WO2018061234A1 - イオン発生装置及び電子機器 - Google Patents

イオン発生装置及び電子機器 Download PDF

Info

Publication number
WO2018061234A1
WO2018061234A1 PCT/JP2017/002763 JP2017002763W WO2018061234A1 WO 2018061234 A1 WO2018061234 A1 WO 2018061234A1 JP 2017002763 W JP2017002763 W JP 2017002763W WO 2018061234 A1 WO2018061234 A1 WO 2018061234A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
ion generator
voltage
high voltage
circuit
Prior art date
Application number
PCT/JP2017/002763
Other languages
English (en)
French (fr)
Inventor
十倉 淳
真人 北平
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018061234A1 publication Critical patent/WO2018061234A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention relates to an ion generator and an electronic device that generate ions by discharge.
  • an ion sensor is arranged on the leeward side (in the vicinity of the ion outlet) in the vicinity of the ion generation device in order to ensure that the ion generation device normally outputs ions.
  • the ion sensor measures the current due to ions that reach the sensor surface, and detects the amount of ions from the device based on the measured current (for example, Patent Documents 1 and 2).
  • Japanese Patent Laid-Open No. 2004-26883 also reports that when the amount of ions detected by an ion sensor is less than a predetermined amount, it is determined that dirt is attached to the discharge electrode that generates ions and prompts cleaning of the discharge electrode. It is described to do.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2010-92773 (published on April 22, 2010)” Japanese Patent Publication “JP 2013-37831 A (published on February 21, 2013)”
  • the amount of ions detected by an ion sensor is used to determine whether or not the discharge electrode is dirty. That is, with the technique disclosed in Patent Document 2, the ion sensor is an essential component.
  • the ion sensor is an essential component.
  • An object of one embodiment of the present invention is to realize an ion generator that can determine abnormality such as contamination of a discharge electrode or failure of the ion generator itself without using an ion sensor.
  • an ion generator is generated by a discharge electrode that generates ions by discharge, a high-voltage pulse generation circuit that generates a high-voltage pulse, and the high-voltage pulse generation circuit.
  • a high voltage generation circuit for further boosting the high voltage pulse to generate a high voltage for ion generation applied to the discharge electrode, a pulse width measurement circuit for measuring the pulse width of the high voltage pulse generated by the high voltage pulse generation circuit, and an abnormality determination circuit for determining an abnormality of the ion generator from the pulse width of the high-pressure pulse measured by the pulse width measurement circuit.
  • an abnormality such as dirt on the discharge electrode or failure of the ion generator itself without using an ion sensor.
  • Embodiment 1 of the present invention will be described in detail with reference to FIGS.
  • members for example, a blower, a duct, a louver, etc.
  • a blower for example, a blower, a duct, a louver, etc.
  • FIG. 1 is a circuit diagram illustrating a configuration of a main part of the ion generator 1. First, an outline of the ion generator 1 will be described.
  • the ion generator 1 generates ions by generating a discharge (eg, corona discharge) in a space in the vicinity of the discharge electrode described below.
  • a discharge eg, corona discharge
  • the ion generator 1 includes a high voltage generation unit 10, a pulse generation unit 11 (high voltage pulse generation circuit), a transformer 12 (high voltage generation circuit), a rectifier circuit 13 (high voltage generation circuit), a discharge unit 14, and a waveform shaping unit. 15, a pulse measurement unit 16, and a control unit 17.
  • a pulse measurement unit 16 and a control unit 17.
  • the high voltage generator 10 converts the voltage input to itself into a higher voltage.
  • the high voltage generator 10 may be a known booster circuit.
  • the input side (not shown) of the high voltage generator 10 is connected to an AC power source (not shown) outside the ion generator 1 (eg, a commercial power source with a voltage of 100 V and a frequency of 60 Hz).
  • the high voltage generator 10 boosts the voltage input from the AC power supply and supplies the boosted voltage to the pulse generator 11.
  • the pulse generator 11 converts the voltage waveform (eg, sine wave waveform) input from the high voltage generator 10 to generate a high voltage voltage pulse (eg, rectangular wave voltage pulse).
  • a high voltage voltage pulse eg, rectangular wave voltage pulse
  • the voltage pulse generated by the pulse generator 11 is also referred to as voltage V1 (high voltage pulse).
