyclic structure and having crystallinity.
  • the resin may be referred to as “crystalline resin”.
  • the degree of crystallinity of the polymer contained in the crystalline resin is 30% or more.
  • the resin film of the present invention has a thickness unevenness Tv of 5% or less. The thickness unevenness Tv will be described later. And the resin film of this invention is excellent in bending resistance by having the above characteristics.
  • the crystalline resin includes a polymer having an alicyclic structure and having crystallinity.
  • the polymer containing an alicyclic structure is a polymer having an alicyclic structure in the molecule, and can be obtained by a polymerization reaction using a cyclic olefin as a monomer or its hydrogen. A chemical.
  • the polymer containing an alicyclic structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Examples of the alicyclic structure possessed by the polymer containing the alicyclic structure include a cycloalkane structure and a cycloalkene structure. Among these, a cycloalkane structure is preferable because a resin film excellent in characteristics such as thermal stability is easily obtained.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. is there. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
  • the ratio of the structural unit having an alicyclic structure to all the structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more. It is. Heat resistance can be improved by increasing the proportion of structural units having an alicyclic structure in the polymer containing the alicyclic structure as described above.
  • the ratio of structural units having an alicyclic structure to all structural units can be 100% by weight or less.
  • the remainder other than the structural unit having an alicyclic structure is not particularly limited and can be appropriately selected according to the purpose of use.
  • the polymer containing the alicyclic structure contained in the crystalline resin has crystallinity.
  • the “polymer having an alicyclic structure and having crystallinity” has an alicyclic structure having a melting point Tm [that is, a melting point can be observed with a differential scanning calorimeter (DSC)].
  • the melting point Tm of the polymer containing an alicyclic structure is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower.
  • the weight average molecular weight (Mw) of the polymer containing an alicyclic structure is preferably 1,000 or more, more preferably 2,000 or more, preferably 1,000,000 or less, more preferably 500,000. It is as follows. A polymer containing an alicyclic structure having such a weight average molecular weight is excellent in balance between moldability and heat resistance.
  • the molecular weight distribution (Mw / Mn) of the polymer containing an alicyclic structure is preferably 1.0 or more, more preferably 1.5 or more, preferably 4.0 or less, more preferably 3.5 or less. It is.
  • Mn represents a number average molecular weight.
  • a polymer containing an alicyclic structure having such a molecular weight distribution is excellent in molding processability.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of a polymer containing an alicyclic structure were measured as polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent. sell.
  • the glass transition temperature Tg of the polymer containing the alicyclic structure is not particularly limited, but is usually 85 ° C. or higher and usually 170 ° C. or lower.
  • polymer containing the alicyclic structure examples include the following polymer ( ⁇ ) to polymer ( ⁇ ).
  • the polymer ( ⁇ ) is preferable as the polymer containing an alicyclic structure and having crystallinity because a resin film having excellent heat resistance can be easily obtained.
  • Polymer ( ⁇ ) An addition polymer of a cyclic olefin monomer having crystallinity.
  • Polymer ( ⁇ ) a hydride of polymer ( ⁇ ), etc., having crystallinity.
  • the polymer containing an alicyclic structure includes a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydride of a ring-opening polymer of dicyclopentadiene. What has crystallinity is more preferable.
  • a hydride of a ring-opening polymer of dicyclopentadiene and having crystallinity is particularly preferable.
  • the ring-opening polymer of dicyclopentadiene means that the proportion of structural units derived from dicyclopentadiene relative to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to a polymer of 100% by weight.
  • the manufacturing method of a polymer ((alpha)) and a polymer ((beta)) is demonstrated.
  • the cyclic olefin monomer that can be used for the production of the polymer ( ⁇ ) and the polymer ( ⁇ ) is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring. .
  • Examples of the cyclic olefin monomer include norbornene monomers.
  • a polymer ((alpha)) is a copolymer, you may use a monocyclic olefin as a cyclic olefin monomer.
  • the norbornene monomer is a monomer containing a norbornene ring.
  • Examples of norbornene monomers include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-ethylidene-bicyclo [2.2.1] hept-2-ene (common name).
  • Ethylidene norbornene and derivatives thereof (for example, those having a substituent in the ring); tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (conventional Name: dicyclopentadiene) and its derivatives, etc., tricyclic monomers; 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene) : 1,4-methano-1,4,4a, 9a-tetrahydrofluorene) and its derivatives, tetracyclo [4.4.0.1 2,5 .
  • dodec-3-ene (common name: tetracyclododecene), 8-ethylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene and its derivatives, and the like.
  • substituent in the monomer examples include an alkyl group such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an alkylidene group such as propane-2-ylidene; an aryl group such as a phenyl group; a hydroxy group; An acid anhydride group; a carboxyl group; an alkoxycarbonyl group such as a methoxycarbonyl group; and the like.
  • the said substituent may have 1 type independently and may have 2 or more types by arbitrary ratios.
  • Examples of the monocyclic olefin include cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, cyclooctene; cyclohexadiene, methylcyclohexadiene, cyclooctadiene, methylcyclooctadiene, phenylcyclohexane Cyclic diolefins such as octadiene; and the like.
  • cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, cyclooctene
  • cyclohexadiene methylcyclohexadiene
  • cyclooctadiene methylcyclooctadiene
  • the cyclic olefin monomer one type may be used alone, or two or more types may be used in combination at any ratio.
  • the polymer ( ⁇ ) may be a block copolymer or a random copolymer.
  • the cyclic olefin monomer may include an endo isomer and an exo isomer.
  • an endo isomer or an exo isomer may be used.
  • only one isomer among the endo isomer and the exo isomer may be used alone, or an isomer mixture containing the endo isomer and the exo isomer in an arbitrary ratio may be used.
  • the crystallinity of the polymer containing an alicyclic structure increases and it becomes easy to obtain the resin film which is excellent by heat resistance, it is preferable to make the ratio of one stereoisomer high.
  • the ratio of endo-form or exo-form is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. Moreover, since synthesis
  • the polymer ( ⁇ ) and the polymer ( ⁇ ) can usually have high crystallinity by increasing the degree of syndiotactic stereoregularity (racemo dyad ratio).
  • the ratio of the racemo dyad to the structural units of the polymer ( ⁇ ) and the polymer ( ⁇ ) is preferably 51%.
  • the upper limit of the ratio of racemo dyad can be 100% or less.
  • the proportion of racemo dyad can be determined by 13 C-NMR spectral analysis. Specifically, it can be measured by the following method. A polymer sample is subjected to 13 C-NMR measurement using ortho-dichlorobenzene-d 4 as a solvent at 200 ° C. by applying an inverse-gate decoupling method. In the result of 13 C-NMR measurement, a signal of 43.35 ppm derived from meso dyad and a signal of 43.43 ppm derived from racemo dyad were obtained with a peak of 127.5 ppm of orthodichlorobenzene-d 4 as a reference shift. Identify. Based on the intensity ratio of these signals, the ratio of the racemo dyad in the polymer sample can be determined.
  • a ring-opening polymerization catalyst is usually used for the synthesis of the polymer ( ⁇ ).
  • a ring-opening polymerization catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • As the ring-opening polymerization catalyst for synthesizing such a polymer ( ⁇ ) those capable of ring-opening polymerization of a cyclic olefin monomer to produce a ring-opening polymer having syndiotactic stereoregularity are preferable.
  • Preferred examples of the ring-opening polymerization catalyst include those containing a metal compound represented by the following formula (7).
  • M represents a metal atom selected from the group consisting of Group 6 transition metal atoms in the periodic table
  • R 1 is a phenyl group which may have a substituent at at least one of the 3-position, the 4-position and the 5-position, or —CH 2 R 3 (R 3 has a hydrogen atom or a substituent.
  • R 3 has a hydrogen atom or a substituent.
  • R 2 represents a group selected from the group consisting of an alkyl group which may have a substituent and an aryl group which may have a substituent;
  • X represents a group selected from the group consisting of a halogen atom, an alkyl group that may have a substituent, an aryl group that may have a substituent, and an alkylsilyl group;
  • L represents an electron-donating neutral ligand; a represents a number of 0 or 1, b represents an integer of 0-2.
  • M represents a metal atom selected from the group consisting of Group 6 transition metal atoms in the periodic table.
  • M chromium, molybdenum and tungsten are preferable, molybdenum and tungsten are more preferable, and tungsten is particularly preferable.
  • R 1 represents a phenyl group which may have a substituent at at least one of the 3-position, 4-position and 5-position, or a group represented by —CH 2 R 3. .
  • the number of carbon atoms of the phenyl group which may have a substituent at at least one of the 3-position, 4-position and 5-position of R 1 is preferably 6-20, more preferably 6-15.
  • the substituent include alkyl groups such as methyl group and ethyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group, ethoxy group and isopropoxy group; It is done.
  • substituents may have one type independently, and may have two or more types in arbitrary ratios. Furthermore, in R 1 , substituents present in at least two positions of the 3-position, 4-position and 5-position may be bonded to each other to form a ring structure.
  • phenyl group optionally having a substituent at the 3-position, 4-position and 5-position examples include an unsubstituted phenyl group; a 4-methylphenyl group, a 4-chlorophenyl group, and 3-methoxyphenyl.
  • phenyl groups such as 4-cyclohexylphenyl group, 4-methoxyphenyl group; 3,5-dimethylphenyl group, 3,5-dichlorophenyl group, 3,4-dimethylphenyl group, 3,5-dimethoxyphenyl group Disubstituted phenyl group such as 3,4,5-trimethylphenyl group, 3,4,5-trichlorophenyl group and the like; 2-naphthyl group, 3-methyl-2-naphthyl group, 4-methyl -2-naphthyl group which may have a substituent such as -2-naphthyl group; and the like.
  • R 3 is composed of a hydrogen atom, an alkyl group which may have a substituent, and an aryl group which may have a substituent. Indicates a group selected from the group.
  • the number of carbon atoms of the alkyl group which may have a substituent of R 3 is preferably 1 to 20, more preferably 1 to 10. This alkyl group may be linear or branched.
  • examples of the substituent include a phenyl group which may have a substituent such as a phenyl group and a 4-methylphenyl group; an alkoxyl group such as a methoxy group and an ethoxy group; These substituents may be used alone or in combination of two or more at any ratio.
  • examples of the alkyl group which may have a substituent for R 3 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, neopentyl group, benzyl Group, neophyll group and the like.
  • the number of carbon atoms of the aryl group which may have a substituent of R 3 is preferably 6 to 20, and more preferably 6 to 15.
  • substituents include alkyl groups such as methyl group and ethyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group, ethoxy group and isopropoxy group; It is done. These substituents may be used alone or in combination of two or more at any ratio.
  • Examples of the aryl group of R 3 which may have a substituent include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 4-methylphenyl group, and a 2,6-dimethylphenyl group. .
  • the group represented by R 3 is preferably an alkyl group having 1 to 20 carbon atoms.
  • R 2 represents a group selected from the group consisting of an alkyl group which may have a substituent and an aryl group which may have a substituent.
  • an alkyl group which may have a substituent of R 2 and the aryl group which may have a substituent an alkyl group which may have a substituent of R 3 , respectively, And what was selected from the range shown as the aryl group which may have a substituent can be used arbitrarily.
  • X represents a group selected from the group consisting of a halogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, and an alkylsilyl group.
  • halogen atom for X include a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group which may have a substituent of X and the aryl group which may have a substituent an alkyl group which may have a substituent of R 3 , and , Those selected from the ranges indicated as the aryl group which may have a substituent may be arbitrarily used.
  • alkylsilyl group of X examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, and the like.
  • these Xs may be the same or different from each other. Further, two or more Xs may be bonded to each other to form a ring structure.
  • L represents an electron-donating neutral ligand.
  • the electron donating neutral ligand of L include an electron donating compound containing an atom of Group 14 or Group 15 of the Periodic Table. Specific examples thereof include phosphines such as trimethylphosphine, triisopropylphosphine, tricyclohexylphosphine, and triphenylphosphine; ethers such as diethyl ether, dibutyl ether, 1,2-dimethoxyethane, and tetrahydrofuran; trimethylamine, triethylamine, pyridine, Amines such as lutidine; and the like. Among these, ethers are preferable. Moreover, when the metal compound shown by Formula (7) has two or more L in 1 molecule, those L may mutually be the same and may differ.
  • a tungsten compound having a phenylimide group is preferable. That is, in the formula (7), a compound in which M is a tungsten atom and R 1 is a phenyl group is preferable. Furthermore, among them, a tetrachlorotungsten phenylimide (tetrahydrofuran) complex is more preferable.
  • the method for producing the metal compound represented by the formula (7) is not particularly limited.
  • an oxyhalide of a Group 6 transition metal phenyl optionally having a substituent at at least one of the 3-position, 4-position and 5-position
  • an isocyanate or a monosubstituted methyl isocyanate By mixing an isocyanate or a monosubstituted methyl isocyanate; an electron-donating neutral ligand (L); and, if necessary, an alcohol, a metal alkoxide, and a metal aryloxide; ) Can be produced.
  • the metal compound represented by the formula (7) is usually obtained in a state of being contained in the reaction solution.
  • the reaction solution may be used as it is as a catalyst solution for the ring-opening polymerization reaction.
  • purification processes such as crystallization, you may use the obtained metal compound for ring-opening polymerization reaction.
  • the metal compound represented by the formula (7) may be used alone, or the metal compound represented by the formula (7) may be used in combination with other components.
  • the polymerization activity can be improved by using a combination of a metal compound represented by the formula (7) and an organometallic reducing agent.
  • organometallic reducing agent examples include organometallic compounds of Group 1, Group 2, Group 12, Group 13, or Group 14 having a hydrocarbon group having 1 to 20 carbon atoms.
  • organometallic compounds include organic lithium such as methyl lithium, n-butyl lithium and phenyl lithium; butyl ethyl magnesium, butyl octyl magnesium, dihexyl magnesium, ethyl magnesium chloride, n-butyl magnesium chloride, allyl magnesium bromide.
  • Organic magnesium such as dimethyl zinc, diethyl zinc, diphenyl zinc, etc .; Trimethylaluminum, triethylaluminum, triisobutylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum ethoxide, diisobutylaluminum isobutoxide , Ethylaluminum diethoxide, isobutylaluminum diisobutoxide Organoaluminum; tetramethyl tin, tetra (n- butyl) tin, organic tin such as tetraphenyl tin; and the like. Among these, organoaluminum or organotin is preferable. Further, one kind of organometallic reducing agent may be used alone, or two or more kinds may be used in combination at any ratio.
  • the ring-opening polymerization reaction is usually performed in an organic solvent.
  • an organic solvent a solvent capable of dissolving or dispersing the ring-opening polymer and a hydride thereof under predetermined conditions and not inhibiting the ring-opening polymerization reaction and the hydrogenation reaction can be used.
  • organic solvent examples include aliphatic hydrocarbons such as pentane, hexane, and heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, Alicyclic hydrocarbons such as tricyclodecane, hexahydroindene and cyclooctane; Aromatic hydrocarbons such as benzene, toluene and xylene; Halogenated aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene; nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene and acetonitrile; ether
  • organic solvent aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, and ethers are preferable.
  • organic solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ring-opening polymerization reaction can be started, for example, by mixing a cyclic olefin monomer, a metal compound represented by the formula (7), and, if necessary, an organometallic reducing agent.
  • the order of mixing these components is not particularly limited.
  • a solution containing a metal compound represented by the formula (7) and an organometallic reducing agent may be mixed with a solution containing a cyclic olefin monomer.
  • each component may mix the solution of the metal compound shown by Formula (7) with the solution containing a cyclic olefin monomer and an organometallic reducing agent.
  • the whole quantity of each component may be mixed at once, and may be mixed in multiple times.
  • the concentration of the cyclic olefin monomer in the reaction solution at the start of the ring-opening polymerization reaction is preferably 1% by weight or more, more preferably 2% by weight or more, particularly preferably 3% by weight or more, preferably 50% by weight. % Or less, more preferably 45% by weight or less, and particularly preferably 40% by weight or less.
  • the amount of the metal compound represented by the formula (7) used in the ring-opening polymerization reaction is desirably set so that the molar ratio of “metal compound: cyclic olefin monomer” falls within a predetermined range.
  • the molar ratio is preferably 1: 100 to 1: 2,000,000, more preferably 1: 500 to 1,000,000, particularly preferably 1: 1,000 to 1: 500. , 000.
  • Sufficient polymerization activity can be obtained by setting the amount of the metal compound to be equal to or greater than the lower limit of the above range.
  • a metal compound can be easily removed after reaction by setting it as below an upper limit.
  • the amount of the organometallic reducing agent is preferably 0.1 mol or more, more preferably 0.2 mol or more, particularly preferably 0.5 mol or more with respect to 1 mol of the metal compound represented by the formula (7).
  • the amount is preferably 100 mol or less, more preferably 50 mol or less, and particularly preferably 20 mol or less.
  • the polymerization reaction system of the polymer ( ⁇ ) may contain an activity regulator.
  • an activity regulator By using an activity regulator, the ring-opening polymerization catalyst can be stabilized, the reaction rate of the ring-opening polymerization reaction can be adjusted, and the molecular weight distribution of the polymer can be adjusted.
  • an organic compound having a functional group can be used as the activity regulator. Examples of such activity regulators include oxygen-containing compounds, nitrogen-containing compounds, and phosphorus-containing organic compounds.
  • oxygen-containing compound examples include ethers such as diethyl ether, diisopropyl ether, dibutyl ether, anisole, furan, and tetrahydrofuran; ketones such as acetone, benzophenone, and cyclohexanone; esters such as ethyl acetate;
  • nitrogen-containing compound examples include nitriles such as acetonitrile and benzonitrile; amines such as triethylamine, triisopropylamine, quinuclidine and N, N-diethylaniline; pyridine, 2,4-lutidine, 2,6-lutidine, Pyridines such as 2-t-butylpyridine; and the like.
  • Examples of the phosphorus-containing compound include phosphines such as triphenylphosphine, tricyclohexylphosphine, triphenylphosphate, and trimethylphosphate; phosphine oxides such as triphenylphosphine oxide; and the like.
  • An activity regulator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of the activity regulator in the polymerization reaction system of the polymer ( ⁇ ) is preferably 0.01 mol% to 100 mol% with respect to 100 mol% of the metal compound represented by the formula (7).
  • the polymerization reaction system of the polymer ( ⁇ ) may contain a molecular weight modifier in order to adjust the molecular weight of the polymer ( ⁇ ).
  • the molecular weight modifier include ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene; aromatic vinyl compounds such as styrene and vinyltoluene; ethyl vinyl ether, isobutyl vinyl ether, allyl glycidyl ether Oxygen-containing vinyl compounds such as allyl acetate, allyl alcohol and glycidyl methacrylate; halogen-containing vinyl compounds such as allyl chloride; nitrogen-containing vinyl compounds such as acrylamide; 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene 1,6-heptadiene, 2-methyl-1,4-pentadiene, non-conjugated dienes such as 2,5-dimethyl-1,5-hexa
  • a molecular weight regulator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of the molecular weight modifier in the polymerization reaction system for polymerizing the polymer ( ⁇ ) can be appropriately determined according to the target molecular weight.
  • the specific amount of the molecular weight modifier is preferably in the range of 0.1 mol% to 50 mol% with respect to the cyclic olefin monomer.
  • the polymerization temperature is preferably ⁇ 78 ° C. or higher, more preferably ⁇ 30 ° C. or higher, preferably + 200 ° C. or lower, more preferably + 180 ° C. or lower.
  • the polymerization time can depend on the reaction scale.
  • the specific polymerization time is preferably in the range of 1 minute to 1000 hours.
  • a polymer ((alpha)) is obtained by the manufacturing method mentioned above.
  • the polymer ( ⁇ ) can be produced by hydrogenating the polymer ( ⁇ ).
  • Hydrogenation of a polymer ((alpha)) can be performed by supplying hydrogen in the reaction system containing a polymer ((alpha)) in presence of a hydrogenation catalyst according to a conventional method, for example. In this hydrogenation reaction, if the reaction conditions are set appropriately, the hydride tacticity does not usually change due to the hydrogenation reaction.
  • homogeneous catalysts and heterogeneous catalysts can be used as hydrogenation catalysts for olefin compounds.
  • homogeneous catalysts include transition metals such as cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, titanocene dichloride / n-butyllithium, zirconocene dichloride / sec-butyllithium, and tetrabutoxytitanate / dimethylmagnesium.
  • Catalyst comprising a combination of a compound and an alkali metal compound; dichlorobis (triphenylphosphine) palladium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, chlorohydridocarbonylbis (tricyclohexylphosphine) ruthenium, bis (tricyclohexylphosphine) benzilidineruthenium (IV) noble metal complex catalysts such as dichloride and chlorotris (triphenylphosphine) rhodium; It is.
  • heterogeneous catalysts include metal catalysts such as nickel, palladium, platinum, rhodium and ruthenium; nickel / silica, nickel / diatomaceous earth, nickel / alumina, palladium / carbon, palladium / silica, palladium / diatomaceous earth, palladium / Examples thereof include a solid catalyst obtained by supporting the metal such as alumina on a carrier such as carbon, silica, diatomaceous earth, alumina, and titanium oxide.
  • a hydrogenation catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the hydrogenation reaction is usually performed in an inert organic solvent.
  • the inert organic solvent include aromatic hydrocarbons such as benzene and toluene; aliphatic hydrocarbons such as pentane and hexane; alicyclic hydrocarbons such as cyclohexane and decahydronaphthalene; tetrahydrofuran, ethylene glycol dimethyl ether, and the like. Ethers; and the like.
  • An inert organic solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Further, the inert organic solvent may be the same as or different from the organic solvent used in the ring-opening polymerization reaction.
  • the hydrogenation catalyst may be mixed with the reaction solution for the ring-opening polymerization reaction to perform the hydrogenation reaction.
  • the reaction conditions for the hydrogenation reaction usually vary depending on the hydrogenation catalyst used.
  • the reaction temperature of the hydrogenation reaction is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 10 ° C. or higher, particularly preferably 0 ° C. or higher, preferably + 250 ° C. or lower, more preferably + 220 ° C. or lower, particularly preferably + 200 ° C. It is as follows. By setting the reaction temperature to be equal to or higher than the lower limit of the above range, the reaction rate can be increased. Moreover, by making it below the upper limit value, the occurrence of side reactions can be suppressed.
  • the hydrogen pressure is preferably 0.01 MPa or more, more preferably 0.05 MPa or more, particularly preferably 0.1 MPa or more, preferably 20 MPa or less, more preferably 15 MPa or less, and particularly preferably 10 MPa or less.
  • the reaction rate can be increased.
  • special apparatuses such as a high pressure
  • the reaction time of the hydrogenation reaction may be set to any time at which the desired hydrogenation rate is achieved, and is preferably 0.1 hour to 10 hours.
  • the polymer ( ⁇ ) which is a hydride of the polymer ( ⁇ ) is usually recovered according to a conventional method.
  • the hydrogenation rate (ratio of hydrogenated main chain double bonds) in the hydrogenation reaction is preferably 98% or more, more preferably 99% or more.
  • the upper limit of the hydrogenation rate can be 100% or less.
  • the hydrogenation rate of the polymer can be measured by 1 H-NMR measurement at 145 ° C. using orthodichlorobenzene-d 4 as a solvent.
  • the cyclic olefin monomer used for the production of the polymers ( ⁇ ) and ( ⁇ ) is selected from the range shown as the cyclic olefin monomer that can be used for the production of the polymer ( ⁇ ) and the polymer ( ⁇ ). Any can be used.
  • a cyclic olefin monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • any monomer that can be copolymerized with the cyclic olefin monomer in combination with the cyclic olefin monomer can be used as the monomer.
  • the optional monomer include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene; aromatic ring vinyl compounds such as styrene and ⁇ -methylstyrene
  • Non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene; and the like.
  • ⁇ -olefin is preferable, and ethylene is more preferable.
  • arbitrary monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the amount of the cyclic olefin monomer and the optional monomer is preferably 30:70 to 99: 1, more preferably 50: weight ratio (cyclic olefin monomer: optional monomer). 50 to 97: 3, particularly preferably 70:30 to 95: 5.
  • the polymer ( ⁇ ) may be a block copolymer or randomly. A copolymer may also be used.
  • an addition polymerization catalyst is usually used for the synthesis of the polymer ( ⁇ ).
  • an addition polymerization catalyst include a vanadium catalyst formed from a vanadium compound and an organoaluminum compound, a titanium catalyst formed from a titanium compound and an organoaluminum compound, a zirconium complex and a zirconium formed from an aluminoxane.
  • system catalysts include system catalysts.
  • an addition polymer catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the addition polymerization catalyst is preferably 0.000001 mol or more, more preferably 0.00001 mol or more, preferably 0.1 mol or less, more preferably 0.01 mol with respect to 1 mol of the monomer. It is as follows.
  • the addition polymerization of the cyclic olefin monomer is usually performed in an organic solvent.
  • an organic solvent what is selected from the range shown as the organic solvent which can be used for ring-opening polymerization of a cyclic olefin monomer can be used arbitrarily.
  • an organic solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polymerization temperature in the polymerization for producing the polymer ( ⁇ ) is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 30 ° C. or higher, particularly preferably ⁇ 20 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower.
  • the polymerization time is preferably 30 minutes or longer, more preferably 1 hour or longer, preferably 20 hours or shorter, more preferably 10 hours or shorter.
  • the polymer ( ⁇ ) is obtained by the production method described above.
  • the polymer ( ⁇ ) can be produced by hydrogenating the polymer ( ⁇ ).
  • the hydrogenation of the polymer ( ⁇ ) can be performed by the same method as described above as the method for hydrogenating the polymer ( ⁇ ).
  • the proportion of the polymer having an alicyclic structure and having crystallinity is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the heat resistance of the resin film of this invention can be improved by making the ratio of the polymer which contains an alicyclic structure and which has crystallinity into more than the lower limit of the said range.
  • the upper limit of the ratio of the polymer having an alicyclic structure and having crystallinity can be 100% by weight or less.
  • the polymer containing the alicyclic structure contained in the crystalline resin may not be crystallized before the resin film of the present invention is produced. However, after the resin film of the present invention is produced, the polymer containing the alicyclic structure contained in the crystalline resin forming the resin film is usually crystallized, and thus has a high crystallinity. Can have.
  • the specific crystallinity range can be appropriately selected according to the desired performance, but is preferably 10% or more, more preferably 15% or more.
  • the crystallinity of the polymer containing the alicyclic structure contained in the resin film can be measured by an X-ray diffraction method.
  • the crystalline resin can contain an optional component in addition to a polymer having an alicyclic structure and having crystallinity.
  • Optional components include, for example, antioxidants such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants; light stabilizers such as hindered amine light stabilizers; petroleum waxes, Fischer-Tropsch waxes, Waxes such as polyalkylene wax; sorbitol compounds, metal salts of organic phosphoric acid, metal salts of organic carboxylic acid, nucleating agents such as kaolin and talc; diaminostilbene derivatives, coumarin derivatives, azole derivatives (for example, benzoxazole derivatives, Fluorescent brighteners such as benzotriazole derivatives, benzimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone UV absorbers, salicylic acid UV absorbers, be
  • the resin film of the present invention is made of the crystalline resin described above.
  • Conventional resin films made of a crystalline resin generally tend not to be sufficiently excellent in bending resistance.
  • the resin film of the present invention has sufficiently excellent bending resistance while being a resin containing a polymer having an alicyclic structure and a crystallinity of 30% or more.
  • the bending resistance can be evaluated by the number of bending breaks measured by a method as described in the evaluation items in the column of Examples. Specifically, it can be evaluated that the bending resistance is sufficiently excellent when the number of breaks is 100000 times or more, and the bending resistance is particularly excellent when the number of breaks is 200,000 times or more. Can be evaluated.
  • the resin film of this invention has the bending resistance sufficiently excellent as mentioned above, it becomes a thing suitable also for the use of an optical film, and the use of an electroconductive film and a barrier film.
  • the degree of crystallinity of the polymer contained in the resin film of the present invention is 30% or more, preferably 35% or more.
  • the upper limit of the crystallinity is not particularly limited, and can therefore be 100% or less, but is preferably 85% or less. High intensity
  • strength can be acquired because the crystallinity degree of a polymer is more than the said minimum. When the degree of crystallinity of the polymer is not more than the above upper limit, good bending resistance can be achieved more easily.
  • the resin film of the present invention which is evaluated to be sufficiently excellent in bending resistance has a thickness unevenness Tv of the resin film of 5% or less, preferably 4% or less. More preferably, it is 3% or less, and ideally the thickness unevenness Tv is 0%, but the lower limit may be made more than 0%.
  • the maximum value Tmax, the minimum value Tmin, and the average value Tave are measured as follows. By measuring the thickness as follows, it is possible to evaluate the thickness unevenness Tv and the thickness as an overall index of the resin film, not a local index of the resin film. First, an area to be measured for the thickness of the resin film is defined on the surface of the resin film.
  • the entire film surface is the measurement target region, and the 4 sides (long side) of the resin film And any one of the lengths of the short sides x the short sides included in the film surface in the case of a single-sided film or a long film in which either or both of the lengths of the short sides exceed 1 m
  • the region is set as a measurement target region.
  • at least 30 measurement points of the thickness of the resin film are determined within the measurement target region determined as described above.
  • measurement locations are such that a polygonal area formed by connecting measurement locations distributed on the outer edge side of the measurement target region with a straight line on the film surface occupies 70% or more of the measurement target region.
  • the measurement points distributed on the outer edge side are internal angles formed by a line segment connecting two measurement points adjacent to each other, and a line segment connecting one end point of the line segment and the measurement point adjacent to the end point. Satisfies the condition that is 180 ° or less. As long as the measurement points distributed on the outer edge side are determined, the positions and numbers of the other measurement points can be arbitrarily determined within the polygonal region.
  • the area of a triangle connecting three arbitrary measurement points and not including other measurement points on the inner region including the points on the side is 50 cm 2 or less, and the area of the measurement target region
  • the measurement location is determined to be 5% or less.
  • the measurement location can be determined by the method described in the evaluation items in the column of Examples.
  • the thickness of a resin film is measured in the measurement location defined as mentioned above.
  • the maximum value is the maximum value Tmax of the resin film thickness
  • the minimum value is the minimum value Tmin of the resin film thickness
  • the average value is the resin The average value Tave of the film thickness is used.
  • the resin film of the present invention has a small thickness unevenness Tv required as described above, even if it is bent, non-uniform stress concentration is unlikely to occur, and as a result, there is an effect that breakage is unlikely to occur.
  • the resin film of the present invention is an optical film to which optical properties are imparted, usually the retardation unevenness and the orientation unevenness are small as well as the thickness unevenness is small. Therefore, according to the present invention, an excellent optical film can be provided.
  • the resin film of the present invention preferably has a small internal haze.
  • the haze includes light scattering caused by fine irregularities on the surface of the resin film and that due to internal refractive index distribution.
  • the internal haze means a value obtained by subtracting the haze caused by light scattering caused by fine irregularities on the surface of the resin film from the normal haze.
  • Such internal haze can be measured by the method described in the evaluation items in the column of Examples.
  • the internal haze of the resin film is 3% or less, more preferably 2% or less, further preferably 1% or less, particularly preferably 0.5% or less, and ideally The internal haze is 0%, but the lower limit may be over 0%.
  • the resin film of the present invention is preferably excellent in transparency.
  • the total light transmittance of the resin film of the present invention is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • the total light transmittance of the resin film can be measured in a wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
  • the resin film of the present invention may have retardation depending on the application.
  • the resin film of the present invention when used as an optical film such as a retardation film or an optical compensation film, the resin film preferably has retardation.
  • the thickness of the resin film of the present invention can be appropriately selected according to the desired application, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, particularly preferably 10 ⁇ m or more, preferably 1 mm or less, more preferably 500 ⁇ m or less. Particularly preferably, it is 200 ⁇ m or less.
  • the thickness of the resin film can be equal to or higher than the lower limit of the above range, an appropriate strength can be obtained.
  • winding in the case of manufacturing a long film can be enabled. Since the resin film of the present invention has small thickness unevenness, it is possible to reduce the winding unevenness when it is wound on a roll, and the generation of wrinkles is also suppressed.
  • the resin film of this invention has small thickness nonuniformity, it can also suppress the coating nonuniformity when providing a coating layer on the surface, and the nonuniformity of coating thickness.
  • the resin film of this invention can be used for arbitrary uses.
  • the resin film of the present invention is suitable as, for example, optical films such as optical isotropic films and retardation films, electrical and electronic films, base films for barrier films, and base films for conductive films.
  • the optical film include a retardation film for a liquid crystal display device, a polarizing plate protective film, a retardation film for a circularly polarizing plate of an organic EL display device, and the like.
  • the electrical and electronic film include a flexible wiring board and an insulating material for a film capacitor.
  • substrate for organic EL elements, a sealing film, the sealing film of a solar cell, etc. are mentioned, for example.
  • the conductive film include organic EL elements, flexible electrodes for solar cells, touch panel members, and the like.
  • the resin film of the present invention is a first film made of a resin containing a polymer having an alicyclic structure and having crystallinity, in a state where at least two sides of the first film are held.
  • the first film is a film made of a crystalline resin and having a desired thickness.
  • the desired thickness of the first film can be arbitrarily set in consideration of the draw ratio in the subsequent drawing step.
  • the thickness is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 1 mm or less, preferably 500 ⁇ m or less.
  • the first film can be produced by, for example, a resin molding method such as an injection molding method, an extrusion molding method, a press molding method, an inflation molding method, a blow molding method, a calendar molding method, a casting molding method, or a compression molding method.
  • a resin molding method such as an injection molding method, an extrusion molding method, a press molding method, an inflation molding method, a blow molding method, a calendar molding method, a casting molding method, or a compression molding method.
  • the production conditions in the extrusion molding method are preferably as follows.
  • the cylinder temperature (molten resin temperature) is preferably Tm or higher, more preferably “Tm + 20” ° C. or higher, preferably “Tm + 100” ° C. or lower, more preferably “Tm + 50” ° C. or lower.
  • the cast roll temperature is preferably “Tg ⁇ 50” ° C. or higher, preferably “Tg + 70” ° C. or lower, more preferably “Tg + 40” ° C. or lower.
  • the cooling roll temperature is preferably “Tg ⁇ 70” ° C. or higher, more preferably “Tg ⁇ 50” ° C. or higher, preferably “Tg + 60” ° C. or lower, more preferably “Tg + 30” ° C. or lower.
  • Tm represents the melting point of the polymer containing the alicyclic structure
  • Tg represents the glass transition temperature of the polymer containing the alicyclic structure.
  • a preheating step is performed prior to the stretching step.
  • This preheating step is performed in order to maintain the first film within a predetermined temperature range prior to the stretching step.
  • the first film is heated at the preheating temperature Tph over the preheating time tph while holding at least two sides of the first film.
  • transformation by the heat shrink of a 1st film can be suppressed in the area
  • a preheating process and an extending process are performed continuously, other processes are not performed between a preheating process and an extending process.
  • the preheating temperature Tph is the temperature of the heating atmosphere to which the first film is exposed in the preheating process, and is usually the same temperature as the set temperature of the heating device.
  • This preheating temperature Tph is a temperature within the range of the first temperature T1 or more and the second temperature T2 or less.
  • a suitable heating device is a heating device capable of heating the first film in a non-contact manner, and specific examples include an oven and a heating furnace.
  • the first temperature T1 is the lower limit of the temperature range that the preheating temperature Tph can take, and is represented by the following formula (9), preferably by the following formula (9 ′), more preferably It is represented by the formula (9 ′′).
  • T1 [° C.] (5 ⁇ Tg + 5 ⁇ Tpc) / 10 (9)
  • T1 [° C.] [(5 ⁇ Tg + 5 ⁇ Tpc) / 10] +5 (9 ′)
  • T1 [° C.] [(5 ⁇ Tg + 5 ⁇ Tpc) / 10] +10 (9 ′′)
  • Tg is the glass transition temperature of the polymer contained in the crystalline resin
  • Tpc is the polymer contained in the crystalline resin.
  • the first temperature T1 is usually higher than the glass transition temperature Tg, and the crystallization The temperature is lower than the peak temperature Tpc. And since preheating temperature Tph is more than 1st temperature T1, the fall of the uniformity of the thickness which arises in the following heat setting process can be suppressed significantly.
  • the second temperature T2 is the upper limit of the temperature range that the preheating temperature Tph can take, and is represented by the following formula (10), preferably by the following formula (10 ′), more preferably by the following formula As can be seen from the following formulas (10), (10 ′) and (10 ′′), the second temperature T2 is usually higher than the crystallization peak temperature Tpc and has a melting point. The temperature is lower than Tm.
  • T2 [° C.] [(9 ⁇ Tpc + 1 ⁇ Tm) / 10] (10)
  • T2 [° C.] [(9 ⁇ Tpc + 1 ⁇ Tm) / 10] ⁇ 5 (10 ′)
  • T2 [° C.] [(9 ⁇ Tpc + 1 ⁇ Tm) / 10] ⁇ 10 (10 ′′)
  • the preheating time tph is a time during which the first film is maintained in a predetermined temperature range prior to the stretching step, that is, the first film is exposed to the heating atmosphere in the preheating step. It's time.
  • the predetermined temperature range is the same as the temperature range that the preheating temperature Tph can take, that is, a temperature within the range of the first temperature T1 or more and the second temperature T2 or less.
  • the upper limit tph (max) of the preheating time tph is represented by the following formula (11), preferably by the following formula (11 ′), and more preferably by the following formula (11 ′′).
  • tph (max) [seconds] 80 ⁇ [(T1-Tph) / (T2-T1)] + 90 (11)
  • tph (max) [seconds] 0.8 ⁇ [80 ⁇ ⁇ (T1-Tph) / (T2-T1) ⁇ + 90] (11 ′)
  • tph (max) [seconds] 0.6 * [80 * ⁇ (T1-Tph) / (T2-T1) ⁇ + 90] (11 ")
  • the preheating time tph is below upper limit tph (max)
  • the poor stretching which arises in the following extending process is controlled, or the fall of the uniformity of the thickness which arises in the following heat setting process is controlled greatly. be able to.
  • the lower limit tph (min) of the preheating time tph is 1 second, preferably 5 seconds. Thereby, it can prevent that a 1st film is heated nonuniformly. Therefore, it is possible to suppress a decrease in thickness uniformity due to poor stretching in the subsequent stretching step.
  • the above-mentioned “state in which at least two sides of the first film are held” means that the first film is held by a holder or two spaced apart rollers so that the first film is not deflected. State. However, this state does not include a holding state in which the first film is substantially stretched. Moreover, being substantially stretched means that the stretch ratio in any direction of the first film is usually 1.03 times or more.
  • the holder may be one that can continuously hold the entire length of the side of the first film, or may be one that can be held intermittently at intervals.
  • the sides of the first film may be intermittently held by holders arranged at a predetermined interval. It is preferable to hold all the sides in the first film of a sheet. As a specific example, it is preferable to hold four sides in the first film of a rectangular sheet. Thereby, the deformation
  • a tool that does not come into contact with the first film in a portion other than the side of the first film is preferable.
  • a resin film having better smoothness can be obtained.
  • the holding tool one that can fix the relative position of the holding tools in the preheating step is preferable.
  • the positions of the holders do not move relative to each other in the preheating step, and thus it is easy to suppress substantial stretching of the first film in the preheating step.
  • a gripper such as a clip that is provided at a predetermined interval on the mold and can hold the side of the first film can be used.
  • a gripper provided in the tenter stretching machine and capable of gripping the side of the first film.
  • the side at the end in the longitudinal direction of the first film may be held, but instead of holding the side, the first You may hold
  • maintenance apparatus which can hold
  • Examples of such a holding device include a combination of two rolls and a combination of an extruder and a take-up roll.
  • the thermal shrinkage of the first film can be suppressed in the region where the preheat treatment is performed. Therefore, if the combination is used as a holding device, the first film can be held while the first film is fed in the transport direction, so that the resin film can be efficiently manufactured.
  • a second film is obtained as the preheated first film.
  • the stretching temperature Tst is the temperature of the heating atmosphere to which the second film is exposed in the stretching process, and is usually the same temperature as the set temperature of the stretching machine.
  • the stretching temperature Tst is a temperature that is not lower than the first temperature T1 and not higher than the second temperature T2. Therefore, the same temperature as the preheating temperature Tph may be set as the stretching temperature Tst.
  • the temperature difference between the stretching temperature Tst and the preheating temperature Tph is preferably 5 ° C. or less, more preferably 2 It is below °C.
  • any stretching method can be used.
  • a uniaxial stretching method such as a method of uniaxially stretching the second film in the longitudinal direction (vertical uniaxial stretching method), a method of uniaxially stretching the second film in the width direction (lateral uniaxial stretching method);
  • Biaxial stretching methods such as a simultaneous biaxial stretching method in which a film is stretched in the longitudinal direction and simultaneously stretched in the width direction, and a second biaxial stretching method in which the second film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction.
  • a method of stretching the second film in an oblique direction that is neither parallel nor perpendicular to the width direction an oblique stretching method
  • Examples of the longitudinal uniaxial stretching method include a stretching method using a difference in peripheral speed between rolls.
  • Examples of the horizontal uniaxial stretching method include a stretching method using a tenter stretching machine.
  • a tenter stretching machine provided with a plurality of clips provided so as to be movable along the guide rail and capable of fixing the second film is used to set the interval between the clips.
  • Examples include a stretching method in which the second film is stretched in the longitudinal direction at the same time as it is opened and the second film is stretched in the width direction according to the spread angle of the guide rail.
  • both ends of the second film are gripped by clips.
  • the stretching method include stretching in the width direction by a tenter stretching machine.
  • a tenter stretching machine can be used that can apply a feeding force, a pulling force, or a pulling force at different speeds in the longitudinal direction or the width direction to the second film.
  • a stretching method of continuously stretching the film in an oblique direction for example, after the second film is stretched in the longitudinal direction using the difference in peripheral speed between rolls, both ends of the second film are gripped by clips.
  • the stretching method include stretching in the width direction by a tenter stretching machine.
  • oblique stretching method for example, a second tenter stretching machine can be used that can apply a feeding force, a pulling force, or a pulling force at different speeds in the longitudinal direction or the width direction to the second film.
  • a stretching method of continuously stretching the film in an oblique direction for example, after the second film is stretched in the longitudinal direction using the difference in peripheral speed between rolls, both ends of the second film are gripped by clips.
  • the stretching ratio in stretching the second film can be appropriately selected depending on desired optical properties, thickness, strength, etc., but is usually 1.03 times or more, preferably 1.1 times or more, more preferably 1. It is 2 times or more, usually 20 times or less, preferably 10 times or less, more preferably 5 times or less.
  • the stretching ratio is the total stretching ratio represented by the product of the stretching ratios in each stretching direction.
  • a third film as a stretched second film is obtained, and a resin having desired characteristics is obtained by using such a third film.
  • a film can be obtained.
  • a heat setting step is performed. This heat setting step is performed to promote crystallization of the polymer containing the alicyclic structure contained in the third film.
  • the third film is held at the heat setting temperature Tts while holding at least two sides. This usually increases the crystallinity of the polymer containing the alicyclic structure from less than 30% to 30% or more.
  • transformation by the thermal contraction of a 3rd film can be suppressed in the area
  • the strength of the resin film can be improved.
  • the above-mentioned heat setting temperature Tts is the temperature of the heating atmosphere to which the third film is exposed in the heat setting process, and is usually the same temperature as the set temperature of the heating device.
  • This heat setting temperature Tts is higher than the stretching temperature Tst, and is a temperature within the range of the third temperature T3 or more and less than the melting point Tm of the polymer.
  • the heat fixing temperature Tts is preferably higher than the preheating temperature Tph.
  • a suitable heating device is a heating device capable of heating the third film in a non-contact manner, and specific examples include an oven and a heating furnace. By adopting such a temperature range, white turbidity of the obtained resin film can be suppressed.
  • the third temperature T3 is the lower limit of the temperature range that the heat fixing temperature Tts can take, and is represented by the following formula (12), preferably by the following formula (12 ′), more preferably As shown in the following formula (12 ′′).
  • the third temperature T3 is usually higher than the crystallization peak temperature Tpc. The temperature is lower than the melting point Tm.
  • the heat fixing temperature Tts is in the range of the third temperature T3 or higher and the fourth temperature T4 or lower.
  • the fourth temperature T4 is an upper limit of a temperature range that can be taken by the heat fixing temperature Tts, which is set so that the heat fixing temperature Tts does not reach the melting point Tm even locally.
  • the fourth temperature T4 is preferably represented by the following formula (13), more preferably by the following formula (13 ′), and further preferably by the following formula (13 ′′). As can be seen from the equations (13), (13 ′) and (13 ′′), the fourth temperature T4 is higher than the crystallization peak temperature Tpc and lower than the melting point Tm.
  • T4 [° C.] [(2 ⁇ Tpc + 8 ⁇ Tm) / 10] (13)
  • T4 [° C.] [(2 ⁇ Tpc + 8 ⁇ Tm) / 10] ⁇ 20 (13 ′)
  • T4 [° C.] [(2 ⁇ Tpc + 8 ⁇ Tm) / 10] ⁇ 40 (13 ′′)
  • the heat setting time tts for performing the heat setting process is 5 seconds or more.
  • the heat fixing time tts is a time during which the third film, which is held at least two sides so as not to be thermally contracted, is maintained in a predetermined temperature range.
  • the predetermined temperature range is the same as the temperature range that the heat fixing temperature Tts can take, that is, a temperature within the range of the third temperature T3 or more and the fourth temperature T4 or less.
  • the heat fixing time tts is 90 seconds or less.
  • heat setting time tts is 5 second or more, the crystallinity degree of a polymer can fully be raised and the intensity
  • the white turbidity of the obtained resin film can be suppressed by setting the heat setting time tts to 90 seconds or less, a resin film suitable for use as an optical film can be obtained. Therefore, the heat setting time tts is more preferably in the range of 5 seconds to 90 seconds.
  • a state in which at least two sides of the third film are held and tensioned is set.
  • a state in which at least two sides of the third film are held and tensioned means that a certain amount of tension is applied to the third film even if it does not reach stretching. This is because, in the heat setting step, it is preferable to consider the heat shrinkage caused by the third film being exposed to a higher temperature than the preheating step and the stretching step. Thereby, crystallization can be advanced without impairing the smoothness of the third film.
  • a fourth film is obtained as the third film in which crystallization is promoted.
  • a relaxation step in order to thermally contract the fourth film obtained in the heat setting step to remove residual stress.
  • a relaxation process is performed to relax the tension of the fourth film in a predetermined temperature range while keeping the fourth film obtained in the heat setting process flat.
  • Relieving the tension of the fourth film means releasing the fourth film from the tensioned state held by the holding device. If the fourth film is not tensioned, the fourth film is held. It may be held by a device. Thus, when tension
  • the relaxation of the tension of the fourth film may be performed at a time, or may be performed continuously or stepwise over time. However, in order to suppress the occurrence of deformation such as undulation and wrinkling of the obtained resin film, it is preferable to relax the tension continuously or stepwise.
  • the relaxation of the tension of the fourth film is performed while keeping the fourth film flat.
  • to keep the fourth film flat means to keep the fourth film in a flat shape so that the fourth film is not deformed such as waving and wrinkling. Thereby, generation
  • the treatment temperature of the fourth film in the relaxation treatment is preferably such that the temperature difference from the heat setting temperature Tts in the heat setting step is 20 ° C. or less, preferably 10 ° C. or less. Thereby, the temperature nonuniformity of the 4th film in a relaxation process can be suppressed, or the productivity of a resin film can be improved.
  • the treatment time for maintaining the fourth film in the above temperature range is preferably 1 second or longer, more preferably 5 seconds or longer.
  • the upper limit of this processing time is that the total of the heat fixing time tts and the processing time in the relaxation step is 90 seconds or less (that is, the heat fixing time tts + the processing time in the relaxation step ⁇ 90 seconds) and the heat fixing time tts It is preferable to set so that 2 times is equal to or longer than the processing time in the relaxation step (that is, the heat fixing time tts ⁇ 2 ⁇ the processing time in the relaxation step).
  • the relaxation process is performed on the fourth film of the single wafer in the relaxation process as described above, for example, a method of narrowing the interval between the holding portions continuously or stepwise while holding the four sides of the fourth film is adopted. Yes. In this case, you may narrow simultaneously the holding
  • interval of the guide rail which can guide a clip is used in the conveyance direction of a 4th film, for example using a tenter stretching machine.
  • a method of narrowing or narrowing the interval between adjacent clips can be mentioned.
  • the degree of narrowing the interval is the fourth obtained in the heat setting step. It can be set according to the magnitude of the stress remaining in the film. Usually, since the 4th film obtained in the heat setting process has already been subjected to stretching treatment, a large stress tends to remain. Therefore, it is preferable to increase the degree of narrowing the interval in order to relieve the tension of the fourth film as compared with the case where a film not subjected to stretching treatment is used.
  • the degree to which the holding interval is narrowed in the relaxation step can be determined based on the thermal shrinkage rate S (%) in a state where no tension is applied to the fourth film at the processing temperature of the fourth film in the relaxation step.
  • the degree of narrowing the holding interval is usually 0.1S or more, preferably 0.5S or more, more preferably 0.7S or more, and usually 1.2S or less, preferably 1.0S or less, more preferably 0.95S or less.
  • the heat shrinkage rate S has anisotropy, for example, when the heat shrinkage rates S differ in two orthogonal directions, the extent to which the holding interval is narrowed within the range can be determined for each direction. By setting it as such a range, the residual stress of a resin film can fully be removed and flatness can be maintained.
  • the thermal contraction rate S of the fourth film can be measured by the following method. Under a room temperature of 23 ° C., the fourth film is cut into a square having a size of 150 mm ⁇ 150 mm to obtain a sample film. The sample film is heated in an oven set at the same temperature as the treatment temperature of the relaxation step for 60 minutes and cooled to 23 ° C. (room temperature), and then the two sides parallel to the direction in which the thermal contraction rate S of the sample film is desired to be obtained. Measure the length. Based on the measured lengths of the two sides, the thermal contraction rate S of the sample film is calculated based on the following formula (III).
  • the fourth film By subjecting the fourth film to the relaxation treatment as described above, the resin film that was the object of manufacture is obtained. Further, when the relaxation treatment is not performed, the fourth film becomes a resin film.
  • the first example shows an example of a method for producing a single-wafer resin film using a single-wafer third film.
  • the heat setting step and the relaxation step are not limited to this first example.
  • the holding device 100 is a device for holding a third film 10 of a single sheet.
  • the holding device 100 includes a mold 110 and clips 121, 122, 123, and 124 as a plurality of holders provided on the mold 110 so that the position of the mold 110 can be adjusted.
  • the clip 121, the clip 122, the clip 123, and the clip 124 are provided so as to be able to grip the side 11, the side 12, the side 13, and the side 14 of the third film 10, respectively.
  • the third film 10 made of a resin containing a polymer containing an alicyclic structure is attached to the holding device 100. Specifically, by holding the third film 10 with the clips 121 to 124, the four sides 11 to 14 of the third film 10 are held. And the 3rd film 10 of the state hold
  • the crystallization of the polymer containing the alicyclic structure contained in the third film 10 proceeds, and the fourth film 20 is obtained as shown in FIG.
  • the fourth film 20 is not deformed by heat shrinkage. Therefore, normally, the fourth film 20 has a stress that tends to cause thermal shrinkage.
  • the relaxation process is performed on the fourth film 20 manufactured as described above.