  • the pulse generator 11 may be a known oscillation circuit (eg, self-excited oscillation circuit). As an example, the pulse generator 11 generates the voltage V1 as a voltage pulse with a frequency of 120 Hz.
  • the pulse generation unit 11, the transformer 12, and the waveform shaping unit 15 are connected to each other via a node N1.
  • the pulse generator 11 is connected to each of the transformer 12 (more specifically, the primary side winding 121) and the waveform shaper 15 (more specifically, the cathode of the diode 151) via the node N1.
  • the voltage V1 can be supplied.
  • the transformer 12 includes a primary side winding 121 and a secondary side winding 122.
  • the primary winding 121 is connected to the pulse generator 11.
  • the secondary winding 122 is connected to the rectifier circuit 13.
  • the transformer 12 and the rectifier circuit 13 are collectively referred to as a high voltage generation circuit.
  • the high voltage generation circuit further boosts the voltage V1 to generate high voltages for ion generation (voltages V3 and V4 described later) applied to the discharge electrodes.
  • the primary winding 121 one terminal is connected to the node N1, and the other terminal is grounded.
  • the secondary winding 122 one terminal is connected to the node N2, and the other terminal is connected to the node Nm.
  • the voltage (potential) of the node N2 is represented as V2
  • the voltage of the node Nm is represented as Vm.
  • the transformer 12 converts (transforms) the voltage V ⁇ b> 1 (primary side voltage) input to the primary side winding 121 into a higher voltage (secondary side voltage) and outputs it to the secondary side winding 122. As described above, the transformer 12 can boost the voltage V ⁇ b> 1 and supply the boosted voltage to the rectifier circuit 13.
  • the rectifier circuit 13 rectifies the voltage supplied from the secondary winding 122. That is, the rectifier circuit 13 converts an alternating voltage into a direct voltage.
  • the rectifier circuit 13 includes diodes 131a and 131b and capacitors 132a and 132b.
  • the node N2 is connected to the anode of the diode 131a. That is, the voltage V2 is input to the anode of the diode 131a.
  • the diode 131a functions as a rectifying element that passes only the positive component of the voltage V2 (that is, the voltage waveform of the portion where V2> 0).
  • the node N2 is also connected to the cathode of the diode 131b. That is, the voltage V2 is also input to the cathode of the diode 131b. For this reason, the diode 131b functions as a rectifying element that passes only the negative component of the voltage V2 (that is, the voltage waveform of the portion where V2 ⁇ 0).
  • the cathode of the diode 131a, one terminal of the capacitor 132a, and the discharge unit 14 are connected to each other via a node N3.
  • the anode of the diode 131b, one terminal of the capacitor 132b, and the discharge unit 14 are connected to each other via a node N4.
  • the other terminal of the capacitor 132a and the other terminal of the capacitor 132b are connected to the node Nm.
  • the capacitor 132a functions as an element that smoothes the voltage after rectification by the diode 131a (that is, a smoothing capacitor).
  • the voltage at the node N3 is represented as V3.
  • the voltage V3 is a voltage obtained by smoothing the voltage (positive voltage pulse) after rectification by the diode 131a by the capacitor 132a. For this reason, the voltage V3 is a positive voltage pulse having a substantially constant amplitude.
  • the capacitor 132b functions as an element that smoothes the voltage after rectification by the diode 131b.
  • the voltage at the node N4 is represented as V4.
  • the voltage V4 is a voltage obtained by smoothing the voltage (negative voltage pulse) after rectification by the diode 131b by the capacitor 132b. For this reason, the voltage V4 is a negative voltage pulse having a substantially constant amplitude.
  • a positive voltage pulse (voltage V3) and a negative voltage pulse (voltage V4) can be alternately supplied to the discharge unit 14.
  • the voltages V3 and V4 may be referred to as high voltage for ion generation. This is because the voltages V3 and V4 are voltages applied to the discharge electrodes in order to generate ions by discharge.
  • the discharge unit 14 includes a first discharge electrode 141a (discharge electrode) and a second discharge electrode 141b (discharge electrode).
  • first discharge electrode 141a discharge electrode
  • second discharge electrode 141b discharge electrode
  • FIG. 1 only one first discharge electrode 141a and one second discharge electrode 141b are shown for simplicity, but a plurality of first discharge electrodes 141a and a plurality of second discharge electrodes 141b are provided. It may be done.