  • the fourth film 20 is attached to the clip 121, the clip 122, the clip 123, and the clip 124 of the holding device 100 on the side 21, the side 22, and the side of the fourth film 20. 23 and side 24.
  • the fourth film 20 is continuously heated to a temperature within a range where the temperature difference from the heat fixing temperature Tts is 20 ° C. or less, and the intervals I 121 and I between the clips 121 to 124 of the holding device 100 are set. 122 , I 123 and I 124 are narrowed.
  • the interval between the holding portions of the fourth film 20 by the clips 121 to 124 is narrowed so as to follow the dimensional change due to the thermal contraction of the fourth film 20. Therefore, the tension
  • the stress in the film that may cause a dimensional change in a high temperature environment is eliminated. Therefore, in the obtained resin film, dimensional stability under a high temperature environment can be improved. Moreover, since the polymer containing the alicyclic structure contained in the resin film is crystallized, this resin film is usually excellent in heat resistance.
  • FIG. 3 is a front view schematically showing an example of a resin film manufacturing apparatus
  • FIG. 4 is a plan view schematically showing an example of a resin film manufacturing apparatus.
  • the manufacturing apparatus 200 includes a tenter stretching machine 300 as a holding device, conveyance rolls 410 and 420, and an oven 500 as a heating device.
  • the tenter stretching machine 300 includes endless link devices 310 and 320 provided on the left and right sides of the film conveyance path, and sprockets 330 and 340 for driving the link devices 310 and 320.
  • the link devices 310 and 320 are provided with clips 311 and 321 as a plurality of holders, respectively.
  • the clips 311 and 321 are side edges 31 and 32 in the width direction of the third film 30, edges 41 and 42 in the width direction end of the fourth film 40, and the width direction ends of the resin film 50.
  • the third film 30 can be held by gripping the sides 51 and 52 of the part. Further, these clips 311 and 321 are provided so as to be movable as the link devices 310 and 320 rotate.
  • Link devices 310 and 320 are driven by sprockets 330 and 340, so that they are indicated by arrows A310 and A320 along a circular trajectory defined by guide rails (not shown) provided on both sides of the film conveyance path. It is provided so that it can rotate. Therefore, the clips 311 and 321 provided in the link devices 310 and 320 have a configuration that can move along a desired circular path on both sides of the film conveyance path.
  • the clips 311 and 321 hold the two sides 31 and 32 of the third film 30 in the vicinity of the entrance 510 of the oven 500 by any appropriate mechanism, and maintain the held state while maintaining the held state.
  • the resin film 50 is provided in the vicinity of the outlet 520 of the oven 500 so as to move in the film conveyance direction along with the rotation of 320.
  • the tenter stretching machine 300 has a freely adjustable constituting the interval W TD clips 311 and 321 in the interval W MD and the width direction of the clip 311 and 321 in the film conveying direction.
  • a freely adjustable constituting the interval W TD clips 311 and 321 in the interval W MD and the width direction of the clip 311 and 321 in the film conveying direction In the example shown here, an example in which the intervals W MD and W TD of the clips 311 and 321 as described above can be adjusted by using the pantograph type link devices 310 and 320 is shown.
  • FIGS. 5 and 6 are plan views schematically showing a part of the link device 310.
  • the link device 310 includes a plurality of linked link plates 312a to 312d.
  • the shape of the link device 310 is made endless by connecting the plurality of link plates 312a to 312d in a ring shape.
  • the link device 310 includes bearing rollers 313a and 313b. These bearing rollers 313a and 313b are provided so as to pass through a groove formed by a guide rail (not shown). Therefore, by adjusting the track of the guide rail, it is possible to adjust the orbit of the link device 310 that rotates along the guide rail, and thus the travel track of the clip 311 provided on the link device 310 can be adjusted. . Therefore, the link device 310 has a configuration in which the position of the clip 311 in the width direction can be changed at an arbitrary position in the film transport direction by adjusting the track of the guide rail. Then, by thus changing the position of the clip 311 in the width direction, it is possible to vary the spacing W TD clips 311 and 321 in the width direction.
  • one unit of the link device 310 has (a) a fulcrum on both the outer bearing roller 313a and the inner bearing roller 313b, and further extending inward, A link plate 312a having a clip 311 at the end; (b) a link plate 312b having a common fulcrum on the link plate 312a and the bearing roller 313b and extending to another fulcrum on another bearing roller 313a; A link plate 312c having a fulcrum at a portion between the fulcrums of the link plate 312b, extending inwardly therefrom, and having a clip 311 at the inner end; and (d) between the inner end and the outer end of the link plate 312c.
  • the link device 310 has a fulcrum, extends outward from it, and has a fulcrum on the link plate 312a of the adjacent unit Equipped with a; link plate 312d.
  • the outer side represents the side far from the film conveyance path
  • the inner side represents the side close to the film conveyance path.
  • the link pitch can be changed between the contracted state and the extended state in accordance with the groove distances D1 and D2 of the guide roller. Therefore, the link device 310, by adjusting the spacing D1 and D2 of the grooves of the guide rollers, at any position in the film conveying direction, have a structure that is to change the distance W MD clip 311 between the film conveying direction is doing.
  • the other link device 320 has the same configuration as the link device 310 described above except that the other link device 320 is provided on the opposite side of the link device 310 with respect to the film transport path. Therefore, the link device 320 is also in the same manner as linkage 310, the position of the clip 321 has a adjustable structure in interval W MD and the width direction of the clip 321 between the film conveying direction.
  • transport rolls 410 and 420 are provided on both sides of the tenter stretching machine 300 in the film transport direction.
  • a transport roll 410 provided on the upstream side of the tenter stretching machine 300 is a roll provided so that the third film 30 can be transported
  • a transport roll 420 provided on the downstream side of the tenter stretching machine 300 is a resin film. It is a roll provided so that 50 can be conveyed.
  • These transport rolls 410 and 420 are provided so as to hold the third film 30 for transport. Therefore, these transport rolls 410 and 420 heat-shrink the third film 30 on both sides in the longitudinal direction of the tenter stretching machine 300 (corresponding to a region where the third film 30 is heat-fixed). It can function as a holding device that can be kept in a state where it is not held.
  • the oven 500 includes a partition wall 530, and the space in the oven 500 is partitioned into an upstream heat fixing chamber 540 and a downstream relaxation chamber 550 by the partition wall 530.
  • the elongate 3rd film 30 consisting of resin containing the polymer containing an alicyclic structure is tenter-stretched via the conveyance roll 410. Supply to machine 300.
  • the third film 30 sent to the tenter stretching machine 300 is gripped by the clips 311 and 321 in the vicinity of the entrance 510 of the oven 500, thereby bringing the two sides 31 and 32 into the clip 311 and 321 holds.
  • the third film 30 held by the clips 311 and 321 is preferably in a tensioned state by the holding by the clips 311 and 321 and the holding by the transport rollers 410 and 420. Then, the third film 30 is conveyed to the heat fixing chamber 540 in the oven 500 through the entrance 510 while the third film 30 is held in this manner.
  • the third film 30 is heated at the heat fixing temperature Tts and the heat fixing process is performed. Thereby, crystallization of the polymer containing the alicyclic structure contained in the third film 30 proceeds, and the fourth film 40 is obtained.
  • the fourth film 40 includes Deformation due to heat shrinkage does not occur. Therefore, normally, the fourth film 40 has a stress that tends to cause thermal shrinkage.
  • the manufactured fourth film 40 is sent to the relaxation chamber 550 of the oven 500 while the two sides 41 and 42 are held by the clips 311 and 321.
  • the fourth film 40 is continuously heated to a temperature within a range where the temperature difference from the heat fixing temperature Tts is 20 ° C. or less, and the interval W MD and the width of the clips 311 and 321 in the film transport direction.
  • the interval W TD between the clips 311 and 321 in the direction is reduced.
  • interval of the holding part of the 4th film 40 by the clips 311 and 321 narrows so that the dimensional change by the thermal contraction of the 4th film 40 may be followed. Therefore, the tension
  • Resin film 50 is sent out of oven 500 through outlet 520. Then, the resin film 50 is released from the clips 311 and 321 in the vicinity of the outlet 520 of the oven 500, sent out via the transport roll 420, and collected.
  • the stress in the film that can cause dimensional changes in a high temperature environment is eliminated. Therefore, in the obtained resin film 50, the dimensional stability in a high temperature environment can be improved. Moreover, since the polymer containing the alicyclic structure contained in the resin film 50 is crystallized, the resin film 50 is usually excellent in heat resistance.
  • the resin film of the present invention is excellent in bending resistance, when a film forming process including a high temperature process such as an inorganic layer forming process is performed, the resin film is interposed between the resin film and the conductive layer. The difference in stress that occurs can be reduced, and good film formation is possible. Therefore, taking advantage of such excellent properties, the resin film of the present invention may be used as a base film of a conductive film.
  • This conductive film is a film having a multilayer structure including the resin film of the present invention and a conductive layer directly or indirectly provided on the resin film.
  • the resin film is excellent in adhesion to the conductive layer, the conductive layer can be provided directly on the surface of the resin film, but if necessary, it can be provided via a base layer such as a planarizing layer. Also good.
  • Materials for the conductive layer include metals such as silver and copper; ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), IWO (indium tungsten oxide), ITiO (indium titanium oxide), AZO
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • IWO indium tungsten oxide
  • ITiO indium titanium oxide
  • AZO examples include conductive inorganic materials such as (aluminum zinc oxide), GZO (gallium zinc oxide), XZO (zinc-based special oxide), and IGZO (indium gallium zinc oxide); and organic conductive materials such as polythiophene compounds.
  • the thickness of the conductive layer is preferably 30 nm or more, more preferably 50 nm or more, preferably 250 nm or less, more preferably 220 nm or less.
  • the obtained conductive film can be given a function as an electrode.
  • the surface resistivity of the conductive layer side surface of such a conductive film can be appropriately selected according to the purpose of use, but is usually 1000 ⁇ / sq. Or less, preferably 100 ⁇ / sq. It is as follows. Although there is no restriction
  • the conductive layer may be formed by applying a composition containing metal nanowires or a polythiophene compound. Further, for example, the conductive layer may be formed on the surface of the resin film by attaching a conductive layer prepared separately from the base film to a resin film as the base film. Furthermore, for example, the conductive material is formed by vapor deposition, sputtering, ion plating, ion beam assisted vapor deposition, arc discharge plasma vapor deposition, thermal CVD, plasma CVD, plating, and combinations thereof. The conductive layer may be formed by forming a film on the surface of the resin film by a film method.
  • the vapor deposition method and the sputtering method are preferable, and the sputtering method is particularly preferable.
  • the sputtering method since a conductive layer having a uniform thickness can be formed, it can be suppressed that a thin portion is locally generated in the conductive layer. Therefore, since the increase in resistance due to the thin portion can be suppressed, for example, when used as a capacitive touch sensor, the detection sensitivity of the change in capacitance can be increased.
  • the resin film of the present invention is excellent in dimensional stability and heat resistance under a high temperature environment, it can be formed at a high output, and therefore a flat and excellent conductive layer can be rapidly formed.
  • the surface of the resin film may be subjected to a surface treatment.
  • the surface treatment include corona treatment, plasma treatment, and chemical treatment. Thereby, the binding property of a resin film and an electroconductive layer can be improved.
  • the method for forming the conductive layer may include forming the conductive layer into a desired pattern shape by a film removal method such as an etching method.
  • the conductive film may include an arbitrary layer such as an optical functional layer or a barrier layer in combination with the resin film and the conductive layer.
  • the resin film of the present invention is excellent in bending resistance. Therefore, when a film-forming process including a high-temperature process such as an inorganic layer forming process is performed, the difference in stress generated between the resin film and the barrier layer can be reduced, and thus good film formation is possible. It is.
  • the resin film of the present invention may be used as a base film of a barrier film.
  • This barrier film is a film having a multilayer structure including the resin film of the present invention and a barrier layer provided directly or indirectly on the resin film.
  • the barrier layer can be provided directly on the surface of the resin film, but may be provided via an underlayer such as a planarizing layer as necessary. .
  • an inorganic material can be used as the material of the barrier layer.
  • inorganic materials include materials containing metal oxides, metal nitrides, metal oxynitrides, and mixtures thereof.
  • the metal constituting the metal oxide, metal nitride, and metal oxynitride include silicon and aluminum, and silicon is particularly preferable. More specifically, examples of the composition of the metal oxide, the metal nitride, and the metal oxynitride are SiOx (1.5 ⁇ x ⁇ 1.9) and SiNy (1.2 ⁇ y ⁇ 1. 5) and SiOxNy (1 ⁇ x ⁇ 2 and 0 ⁇ y ⁇ 1). By using such a material, a barrier film excellent in transparency and barrier properties can be obtained.
  • the thickness of the barrier layer is preferably 3 nm or more, more preferably 10 nm or more, preferably 2000 nm or less, more preferably 1000 nm or less.
  • the upper limit of the water vapor permeability of the barrier layer is preferably 0.1 g / m 2 ⁇ day or less, and more preferably 0.01 g / m 2 ⁇ day or less.
  • the barrier film can be produced by a production method including a step of forming a barrier layer on the resin film of the present invention.
  • the method for forming the barrier layer is not particularly limited.
  • the barrier layer is formed by a deposition method such as a vapor deposition method, a sputtering method, an ion plating method, an ion beam assisted vapor deposition method, an arc discharge plasma vapor deposition method, a thermal CVD method, or a plasma CVD method.
  • the arc discharge plasma method evaporated particles having moderate energy are generated, and a high-density barrier layer can be formed.
  • the barrier layer containing these several components can be formed by vapor-depositing or sputtering multiple types of components simultaneously.
  • the barrier layer can also be formed by a method in which a polysilazane compound is applied to the resin film of the present invention and dried, and then the polysilazane compound is converted to silica glass.
  • FIG. 7 is a cross-sectional view schematically showing an example of a film forming apparatus capable of forming a barrier layer as an inorganic layer by a CVD method.
  • the film forming apparatus 700 is a film winding type plasma CVD apparatus, and a barrier layer is continuously formed on the resin film 50 fed out from a roll body 701 of a long resin film 50 by a CVD method.
  • a series of operations for winding the barrier film 70 as a roll body 702 is performed.
  • the film forming apparatus 700 includes a guide roll 711, a can roll 712, and a guide roll 713, whereby the fed resin film 50 can be guided in the direction indicated by the arrow A1 and used for the manufacturing process.
  • the resin film 50 is in close contact with the can roll 712 while being guided by the can roll 712. State.
  • the can roll 712 rotates in the direction indicated by the arrow A2, and the resin film 50 thereon is conveyed in a state of approaching the reaction tube 721.
  • power is applied from the power source 723 to the electrode 722, while the can roll 712 is grounded by an appropriate grounding means (not shown), and the gas of the material of the barrier layer is passed from the gas inlet 724 in the direction of arrow A3.
  • a barrier layer can be continuously formed on the surface of the resin film 50.
  • Such a series of operations is performed in a space surrounded by the vacuum chamber 790.
  • the pressure in the vacuum chamber 790 can be reduced by operating the vacuum exhaust device 730 and adjusted to a pressure suitable for the CVD method.
  • the resin film 50 When such a process is performed at a high output, if the resin film 50 is inferior in dimensional stability under a high temperature environment, the resin film 50 may float from the can roll 212 or the resin film 50 may be deformed. Therefore, it is difficult to continuously form a good barrier layer.
  • the resin film 50 of the present invention is excellent in dimensional stability under a high temperature environment, the above-described float is unlikely to occur. Therefore, if the resin film 50 of the present invention is used, a flat and uniform barrier layer can be continuously formed, and thus the barrier film 70 can be efficiently manufactured.
  • the resin film 50 of this invention is excellent in heat resistance, the heat damage to the resin film 50 can be suppressed. Therefore, the barrier film 70 having a small water vapor transmission rate can be easily manufactured.
  • the barrier film may include an arbitrary layer in combination with the resin film and the barrier layer.
  • an arbitrary layer include an antistatic layer, a hard coat layer, and a contamination prevention layer.
  • These arbitrary layers can be provided by a method such as a method of applying a material of an arbitrary layer on the barrier layer and curing, or a method of applying by thermocompression bonding.
  • % and “part” representing amounts are based on weight unless otherwise specified.
  • operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.
  • sccm is a unit of gas flow rate, and indicates the amount of gas flowing per minute as a volume (cm 3 ) when the gas is 25 ° C. and 1 atm.
  • the “test piece” refers to a resin film, a conductive film, or a barrier film according to Examples and Comparative Examples described below, cut into a predetermined size.
  • Tv [%] [(Tmax ⁇ Tmin) / Tave] ⁇ 100 (14)
  • Tmax is the maximum value of the resin film thickness of the test piece
  • Tmin is the minimum thickness of the resin film of the test piece
  • Tave is an average value of the thickness of the resin film of the test piece. That is, the thickness unevenness Tv of the resin film of the test piece is obtained by dividing the absolute value of the difference between the maximum thickness Tmax and the minimum thickness Tmin when the thickness of the resin film at a plurality of locations is measured by the average thickness Tave. Is expressed as a percentage (%).
  • the maximum value Tmax, the minimum value Tmin, and the average value Tave of the thickness of the resin film of the test piece were obtained as follows.
  • A is one set of sides facing each other
  • B is another set of sides orthogonal to side A
  • three straight lines parallel to side A are on the film surface. Determined.
  • one is a straight line separated from one side A by a distance of 1/20 of the length of side B
  • one is a straight line passing through the midpoint of side B
  • the rest was a straight line separated from the other side A by a distance of 1/20 of the length of side B.
  • a point at a distance that is 1/20 of the length of side A from one side B is the starting point of the thickness measurement point, and a point that is 1/20 of the length of side A from the other side B 10 measurement points separated from each other at equal intervals were determined, and the thickness was measured at each measurement point.
  • the maximum value is the maximum value Tmax of the resin film thickness of the test piece
  • the minimum value is the minimum value of the resin film thickness of the test piece.
  • the average value was defined as Tmin
  • the average value Tave of the resin film thickness of the test piece was defined as Tmin.
  • the internal haze of the resin film of the test piece was measured as follows. First, what was cut out to the size of 50 mm x 50 mm was prepared as a resin film of a test piece. Subsequently, on both surfaces of the resin film of the test piece, a cycloolefin film (ZEONOR film “ZF14-040” manufactured by Nippon Zeon Co., Ltd.) and a thickness was passed through a transparent optical adhesive film (manufactured by 3M, 8146-2) having a thickness of 50 ⁇ m. 40 ⁇ m).
  • the haze of the resin film of the test piece bonded with the cycloolefin film was measured using a haze meter (“NDH5000” manufactured by Nippon Denshoku Industries Co., Ltd.). The value obtained by subtracting the sum of 0.04 of the haze value of two cycloolefin films and the haze value of two transparent optical adhesive films from the haze value obtained as a result of the measurement was used as the internal haze of the resin film of the test piece. .
  • a cycloolefin film, a transparent optical adhesive film, a transparent optical adhesive film, and a cycloolefin film are used.
  • a laminate provided in this order was formed.
  • the haze value of this laminated body was measured, and the obtained measured value was made into the sum of the haze value for two cycloolefin films, and the haze value for two layers of transparent optical adhesive films.
  • the number of bending breaks (x thousand times) was measured as follows. Specifically, first, a resin film cut into a size of 50 mm width ⁇ 100 mm length was prepared as a resin film of a test piece. Then, the number of times of bending and breaking of the resin film of the test piece was measured according to the method of a planar body no-load U-shaped expansion / contraction test using a desktop durability tester “DLDMMLH-FS” manufactured by Yuasa System Equipment Co.
  • the conditions for the expansion / contraction test were set such that the bending radius of the resin film of the test piece was 1 mm and the expansion / contraction speed was 80 times / minute.
  • the number of times of bending is counted as the number of times that the resin film is bent from a substantially flat state to a state having a bent portion having a radius of 1 mm and is again substantially flat.
  • the bending of the resin film of a test piece was performed repeatedly.
  • the tester is temporarily stopped every 10,000 times up to 10,000 times, every 10,000 times up to 10,000 times and every 5,000 times up to 50,000 times, and every 10,000 times after it goes over 50,000 times. It was visually confirmed whether or not even a slight break (crack) of the resin film occurred.
  • the number of times of bending at the time when the crack occurred was defined as “number of times of bending at break”.
  • the number of bending breaks obtained for the resin films of the five test pieces the smallest one was used for evaluation of the bending resistance.
  • the greater the number of breaks and flexes the better the resin film is in flex resistance.
  • the number of breaks and flexes is 100 thousand times (100,000 times) or more, the resin film is sufficiently superior in flex resistance. It is evaluated that the resin film is particularly excellent in bending resistance when the number of bending breaks exceeds 200 ⁇ 1,000 (200,000).
  • the ratio of the racemo dyad in the polymer was measured as follows.
  • the polymer was subjected to 13 C-NMR measurement using ortho-dichlorobenzene-d 4 as a solvent at 200 ° C. by applying the inverse-gate decoupling method.
  • a signal of 43.35 ppm derived from meso dyad and a signal of 43.43 ppm derived from racemo dyad with a peak of 127.5 ppm of orthodichlorobenzene-d 4 as a reference shift was identified. Based on the intensity ratio of these signals, the ratio of the racemo dyad in the polymer was determined.
  • the glass transition temperature Tg and melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was quenched with dry ice, thereby obtaining an amorphous polymer. Subsequently, the amorphous polymer was used as a test specimen, and the glass transition temperature Tg of the polymer was measured using a differential scanning calorimeter (DSC) at a rate of temperature increase (temperature increase mode) of 10 ° C./min. , Melting point Tm and crystallization peak temperature Tpc were measured.
  • DSC differential scanning calorimeter
  • the film deformation ( ⁇ m) was measured as follows. First, what was cut out to the magnitude
  • the conductive layer or the barrier layer is laminated due to large deformation unevenness that has occurred in the resin film used for the test piece of the conductive film and the test piece of the barrier film. It means that a large internal stress difference was applied between the resin film and the flex resistance of the test piece of the conductive film and the test piece of the barrier film. Be evaluated.
  • a hydride of a ring-opening polymer of dicyclopentadiene was produced as follows. The metal pressure-resistant reactor was sufficiently dried and then purged with nitrogen. To this metal pressure-resistant reactor, 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (endo content 99% or more) (30 parts as the amount of dicyclopentadiene), 1- 1.8 parts of hexene was added and warmed to 53 ° C.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,830 and 29,800, respectively, and the molecular weight distribution (Mw / Mn) determined from them. was 3.37.
  • a filter aid (“Radiolite (registered trademark) # 1500” manufactured by Showa Chemical Industry Co., Ltd.) was added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Co., Ltd.) was used. The solution was filtered off.
  • a filter aid (“Radiolite (registered trademark) # 1500” manufactured by Showa Chemical Industry Co., Ltd.) was added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Co., Ltd.) was used. The solution was filtered off.
  • a hydride of a ring-opening polymer of dicyclopentadiene having crystallinity is obtained by separating the hydride and the solution contained in the reaction solution using a centrifugal separator and drying under reduced pressure at 60 ° C. for 24 hours. 5 parts were obtained.
  • the hydrogenation rate of this hydride was confirmed to be 99% or more, the glass transition temperature Tg was 97 ° C., the melting point Tm was 266 ° C., the crystallization peak temperature Tpc was 136 ° C., and the ratio of racemo dyad was 89%. there were.
  • the crystalline resin was put into a twin screw extruder (“TEM-37B” manufactured by Toshiba Machine Co., Ltd.) equipped with four die holes with an inner diameter of 3 mm ⁇ .
  • the resin was molded into a strand-shaped molded body by hot melt extrusion molding using the above-described twin-screw extruder.
  • the molded body was chopped with a strand cutter to obtain resin pellets.
  • the operating conditions of the above twin screw extruder are shown below. ⁇ Barrel set temperature: 270 °C ⁇ 280 °C ⁇ Die setting temperature: 250 °C ⁇ Screw speed: 145rpm ⁇ Feeder rotation speed: 50 rpm
  • the obtained resin pellets were supplied to a hot melt extrusion film forming machine equipped with a T die.
  • a barrel temperature of 280 ° C. to 290 ° C., a die temperature of 270 ° C., and a screw rotation speed of 30 rpm were set.
  • this film forming machine extruded the molten resin in which the resin pellets were melted onto a rotating cast roll into a film having a width of 500 mm (cast).
  • the rotation speed of the cast roll at this time was set to 6 m / min.
  • the extruded molten resin was cooled on a roll to form a long film. This obtained the 1st film.
  • the thickness of the obtained first film was 50 ⁇ m.
  • Example 1 [1-1. (Preheating process) The first film having a thickness of 50 ⁇ m obtained in Production Example 2A was cut into a 350 mm ⁇ 350 mm square as many as required at an arbitrary site. This cutting was performed so that the pair of two square sides of the cut first film having a thickness of 50 ⁇ m were parallel to the MD direction of the long first film. Then, the cut out first film having a thickness of 50 ⁇ m was placed in a small stretcher (“EX10-B type” manufactured by Toyo Seiki Seisakusho). This small stretching machine includes a plurality of clips capable of gripping the four sides of the film, and has a structure capable of stretching the film by moving the clips.
  • a small stretcher (“EX10-B type” manufactured by Toyo Seiki Seisakusho).
  • This small stretching machine includes a plurality of clips capable of gripping the four sides of the film, and has a structure capable of stretching the film by moving the clips.
  • the first film having a thickness of 50 ⁇ m was maintained at the four sides, and the preheating time tph at the preheating temperature Tph using the oven (preheating zone) without changing the distance between the clips. Preheated over time.
  • the preheating temperature Tph was set to 120 ° C., and the preheating time tph was set to 80 seconds. In this way, a second film was obtained as the preheated first film.
  • the crystallization process for promoting the crystallization of the polymer contained in the third film is performed at the heat setting temperature Tts for the heat setting time tts, and as a third film subjected to the crystallization treatment, A fourth film was obtained.
  • the heat setting temperature Tts was set to 180 ° C.
  • the heat setting time tts was 30 seconds.
  • the crystallinity of the polymer contained in the obtained fourth film was measured and found to be 73%.
  • Example 2 The above steps [1-1.
  • the preheating time tph is set to 40 seconds
  • the preheating temperature Tph is set to 125 ° C.
  • the stretching temperature Tst was set to 125 ° C.
  • the same operations as in Example 1 were performed except the above items.
  • Example 3 The above steps [1-1.
  • the preheating time tph was set to 65 seconds. Except for the above items, the same operation as in Example 2 was performed.
  • Example 4 The above steps [1-1.
  • the preheating temperature Tph is set to 130 ° C.
  • the preheating time tph is set to 30 seconds
  • the stretching temperature Tst was set to 130 ° C.
  • the same operations as in Example 1 were performed except the above items.
  • Example 5 The above steps [1-1.
  • the preheating time tph was set to 40 seconds.
  • the same operation as in Example 4 was performed except for the above items.
  • Example 6 The above steps [1-1.
  • the preheating time tph was set to 50 seconds.
  • the same operation as in Example 4 was performed except for the above items.
  • Example 7 The above steps [1-3. In the heat setting step], the heat setting temperature Tts was set to 155 ° C. The same operation as in Example 4 was performed except for the above items.
  • Example 8 The above steps [1-3. In the heat setting step], the heat setting temperature Tts was set to 235 ° C. The same operation as in Example 4 was performed except for the above items.
  • Example 9 The above steps [1-3. In the heat setting step], the heat setting temperature Tts was set to 250 ° C. The same operation as in Example 4 was performed except for the above items.
  • Example 10 The above steps [1-1. In the preheating step], the preheating temperature Tph is set to 135 ° C., the preheating time tph is set to 20 seconds, and the above step [1-2. In the stretching step], the stretching temperature Tst was set to 135 ° C. The same operations as in Example 1 were performed except the above items. [Example 11] The above steps [1-1. In the preheating step], the preheating time tph was set to 30 seconds. Except for the above items, the same operation as in Example 10 was performed. [Example 12] The above steps [1-1. In the preheating step], the preheating time tph was set to 40 seconds. Except for the above items, the same operation as in Example 10 was performed.
  • Example 13 The above steps [1-1. In the preheating step], the preheating temperature Tph is set to 140 ° C., the preheating time tph is set to 10 seconds, and the above step [1-2. In the stretching step], the stretching temperature Tst was set to 140 ° C. The same operations as in Example 1 were performed except the above items. [Example 14] The above steps [1-1. In the preheating step], the preheating time tph was set to 30 seconds. The same operation as in Example 13 was performed except for the above items.
  • Example 15 The above steps [1-1.
  • the preheating temperature Tph is set to 145 ° C.
  • the preheating time tph is set to 15 seconds
  • the stretching temperature Tst was set to 145 ° C.
  • the same operations as in Example 1 were performed except the above items.
  • Example 16 The above steps [1-1.
  • the preheating step the first film having a thickness of 25 ⁇ m obtained in Production Example 2B is used, the preheating temperature Tph is set to 130 ° C., the preheating time tph is set to 30 seconds, and the above step [1 -2.
  • the stretching step the stretching temperature Tst was set to 130 ° C., and the stretching ratio was set to 1.25 times. The same operations as in Example 1 were performed except the above items.
  • Example 17 The above steps [1-1. In the preheating step], the preheating time tph was set to 50 seconds. The same operations as in Example 16 were performed except the above items.
  • Example 18 [18-5. Manufacturing process of conductive film]
  • a film forming apparatus capable of forming a conductive layer on one surface of a resin film by sputtering was prepared.
  • This film forming apparatus is a film winding type magnetron sputtering apparatus capable of forming a desired conductive layer on the surface of a resin film fixed on a long carrier film continuously conveyed in the apparatus. is there.
  • a polyethylene terephthalate film was used as the carrier film.
  • a part of the resin film of Example 4 was cut into a square having a size of 100 mm ⁇ 100 mm as many as necessary.
  • the cut-out resin film was fixed to the carrier film with a polyimide tape.
  • this carrier film was supplied to the film-forming apparatus, and the electroconductive layer was formed in the single side
  • an In 2 O 3 —SnO 2 ceramic target was used as a sputtering target.
  • the film forming conditions were as follows: argon (Ar) flow rate 150 sccm, oxygen (O 2 ) flow rate 10 sccm, output 4.0 kw, vacuum 0.3 Pa, and film conveyance speed 0.5 m / min.
  • a transparent conductive layer made of ITO having a thickness of 100 nm was formed on one surface of the resin film, and a conductive film including the conductive layer and the resin film was obtained.
  • the film deformation amount of the test piece of the conductive film was 4 ⁇ m.
  • Example 19 The above step [18-5. In the conductive film production process], a part of the resin film of Example 16 was used. The same operation as in Example 18 was performed except for the above items. The film deformation amount of the test piece of the conductive film was 7 ⁇ m.
  • Table 5 shows the results of Examples 18 and 19 and Comparative Examples 16 and 17 described above.
  • a film forming apparatus capable of forming a barrier layer on one side of a resin film by a CVD method was prepared.
  • This film forming apparatus is a film-winding type plasma CVD apparatus capable of forming a desired barrier layer on the surface of a film transported in the apparatus, like the film forming apparatus shown in FIG.
  • the film forming apparatus used here has a structure capable of forming a barrier layer on a resin film fixed to a carrier film in order to form a barrier layer on a single wafer resin film.
  • the prepared film forming apparatus forms a desired barrier layer on the surface of the resin film when the resin film is fixed on a long carrier film that is continuously conveyed in the apparatus. It has a possible structure.
  • a polyethylene terephthalate film was used as the carrier film.
  • the cut-out resin film was fixed to the carrier film with a polyimide tape.
  • this carrier film was supplied to the said film-forming apparatus, and the barrier layer was formed in the single side
  • the film formation conditions at this time are tetramethylsilane (TMS) flow rate 10 sccm, oxygen (O 2 ) flow rate 100 sccm, output 0.8 kW, total pressure 5 Pa, film transport speed 0.5 m / min, and film formation by RF plasma discharge. Went.
  • TMS tetramethylsilane
  • a 300 nm thick barrier layer made of SiOx was formed on one side of the resin film, and a barrier film including the barrier layer and the resin film was obtained.
  • the film deformation amount of the test piece of the barrier film was 3 ⁇ m.
  • Example 21 The above step [18-5. In the conductive film production process], a part of the resin film of Example 16 was used. The same operation as in Example 18 was performed except for the above items. The film deformation amount of the test piece of the conductive film was 4 ⁇ m.
  • Table 6 shows the results of Examples 20 and 21 and Comparative Examples 18 and 19 described above.
  • FIG. 8 shows the relationship between the preheating temperature Tph and the preheating time tph in Examples 1 to 15 and Comparative Examples 1 to 6 and 8 to 12 using the first film having a thickness of 50 ⁇ m. .
  • the criticality (upper limit tph (max)) of the preheating time tph was recognized between the example and the comparative example when the preheating temperature Tph was in the range of T1 to T2.
  • the set of the upper limit tph (max) is in the vicinity of the two-dot chain line indicated by the preheating temperature Tph between T1 and T2 in FIG.
  • the preheating time tph in which the criticality between the example and the comparative example was recognized was such that the preheating temperature Tph was in the range of T1 to T2. Therefore, in order to reduce the thickness unevenness Tv of the resin film to 5% or less according to the present invention, as shown in FIG. 8, the preheating temperature Tph is set to a temperature within the range of T1 to T2, and the preheating is performed. It has been found that the time tph may be set to a time equal to or shorter than the upper limit tph (max).
  • the thickness irregularities Tv measured in Examples 1 to 17 were all 5% or less, and in that case, it was confirmed that the number of bending breaks exceeded 100 thousand, that is, excellent in bending resistance. . Further, as shown in Comparative Example 7, it was confirmed that when the heat setting temperature Tts was low, the progress of crystallization was slow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる樹脂フィルムであって、前記重合体の結晶化度が、30%以上であり、かつ、前記樹脂フィルムの式(1)に示される厚みムラTvが5%以下である、樹脂フィルム。ここで、上記式(1)は、Tv[%]=[(Tmax-Tmin)/Tave]×100であり、この式(1)中、Tmaxは、前記樹脂フィルムの厚みの最大値であり、Tminは、前記樹脂フィルムの厚みの最小値であり、かつ、Taveは、前記樹脂フィルムの厚みの平均値である。

Description

樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法
 本発明は、樹脂フィルム;前記樹脂フィルムを備えたバリアフィルム及び導電性フィルム;並びに、前記の樹脂フィルム、バリアフィルム及び導電性フィルムの製造方法に関する。
 脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる樹脂フィルムに関して、当該樹脂フィルムを加熱することにより、該重合体の少なくとも一部の結晶化を促進する技術が知られている(特許文献1及び2参照)。このように結晶化した重合体を含む樹脂からなる樹脂フィルムは、通常、耐熱性に優れる。また、結晶化度の高さに応じて樹脂フィルムの強度が向上することも期待される。
特開2002-194067号公報 特開2013-010309号公報
 重合体の結晶化を促進すべく樹脂フィルムの加熱を行った場合、得られた樹脂フィルムに、ある程度の高さの強度は確保できる。しかしながら、得られた樹脂フィルムは、その耐屈曲性が、期待されるほどには優れてはいない場合があることが判明した。ここで、樹脂フィルムの耐屈曲性とは、多数回におよぶ屈曲試験に対する樹脂フィルムの耐性をいう。
 特に、樹脂フィルムを導電性フィルムの用途で用いる場合には、樹脂フィルムの上に、導電性フィルム用の導電性層を設けるときに、樹脂フィルムと導電性層の間で応力差が生じる。そのような応力差を小さくすべく、樹脂フィルムには、耐屈曲性に優れていることが求められる。同様に、樹脂フィルムをバリアフィルムの用途で用いる場合にも、樹脂フィルムには、耐屈曲性に優れていることが求められる。
 そこで、本発明は、前記のような課題に鑑みて創案されたもので、強度に優れ、かつ、耐屈曲性に優れる樹脂フィルム;前記樹脂フィルムを備えたバリアフィルム及び導電性フィルム;並びに、前記の樹脂フィルム、バリアフィルム及び導電性フィルムの製造方法を提供することを目的とする。
 本発明者は、前記課題を解決するために検討を行い、結晶化の促進後に得られる樹脂フィルムの耐屈曲性が期待されるほどには優れてはいない原因に、樹脂フィルムの厚みの均一性が関わっていることを見出した。さらに、厚みの均一性に優れる樹脂フィルムを用いても、結晶化の促進を行った後には厚みの均一性が低下していたことから、厚みの均一性の低下は、結晶化の促進の際に生じることも判明した。
 さらに本発明者は、鋭意検討した結果、所定の計算式で算出される厚みムラの値が5%以下であれば、十分に優れる耐屈曲性をもつ樹脂フィルムを提供することができることを見出した。また、樹脂フィルムの厚みムラの値を5%以下にするためには、結晶化の促進に先立って行われる延伸処理の直前に十分な予熱を行うことが有効であることを見出した。さらには、厚みムラの値が5%以下の樹脂フィルムを用いることで、導電性層を設けるとき及びバリア層を設けるときに生じる応力差を小さくして、変形の少ない導電性フィルム及びバリアフィルムを製造することができることも見出した。本発明は、かかる知見に基づき完成したものである。
 すなわち、本発明は以下の通りである。
 〔1〕 脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる樹脂フィルムであって、
 前記重合体の結晶化度が、30%以上であり、かつ、
 前記樹脂フィルムの下記式(1)に示される厚みムラTv
 Tv[%]=[(Tmax-Tmin)/Tave]×100  (1)
 (上記式(1)中、
 Tmaxは、前記樹脂フィルムの厚みの最大値であり、
 Tminは、前記樹脂フィルムの厚みの最小値であり、かつ、
 Taveは、前記樹脂フィルムの厚みの平均値である)
 が5%以下である、
 樹脂フィルム。
 〔2〕 前記脂環式構造を含有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、
 〔1〕に記載の樹脂フィルム。
 〔3〕 前記樹脂フィルムの内部ヘイズが3%以下である、
 〔1〕又は〔2〕に記載の樹脂フィルム。
 〔4〕 前記樹脂フィルムが、光学フィルムである、
 〔1〕~〔3〕のいずれか一項に記載の樹脂フィルム。
 〔5〕 〔1〕~〔4〕のいずれか一項に記載の樹脂フィルムと、
 前記樹脂フィルムの上に設けられた導電性層と
 を備える、導電性フィルム。
 〔6〕 〔1〕~〔4〕のいずれか一項に記載の樹脂フィルムと、
 前記樹脂フィルムの上に設けられたバリア層と
 を備える、バリアフィルム。
 〔7〕 〔1〕~〔4〕のいずれか一項に記載の樹脂フィルムの製造方法であって、
 脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる第1のフィルムを、当該第1のフィルムの少なくとも二辺を保持した状態で、第1の温度T1以上でかつ第2の温度T2以下の範囲内の予熱温度Tphで予熱時間tphにわたって予熱して、第2のフィルムを得る予熱工程と、
 前記第2のフィルムに対して第1の温度T1以上でかつ第2の温度T2以下の範囲内の延伸温度Tstで延伸処理を施すことにより、第3のフィルムを得る延伸工程と、
 前記第3のフィルムの少なくとも二辺を保持した状態で、前記第3のフィルムに対して、前記延伸温度Tstよりも高温であって、第3の温度T3以上でかつ前記重合体の融点Tm未満の範囲内の熱固定温度Ttsで5秒以上保持する熱固定工程と
 を含み、
 ここで、前記第1の温度T1は、下記式(2):
 T1[℃]=(5×Tg+5×Tpc)/10  (2)
 (上記式(2)中、Tgは、前記重合体のガラス転移温度であり、かつ、Tpcは、前記重合体の結晶化ピーク温度である)
 で示され、
 前記第2の温度T2は、下記式(3):
 T2[℃]=(9×Tpc+1×Tm)/10  (3)
 で示され、
 前記予熱時間tphの上限tph(max)は、下記式(4):
 tph(max)[秒]=80×[(T1-Tph)/(T2-T1)]+90 (4)
 で示され、かつ、
 前記第3の温度T3は、下記式(5):
 T3[℃]=(9×Tpc+1×Tm)/10  (5)
 で示される、
 樹脂フィルムの製造方法。
 〔8〕 前記熱固定温度Ttsは、前記第3の温度T3以上でかつ第4の温度T4以下の範囲内にあり、
 ここで、前記第4の温度T4は、以下式(6):
 T4[℃]=(2×Tpc+8×Tm)/10  (6)
 で示される、
 〔7〕に記載の樹脂フィルムの製造方法。
 〔9〕 前記熱固定工程を行う熱固定時間ttsが、90秒以下である、
 〔7〕又は〔8〕に記載の樹脂フィルムの製造方法。
 〔10〕 〔1〕~〔4〕のいずれか一項に記載の樹脂フィルムの上に、導電性層を形成する工程を含む、導電性フィルムの製造方法。
 〔11〕 〔1〕~〔4〕のいずれか一項に記載の樹脂フィルムの上に、バリア層を形成する工程を含む、バリアフィルムの製造方法。
 本発明によれば、強度に優れ、かつ、耐屈曲性に優れる樹脂フィルム;前記樹脂フィルムを備えたバリアフィルム及び導電性フィルム;並びに、前記の樹脂フィルム、バリアフィルム及び導電性フィルムの製造方法を提供することができる。
図1は、保持装置の例を模式的に示す平面図である。 図2は、保持装置の例を模式的に示す平面図である。 図3は、樹脂フィルムの製造装置の例を模式的に示す正面図である。 図4は、樹脂フィルムの製造装置の例を模式的に示す平面図である。 図5は、リンク装置の一部分を模式的に示す平面図である。 図6は、リンク装置の一部分を模式的に示す平面図である。 図7は、バリア層をCVD法により無機層として成膜しうる成膜装置の一例を模式的に示す断面図である。 図8は、表2及び表4中の予熱温度Tphと予熱時間tphをプロットしたグラフである。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長さの上限に特段の制限は無いが、通常、幅に対して10万倍以下である。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。
 以下の説明において、長尺のフィルムの長手方向は、通常は製造ラインにおけるフィルム搬送方向と平行である。また、MD方向(mashine direction)は、製造ラインにおけるフィルムの搬送方向であり、通常は長尺のフィルムの長手方向と平行である。さらに、TD方向(traverse direction)は、フィルム面に平行な方向であって、前記MD方向に垂直な方向であり、通常は長尺のフィルムの幅方向と平行である。
 [1.樹脂フィルム]
 本発明の樹脂フィルムは、脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる樹脂フィルムである。以下の説明において、前記の樹脂を「結晶性樹脂」ということがある。結晶性樹脂に含まれる重合体の結晶化度は30%以上である。また、本発明の樹脂フィルムは、厚みムラTvが5%以下である。厚みムラTvについては後述する。そして、本発明の樹脂フィルムは、上記のような特徴を有することにより、耐屈曲性に優れる。
 〔1.1.結晶性樹脂〕
 結晶性樹脂は、脂環式構造を含有し結晶性を有する重合体を含む。ここで、脂環式構造を含有する重合体とは、分子内に脂環式構造を有する重合体であって、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素化物をいう。また、脂環式構造を含有する重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 脂環式構造を含有する重合体が有する脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる樹脂フィルムが得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。
 脂環式構造を含有する重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造を含有する重合体における脂環式構造を有する構造単位の割合を前記のように多くすることにより、耐熱性を高めることができる。全ての構造単位に対する脂環式構造を有する構造単位の割合は、100重量%以下としうる。
 また、脂環式構造を含有する重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
 結晶性樹脂に含まれる脂環式構造を含有する重合体は、結晶性を有する。ここで、「脂環式構造を含有し結晶性を有する重合体」とは、融点Tmを有する〔すなわち、示差走査熱量計(DSC)で融点を観測することができる〕脂環式構造を含有する重合体をいう。脂環式構造を含有する重合体の融点Tmは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Tmを有する脂環式構造を含有する重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた樹脂フィルムを得ることができる。
 脂環式構造を含有する重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する脂環式構造を含有する重合体は、成形加工性と耐熱性とのバランスに優れる。
 脂環式構造を含有する重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する脂環式構造を含有する重合体は、成形加工性に優れる。
 脂環式構造を含有する重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。
 脂環式構造を含有する重合体のガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。
 前記の脂環式構造を含有する重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる樹脂フィルムが得られ易いことから、脂環式構造を含有し結晶性を有する重合体としては、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物等であって、結晶性を有するもの。
 具体的には、脂環式構造を含有する重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましい。脂環式構造を含有する重合体としては、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。
 以下、重合体(α)及び重合体(β)の製造方法を説明する。
 重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体は、炭素原子で形成された環構造を有し、該環中に炭素-炭素二重結合を有する化合物である。環状オレフィン単量体の例としては、ノルボルネン系単量体等が挙げられる。また、重合体(α)が共重合体である場合には、環状オレフィン単量体として、単環の環状オレフィンを用いてもよい。
 ノルボルネン系単量体は、ノルボルネン環を含む単量体である。ノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノルボルネン)及びその誘導体(例えば、環に置換基を有するもの)等の、2環式単量体;トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の、3環式単量体;7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン:1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)及びその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン及びその誘導体等の、4環式単量体;などが挙げられる。
 前記の単量体において置換基としては、例えば、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;プロパン-2-イリデン等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;などが挙げられる。また、前記の置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。
 単環の環状オレフィンとしては、例えば、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエン、フェニルシクロオクタジエン等の環状ジオレフィン;等が挙げられる。
 環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。環状オレフィン単量体を2種以上用いる場合、重合体(α)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 環状オレフィン単量体には、エンド体及びエキソ体の立体異性体が存在するものがありうる。環状オレフィン単量体としては、エンド体及びエキソ体のいずれを用いてもよい。また、エンド体及びエキソ体のうち一方の異性体のみを単独で用いてもよく、エンド体及びエキソ体を任意の割合で含む異性体混合物を用いてもよい。中でも、脂環式構造を含有する重合体の結晶性が高まり、耐熱性により優れる樹脂フィルムが得られ易くなることから、一方の立体異性体の割合を高くすることが好ましい。例えば、エンド体又はエキソ体の割合が、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。また、合成が容易であることから、エンド体の割合が高いことが好ましい。
 重合体(α)及び重合体(β)は、通常、そのシンジオタクチック立体規則性の度合い(ラセモ・ダイアッドの割合)を高めることで、結晶性を高くすることができる。重合体(α)及び重合体(β)の立体規則性の程度を高くする観点から、重合体(α)及び重合体(β)の構造単位についてのラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは60%以上、特に好ましくは70%以上である。ラセモ・ダイアッドの割合の上限は、100%以下としうる。
 ラセモ・ダイアッドの割合は、13C-NMRスペクトル分析により、測定しうる。具体的には、下記の方法により測定しうる。
 オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体試料の13C-NMR測定を行う。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルを同定する。これらのシグナルの強度比に基づいて、重合体試料のラセモ・ダイアッドの割合を求めうる。
 重合体(α)の合成には、通常、開環重合触媒を用いる。開環重合触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。このような重合体(α)の合成用の開環重合触媒としては、環状オレフィン単量体を開環重合させ、シンジオタクチック立体規則性を有する開環重合体を生成させうるものが好ましい。好ましい開環重合触媒としては、下記式(7)で示される金属化合物を含むものが挙げられる。
 M(NR)X4-a(OR・L (7)
 (式(7)において、
 Mは、周期律表第6族の遷移金属原子からなる群より選択される金属原子を示し、
 Rは、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は、-CH(Rは、水素原子、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。)で表される基を示し、
 Rは、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示し、
 Xは、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、及び、アルキルシリル基からなる群より選択される基を示し、
 Lは、電子供与性の中性配位子を示し、
 aは、0又は1の数を示し、
 bは、0~2の整数を示す。)
 式(7)において、Mは、周期律表第6族の遷移金属原子からなる群より選択される金属原子を示す。このMとしては、クロム、モリブデン及びタングステンが好ましく、モリブデン及びタングステンがより好ましく、タングステンが特に好ましい。
 式(7)において、Rは、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は、-CHで表される基を示す。
 Rの、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基の炭素原子数は、好ましくは6~20、より好ましくは6~15である。また、前記置換基としては、例えば、メチル基、エチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;などが挙げられる。これらの置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。さらに、Rにおいて、3位、4位及び5位の少なくとも2つの位置に存在する置換基が互いに結合し、環構造を形成していてもよい。
 3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基としては、例えば、無置換フェニル基;4-メチルフェニル基、4-クロロフェニル基、3-メトキシフェニル基、4-シクロヘキシルフェニル基、4-メトキシフェニル基等の一置換フェニル基;3,5-ジメチルフェニル基、3,5-ジクロロフェニル基、3,4-ジメチルフェニル基、3,5-ジメトキシフェニル基等の二置換フェニル基;3,4,5-トリメチルフェニル基、3,4,5-トリクロロフェニル基等の三置換フェニル基;2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基等の置換基を有していてもよい2-ナフチル基;等が挙げられる。
 Rの、-CHで表される基において、Rは、水素原子、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。
 Rの、置換基を有していてもよいアルキル基の炭素原子数は、好ましくは1~20、より好ましくは1~10である。このアルキル基は、直鎖状であってもよく、分岐状であってもよい。さらに、前記置換基としては、例えば、フェニル基、4-メチルフェニル基等の置換基を有していてもよいフェニル基;メトキシ基、エトキシ基等のアルコキシル基;等が挙げられる。これらの置換基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 Rの、置換基を有していてもよいアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ネオペンチル基、ベンジル基、ネオフィル基等が挙げられる。
 Rの、置換基を有していてもよいアリール基の炭素原子数は、好ましくは6~20、より好ましくは6~15である。さらに、前記置換基としては、例えば、メチル基、エチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;等が挙げられる。これらの置換基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 Rの、置換基を有していてもよいアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、4-メチルフェニル基、2,6-ジメチルフェニル基等が挙げられる。
 これらの中でも、Rで表される基としては、炭素原子数が1~20のアルキル基が好ましい。
 式(7)において、Rは、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。Rの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基としては、それぞれ、Rの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基として示した範囲から選択されるものを任意に用いうる。
 式(7)において、Xは、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、及び、アルキルシリル基からなる群より選択される基を示す。
 Xのハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Xの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基としては、それぞれ、Rの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基として示した範囲から選択されるものを任意に用いうる。
 Xのアルキルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基等が挙げられる。
 式(7)で示される金属化合物が1分子中に2以上のXを有する場合、それらのXは、互いに同じでもよく、異なっていてもよい。さらに、2以上のXが互いに結合し、環構造を形成していてもよい。
 式(7)において、Lは、電子供与性の中性配位子を示す。
 Lの電子供与性の中性配位子としては、例えば、周期律表第14族又は第15族の原子を含有する電子供与性化合物が挙げられる。その具体例としては、トリメチルホスフィン、トリイソプロピルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン等のホスフィン類;ジエチルエーテル、ジブチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;トリメチルアミン、トリエチルアミン、ピリジン、ルチジン等のアミン類;等が挙げられる。これらの中でも、エーテル類が好ましい。また、式(7)で示される金属化合物が1分子中に2以上のLを有する場合、それらのLは、互いに同じでもよく、異なっていてもよい。
 式(7)で示される金属化合物としては、フェニルイミド基を有するタングステン化合物が好ましい。即ち、式(7)において、Mがタングステン原子であり、且つ、Rがフェニル基である化合物が好ましい。さらに、その中でも、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体がより好ましい。
 式(7)で示される金属化合物の製造方法は、特に限定されない。例えば、特開平5-345817号公報に記載されるように、第6族遷移金属のオキシハロゲン化物;3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニルイソシアナート類又は一置換メチルイソシアナート類;電子供与性の中性配位子(L);並びに、必要に応じて、アルコール類、金属アルコキシド及び金属アリールオキシド;を混合することにより、式(7)で示される金属化合物を製造することができる。
 前記の製造方法では、式(7)で示される金属化合物は、通常、反応液に含まれた状態で得られる。金属化合物の製造後、前記の反応液をそのまま開環重合反応の触媒液として用いてもよい。また、結晶化等の精製処理により、金属化合物を反応液から単離及び精製した後、得られた金属化合物を開環重合反応に供してもよい。
 開環重合触媒は、式(7)で示される金属化合物を単独で用いてもよく、式(7)で示される金属化合物を他の成分と組み合わせて用いてもよい。例えば、式(7)で示される金属化合物と有機金属還元剤とを組み合わせて用いることで、重合活性を向上させることができる。
 有機金属還元剤としては、例えば、炭素原子数1~20の炭化水素基を有する周期律表第1族、第2族、第12族、第13族又は14族の有機金属化合物が挙げられる。このような有機金属化合物としては、例えば、メチルリチウム、n-ブチルリチウム、フェニルリチウム等の有機リチウム;ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n-ブチルマグネシウムクロリド、アリルマグネシウムブロミド等の有機マグネシウム;ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛等の有機亜鉛;トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムイソブトキシド、エチルアルミニウムジエトキシド、イソブチルアルミニウムジイソブトキシド等の有機アルミニウム;テトラメチルスズ、テトラ(n-ブチル)スズ、テトラフェニルスズ等の有機スズ;等が挙げられる。これらの中でも、有機アルミニウム又は有機スズが好ましい。また、有機金属還元剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 開環重合反応は、通常、有機溶媒中で行われる。有機溶媒は、開環重合体及びその水素化物を、所定の条件で溶解もしくは分散させることが可能であり、かつ、開環重合反応及び水素化反応を阻害しないものを用いうる。このような有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタン等の脂環族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素類;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素類;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;これらを組み合わせた混合溶媒;等が挙げられる。これらの中でも、有機溶媒としては、芳香族炭化水素類、脂肪族炭化水素類、脂環族炭化水素類、エーテル類が好ましい。また、有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 開環重合反応は、例えば、環状オレフィン単量体と、式(7)で示される金属化合物と、必要に応じて有機金属還元剤とを混合することにより、開始させることができる。これらの成分を混合する順序は、特に限定されない。例えば、環状オレフィン単量体を含む溶液に、式(7)で示される金属化合物及び有機金属還元剤を含む溶液を混合してもよい。また、有機金属還元剤を含む溶液に、環状オレフィン単量体及び式(7)で示される金属化合物を含む溶液を混合してもよい。さらに、環状オレフィン単量体及び有機金属還元剤を含む溶液に、式(7)で示される金属化合物の溶液を混合してもよい。各成分を混合する際は、それぞれの成分の全量を一度に混合してもよいし、複数回に分けて混合してもよい。また、比較的に長い時間(例えば1分間以上)にわたって連続的に混合してもよい。
 開環重合反応の開始時における反応液中の環状オレフィン単量体の濃度は、好ましくは1重量%以上、より好ましくは2重量%以上、特に好ましくは3重量%以上であり、好ましくは50重量%以下、より好ましくは45重量%以下、特に好ましくは40重量%以下である。環状オレフィン単量体の濃度を前記範囲の下限値以上にすることにより、生産性を高くできる。また、上限値以下にすることにより、開環重合反応後の反応液の粘度を低くできるので、その後の水素化反応を容易に行うことができる。
 開環重合反応に用いる式(7)で示される金属化合物の量は、「金属化合物:環状オレフィン単量体」のモル比が、所定の範囲の収まるように設定することが望ましい。具体的には、前記のモル比は、好ましくは1:100~1:2,000,000、より好ましくは1:500~1,000,000、特に好ましくは1:1,000~1:500,000である。金属化合物の量を前記範囲の下限値以上にすることにより、十分な重合活性を得ることができる。また、上限値以下にすることにより、反応後に金属化合物を容易に除去できる。
 有機金属還元剤の量は、式(7)で示される金属化合物1モルに対して、好ましくは0.1モル以上、より好ましくは0.2モル以上、特に好ましくは0.5モル以上であり、好ましくは100モル以下、より好ましくは50モル以下、特に好ましくは20モル以下である。有機金属還元剤の量を前記範囲の下限値以上にすることにより、重合活性を十分に高くできる。また、上限値以下にすることにより、副反応の発生を抑制することができる。
 重合体(α)の重合反応系は、活性調整剤を含んでいてもよい。活性調整剤を用いることで、開環重合触媒を安定化したり、開環重合反応の反応速度を調整したり、重合体の分子量分布を調整したりできる。
 活性調整剤としては、官能基を有する有機化合物を用いうる。このような活性調整剤としては、例えば、含酸素化合物、含窒素化合物、含リン有機化合物等が挙げられる。
 含酸素化合物としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール、フラン、テトラヒドロフラン等のエーテル類;アセトン、ベンゾフェノン、シクロヘキサノンなどのケトン類;エチルアセテート等のエステル類;等が挙げられる。
 含窒素化合物としては、例えば、アセトニトリル、ベンゾニトリル等のニトリル類;トリエチルアミン、トリイソプロピルアミン、キヌクリジン、N,N-ジエチルアニリン等のアミン類;ピリジン、2,4-ルチジン、2,6-ルチジン、2-t-ブチルピリジン等のピリジン類;等が挙げられる。
 含リン化合物としては、例えば、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフェート、トリメチルホスフェート等のホスフィン類;トリフェニルホスフィンオキシド等のホスフィンオキシド類;等が挙げられる。
 活性調整剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 重合体(α)の重合反応系における活性調整剤の量は、式(7)で示される金属化合物100モル%に対して、好ましくは0.01モル%~100モル%である。
 重合体(α)の重合反応系は、重合体(α)の分子量を調整するために、分子量調整剤を含んでいてもよい。分子量調整剤としては、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン類;スチレン、ビニルトルエン等の芳香族ビニル化合物;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル、酢酸アリル、アリルアルコール、グリシジルメタクリレート等の酸素含有ビニル化合物;アリルクロライド等のハロゲン含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエン等の非共役ジエン;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン;等が挙げられる。
 分子量調整剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 重合体(α)を重合するための重合反応系における分子量調整剤の量は、目的とする分子量に応じて適切に決定しうる。分子量調整剤の具体的な量は、環状オレフィン単量体に対して、好ましくは0.1モル%~50モル%の範囲である。
 重合温度は、好ましくは-78℃以上、より好ましくは-30℃以上であり、好ましくは+200℃以下、より好ましくは+180℃以下である。
 重合時間は、反応規模に依存しうる。具体的な重合時間は、好ましくは1分間から1000時間の範囲である。
 上述した製造方法により、重合体(α)が得られる。この重合体(α)を水素化することにより、重合体(β)を製造することができる。
 重合体(α)の水素化は、例えば、常法に従って水素化触媒の存在下で、重合体(α)を含む反応系内に水素を供給することによって行うことができる。この水素化反応において、反応条件を適切に設定すれば、通常、水素化反応により水素化物のタクチシチーが変化することはない。
 水素化触媒としては、オレフィン化合物の水素化触媒として公知の均一系触媒及び不均一触媒を用いうる。
 均一系触媒としては、例えば、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n-ブチルリチウム、ジルコノセンジクロリド/sec-ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウム等の、遷移金属化合物とアルカリ金属化合物の組み合わせからなる触媒;ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、クロロヒドリドカルボニルビス(トリシクロヘキシルホスフィン)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド、クロロトリス(トリフェニルホスフィン)ロジウム等の貴金属錯体触媒;等が挙げられる。
 不均一触媒としては、例えば、ニッケル、パラジウム、白金、ロジウム、ルテニウム等の金属触媒;ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナ等の、前記金属をカーボン、シリカ、ケイソウ土、アルミナ、酸化チタンなどの担体に担持させてなる固体触媒が挙げられる。
 水素化触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水素化反応は、通常、不活性有機溶媒中で行われる。不活性有機溶媒としては、ベンゼン、トルエン等の芳香族炭化水素類;ペンタン、ヘキサン等の脂肪族炭化水素類;シクロヘキサン、デカヒドロナフタレンなどの脂環族炭化水素類;テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル類;等が挙げられる。不活性有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、不活性有機溶媒は、開環重合反応に用いた有機溶媒と同じものであってもよいし、異なるものであってもよい。さらに、開環重合反応の反応液に水素化触媒を混合して、水素化反応を行ってもよい。
 水素化反応の反応条件は、通常、用いる水素化触媒によっても異なる。
 水素化反応の反応温度は、好ましくは-20℃以上、より好ましくは-10℃以上、特に好ましくは0℃以上であり、好ましくは+250℃以下、より好ましくは+220℃以下、特に好ましくは+200℃以下である。反応温度を前記範囲の下限値以上にすることにより、反応速度を速くできる。また、上限値以下にすることにより、副反応の発生を抑制できる。
 水素圧力は、好ましくは0.01MPa以上、より好ましくは0.05MPa以上、特に好ましくは0.1MPa以上であり、好ましくは20MPa以下、より好ましくは15MPa以下、特に好ましくは10MPa以下である。水素圧力を前記範囲の下限値以上にすることにより、反応速度を速くできる。また、上限値以下にすることにより、高耐圧反応装置等の特別な装置が不要となり、設備コストを抑制できる。
 水素化反応の反応時間は、所望の水素化率が達成される任意の時間に設定してもよく、好ましくは0.1時間~10時間である。
 水素化反応後は、通常、常法に従って、重合体(α)の水素化物である重合体(β)を回収する。
 水素化反応における水素化率(水素化された主鎖二重結合の割合)は、好ましくは98%以上、より好ましくは99%以上である。水素化率が高くなるほど、脂環式構造を含有する重合体の耐熱性を良好にできる。水素化率の上限は、100%以下としうる。
 ここで、重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定しうる。
 次に、重合体(γ)及び重合体(δ)の製造方法を説明する。
 重合体(γ)及び(δ)の製造に用いる環状オレフィン単量体としては、重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体として示した範囲から選択されるものを任意に用いうる。また、環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合体(γ)の製造においては、単量体として、環状オレフィン単量体に組み合わせて、環状オレフィン単量体と共重合可能な任意の単量体を用いうる。任意の単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素原子数2~20のα-オレフィン;スチレン、α-メチルスチレン等の芳香環ビニル化合物;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;等が挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 環状オレフィン単量体と任意の単量体との量の割合は、重量比(環状オレフィン単量体:任意の単量体)で、好ましくは30:70~99:1、より好ましくは50:50~97:3、特に好ましくは70:30~95:5である。
 環状オレフィン単量体を2種以上用いる場合、及び、環状オレフィン単量体と任意の単量体を組み合わせて用いる場合は、重合体(γ)は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
 重合体(γ)の合成には、通常、付加重合触媒を用いる。このような付加重合触媒としては、例えば、バナジウム化合物及び有機アルミニウム化合物から形成されるバナジウム系触媒、チタン化合物及び有機アルミニウム化合物から形成されるチタン系触媒、ジルコニウム錯体及びアルミノオキサンから形成されるジルコニウム系触媒等が挙げられる。また、付加重合体触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 付加重合触媒の量は、単量体1モルに対して、好ましくは0.000001モル以上、より好ましくは0.00001モル以上であり、好ましくは0.1モル以下、より好ましくは0.01モル以下である。
 環状オレフィン単量体の付加重合は、通常、有機溶媒中で行われる。有機溶媒としては、環状オレフィン単量体の開環重合に用いうる有機溶媒として示した範囲から選択されるものを任意に用いうる。また、有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合体(γ)を製造するための重合における重合温度は、好ましくは-50℃以上、より好ましくは-30℃以上、特に好ましくは-20℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、特に好ましくは150℃以下である。また、重合時間は、好ましくは30分以上、より好ましくは1時間以上であり、好ましくは20時間以下、より好ましくは10時間以下である。
 上述した製造方法により、重合体(γ)が得られる。この重合体(γ)を水素化することにより、重合体(δ)を製造することができる。
 重合体(γ)の水素化は、重合体(α)を水素化する方法として先に示したものと同様の方法により、行いうる。
 結晶性樹脂において、脂環式構造を含有し結晶性を有する重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を含有し結晶性を有する重合体の割合を前記範囲の下限値以上にすることにより、本発明の樹脂フィルムの耐熱性を高めることができる。脂環式構造を含有し結晶性を有する重合体の割合の上限は、100重量%以下としうる。
 結晶性樹脂に含まれる脂環式構造を含有する重合体は、本発明の樹脂フィルムを製造するよりも前においては、結晶化していなくてもよい。しかし、本発明の樹脂フィルムが製造された後においては、当該樹脂フィルムを形成する結晶性樹脂が含む脂環式構造を含有する重合体は、通常、結晶化していることにより、高い結晶化度を有することができる。具体的な結晶化度の範囲は所望の性能に応じて適宜選択しうるが、好ましくは10%以上、より好ましくは15%以上である。樹脂フィルムに含まれる脂環式構造を含有する重合体の結晶化度を前記範囲の下限値以上にすることにより、樹脂フィルムに高い耐熱性や耐薬品性を付与することができる。
 樹脂フィルムに含まれる脂環式構造を含有する重合体の結晶化度は、X線回折法によって測定しうる。
 結晶性樹脂は、脂環式構造を含有し結晶性を有する重合体に加えて、任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー、及び、軟質重合体等の、脂環式構造を含有し結晶性を有する重合体以外の任意の重合体;などが挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 〔1.2.樹脂フィルムの物性〕
 (樹脂フィルムの耐屈曲性)
 本発明の樹脂フィルムは、上述した結晶性樹脂からなる。結晶性樹脂からなる従来の樹脂フィルムでは、一般に、耐屈曲性に十分には優れていない傾向があった。しかし、本発明の樹脂フィルムは、脂環式構造を含有する結晶化度が30%以上の重合体を含む樹脂でありながら、十分に優れた耐屈曲性を有する。ここで、耐屈曲性は、実施例の欄中の評価項目で説明するような方法で測定した破断屈曲回数で評価しうる。具体的には、破断屈曲回数が100千回以上の場合に耐屈曲性に十分に優れていると評価することができ、破断屈曲回数が200千回以上の場合に耐屈曲性に特に優れていると評価することができる。そして、本発明の樹脂フィルムは、上述のとおり十分に優れた耐屈曲性を有するので、光学フィルムの用途、並びに、導電性フィルム及びバリアフィルムの用途にも適したものとなる。
 (樹脂フィルムの結晶化度)
 本発明の樹脂フィルムに含まれる重合体の結晶化度は、30%以上、好ましくは35%以上である。結晶化度の上限は、特に限定されず、従って100%以下としうるが、好ましくは85%以下である。重合体の結晶化度が前記下限以上であることにより、高い強度を得ることができる。重合体の結晶化度が前記上限以下であることにより、良好な耐屈曲性をより容易に達成しうる。
 (樹脂フィルムの厚みムラTv)
 そして、上述のように耐屈曲性に十分に優れていると評価されるような本発明の樹脂フィルムは、当該樹脂フィルムの厚みムラTvが5%以下であり、好ましくは、4%以下であり、さらに好ましくは3%以下であり、また、理想的には厚みムラTvは0%であるが下限を0%超としてもよい。
 ここで、上記厚みムラTvは、下記式(8)に、樹脂フィルムの厚みの最大値Tmax、樹脂フィルムの厚みの最小値Tmin、及び、樹脂フィルムの厚みの平均値Taveを代入することによって求められる。
 Tv[%]=[(Tmax-Tmin)/Tave]×100  (8)
 上記の最大値Tmax、最小値Tmin、及び、平均値Taveは、以下のようにして測定される。以下のようにして厚みを測定することで、樹脂フィルムの局所的な指標ではない、樹脂フィルムの全体的な指標としての、厚みムラTv及び厚みを評価することができる。
 まず、樹脂フィルムの厚みの測定対象領域を樹脂フィルムの面上に定める。具体的には、樹脂フィルムの4辺(長辺及び短辺)の長さがいずれも1m以下の枚葉のフィルムの場合、フィルム面全体を測定対象領域とし、樹脂フィルムの4辺(長辺及び短辺)の長さのいずれかもしくはいずれもが1mを超える枚葉のフィルム又は長尺のフィルムの場合、フィルム面に含まれる短辺の長さ×短辺の長さのサイズの任意の領域を測定対象領域とする。
 次に、上述のように定めた測定対象領域内で、樹脂フィルムの厚みの測定箇所を少なくとも30点定める。これら測定箇所は、フィルム面上において上記測定対象領域の外縁側に分布する測定箇所を直線で結んで形成される多角形の面積が、測定対象領域の70%以上を占めるようにする。ただし、外縁側に分布する測定箇所は、互いに隣り合う2点の測定箇所を結ぶ線分と、その線分の一方の端点とその端点の隣にある測定箇所とを結ぶ線分とがなす内角が180°以下であるという条件を満たす。外縁側に分布する測定箇所が定まる限りにおいて、他の測定箇所は上記多角形の領域内でその位置及び数を任意に定めることができる。ただし、任意の3点の測定箇所を結んだ三角形であってその辺上の点を含む内側領域上に他の測定箇所を含まない三角形の面積が50cm以下であり、かつ測定対象領域の面積の5%以下になるように測定箇所を定める。例えば、4辺の長さがいずれも1m以下の枚葉のフィルムの場合、実施例の欄中の評価項目で説明するような方法で測定箇所を定めうる。
 そして、上記のように定めた測定箇所で樹脂フィルムの厚みを測定する。少なくとも30点の計測箇所で得られた厚みのうち、その最大値を、樹脂フィルムの厚みの最大値Tmaxとし、その最小値を、樹脂フィルムの厚みの最小値Tminとし、その平均値を、樹脂フィルムの厚みの平均値Taveとする。
 本発明の樹脂フィルムは、上述したように求められる厚みムラTvの値が小さいので、屈曲しても、不均一な応力集中が生じにくく、その結果、破断が生じにくいという効果を奏する。
 (樹脂フィルムの位相差ムラ及び配向ムラ)
 本発明の樹脂フィルムは、光学特性が付与された光学フィルムである場合、通常は、厚みムラが小さいのと同様に、位相差ムラ及び配向ムラも小さい。したがって、本発明によれば、優れた光学フィルムを提供することができる。
 (樹脂フィルムの内部ヘイズ)
 本発明の樹脂フィルムは、内部ヘイズが小さいことが好ましい。ここで、通常、ヘイズには、樹脂フィルムの表面にある微細な凹凸による光散乱によるものと、内部屈折率分布によるものとが含まれる。内部ヘイズとは、通常のヘイズから樹脂フィルムの表面にある微細な凹凸による光散乱によるヘイズを差し引いたものをいう。そのような内部ヘイズは、実施例の欄中の評価項目で説明するような方法で測定しうる。
 好ましくは、樹脂フィルムの内部ヘイズは、3%以下であり、より好ましくは2%以下であり、さらに好ましくは1%以下であり、特に好ましくは0.5%以下であり、また、理想的には内部ヘイズは0%であるが下限を0%超としてもよい。
 (樹脂フィルムの透明性)
 本発明の樹脂フィルムは、透明性に優れることが好ましい。具体的には、本発明の樹脂フィルムの全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。
 樹脂フィルムの全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。
 (樹脂フィルムの光学特性)
 本発明の樹脂フィルムは、用途に応じて、レターデーションを有していてもよい。例えば、本発明の樹脂フィルムを位相差フィルム、光学補償フィルム等の光学フィルムとして用いる場合には、樹脂フィルムはレターデーションを有することが好ましい。
 (樹脂フィルムの厚み)
 本発明の樹脂フィルムの厚みは、所望の用途に応じて適宜選択しうるが、好ましくは1μm以上、より好ましくは3μm以上、特に好ましくは10μm以上であり、好ましくは1mm以下、より好ましくは500μm以下、特に好ましくは200μm以下である。樹脂フィルムの厚みを前記範囲の下限値以上にすることにより、適度の強度を得ることができる。また、上限値以下にすることにより、長尺のフィルムを製造する場合の巻取りを可能にすることができる。本発明の樹脂フィルムは、厚みムラが小さいので、ロールに巻き取るときの巻きムラを小さくすることができ、また、シワの発生も抑えられる。また、本発明の樹脂フィルムは、厚みムラが小さいので、表面に塗工層を設けるときの塗工ムラ及び塗工厚みのムラを抑えることもできる。
 (樹脂フィルムの用途)
 本発明の樹脂フィルムは、任意の用途に用いうる。中でも、本発明の樹脂フィルムは、例えば、光学等方性フィルム及び位相差フィルム等の光学フィルム、電気電子用フィルム、バリアフィルム用の基材フィルム、並びに、導電性フィルム用の基材フィルムとして好適である。前記の光学フィルムとしては、例えば、液晶表示装置用の位相差フィルム、偏光板保護フィルム、有機EL表示装置の円偏光板用の位相差フィルム、等が挙げられる。電気電子用フィルムとしては、例えば、フレキシブル配線基板、フィルムコンデンサー用絶縁材料、などが挙げられる。バリアフィルムとしては、例えば、有機EL素子用の基板、封止フィルム、太陽電池の封止フィルム、などが挙げられる。導電性フィルムとしては、例えば、有機EL素子や太陽電池のフレキシブル電極、タッチパネル部材、などが挙げられる。
 [2.樹脂フィルムの製造方法]
 本発明の樹脂フィルムは、脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる第1のフィルムを、当該第1のフィルムの少なくとも二辺を保持した状態で、第1の温度T1以上でかつ第2の温度T2以下の範囲内の予熱温度Tphで予熱時間tphにわたって予熱して、第2のフィルムを得る予熱工程と;前記第2のフィルムに対して第1の温度T1以上でかつ第2の温度T2以下の範囲内の延伸温度Tstで延伸処理を施すことにより、第3のフィルムを得る延伸工程と;前記第3のフィルムの少なくとも二辺を保持した状態で、前記第3のフィルムに対して、前記延伸温度Tstよりも高温であって、第3の温度T3以上でかつ前記重合体の融点Tm未満の範囲内の熱固定温度Ttsで熱固定時間ttsにわたって保持する熱固定工程とを含む、樹脂フィルムの製造方法にしたがって製造される。各工程における温度範囲及び時間については後述する。そして、上記の樹脂フィルムの製造方法にしたがうことにより、脂環式構造を含有し結晶性を有する重合体を含む樹脂から、強度に優れ、かつ、耐屈曲性に優れた樹脂フィルムを製造することができる。
 以下、この製造方法について詳細に説明する。
 〔2.1.第1のフィルムの用意〕
 前記の樹脂フィルムの製造方法の実施に先立ち、第1のフィルムを用意する工程を行う。第1のフィルムは、結晶性樹脂からなり所望の厚みを有するフィルムである。ここで、第1のフィルムの所望の厚みは、後の延伸工程における延伸倍率を考慮して任意に設定しうる。かかる厚みは、通常は5μm以上、好ましくは10μm以上であり、通常は1mm以下、好ましくは500μm以下である。
 第1のフィルムは、例えば、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成型法によって製造しうる。これらの中でも、厚みの制御が容易であることから、押出成形法によって第1のフィルムを製造することが好ましい。押出成形法によって第1のフィルムを製造する場合、その押出成形法における製造条件は、好ましくは下記の通りである。シリンダー温度(溶融樹脂温度)は、好ましくはTm以上、より好ましくは「Tm+20」℃以上であり、好ましくは「Tm+100」℃以下、より好ましくは「Tm+50」℃以下である。また、キャストロール温度は、好ましくは「Tg-50」℃以上であり、好ましくは「Tg+70」℃以下、より好ましくは「Tg+40」℃以下である。さらに、冷却ロール温度は、好ましくは「Tg-70」℃以上、より好ましくは「Tg-50」℃以上であり、好ましくは「Tg+60」℃以下、より好ましくは「Tg+30」℃以下である。このような条件で第1のフィルムを製造することにより、厚さ1μm~1mmの第1のフィルムを容易に製造できる。ここで、「Tm」は脂環式構造を含有する重合体の融点を表し、「Tg」は脂環式構造を含有する重合体のガラス転移温度を表す。
 〔2.2.予熱工程〕
 本発明に係る樹脂フィルムの製造方法では、延伸工程に先立って予熱工程を実施する。この予熱工程は、延伸工程に先立って第1のフィルムを所定の温度範囲内にある状態で維持するために行われる。このために、予熱工程では、第1のフィルムの少なくとも二辺を保持した状態で予熱温度Tphで予熱時間tphにわたって第1のフィルムを加熱する。そして、第1のフィルムの少なくとも二辺を保持することにより、保持された辺の間の領域において第1のフィルムの熱収縮による変形を抑制できる。通常、予熱工程と延伸工程とは連続して行われるので、予熱工程と延伸工程との間に他の工程は行われない。
 上記予熱温度Tphは、予熱工程で第1のフィルムが曝される加熱雰囲気の温度であり、通常は、加熱装置の設定温度と同じ温度となる。この予熱温度Tphは、第1の温度T1以上でかつ第2の温度T2以下の範囲内の温度である。好適な加熱装置は、非接触で第1のフィルムを加熱可能な加熱装置であり、具体例を挙げると、オーブン及び加熱炉が挙げられる。
 ここで、前記第1の温度T1は、予熱温度Tphがとり得る温度の範囲の下限であり、下記式(9)で示され、好ましくは下記式(9’)で示され、より好ましくは下記式(9”)で示される。
 T1[℃]=(5×Tg+5×Tpc)/10   (9)
 T1[℃]=[(5×Tg+5×Tpc)/10]+5  (9’)
 T1[℃]=[(5×Tg+5×Tpc)/10]+10 (9”)
 上記式(9)、(9’)及び(9”)中、Tgは、前記結晶性樹脂に含まれる重合体のガラス転移温度であり、かつ、Tpcは、前記結晶性樹脂に含まれる重合体の結晶化ピーク温度である。上記式(9)、(9’)及び(9”)からわかるように、通常、第1の温度T1は、ガラス転移温度Tgよりも高い温度であり、結晶化ピーク温度Tpcよりも低い温度である。
 そして、予熱温度Tphが第1の温度T1以上であることにより、後の熱固定工程において生じる厚みの均一性の低下を大幅に抑制することができる。
 また、前記第2の温度T2は、予熱温度Tphがとり得る温度の範囲の上限であり、下記式(10)で示され、好ましくは下記式(10’)で示され、より好ましくは下記式(10”)で示される。下記式(10)、(10’)及び(10”)からわかるように、通常、第2の温度T2は、結晶化ピーク温度Tpcよりも高い温度であり、融点Tmよりも低い温度である。
 T2[℃]=[(9×Tpc+1×Tm)/10]  (10)
 T2[℃]=[(9×Tpc+1×Tm)/10]-5  (10’)
 T2[℃]=[(9×Tpc+1×Tm)/10]-10 (10”)
 そして、予熱温度Tphが第2の温度T2以下であることにより、後続の延伸工程において生じる延伸不良を抑制したり、後の熱固定工程において生じる厚みの均一性の低下を大幅に抑制したりすることができる。さらには、予熱温度Tphが第2の温度T2以下であることにより、得られる樹脂フィルムのヘイズを小さくすることができ、白濁を抑制することができる。
 上記予熱時間tphは、延伸工程に先立って、第1のフィルムが所定の温度範囲内にある状態で維持されている時間であり、すなわち予熱工程で第1のフィルムが加熱雰囲気に曝されている時間である。ここで、所定の温度範囲とは、予熱温度Tphがとり得る温度の範囲と同一であり、すなわち、第1の温度T1以上でかつ第2の温度T2以下の範囲内の温度である。
 ここで、予熱時間tphの上限tph(max)は、下記式(11)で示され、好ましくは下記式(11’)で示され、より好ましくは下記式(11”)で示される。
 tph(max)[秒]
  =80×[(T1-Tph)/(T2-T1)]+90  (11)
 tph(max)[秒]
  =0.8×[80×{(T1-Tph)/(T2-T1)}+90] (11’)
 tph(max)[秒]
  =0.6×[80×{(T1-Tph)/(T2-T1)}+90] (11”)
 そして、予熱時間tphが上限tph(max)以下であることにより、後続の延伸工程において生じる延伸不良を抑制したり、後の熱固定工程において生じる厚みの均一性の低下を大幅に抑制したりすることができる。さらには、予熱時間tphが上限tph(max)以下であることにより、得られる樹脂フィルムのヘイズを小さくすることができ、白濁を防止することができる。
 また、予熱時間tphの下限tph(min)は、1秒であり、好ましくは5秒である。これにより、第1のフィルムが不均一に加熱されることを防止することができる。そのため、後続の延伸工程での延伸不良に起因した厚みの均一性の低下を抑制することができる。
 上記の「第1のフィルムの少なくとも二辺を保持した状態」とは、第1のフィルムにたわみが認められない程度に、保持具で又は離間された2つのローラーで第1のフィルムを保持した状態をいう。ただし、この状態には、第1のフィルムが実質的に延伸されるような保持状態は含まれない。また、実質的に延伸されるとは、第1のフィルムのいずれかの方向への延伸倍率が通常1.03倍以上になることをいう。
 第1のフィルムを保持する場合、適切な保持具によって第1のフィルムを保持する。保持具は、第1のフィルムの辺の全長を連続的に保持しうるものでもよく、間隔を空けて間欠的に保持しうるものでもよい。例えば、所定の間隔で配列された保持具によって第1のフィルムの辺を間欠的に保持してもよい。枚葉の第1のフィルムでは、その全ての辺を保持することが好ましい。具体例を挙げると、矩形の枚葉の第1のフィルムでは、四辺を保持することが好ましい。これにより、予熱工程における変形をより確実に抑制することができる。
 第1のフィルムの辺を保持しうる保持具としては、第1のフィルムの辺以外の部分では第1のフィルムと接触しないものが好ましい。このような保持具を用いることにより、より平滑性に優れる樹脂フィルムを得ることができる。
 また、保持具としては、保持具同士の相対的な位置を予熱工程においては固定しうるものが好ましい。このような保持具は、予熱工程において保持具同士の位置が相対的に移動しないので、予熱工程における第1のフィルムの実質的な延伸を抑制しやすい。
 好適な保持具としては、例えば、矩形の第1のフィルム用の保持具として、型枠に所定間隔で設けられ第1のフィルムの辺を把持しうるクリップ等の把持子が挙げられる。また、例えば、長尺の第1のフィルムの幅方向の端部にある二辺を保持するための保持具としては、テンター延伸機に設けられ第1のフィルムの辺を把持しうる把持子が挙げられる。
 長尺の第1のフィルムを用いる場合、その第1のフィルムの長手方向の端部にある辺(即ち、短辺)を保持してもよいが、前記の辺を保持する代わりに第1のフィルムの予熱処理を施される領域の長手方向の両側を保持してもよい。例えば、第1のフィルムの予熱処理を施される領域の長手方向の両側に、第1のフィルムを熱収縮しないように保持しうる保持装置を設けてもよい。このような保持装置としては、例えば、2つのロールの組み合わせ、押出機と引き取りロールとの組み合わせ、などが挙げられる。これらの組み合わせによって第1のフィルムを保持することで、予熱処理を施される領域において当該第1のフィルムの熱収縮を抑制できる。そのため、前記の組み合わせを保持装置として用いれば、第1のフィルムを搬送方向に送りながら当該第1のフィルムを保持できるので、樹脂フィルムの効率的な製造ができる。
 上述したようにして予熱工程を実施することにより、予熱された第1のフィルムとして第2のフィルムが得られる。
 〔2.3.延伸工程〕
 本発明に係る樹脂フィルムの製造方法では、予熱工程で得られた第2のフィルムの延伸を行うための延伸工程を実施する。この延伸工程は、第2のフィルムが上述した所定の温度範囲内にある状態で開始される。このために、延伸工程では、第2のフィルムに対して延伸温度Tstで延伸処理が施される。
 上記延伸温度Tstは、延伸工程で第2のフィルムが曝される加熱雰囲気の温度であり、通常は、延伸機の設定温度と同じ温度となる。この延伸温度Tstは、上記第1の温度T1以上でかつ上記第2の温度T2以下の範囲内の温度である。したがって、延伸温度Tstに、予熱温度Tphと同じ温度を設定してもよく、また、この場合における延伸温度Tstと予熱温度Tphの温度差は、5℃以下とすることが好ましく、さらに好ましくは2℃以下である。延伸温度Tstとしてこのような温度を設定することにより、第2のフィルムに含まれる重合体分子を適切に配向させることができる。
 第2のフィルムの延伸方法に格別な制限は無く、任意の延伸方法を用いうる。例えば、第2のフィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、第2のフィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;第2のフィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、第2のフィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法などの二軸延伸法;第2のフィルムを幅方向に平行でもなく垂直でもない斜め方向に延伸する方法(斜め延伸法);などが挙げられる。
 前記の縦一軸延伸法としては、例えば、ロール間の周速の差を利用した延伸方法などが挙げられる。
 また、前記の横一軸延伸法としては、例えば、テンター延伸機を用いた延伸方法などが挙げられる。
 さらに、前記の同時二軸延伸法としては、例えば、ガイドレールに沿って移動可能に設けられ且つ第2のフィルムを固定しうる複数のクリップを備えたテンター延伸機を用いて、クリップの間隔を開いて第2のフィルムを長手方向に延伸すると同時に、ガイドレールの広がり角度により第2のフィルムを幅方向に延伸する延伸方法などが挙げられる。
 また、前記の逐次二軸延伸法としては、例えば、ロール間の周速の差を利用して第2のフィルムを長手方向に延伸した後で、その第2のフィルムの両端部をクリップで把持してテンター延伸機により幅方向に延伸する延伸方法などが挙げられる。
 さらに、前記の斜め延伸法としては、例えば、第2のフィルムに対して長手方向又は幅方向に左右異なる速度の送り力、引張り力又は引取り力を付加しうるテンター延伸機を用いて第2のフィルムを斜め方向に連続的に延伸する延伸方法などが挙げられる。
 第2のフィルムを延伸する場合の延伸倍率は、所望の光学特性、厚み、強度などにより適宜選択しうるが、通常は1.03倍以上、好ましくは1.1倍以上、より好ましくは1.2倍以上であり、通常は20倍以下、好ましくは10倍以下、より好ましくは5倍以下である。ここで、例えば二軸延伸法のように異なる複数の方向に延伸を行う場合、延伸倍率は各延伸方向における延伸倍率の積で表される総延伸倍率のことである。延伸倍率を前記範囲の上限値以下にすることにより、フィルムが破断する可能性を小さくできるので、樹脂フィルムの製造を容易に行うことができる。また、延伸処理に要する時間は、延伸倍率に応じて設定しうる。
 前記のような延伸処理を第2のフィルムに施すことにより、延伸された第2のフィルムとしての第3のフィルムが得られ、このような第3のフィルムを用いることにより所望の特性を有する樹脂フィルムを得ることができる。
 〔2.4.熱固定工程〕
 本発明に係る樹脂フィルムの製造方法では、熱固定工程を実施する。この熱固定工程は、第3のフィルム中に含まれる脂環式構造を含有する重合体の結晶化を促進するために行われる。熱固定工程では、第3のフィルムの少なくとも二辺を保持した状態で、熱固定温度Ttsで保持する。これによって、通常、脂環式構造を含有する重合体の結晶化度を30%未満から30%以上に高めることができる。そして、第3のフィルムの少なくとも二辺を保持することにより、保持された辺の間の領域において第3のフィルムの熱収縮による変形を抑制することができる。結晶化度を30%以上に高めることで、樹脂フィルムの強度を優れたものとすることができる。
 上記の「第3のフィルムの少なくとも二辺を保持した状態」とは、上述の「第1のフィルムの少なくとも二辺を保持した状態」と同じであるのでその説明を割愛する。また、保持具についても同じであるので、その説明を割愛する。
 上記熱固定温度Ttsは、熱固定工程で第3のフィルムが曝される加熱雰囲気の温度であり、通常は、加熱装置の設定温度と同じ温度となる。この熱固定温度Ttsは、延伸温度Tstよりも高温であって、第3の温度T3以上でかつ重合体の融点Tm未満の範囲内の温度である。また、熱固定温度Ttsは、予熱温度Tphよりも高温であることが好ましい。好適な加熱装置は、非接触で第3のフィルムを加熱可能な加熱装置であり、具体例を挙げると、オーブン及び加熱炉が挙げられる。このような温度範囲を採用することにより、得られる樹脂フィルムの白濁を抑制できる。
 ここで、前記第3の温度T3は、熱固定温度Ttsがとり得る温度の範囲の下限であり、下記式(12)で示され、好ましくは下記式(12’)で示され、より好ましくは下記式(12”)で示される。下記式(12)、(12’)及び(12”)からわかるように、通常、第3の温度T3は、結晶化ピーク温度Tpcよりも高い温度であり、融点Tmよりも低い温度である。
 T3[℃]=[(9×Tpc+1×Tm)/10]  (12)
 T3[℃]=[(9×Tpc+1×Tm)/10]+10 (12’)
 T3[℃]=[(9×Tpc+1×Tm)/10]+20 (12”)
 また、好ましくは、上記熱固定温度Ttsは、前記第3の温度T3以上でかつ第4の温度T4以下の範囲内にある。第4の温度T4は、熱固定温度Ttsが局所的にも融点Tmに到達してしまうことがないように見込んで設定した、熱固定温度Ttsがとり得る温度の範囲の上限である。
 ここで、前記第4の温度T4は、好ましくは、下記式(13)で示され、より好ましくは下記式(13’)で示され、さらに好ましくは下記式(13”)で示される。下記式(13)、(13’)及び(13”)からわかるように、第4の温度T4は、結晶化ピーク温度Tpcよりも高い温度であり、融点Tmよりも低い温度である。
 T4[℃]=[(2×Tpc+8×Tm)/10]  (13)
 T4[℃]=[(2×Tpc+8×Tm)/10]-20 (13’)
 T4[℃]=[(2×Tpc+8×Tm)/10]-40 (13”)
 また、前記熱固定工程を行う熱固定時間ttsは、5秒以上である。ここで、熱固定時間ttsとは、熱収縮しないように少なくとも2辺を保持された第3のフィルムが所定の温度範囲内にある状態で維持されている時間である。この所定の温度範囲とは、熱固定温度Ttsがとり得る温度の範囲と同一であり、すなわち、上記第3の温度T3以上でかつ上記第4の温度T4以下の範囲内の温度である。また、好ましくは、熱固定時間ttsは、90秒以下である。
 そして、熱固定時間ttsが5秒以上であることにより、重合体の結晶化度を十分に高めて、樹脂フィルムの強度を優れたものとすることができる。また、熱固定時間ttsを90秒以下にすることにより、得られる樹脂フィルムの白濁を抑制できるので、光学フィルムとしての使用に適した樹脂フィルムが得られる。したがって、熱固定時間ttsは、5秒以上90秒以下の範囲内にあることがより好ましい。
 好ましくは、熱固定工程では、上記の「第3のフィルムの少なくとも二辺を保持した状態」に代えて、「第3のフィルムの少なくとも二辺を保持して緊張させた状態」とする。「第3のフィルムの少なくとも二辺を保持して緊張させた状態」とは、第3のフィルムに延伸に至らないまでもある程度の張力をかけることをいう。これは、熱固定工程では、予熱工程及び延伸工程よりも高い温度に第3のフィルムが曝されることによる熱収縮を考慮した方が好ましいためである。これにより、第3のフィルムの平滑性を損なうことなく、結晶化を進めることができる。
 前記のような熱固定処理を第3のフィルムに施すことにより、結晶化が促進された第3のフィルムとしての第4のフィルムが得られる。
 〔2.5.緩和工程〕
 本発明では、熱固定工程の後で、熱固定工程で得られた第4のフィルムを熱収縮させ残留応力を除去するために、緩和工程を行うことが好ましい。緩和工程では、熱固定工程で得られた第4のフィルムを平坦に維持しながら、所定の温度範囲で、前記第4のフィルムの緊張を緩和する緩和処理を行う。
 第4のフィルムの緊張を緩和する、とは、保持装置によって保持されて緊張した状態から第4のフィルムを解放することをいい、第4のフィルムが緊張していなければ第4のフィルムが保持装置で保持されていてもよい。このように緊張が緩和されると、第4のフィルムは熱収縮を生じうる状態となる。緩和工程では、第4のフィルムに熱収縮を生じさせることによって、樹脂フィルムに加熱時において生じうる応力を解消している。そのため、本発明の樹脂フィルムの高温環境下での熱収縮を小さくできるので、高温環境下での寸法安定性に優れる樹脂フィルムが得られる。
 第4のフィルムの緊張の緩和は、一時に行ってもよく、時間をかけて連続的又は段階的に行ってもよい。ただし、得られる樹脂フィルムの波打ち及びシワ等の変形の発生を抑制するためには、緊張の緩和は、連続的又は段階的に行うことが好ましい。
 前記の第4のフィルムの緊張の緩和は、第4のフィルムを平坦に維持しながら行う。ここで第4のフィルムを平坦に維持する、とは、第4のフィルムに波打ち及びシワといった変形を生じないように第4のフィルムを平面形状に保つことをいう。これにより、得られる樹脂フィルムの波打ち及びシワ等の変形の発生を抑制できる。
 緩和処理の際の第4のフィルムの処理温度は、熱固定工程での熱固定温度Ttsとの温度差が20℃以下、好ましくは10℃以下の範囲内であることが好ましい。これにより、緩和工程における第4のフィルムの温度ムラを抑制したり、樹脂フィルムの生産性を高めたりできる。
 緩和工程において、第4のフィルムを前記の温度範囲に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上である。この処理時間の上限は、熱固定時間ttsと緩和工程での処理時間の合計が90秒以下(すなわち、熱固定時間tts+緩和工程での処理時間≦90秒)であり、かつ熱固定時間ttsの2倍が緩和工程での処理時間以上(すなわち、熱固定時間tts×2≧緩和工程での処理時間)となるように設定することが好ましい。処理時間を前記範囲の下限値以上にすることにより、本発明の樹脂フィルムの高温環境下での寸法安定性を効果的に高めることができる。また、上限値以下にすることにより、本発明の樹脂フィルムの高温環境下での寸法安定性を効果的に高めることができ、また、緩和工程における結晶化の進行による樹脂フィルムの白濁を抑制することができる。
 前記のような緩和工程において枚葉の第4のフィルムに緩和処理を施す場合、例えば、その第4のフィルムの四辺を保持しながら、保持部分の間隔を連続的又は段階的に狭める方法を採用しうる。この場合、第4のフィルムの四辺において保持部分の間隔を同時に狭めてもよい。また、一部の辺において保持部分の間隔を狭めた後で、別の一部の辺の保持部分の間隔を狭めてもよい。さらに、一部の辺の保持部分の間隔を狭めないで維持してもよい。また、一部の辺の保持部分の間隔は連続的又は段階的に狭め、別の一部の辺の保持部分の間隔を一時に狭めてもよい。
 また、前記のような緩和工程において長尺の第4のフィルムに緩和処理を施す場合、例えば、テンター延伸機を用いて、クリップを案内しうるガイドレールの間隔を第4のフィルムの搬送方向において狭めたり、隣り合うクリップの間隔を狭めたりする方法が挙げられる。
 前記のように、第4のフィルムを保持した状態で保持部分の間隔を狭めることで第4のフィルムの緊張の緩和を行う場合、間隔を狭める程度は、熱固定工程において得られた第4のフィルムに残留していた応力の大きさに応じて設定しうる。
 通常、熱固定工程において得られた第4のフィルムには、既に延伸処理が施されているので、大きな応力が残留する傾向がある。そのため、この第4のフィルムの緊張を緩和するために間隔を狭める程度は、延伸処理が施されていないフィルムを用いる場合に比べて大きくすることが好ましい。
 緩和工程において保持間隔を狭める程度は、緩和工程での第4のフィルムの処理温度において第4のフィルムに緊張を与えない状態での熱収縮率S(%)を基準として定めうる。具体的には、保持間隔を狭める程度は、通常0.1S以上、好ましくは0.5S以上、より好ましくは0.7S以上、また通常1.2S以下、好ましくは1.0S以下、より好ましくは0.95S以下である。また、例えば直交する2方向で熱収縮率Sが異なる場合のように、前記熱収縮率Sに異方性がある場合は、各々の方向について前記範囲内で保持間隔を狭める程度を定めうる。このような範囲にすることで、樹脂フィルムの残留応力を十分に除去し、かつ平坦性を維持させることができる。
 第4のフィルムの熱収縮率Sは、下記の方法により測定しうる。
 室温23℃の環境下で、第4のフィルムを150mm×150mmの大きさの正方形に切り出し、試料フィルムとする。この試料フィルムを、緩和工程の処理温度と同じ温度に設定したオーブン内で60分間加熱し、23℃(室温)まで冷却した後、試料フィルムの熱収縮率Sを求めたい方向に平行な二辺の長さを測定する。
 測定された二辺それぞれの長さを基に、下記式(III)に基づいて、試料フィルムの熱収縮率Sを算出する。式(III)において、L(mm)は、加熱後の試料フィルムの測定した二辺の一方の辺の長さを示し、L(mm)はもう一方の辺の長さを示す。
 熱収縮率S(%)=[(300-L-L)/300]×100 (III)
 前記のような緩和処理を第4のフィルムに施すことにより、製造対象であった樹脂フィルムが得られる。また、緩和処理を行わない場合には、第4のフィルムが樹脂フィルムとなる。
 〔2.6.熱固定工程及び緩和工程の第一の例〕
 以下、上述した熱固定工程及び緩和工程の第一の例について説明する。第一の例は、枚葉の第3のフィルムを用いて枚葉の樹脂フィルムを製造する方法の例を示す。ただし、熱固定工程及び緩和工程は、この第一の例に限定されない。
 図1及び図2は、保持装置の例を模式的に示す平面図である。
 図1に示すように、保持装置100は、枚葉の第3のフィルム10を保持するための装置である。保持装置100は、型枠110と、型枠110に位置調整を可能に設けられた複数の保持具としてクリップ121、122、123及び124を備える。クリップ121、クリップ122、クリップ123及びクリップ124は、それぞれ、第3のフィルム10の辺11、辺12、辺13及び辺14を把持しうるように設けられている。
 このような保持装置100を用いて熱固定工程を行う場合、保持装置100に、脂環式構造を含有する重合体を含む樹脂からなる第3のフィルム10を取り付ける。具体的には、クリップ121~124で第3のフィルム10を把持することで、第3のフィルム10の四辺11~14を保持した状態にする。そして、このように保持した状態の第3のフィルム10を、図示しないオーブンにより、熱固定温度Ttsで加熱する。
 これにより、第3のフィルム10に含まれる脂環式構造を含有する重合体の結晶化が進行して、図2に示すように、第4のフィルム20が得られる。この際、第3のフィルム10の四辺11~14が保持した状態となっていたので、第4のフィルム20には熱収縮による変形は生じない。そのため、通常は、第4のフィルム20には、熱収縮を生じさせようとする応力が残留している。
 その後、前記のように製造された第4のフィルム20には、緩和工程が行われる。前記の第4のフィルム20は、熱固定工程が終わった時点においては、保持装置100のクリップ121、クリップ122、クリップ123及びクリップ124に、当該第4のフィルム20の辺21、辺22、辺23及び辺24において保持されている。緩和工程では、この第4のフィルム20を、引き続き熱固定温度Ttsとの温度差が20℃以下の範囲内の温度に加熱した状態で、保持装置100のクリップ121~124の間隔I121、I122、I123及びI124を狭める。これにより、第4のフィルム20の熱収縮による寸法変化に追従するように、クリップ121~124による第4のフィルム20の保持部分の間隔は狭まる。そのため、第4のフィルム20は、平坦に維持しながら緊張を緩和されて、枚葉の樹脂フィルムが得られる。
 こうして得られた樹脂フィルムでは、高温環境下における寸法変化の原因となり得るフィルム内の応力が解消されている。そのため、得られた樹脂フィルムにおいて、高温環境下での寸法安定性を向上させることができる。また、樹脂フィルムに含まれる脂環式構造を含有する重合体が結晶化されているので、この樹脂フィルムは、通常、耐熱性に優れる。
 〔2.7.熱固定工程及び緩和工程の第二の例〕
 以下、上述した熱固定工程及び緩和工程の第二の例について説明する。第二の例は、長尺の第3のフィルムを用いて長尺の樹脂フィルムを製造する方法の例を示す。ただし、熱固定工程及び緩和工程は、この第二の例に限定されない。
 図3は、樹脂フィルムの製造装置の例を模式的に示す正面図であり、図4は、樹脂フィルムの製造装置の例を模式的に示す平面図である。
 図3及び図4に示すように、製造装置200は、保持装置としてのテンター延伸機300、搬送ロール410及び420、並びに、加熱装置としてのオーブン500を備える。
 図4に示すように、テンター延伸機300は、フィルム搬送路の左右両脇に設けられた無端状のリンク装置310及び320、前記のリンク装置310及び320を駆動するためのスプロケット330及び340を備える。また、前記のリンク装置310及び320は、それぞれ複数の保持具としてクリップ311及び321が設けられている。
 クリップ311及び321は、第3のフィルム30の幅方向の端部の辺31及び32、第4のフィルム40の幅方向の端部の辺41及び42、並びに、樹脂フィルム50の幅方向の端部の辺51及び52を把持することによって、第3のフィルム30を保持しうるように設けられている。また、これらのクリップ311及び321は、リンク装置310及び320の回転に伴って移動可能に設けられている。
 リンク装置310及び320は、スプロケット330及び340で駆動されることにより、フィルム搬送路の両脇に設けられた図示しないガイドレールで規定される周回軌道に沿って、矢印A310及びA320で示すように回転できるように設けられている。よって、リンク装置310及び320に設けられたクリップ311及び321は、フィルム搬送路の両脇において所望の周回軌道に沿って移動できる構成を有している。
 さらに、クリップ311及び321は、適切な任意の機構により、オーブン500の入り口510近傍において第3のフィルム30の二辺31及び32を保持し、その保持した状態を維持したままでリンク装置310及び320の回転に伴ってフィルム搬送方向に移動し、オーブン500の出口520近傍において樹脂フィルム50を放すように設けられている。
 さらに、このテンター延伸機300は、フィルム搬送方向におけるクリップ311及び321の間隔WMD並びに幅方向におけるクリップ311及び321の間隔WTDを任意に調整できる構成を有している。ここに示す例では、パンタグラフ式のリンク装置310及び320を用いることによって、前記のようなクリップ311及び321の間隔WMD及びWTDを調整可能にした例を示す。
 図5及び図6は、前記のリンク装置310の一部分を模式的に示す平面図である。
 図5及び図6に示すように、リンク装置310は、連結された複数のリンクプレート312a~312dを備える。この例に示すリンク装置310では、これら複数のリンクプレート312a~312dを輪状に連結させることにより、リンク装置310の形状を無端状にしている。
 また、リンク装置310は、軸受けローラー313a及び313bを備える。これらの軸受けローラー313a及び313bは、図示しないガイドレールによって形成される溝内を通りうるように設けられている。したがって、ガイドレールの軌道を調整することにより、そのガイドレールに沿って回転するリンク装置310の周回軌道を調整することができ、ひいては当該リンク装置310に設けられたクリップ311の走行軌道を調整できる。そのため、このリンク装置310は、ガイドレールの軌道を調整することにより、フィルム搬送方向の任意の位置で、幅方向におけるクリップ311の位置を変化させられる構成を有している。そして、このように幅方向におけるクリップ311の位置を変化させることにより、幅方向におけるクリップ311及び321の間隔WTDを変化させることが可能である。
 さらに、図5及び図6に示す通り、リンク装置310の一単位は、(a)外側の軸受けローラー313a及び内側の軸受けローラー313bの両方の上に支点を持ち、さらに内側に延長し、その内側端にクリップ311を有するリンクプレート312a;(b)リンクプレート312aと軸受けローラー313b上において共通する支点を有し、別の軸受けローラー313a上のもう一点の支点に延長するリンクプレート312b;(c)リンクプレート312bの支点間の部分に支点を有し、そこから内側に延長し、内側端にクリップ311を有するリンクプレート312c;並びに、(d)リンクプレート312cの内側端及び外側端との間に支点を有し、そこから外側に延長し、隣接する単位のリンクプレート312a上に支点を有するリンクプレート312d;を備える。ここで、外側とはフィルム搬送路から遠い側を表し、内側とはフィルム搬送路に近い側を表す。このようなリンク装置310では、ガイドローラの溝の間隔D1及びD2に応じて、リンクピッチを収縮状態と伸展状態との間で変化させることができる。そのため、このリンク装置310は、ガイドローラの溝の間隔D1及びD2を調整することにより、フィルム搬送方向における任意の位置で、フィルム搬送方向におけるクリップ311同士の間隔WMDを変化させられる構成を有している。
 また、もう一方のリンク装置320は、フィルム搬送路に対してリンク装置310とは反対側に設けられていること以外は、前述したリンク装置310と同様の構成を有している。そのため、リンク装置320も、リンク装置310と同様の要領で、フィルム搬送方向におけるクリップ321同士の間隔WMD及び幅方向におけるクリップ321の位置が調整可能な構成を有している。
 図3及び図4に示すように、フィルム搬送方向においてテンター延伸機300の両側には、搬送ロール410及び420が設けられている。テンター延伸機300の上流側に設けられた搬送ロール410は第3のフィルム30を搬送しうるように設けられたロールであり、テンター延伸機300の下流側に設けられた搬送ロール420は樹脂フィルム50を搬送しうるように設けられたロールである。これらの搬送ロール410及び420は、搬送のために第3のフィルム30を保持しうるように設けられている。したがって、これらの搬送ロール410及び420は、テンター延伸機300(第3のフィルム30の熱固定処理を施される領域に相当する。)の長手方向の両側において、第3のフィルム30を熱収縮しないように保持した状態にしうる保持装置として機能できる。
 また、図4に示すように、オーブン500は隔壁530を備え、この隔壁530によってオーブン500内の空間は、上流の熱固定室540及び下流の緩和室550に区画されている。
 このような製造装置200を用いて樹脂フィルム50を製造する場合、脂環式構造を含有する重合体を含む樹脂からなる長尺の第3のフィルム30を、搬送ロール410を経由してテンター延伸機300に供給する。
 テンター延伸機300へ送られた第3のフィルム30は、図4に示すように、オーブン500の入り口510の近傍においてクリップ311及び321に把持されることにより、二辺31及び32をクリップ311及び321によって保持される。クリップ311及び321に保持された第3のフィルム30は、前記のクリップ311及び321による保持、並びに、搬送ロール410及び420による保持によって、好ましくは緊張した状態にされる。そして、第3のフィルム30は、このように保持された状態のままで、第3のフィルム30は入り口510を通ってオーブン500内の熱固定室540に搬送される。
 熱固定室540において、第3のフィルム30は、熱固定温度Ttsで加熱されて、熱固定工程が行われる。これにより、第3のフィルム30に含まれる脂環式構造を含有する重合体の結晶化が進行して、第4のフィルム40が得られる。この際、第3のフィルム30の二辺31及び32が保持された状態となっており、さらに搬送ロール410及び420による保持により保持された状態となっているので、第4のフィルム40には熱収縮による変形は生じない。そのため、通常は、第4のフィルム40には、熱収縮を生じさせようとする応力が残留している。
 その後、製造された第4のフィルム40は、二辺41及び42をクリップ311及び321で保持されたままで、オーブン500の緩和室550に送られる。緩和室550では、第4のフィルム40を、引き続き熱固定温度Ttsとの温度差が20℃以下の範囲内の温度に加熱した状態で、フィルム搬送方向におけるクリップ311及び321の間隔WMD並びに幅方向におけるクリップ311及び321の間隔WTDを狭める。これにより、第4のフィルム40の熱収縮による寸法変化に追従するように、クリップ311及び321による第4のフィルム40の保持部分の間隔は狭まる。そのため、第4のフィルム40は、平坦に維持しながら緊張を緩和されて、長尺の樹脂フィルム50が得られる。
 樹脂フィルム50は、出口520を通ってオーブン500の外へ送り出される。そして、樹脂フィルム50は、オーブン500の出口520の近傍においてクリップ311及び321から放され、搬送ロール420を経由して送り出され、回収される。
 こうして得られた樹脂フィルム50では、高温環境下における寸法変化の原因となり得るフィルム内の応力が解消されている。そのため、得られた樹脂フィルム50において、高温環境下での寸法安定性を向上させることができる。また、樹脂フィルム50に含まれる脂環式構造を含有する重合体が結晶化されているので、この樹脂フィルム50は、通常、耐熱性に優れる。
 〔2.8.任意の工程〕
 本発明の樹脂フィルムの製造方法では、上述した予熱工程、延伸工程、熱固定工程及び緩和工程に組み合わせて、更に任意の工程を行ってもよい。
 例えば、得られた樹脂フィルムに表面処理を行ってもよい。
 [3.導電性フィルム]
 本発明の樹脂フィルムは、前記のように、耐屈曲性に優れるので、無機層の形成工程などのような高温プロセスを含む成膜工程を実施した場合に、樹脂フィルムと導電性層の間で生じる応力差を小さくすることができ、もって、良好な成膜が可能である。
 そこで、このように優れた性質を活かして、本発明の樹脂フィルムを導電性フィルムの基材フィルムとして用いてもよい。この導電性フィルムは、本発明の樹脂フィルムと、この樹脂フィルム上に直接又は間接的に設けられた導電性層とを備える複層構造のフィルムである。通常、樹脂フィルムは導電性層との密着性に優れるので、導電性層は、樹脂フィルムの表面に直接に設けることができるが、必要に応じて平坦化層などの下地層を介して設けてもよい。
 導電性層の材料としては、銀、銅等の金属;ITO(インジウム錫オキサイド)、IZO(インジウム亜鉛オキサイド)、ZnO(酸化亜鉛)、IWO(インジウムタングステンオキサイド)、ITiO(インジウムチタニウムオキサイド)、AZO(アルミニウム亜鉛オキサイド)、GZO(ガリウム亜鉛オキサイド)、XZO(亜鉛系特殊酸化物)、IGZO(インジウムガリウム亜鉛オキサイド)などの導電性の無機材料;ポリチオフェン化合物などの有機導電性材料が挙げられる。
 導電性層の厚みは、好ましくは30nm以上、より好ましくは50nm以上であり、好ましくは250nm以下、より好ましくは220nm以下である。
 導電性層を形成することにより、得られる導電性フィルムに電極としての機能を付与しうる。このような導電性フィルムの導電性層側の面の表面抵抗率は、使用する目的に応じて適宜選択しうるが、通常は1000Ω/sq.以下、好ましくは100Ω/sq.以下である。下限に特に制限は無いが、例えば0.1Ω/sq.以上にしうる。
 導電性層の形成方法に制限は無い。例えば、金属ナノワイヤを含む組成物やポリチオフェン化合物の塗布によって、導電性層を形成してもよい。また、例えば、基材フィルムとは別に用意した導電性層を、基材フィルムとしての樹脂フィルムに貼り合わせることにより、樹脂フィルムの面に導電性層を形成してもよい。
 さらに、例えば、導電性材料を、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト蒸着法、アーク放電プラズマ蒸着法、熱CVD法、プラズマCVD法、鍍金法、及びこれらの組み合わせ等の成膜方法によって樹脂フィルムの面に成膜することで、導電性層を形成してもよい。
 これらの中でも、蒸着法及びスパッタリング法が好ましく、スパッタリング法が特に好ましい。スパッタリング法では、厚みが均一な導電性層を形成できるので、導電性層に局所的に薄い部分が発生することを抑制できる。したがって、前記の薄い部分による抵抗の増大を抑制できるので、例えば静電容量式タッチセンサーとして用いた場合に、静電容量の変化の検知感度を高められる。
 本発明の樹脂フィルムは高温環境下での寸法安定性及び耐熱性に優れるので、高出力で成膜を行うことができ、そのため平坦で導電性に優れた導電性層を迅速に成膜できる。
 また、樹脂フィルムの面に導電性層を形成する前に、樹脂フィルムの前記面には、表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、薬品処理等が挙げられる。これにより、樹脂フィルムと導電性層との結着性を高めることができる。
 さらに、導電性層の形成方法は、例えばエッチング法等の膜除去法によって導電性層を所望のパターン形状に成形することを含んでいてもよい。
 また、前記の導電性フィルムは、樹脂フィルム及び導電性層に組み合わせて、光学機能層やバリア層など任意の層を備えうる。
 [4.バリアフィルム]
 本発明の樹脂フィルムは、前記のように、耐屈曲性に優れる。そのため、無機層の形成工程などのような高温プロセスを含む成膜工程を実施した場合に、樹脂フィルムとバリア層の間で生じる応力差を小さくすることができ、もって、良好な成膜が可能である。
 そこで、このように優れた性質を活かして、本発明の樹脂フィルムをバリアフィルムの基材フィルムとして用いてもよい。このバリアフィルムは、本発明の樹脂フィルムと、この樹脂フィルム上に直接又は間接的に設けられたバリア層とを備える複層構造のフィルムである。通常、樹脂フィルムはバリア層との密着性に優れるので、バリア層は、樹脂フィルムの表面に直接に設けることができるが、必要に応じて平坦化層などの下地層を介して設けてもよい。
 バリア層の材料としては、例えば、無機材料を用いうる。このような無機材料の例としては、金属酸化物、金属窒化物、金属酸化窒化物、及びこれらの混合物を含む材料が挙げられる。金属酸化物、金属窒化物、及び金属酸化窒化物を構成する金属の例としては、珪素、アルミニウムが挙げられ、特に珪素が好ましい。より具体的には、金属酸化物、金属窒化物、及び金属酸化窒化物の組成の例としては、それぞれSiOx(1.5<x<1.9)、SiNy(1.2<y<1.5)、及びSiOxNy(1<x<2および0<y<1)で表される組成が挙げられる。このような材料を用いることにより、透明性及びバリア性に優れたバリアフィルムが得られる。
 バリア層の厚みは、好ましくは3nm以上、より好ましくは10nm以上であり、好ましくは2000nm以下、より好ましくは1000nm以下である。
 バリア層の水蒸気透過率は、その上限が、0.1g/m・day以下であることが好ましく、0.01g/m・day以下であることがより好ましい。
 バリアフィルムは、本発明の樹脂フィルム上にバリア層を形成する工程を含む製造方法によって製造しうる。バリア層の形成方法は、特に限定されず、例えば、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト蒸着法、アーク放電プラズマ蒸着法、熱CVD法、プラズマCVD法等の成膜方法により形成しうる。アーク放電プラズマ法では、適度なエネルギーを有する蒸発粒子が生成され、高密度のバリア層を形成することができる。また、複数種類の成分を同時に蒸着又はスパッタリングすることで、これら複数の成分を含むバリア層を形成することができる。また、ポリシラザン系化合物を本発明の樹脂フィルム上に塗布、乾燥した後、ポリシラザン系化合物をシリカガラスに転化させる方法によってもバリア層を形成することができる。
 前記のようなバリアフィルムの製造方法の具体例を、それを行う装置の例を参照して説明する。図7は、バリア層をCVD法により無機層として成膜しうる成膜装置の一例を模式的に示す断面図である。
 図7に示すように、成膜装置700は、フィルム巻き取り式のプラズマCVD装置であり、長尺の樹脂フィルム50のロール体701から繰り出される樹脂フィルム50に、CVD法にてバリア層を連続的に成膜してバリアフィルム70を得て、このバリアフィルム70をロール体702として巻き取る一連の操作を行う。
 成膜装置700は、ガイドロール711、キャンロール712、及びガイドロール713を有し、これにより、繰り出された樹脂フィルム50を矢印A1で示される向きに導き、製造工程に供することができる。ガイドロール711、キャンロール712、及びガイドロール713の位置及びこれらが樹脂フィルム50に賦与する張力を適宜調整することにより、樹脂フィルム50は、キャンロール712により導かれる間、キャンロール712に密着した状態とされる。
 キャンロール712は、矢印A2で示す方向に回転し、その上の樹脂フィルム50は、反応管721に近づいた状態で搬送される。その際、電源723から電極722に電力を印加し、一方、キャンロール712を適切な接地手段(不図示)により接地し、かつガス導入口724から矢印A3の方向にバリア層の材料のガスを導入する。これにより、樹脂フィルム50の面上にバリア層を連続的に形成することができる。かかる一連の操作は、真空槽790で囲繞された空間内で行なわれる。真空槽790内の圧力は、真空排気装置730を操作することにより減圧し、CVD法に適した圧力に調整しうる。
 このような工程を高出力で実施した場合、仮に樹脂フィルム50が高温環境下での寸法安定性に劣ると、キャンロール212からの樹脂フィルム50の浮きが発生したり、樹脂フィルム50の変形が生じたりしやすいので、良好なバリア層の連続的な形成が困難となる可能性がある。しかし、本発明の樹脂フィルム50は、高温環境下での寸法安定性に優れるので、前記のような浮きが発生し難い。そのため、本発明の樹脂フィルム50を用いれば、平坦かつ均一なバリア層を連続的に形成できるので、バリアフィルム70の効率の良い製造が可能である。また、本発明の樹脂フィルム50は耐熱性に優れるので、樹脂フィルム50への熱ダメージを抑制できる。そのため、水蒸気透過率の小さいバリアフィルム70を容易に製造できる。
 また、前記のバリアフィルムは、樹脂フィルム及びバリア層に組み合わせて任意の層を備えうる。このような任意の層の例としては、帯電防止層、ハードコート層、及び汚染防止層等が挙げられる。これらの任意の層は、例えば、バリア層上に任意の層の材料を塗布し硬化させる方法、又は、熱圧着により貼付する方法などの方法により設けうる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。さらに、以下の説明において、「sccm」は気体の流量の単位であり、1分間当たりに流れる気体の量を、その気体が25℃、1atmである場合の体積(cm)で示す。「試験片」とは、以下に述べる実施例及び比較例に係る樹脂フィルム又は導電性フィルム又はバリアフィルムを所定のサイズに切り出したものをいう。
 [評価方法]
 〔厚みの測定方法〕
 試験片の樹脂フィルムの厚み(μm)は、接触式ウェブ厚さ計(明産社製、製品名「RC-101」)を用いて測定した。
 〔厚みムラTvの測定方法〕
 試験片の樹脂フィルムの厚みムラTv(%)は、下記式(14)にしたがって求めた。
 Tv[%]=[(Tmax-Tmin)/Tave]×100  (14)
 上記式(14)中、
 Tmaxは、試験片の樹脂フィルムの厚みの最大値であり、
 Tminは、試験片の樹脂フィルムの厚みの最小値であり、かつ、
 Taveは、試験片の樹脂フィルムの厚みの平均値である。
 すなわち、試験片の樹脂フィルムの厚みムラTvは、樹脂フィルムの複数個所の厚みを測定した時の厚みの最大値Tmaxと厚みの最小値Tminの差の絶対値を厚みの平均値Taveで割ったものを百分率(%)で表したものである。
 ここで、試験片の樹脂フィルムの厚みの最大値Tmax及び最小値Tmin及び平均値Taveは、以下のようにして求めた。
 試験片の樹脂フィルムの4辺のうち、互いに向き合う1組の辺をAとし、かつ、辺Aに直交するもう1組の辺をBとし、辺Aに平行な3本の直線をフィルム面上に定めた。3本の直線のうち、1本は、一方の辺Aから、辺Bの長さの1/20の距離だけ離れた直線とし、1本は、辺Bの中点を通る直線とし、残りの1本は、他方の辺Aから、辺Bの長さの1/20の距離だけ離れた直線とした。各直線上において、一方の辺Bから辺Aの長さの1/20にある距離の点を厚みの計測箇所の始点とし、他方の辺Bから辺Aの長さの1/20にある点を終点として、等間隔で互いに離れた10点の計測箇所を定め、各計測箇所で、厚みを計測した。
 そして、合わせて30点の計測箇所で得られた厚みのうち、その最大値を、試験片の樹脂フィルムの厚みの最大値Tmaxとし、その最小値を、試験片の樹脂フィルムの厚みの最小値Tminとし、その平均値を、試験片の樹脂フィルムの厚みの平均値Taveとした。
 〔結晶化度の測定方法〕
 重合体の結晶化度(%)は、X線回折法によって測定した。
 〔内部ヘイズ〕
 試験片の樹脂フィルムの内部ヘイズは以下のようにして測定した。まず、試験片の樹脂フィルムとして、50mm×50mmのサイズに切り出したものを用意した。続いて、試験片の樹脂フィルムの両表面に、厚み50μmの透明光学粘着フィルム(3M社製、8146-2)を介して、シクロオレフィンフィルム(日本ゼオン社製ゼオノアフィルム「ZF14-040」、厚さ40μm)を貼合した。次いで、シクロオレフィンフィルムを貼り合わせた試験片の樹脂フィルムのヘイズを、ヘイズメーター(日本電色工業社製「NDH5000」)を用いて測定した。測定の結果得られたヘイズ値から、シクロオレフィンフィルム2枚分のヘイズ値と透明光学粘着フィルム2層分のヘイズ値の和0.04を差し引いた値を試験片の樹脂フィルムの内部ヘイズとした。
 ここで、シクロオレフィンフィルム2枚分のヘイズ値と透明光学粘着フィルム2層分のヘイズ値の和を求めるために、シクロオレフィンフィルム、透明光学粘着フィルム、透明光学粘着フィルム、及び、シクロオレフィンフィルムをこの順に備える積層体を形成した。そして、この積層体のヘイズ値を測定し、得られた測定値をシクロオレフィンフィルム2枚分のヘイズ値と透明光学粘着フィルム2層分のヘイズ値の和とした。
 〔破断屈曲回数の測定方法〕
 試験片の樹脂フィルムの耐屈曲性を評価するために、破断屈曲回数(×千回)を以下のようにして測定した。具体的には、まず、試験片の樹脂フィルムとして、幅50mm×長さ100mmのサイズに切り出したものを用意した。そして、試験片の樹脂フィルムの破断屈曲回数の測定を、ユアサシステム機器社製の卓上型耐久試験機「DLDMLH-FS」を用いた面状体無負荷U字伸縮試験の方法にしたがって行った。伸縮試験の条件として、試験片の樹脂フィルムの曲げ半径1mm、伸縮速度80回/分の条件を設定した。ここでは、樹脂フィルムが、ほぼ平坦な状態から半径1mmの屈曲部を有する状態にまで曲げられ、再びほぼ平坦な状態になるまでを屈曲回数1回として計数している。そして、試験片の樹脂フィルムの屈曲を繰り返し行った。屈曲回数1万回までは1000回毎に、1万回を超えて5万回までは5000回毎に、5万回を超えた以降は1万回毎に試験機を一旦停止して、試験片の樹脂フィルムの破断(クラック)がわずかでも生じたかどうかを目視で確認した。クラックが生じた時点での屈曲回数を「破断屈曲回数」とした。このような破断屈力回数の測定を5枚の試験片の樹脂フィルムに対して行った(N=5)。5枚の試験片の樹脂フィルムについて得られた破断屈曲回数のうち、最も少ないものを耐屈曲性の評価に用いた。
 ここで、破断屈曲回数が多いほど樹脂フィルムが耐屈曲性に優れることを意味し、破断屈曲回数が100千回(10万回)以上の場合に、樹脂フィルムが耐屈曲性に十分に優れていると評価され、破断屈曲回数が200×千回(20万回)超の場合に、樹脂フィルムが耐屈曲性に特に優れていると評価される。
 〔重合体の水素化率の測定方法〕
 重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定した。
 〔重量平均分子量(Mw)及び数平均分子量(Mn)の測定方法〕
 重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
 〔重合体のラセモ・ダイアッドの割合の測定方法〕
 重合体のラセモ・ダイアッドの割合の測定は以下のようにして行った。オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行った。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
 〔ガラス転移温度Tg、融点Tm及び結晶化ピーク温度Tpcの測定方法〕
 重合体のガラス転移温度Tg及び融点Tmの測定は、以下のようにして行った。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷し、これにより、非晶質性の重合体を得た。続いて、非晶質性の重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg、融点Tm及び結晶化ピーク温度Tpcを測定した。
 〔フィルム変形量の測定方法〕
 導電性フィルムの試験片の耐屈曲性を評価するために、フィルム変形量(μm)を以下のように測定した。
 まず、導電性フィルムの試験片として、50mm×50mmの大きさに切り出したものを用意した。次いで、導電性フィルムの樹脂フィルム側の面を上にして、導電性フィルムを平らなステージ上に置いた。この導電性フィルムの上に、厚さ100μm、50mm×50mmの大きさのガラス板を、互いの4つの角が一致するように重ねた。この状態で、ガラス板の4つの角における、ステージ上面からガラス板上面までの高さを、超深度顕微鏡(キーエンス社製「VK-9500」)を用いて測定した。こうして得られた測定値から、下記式を用いて、導電性フィルムのフィルム変形量を算出した。
 式:フィルム変形量(μm)=4つの角における高さの測定値の平均値-樹脂フィルムの厚みの平均値-ガラス板の厚み
 また、バリアフィルムの試験片の耐屈曲性を評価するために、バリアフィルムの試験片についても、上記と同じ方法で、フィルム変形量を測定した。
 ここで、フィルム変形量の値が大きいほど、導電性フィルムの試験片及びバリアフィルムの試験片に用いた樹脂フィルムに生じていた大きな変形ムラに起因して、導電性層又はバリア層を積層する際に樹脂フィルムとの間で大きな内部応力差がかかったことを意味し、その場合、導電性フィルムの試験片及びバリアフィルムの試験片の耐屈曲性は十分に優れているとはいえないと評価される。
 [製造例1.ジシクロペンタジエンの開環重合体の水素化物の製造]
 樹脂フィルムを構成しうる重合体として、ジシクロペンタジエンの開環重合体の水素化物を以下のようにして製造した。
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.8部を加え、53℃に加温した。
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解した溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
 この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。
 得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,830および29,800であり、これらから求められる分子量分布(Mw/Mn)は3.37であった。
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行った。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上であることが確認され、ガラス転移温度Tgは97℃、融点Tmは266℃、結晶化ピーク温度Tpcは136℃、ラセモ・ダイアッドの割合は89%であった。
 [製造例2A.厚み50μmの第1のフィルムの製造]
 樹脂フィルムに延伸処理を施す前の第1のフィルムを以下のようにして製造した。
 製造例1で得たジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合して、樹脂フィルムの材料となる結晶性樹脂を得た。
 前記の結晶性樹脂を、内径3mmΦのダイ穴を4つ備えた二軸押出機(東芝機械社製「TEM-37B」)に投入した。前記の二軸押出機によって、樹脂を熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、樹脂のペレットを得た。前記の二軸押出機の運転条件を、以下に示す。
 ・バレル設定温度:270℃~280℃
 ・ダイ設定温度:250℃
 ・スクリュー回転数:145rpm
 ・フィーダー回転数:50rpm
 引き続き、得られた樹脂のペレットを、Tダイを備える熱溶融押出しフィルム成形機に供給した。フィルム成形機の運転条件として、バレル温度280℃~290℃、ダイ温度270℃、及びスクリュー回転数30rpmを設定した。そして、このフィルム成形機は、樹脂ペレットが溶融した溶融樹脂を、回転するキャストロール上に向けて、幅500mmのフィルム状に、押し出した(キャスト)。このときのキャストロールの回転速度は、6m/分に設定した。その後、押し出された溶融樹脂は、ロール上で冷却されることにより、長尺のフィルム状に成形された。これにより、第1のフィルムを得た。得られた第1のフィルムの厚みは、50μmであった。
 [製造例2B.厚み25μmの第1のフィルムの製造]
 キャストロールの回転速度を12m/分に変更したこと以外は、製造例2Aに係る第1のフィルムの製造と同様にして、フィルム成形機を運転させた。その結果得られた第1フィルムの厚みは、25μmであった。
 [実施例1]
 〔1-1.予熱工程〕
 製造例2Aで得た厚み50μmの第1のフィルムを、任意の部位で350mm×350mmの正方形に必要な枚数分だけ切り出した。この切り出しは、切り出された厚み50μmの第1のフィルムの正方形の一対の二辺が、長尺の第1のフィルムのMD方向に平行になるように行った。そして、切り出された厚み50μmの第1のフィルムを、小型延伸機(東洋精機製作所社製「EX10―Bタイプ」)に設置した。この小型延伸機は、フィルムの四辺を把持しうる複数のクリップを備え、このクリップを移動させることによってフィルムを延伸できる構造を有している。この小型延伸機を用いて、厚み50μmの第1のフィルムを、四辺を保持した状態で、クリップ間の距離を変更することなく、オーブン(予熱ゾーン)を用いて、予熱温度Tphで予熱時間tphにわたって予熱した。予熱温度Tphは、120℃に設定し、また、予熱時間tphは、80秒間に設定した。このようにして、予熱済みの第1のフィルムとして、第2のフィルムを得た。
 〔1-2.延伸工程〕
 〔1-1〕で得た第2のフィルムは、引き続き、小型延伸機のオーブン(延伸ゾーン)内に載置された状態で、直ちに、クリップ間の距離を徐々に拡大させることにより(このとき、延伸倍率の値が1超の値をとる)、第2のフィルムをTD方向に延伸させた。クリップ間の距離の拡大は、フィルムの延伸倍率が設定した延伸倍率に到達した時点で停止させた。このときの延伸速度は、1000mm/分に設定した。また、延伸倍率は、2.5倍に設定した。延伸温度Tstは、120℃に設定した。このようにして、延伸処理済みの第2のフィルムとして、第3のフィルムを得た。得られた第3のフィルムの厚みの平均値を求めたところ、20μmであった。
 〔1-3.熱固定工程〕
 引き続き、〔1-2〕で得た第3のフィルムの四辺を小型延伸装置のクリップで保持した状態で、小型延伸装置に付属した一対の二次加熱板を第3のフィルムの両面に接近させることにより、熱固定処理を行った。二次加熱板の大きさは300mm×300mmで、一対の加熱板と第3のフィルムとの接近距離は上下各々8mmとなるように調整した。これにより、第3のフィルムは、熱固定温度Ttsで30秒間、一対の加熱板で画成される熱固定ゾーン内で加熱される状態が保持された。このようにして、第3のフィルムに含まれる重合体の結晶化を促進させる結晶化工程を熱固定温度Ttsで熱固定時間ttsにわたって行って、結晶化処理が施された第3のフィルムとして、第4のフィルムを得た。熱固定温度Ttsは、180℃に設定した。熱固定時間ttsは、30秒であった。
 得られた第4のフィルムに含まれる重合体の結晶化度を測定したところ、73%であった。
 〔1-4.緩和工程〕
 第4のフィルムの四辺を保持した状態で、第4のフィルムを、熱固定工程における熱固定温度Ttsと同じ設定温度で、TD方向に3%、MD方向に1%、5秒間かけて同時にクリップ間距離を縮小させ、そのまま同じ温度で10秒間保持した。これにより、試験片を切り出すための実施例1に係る樹脂フィルムを得た。
 得られた樹脂フィルムの内部ヘイズを測定したところ、0.07%であった。また、樹脂フィルムの破断屈曲回数を測定したところ、130千回(13万回)であった。
 [実施例2]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを40秒に設定し、かつ予熱温度Tphを125℃に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを125℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [実施例3]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを65秒に設定した。以上の事項以外は実施例2と同様の操作を行った。
 [実施例4]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを130℃に設定し、かつ、予熱時間tphを30秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを130℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [実施例5]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを40秒に設定した。以上の事項以外は実施例4と同様の操作を行った。
 [実施例6]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを50秒に設定した。以上の事項以外は実施例4と同様の操作を行った。
 [実施例7]
 前記の工程〔1-3.熱固定工程〕において、熱固定温度Ttsを155℃に設定した。以上の事項以外は実施例4と同様の操作を行った。
 [実施例8]
 前記の工程〔1-3.熱固定工程〕において、熱固定温度Ttsを235℃に設定した。以上の事項以外は実施例4と同様の操作を行った。
 [実施例9]
 前記の工程〔1-3.熱固定工程〕において、熱固定温度Ttsを250℃に設定した。以上の事項以外は実施例4と同様の操作を行った。
 [実施例10]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを135℃に設定し、かつ、予熱時間tphを20秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを135℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [実施例11]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを30秒に設定した。以上の事項以外は実施例10と同様の操作を行った。
 [実施例12]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを40秒に設定した。以上の事項以外は実施例10と同様の操作を行った。
 [実施例13]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを140℃に設定し、かつ、予熱時間tphを10秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを140℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [実施例14]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを30秒に設定した。以上の事項以外は実施例13と同様の操作を行った。
 [実施例15]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを145℃に設定し、かつ、予熱時間tphを15秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを145℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [実施例16]
 前記の工程〔1-1.予熱工程〕において、製造例2Bで得た厚み25μmの第1のフィルムを用い、予熱温度Tphを130℃に設定し、かつ、予熱時間tphを30秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを130℃に設定し、かつ、延伸倍率を1.25倍に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [実施例17]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを50秒に設定した。以上の事項以外は実施例16と同様の操作を行った。
 [比較例1]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを110℃に設定し、かつ、予熱時間tphを100秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを110℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例2]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを115℃に設定し、かつ、予熱時間tphを60秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを115℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例3]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを105秒に設定した。以上の事項以外は比較例2と同様の操作を行った。
 [比較例4]
 前記の工程〔1-1.予熱工程〕において、予熱時間tphを95秒に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例5]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを125℃に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを125℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例6]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを130℃に設定し、かつ、予熱時間tphを70秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを130℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例7]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを130℃に設定し、かつ、予熱時間tphを30秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを130℃に設定し、また、前記の工程〔1-3.熱固定工程〕において、熱固定温度Ttsを140℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例8]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを135℃に設定し、かつ、予熱時間tphを55秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを135℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例9]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを140℃に設定し、かつ、予熱時間tphを45秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを140℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例10]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを145℃に設定し、かつ、予熱時間tphを30秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを145℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例11]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを150℃に設定し、かつ、予熱時間tphを5秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを150℃に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例12]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを155℃に設定し、また、それに続く前記の工程〔1-2.延伸工程〕において、延伸温度Tstを155℃に設定した。前記の工程〔1-1.予熱工程〕における予熱時間tphは実質0秒であった。以上の事項以外は実施例1と同様の操作を行った。
 [比較例13]
 前記の工程〔1-1.予熱工程〕において、製造例2Bで得た厚み25μmの第1のフィルムを用い、予熱温度Tphを110℃に設定し、かつ、予熱時間tphを100秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを110℃に設定し、かつ、延伸倍率を1.25倍に設定した。以上の事項以外は実施例1と同様の操作を行った。
 [比較例14]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを130℃に設定し、かつ、予熱時間tphを70秒に設定し、さらに、前記の工程〔1-2.延伸工程〕において、延伸温度Tstを130℃に設定した。以上の事項以外は比較例13と同様の操作を行った。
 [比較例15]
 前記の工程〔1-1.予熱工程〕において、予熱温度Tphを155℃に設定し、また、それに続く前記の工程〔1-2.延伸工程〕において、延伸温度Tstを155℃に設定した。前記の工程〔1-1.予熱工程〕における予熱時間tphは実質0秒であった。以上の事項以外は比較例13と同様の操作を行った。
 [結果]
 上述した実施例1~17の製造条件を表1に示し、その評価結果を表2に示す。また、上述した比較例1~15の製造条件を表3に示し、その評価結果を表4に示す。下記の表1~4において、略称の意味は、以下の通りである。表1及び表3において、厚みの平均値は、第1のフィルムの厚みの平均値を示す。表2及び表4において、厚みの平均値は、樹脂フィルムの厚みの平均値を示す。
 「Tph」:予熱温度。
 「tph」:予熱時間。
 「Tst」:延伸温度。
 「Tts」:熱固定温度。
 「tts」:熱固定時間。
 「Tv」:厚みムラ。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以下、実施例18~21並びに比較例16~19を説明する。これらの実施例及び比較例では、得られた樹脂フィルムを用いて、以下のように、導電性フィルムの試験片及びバリアフィルムの試験片を得て、フィルム変形量(μm)の測定を行った。
 [実施例18]
 〔18-5.導電性フィルムの製造工程〕
 まず、樹脂フィルムの片面にスパッタ法で導電性層を形成しうる成膜装置を用意した。この成膜装置は、当該装置内を連続的に搬送される長尺のキャリアフィルム上に固定された樹脂フィルムの表面に、所望の導電性層を形成しうるフィルム巻き取り式のマグネトロンスパッタリング装置である。また、キャリアフィルムとしては、ポリエチレンテレフタレートフィルムを用いた。
 実施例4の樹脂フィルムの一部を、100mm×100mmの大きさの正方形に必要な枚数分だけ切り出した。切り出した樹脂フィルムをキャリアフィルムにポリイミドテープで固定した。そして、このキャリアフィルムを成膜装置に供給し、樹脂フィルムの片面に導電性層を形成した。この際、スパッタリングのターゲットとしては、In-SnOセラミックターゲットを用いた。また、成膜条件は、アルゴン(Ar)流量150sccm、酸素(O)流量10sccm、出力4.0kw、真空度0.3Pa、フィルム搬送速度0.5m/minとした。
 その結果、ITOからなる厚さ100nmの透明な導電性層が、樹脂フィルムの片面に形成されて、導電性層及び樹脂フィルムを備える導電性フィルムが得られた。導電性フィルムの試験片のフィルム変形量は4μmであった。
 [実施例19]
 前記の工程〔18-5.導電性フィルムの製造工程〕において、実施例16の樹脂フィルムの一部を用いた。以上の事項以外は実施例18と同様の操作を行った。導電性フィルムの試験片のフィルム変形量は7μmであった。
 [比較例16]
 前記の工程〔18-5.導電性フィルムの製造工程〕において、比較例6の樹脂フィルムの一部を用いた。以上の事項以外は実施例18と同様の操作を行った。導電性フィルムの試験片のフィルム変形量は25μmであった。
 [比較例17]
 前記の工程〔18-5.導電性フィルムの製造工程〕において、比較例14の樹脂フィルムの一部を用いた。以上の事項以外は実施例18と同様の操作を行った。導電性フィルムの試験片のフィルム変形量は31μmであった。
 [結果]
 上述した実施例18及び19並びに比較例16及び17の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 [実施例20]
 〔20-6.バリアフィルムの製造工程〕
 まず、樹脂フィルムの片面にCVD法でバリア層を形成しうる成膜装置を用意した。この成膜装置は、図7に示した成膜装置と同様に、当該装置内を搬送されるフィルムの表面に所望のバリア層を形成しうるフィルム巻き取り式のプラズマCVD装置である。ただし、ここで使用する成膜装置は、枚葉の樹脂フィルムにバリア層を形成するため、キャリアフィルムに固定された樹脂フィルムにバリア層を形成しうる構造を有している。具体的には、用意された成膜装置は、当該装置内を連続的に搬送される長尺のキャリアフィルム上に樹脂フィルムを固定した場合に、その樹脂フィルムの表面に所望のバリア層を形成しうる構造を有している。また、キャリアフィルムとしては、ポリエチレンテレフタレートフィルムを用いた。
 前記の工程〔1-4.緩和工程〕で得た実施例4の樹脂フィルムの一部を、100mm×100mmの大きさの正方形に必要な枚数分だけ切り出した。切り出した樹脂フィルムをキャリアフィルムにポリイミドテープで固定した。そして、このキャリアフィルムを前記の成膜装置に供給し、樹脂フィルムの片面にバリア層を形成した。この際の成膜条件は、テトラメチルシラン(TMS)流量10sccm、酸素(O)流量100sccm、出力0.8kW、全圧5Pa、フィルム搬送速度0.5m/minとし、RFプラズマ放電により成膜を行った。
 その結果、SiOxからなる厚さ300nmのバリア層が、樹脂フィルムの片面に形成されて、バリア層及び樹脂フィルムを備えるバリアフィルムが得られた。バリアフィルムの試験片のフィルム変形量は3μmであった。
 [実施例21]
 前記の工程〔18-5.導電性フィルムの製造工程〕において、実施例16の樹脂フィルムの一部を用いた。以上の事項以外は実施例18と同様の操作を行った。導電性フィルムの試験片のフィルム変形量は4μmであった。
 [比較例18]
 前記の工程〔18-5.導電性フィルムの製造工程〕において、比較例6の樹脂フィルムの一部を用いた。以上の事項以外は実施例18と同様の操作を行った。導電性フィルムの試験片のフィルム変形量は19μmであった。
 [比較例19]
 前記の工程〔18-5.導電性フィルムの製造工程〕において、比較例14の樹脂フィルムの一部を用いた。以上の事項以外は実施例18と同様の操作を行った。導電性フィルムの試験片のフィルム変形量は22μmであった。
 [結果]
 上述した実施例20及び21並びに比較例18及び19の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 [検討]
 表2及び表4中の予熱温度Tphと予熱時間tphをプロットしたグラフを図8に示す。ただし、図8に示されているのは、厚みが50μmの第1のフィルムを用いた実施例1~15並びに比較例1~6及び8~12の予熱温度Tphと予熱時間tphの関係である。
 図8からわかるように、予熱温度TphがT1~T2の範囲内において、実施例と比較例との間で予熱時間tphの臨界(上限tph(max))が認められた。ここで、上限tph(max)の集合は、図8中で、予熱温度TphがT1~T2の間に示す二点鎖線の近傍にあることが分かる。また、言い換えると、実施例と比較例との間の臨界が認められた予熱時間tphは、予熱温度TphがT1~T2の範囲であった。したがって、本発明にしたがって樹脂フィルムの厚みムラTvを5%以下に小さくするためには、図8に示されるように、予熱温度TphをT1~T2の範囲内の温度に設定し、かつ、予熱時間tphを、その上限tph(max)以下の時間に設定すればよいことが分かった。
 前記の実施例1~17で測定した厚みムラTvは、いずれも5%以下であり、その場合に、破断屈曲回数は100千回を超えること、すなわち、耐屈曲性に優れることが確認された。また、比較例7に示されるように、熱固定温度Ttsが低いと、結晶化の進行が遅いことが確認された。
 また、比較例7では、熱固定時間ttsを他の実施例と同様に30秒としたにもかかわらず、結晶化度が26%にまでしか到達せず、そのため、樹脂フィルムの強度及び耐屈曲性が十分に優れているとはいえないものであった。その理由は、熱固定温度Ttsが140℃と低すぎたためであると考えられる。一方で、比較例7は、130℃での予熱時間tphが十分に確保されていたために、厚みムラTvを小さくすることができたと考えられる。このことから、予熱工程において第1のフィルムを一定の温度で十分な時間にわたって予熱しておくことにより、メカニズムは特定されないものの、後の熱固定工程において厚みの均一性が損なわれる事態を抑制又は均質化することができたものと推測される。厚みの均一性が損なわれる事態としては、高温に曝されることによる、フィルム内部での局所的な収縮又は局所的な弛緩が挙げられる。
 また、実施例18~21によれば、樹脂フィルムを導電性層を形成するための基材フィルムとして用いることによりフィルム変形量が小さく良好な導電性フィルムが得られること、及び、導電性層を形成するための基材フィルムとして用いることによりフィルム変形量が小さく良好な導電性フィルムが得られることが確認された。
 10 第3のフィルム
 11、12、13及び14 第3のフィルムの辺
 20 第4のフィルム
 21、22、23及び24 第4のフィルムの辺
 30 第3のフィルム
 31及び32 第3のフィルムの辺
 40 第4のフィルム
 41及び42 第4のフィルムの辺
 50 樹脂フィルム
 51及び52 樹脂フィルムの辺
 53 樹脂フィルムの表面
 70 バリアフィルム
 100 保持装置
 110 型枠
 121、122、123及び124 クリップ
 200 樹脂フィルムの製造装置
 300 テンター延伸機
 310及び320 リンク装置
 311及び321 クリップ
 312a~312d リンクプレート
 313a及び313b 軸受けローラー
 330及び340 スプロケット
 410及び420 搬送ロール
 500 オーブン
 510 オーブンの入り口
 520 オーブンの出口
 530 オーブンの隔壁
 540 熱固定室
 550 緩和室
 700 成膜装置
 701 樹脂フィルムのロール体
 702 バリアフィルムのロール体
 711 ガイドロール
 712 キャンロール
 713 ガイドロール
 721 反応管
 722 電極
 723 電源
 724 ガス導入口
 730 真空排気装置
 790 真空槽

Claims (11)

  1.  脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる樹脂フィルムであって、
     前記重合体の結晶化度が、30%以上であり、かつ、
     前記樹脂フィルムの下記式(1)に示される厚みムラTv
     Tv[%]=[(Tmax-Tmin)/Tave]×100   (1)
     (上記式(1)中、
     Tmaxは、前記樹脂フィルムの厚みの最大値であり、
     Tminは、前記樹脂フィルムの厚みの最小値であり、かつ、
     Taveは、前記樹脂フィルムの厚みの平均値である)
     が5%以下である、
     樹脂フィルム。
  2.  前記脂環式構造を含有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、
     請求項1に記載の樹脂フィルム。
  3.  前記樹脂フィルムの内部ヘイズが3%以下である、
     請求項1又は2に記載の樹脂フィルム。
  4.  前記樹脂フィルムが、光学フィルムである、
     請求項1~3のいずれか一項に記載の樹脂フィルム。
  5.  請求項1~4のいずれか一項に記載の樹脂フィルムと、
     前記樹脂フィルムの上に設けられた導電性層と
     を備える、導電性フィルム。
  6.  請求項1~4のいずれか一項に記載の樹脂フィルムと、
     前記樹脂フィルムの上に設けられたバリア層と
     を備える、バリアフィルム。
  7.  請求項1~4のいずれか一項に記載の樹脂フィルムの製造方法であって、
     脂環式構造を含有し結晶性を有する重合体を含む樹脂からなる第1のフィルムを、当該第1のフィルムの少なくとも二辺を保持した状態で、第1の温度T1以上でかつ第2の温度T2以下の範囲内の予熱温度Tphで予熱時間tphにわたって予熱して、第2のフィルムを得る予熱工程と、
     前記第2のフィルムに対して第1の温度T1以上でかつ第2の温度T2以下の範囲内の延伸温度Tstで延伸処理を施すことにより、第3のフィルムを得る延伸工程と、
     前記第3のフィルムの少なくとも二辺を保持した状態で、前記第3のフィルムに対して、前記延伸温度Tstよりも高温であって、第3の温度T3以上でかつ前記重合体の融点Tm未満の範囲内の熱固定温度Ttsで5秒以上保持する熱固定工程と
     を含み、
     ここで、前記第1の温度T1は、下記式(2):
      T1[℃]=(5×Tg+5×Tpc)/10   (2)
     (上記式(2)中、Tgは、前記重合体のガラス転移温度であり、かつ、Tpcは、前記重合体の結晶化ピーク温度である)
     で示され、
     前記第2の温度T2は、下記式(3):
      T2[℃]=(9×Tpc+1×Tm)/10   (3)
     で示され、
     前記予熱時間tphの上限tph(max)は、下記式(4):
      tph(max)[秒]=80×[(T1-Tph)/(T2-T1)]+90 (4)
     で示され、かつ、
     前記第3の温度T3は、下記式(5):
      T3[℃]=(9×Tpc+1×Tm)/10   (5)
     で示される、
     樹脂フィルムの製造方法。
  8.  前記熱固定温度Ttsは、前記第3の温度T3以上でかつ第4の温度T4以下の範囲内にあり、
     ここで、前記第4の温度T4は、以下式(6):
      T4[℃]=(2×Tpc+8×Tm)/10   (6)
     で示される、
     請求項7に記載の樹脂フィルムの製造方法。
  9.  前記熱固定工程を行う熱固定時間ttsが、90秒以下である、
     請求項7又は8に記載の樹脂フィルムの製造方法。
  10.  請求項1~4のいずれか一項に記載の樹脂フィルムの上に、導電性層を形成する工程を含む、導電性フィルムの製造方法。
  11.  請求項1~4のいずれか一項に記載の樹脂フィルムの上に、バリア層を形成する工程を含む、バリアフィルムの製造方法。
PCT/JP2017/034448 2016-09-29 2017-09-25 樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法 WO2018062067A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780056721.6A CN109715711B (zh) 2016-09-29 2017-09-25 树脂膜、隔离膜及导电性膜以及它们的制造方法
US16/334,075 US10882244B2 (en) 2016-09-29 2017-09-25 Resin film, barrier film, and electrically conductive film, and production methods therefor
JP2018526829A JP6406479B2 (ja) 2016-09-29 2017-09-25 樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法
EP17856020.7A EP3521348A4 (en) 2016-09-29 2017-09-25 RESIN FILM, BARRIER FILM AND ELECTRICALLY CONDUCTIVE FILM AND PRODUCTION METHOD THEREFOR
KR1020197008137A KR102411710B1 (ko) 2016-09-29 2017-09-25 수지 필름, 배리어 필름과 도전성 필름, 및 이들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191798 2016-09-29
JP2016191798 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062067A1 true WO2018062067A1 (ja) 2018-04-05

Family

ID=61760557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034448 WO2018062067A1 (ja) 2016-09-29 2017-09-25 樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法

Country Status (7)

Country Link
US (1) US10882244B2 (ja)
EP (1) EP3521348A4 (ja)
JP (1) JP6406479B2 (ja)
KR (1) KR102411710B1 (ja)
CN (1) CN109715711B (ja)
TW (1) TWI737824B (ja)
WO (1) WO2018062067A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049839A (ja) * 2018-09-27 2020-04-02 日本ゼオン株式会社 樹脂フィルムの製造方法、樹脂フィルム及び、複合フィルム
JP2021053888A (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 樹脂フィルムの製造方法、及び、樹脂フィルム
CN113454501A (zh) * 2019-02-28 2021-09-28 日本瑞翁株式会社 树脂膜的制造方法、以及相位差膜及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061841A1 (ja) * 2016-09-30 2018-04-05 日本ゼオン株式会社 樹脂フィルム及び導電性フィルム、並びにそれらの製造方法
WO2021025052A1 (ja) * 2019-08-07 2021-02-11 株式会社カネカ 大判成膜基板およびその製造方法、分割成膜基板およびその製造方法、分割成膜基板の生産管理方法および生産管理システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126026A (ja) * 2002-09-30 2004-04-22 Sekisui Chem Co Ltd 光学フィルム及び位相差フィルム
WO2007111313A1 (ja) * 2006-03-24 2007-10-04 Zeon Corporation 長尺の延伸フィルムおよびその製造方法並びに用途
JP2009166325A (ja) * 2008-01-15 2009-07-30 Fujifilm Corp 飽和ノルボルネン系樹脂フィルムの製造方法及び装置並びに延伸飽和ノルボルネン系樹脂フィルムの製造方法
JP2010038924A (ja) * 2008-07-31 2010-02-18 Mitsui Chemicals Inc 保護フィルム付き光学フィルム、およびその製造方法
JP2013010309A (ja) * 2011-06-30 2013-01-17 Nippon Zeon Co Ltd フィルムの製造方法
WO2015002019A1 (ja) * 2013-07-01 2015-01-08 日本ゼオン株式会社 延伸フィルムの製造方法
WO2016067893A1 (ja) * 2014-10-28 2016-05-06 日本ゼオン株式会社 樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194067A (ja) 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
TWI359832B (en) * 2003-09-24 2012-03-11 Fujifilm Corp Method and equipment for producing polymer film
US7811659B2 (en) * 2006-01-27 2010-10-12 Arkema France High optical purity copolymer film
US9011991B2 (en) * 2006-03-24 2015-04-21 Zeon Corporation Lengthy stretched film, and manufacturing method and use thereof
JP4882919B2 (ja) * 2006-08-30 2012-02-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
US20080113121A1 (en) * 2006-11-13 2008-05-15 Fujifilm Corporation Cyclic polyolefin film, and polarizing plate and liquid crystal display device using the same
CN101735573B (zh) * 2009-12-03 2012-05-30 西北工业大学 一种用于rfi成型工艺的改性环氧树脂膜及其制备方法
EP3214113B1 (en) * 2014-10-28 2019-11-20 Zeon Corporation Resin film and production method for resin film
WO2018061841A1 (ja) * 2016-09-30 2018-04-05 日本ゼオン株式会社 樹脂フィルム及び導電性フィルム、並びにそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126026A (ja) * 2002-09-30 2004-04-22 Sekisui Chem Co Ltd 光学フィルム及び位相差フィルム
WO2007111313A1 (ja) * 2006-03-24 2007-10-04 Zeon Corporation 長尺の延伸フィルムおよびその製造方法並びに用途
JP2009166325A (ja) * 2008-01-15 2009-07-30 Fujifilm Corp 飽和ノルボルネン系樹脂フィルムの製造方法及び装置並びに延伸飽和ノルボルネン系樹脂フィルムの製造方法
JP2010038924A (ja) * 2008-07-31 2010-02-18 Mitsui Chemicals Inc 保護フィルム付き光学フィルム、およびその製造方法
JP2013010309A (ja) * 2011-06-30 2013-01-17 Nippon Zeon Co Ltd フィルムの製造方法
WO2015002019A1 (ja) * 2013-07-01 2015-01-08 日本ゼオン株式会社 延伸フィルムの製造方法
WO2016067893A1 (ja) * 2014-10-28 2016-05-06 日本ゼオン株式会社 樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521348A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049839A (ja) * 2018-09-27 2020-04-02 日本ゼオン株式会社 樹脂フィルムの製造方法、樹脂フィルム及び、複合フィルム
JP7103125B2 (ja) 2018-09-27 2022-07-20 日本ゼオン株式会社 樹脂フィルムの製造方法
CN113454501A (zh) * 2019-02-28 2021-09-28 日本瑞翁株式会社 树脂膜的制造方法、以及相位差膜及其制造方法
CN113454501B (zh) * 2019-02-28 2023-06-02 日本瑞翁株式会社 树脂膜的制造方法、以及相位差膜及其制造方法
JP2021053888A (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 樹脂フィルムの製造方法、及び、樹脂フィルム

Also Published As

Publication number Publication date
CN109715711B (zh) 2021-06-08
KR102411710B1 (ko) 2022-06-20
TW201815873A (zh) 2018-05-01
EP3521348A4 (en) 2020-05-27
KR20190055805A (ko) 2019-05-23
US10882244B2 (en) 2021-01-05
EP3521348A1 (en) 2019-08-07
JP6406479B2 (ja) 2018-10-17
JPWO2018062067A1 (ja) 2018-09-27
US20190210268A1 (en) 2019-07-11
CN109715711A (zh) 2019-05-03
TWI737824B (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
US10619021B2 (en) Resin film, barrier film, electrically conductive film, and manufacturing method therefor
JP6406479B2 (ja) 樹脂フィルム、バリアフィルム及び導電性フィルム、並びに、これらの製造方法
WO2017094485A1 (ja) 複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置
JP6776896B2 (ja) 樹脂フィルム、及び、樹脂フィルムの製造方法
WO2018079627A1 (ja) 光学フィルム、製造方法、及び多層フィルム
JP6922913B2 (ja) 導電性フィルム及びその製造方法
CN111684555B (zh) 电容器用膜及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018526829

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008137

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856020

Country of ref document: EP

Effective date: 20190429