  • the first discharge electrode 141a and the second discharge electrode 141b are rod-shaped electrodes arranged to face a counter electrode (not shown).
  • the first discharge electrode 141a and the second discharge electrode 141b are preferably formed as needle-like electrodes. This is because the tip of each discharge electrode is sharpened (provided with a pointed end) to easily cause discharge between the discharge electrode and the counter electrode.
  • the first discharge electrode 141a functions as a discharge electrode that generates a predetermined type of positive ions (plus ions) by the discharge between the first discharge electrode 141a and the counter electrode.
  • the positive ions may be H + (H 2 O) n (n is an arbitrary natural number).
  • the type of positive ions is not limited to this.
  • the second discharge electrode 141b functions as a discharge electrode that generates a predetermined type of negative ions (negative ions) by the discharge between the second discharge electrode 141b and the counter electrode.
  • the negative ion may be O 2 ⁇ (H 2 O) m (m is an arbitrary natural number).
  • the type of negative ions is not limited to this.
  • the first discharge electrode 141a is a dedicated electrode for generating only positive ions
  • the second discharge electrode 141b is a dedicated electrode for generating only negative ions.
  • the ion generator 1 can generate both positive ions (plus ions) and negative ions (negative ions) by discharging.
  • the control unit 17 comprehensively controls each unit of the ion generator 1.
  • the control unit 17 may be a microprocessor (microcomputer), for example.
  • the control unit 17 includes an abnormality determination unit 171. Specific operation of the abnormality determination unit 171 will be described later.
  • the function of the control part 17 may be implement
  • the storage unit is a storage device that stores various programs executed by the control unit 17 and data used by the programs.
  • the waveform shaping unit 15 is connected to the pulse generation unit 11 via the node N1. That is, the ion generator 1 is configured such that the voltage V1 output from the pulse generator 11 is shunted to the waveform shaping unit 15.
  • the waveform shaping unit 15 includes diodes 151 and 153 and a resistor 152. As shown in FIG. 1, the cathode of the diode 151 is connected to the node N1. For this reason, the diode 151 functions as a rectifying element that passes only the negative component of the voltage V1 (that is, the voltage waveform of the portion where V1 ⁇ 0).
  • the resistor 152 has one terminal connected to the anode of the diode 151 and the other terminal connected to the node N5.
  • the voltage at the node N5 is represented as V5.
  • the resistor 152 is an element for reducing the magnitude of the voltage (negative voltage pulse) rectified by the diode 151. That is, the resistor 152 functions as a voltage dividing resistor for adjusting the magnitude of the voltage V5 (negative voltage pulse) supplied to the pulse measuring unit 16. Since the resistor 152 is provided, it is possible to prevent an excessive voltage V5 from being supplied to the pulse measurement unit 16, and thus it is possible to reduce the risk of damage to the electrical components of the pulse measurement unit 16.
  • the anode of the diode 153 is grounded.
  • the cathode of the diode 153 is connected to the node N5.
  • the diode 153 serves to suppress noise from the ground (ground point) toward the node N5 (that is, noise with respect to the voltage V5).
  • the waveform shaping unit 15 shapes the waveform of the voltage V1 and generates the voltage V5. Then, the waveform shaping unit 15 supplies the voltage V5 to the pulse measurement unit 16 via the node N5.
  • the pulse measuring unit 16 measures (analyzes) the voltage V5 (negative voltage pulse) supplied from the waveform shaping unit 15.
  • the pulse measurement unit 16 may be, for example, an oscilloscope or a network analyzer.
  • the pulse measuring unit 16 includes a pulse frequency measuring unit 161 (pulse frequency measuring circuit) and a pulse width measuring unit 162 (pulse width measuring circuit).
  • the pulse frequency measurement unit 161 and the pulse width measurement unit 162 are illustrated as separate functional units. However, the pulse frequency measuring unit 161 and the pulse width measuring unit 162 may be provided as an integrated functional unit.
  • the pulse frequency measuring unit 161 measures the frequency (pulse frequency) fp of the voltage V5.
  • the pulse width measurement unit 162 measures the pulse width Tp of the voltage V5. Then, the pulse measurement unit 16 gives the values of the pulse frequency fp and the pulse width Tp measured by itself to the control unit 17.
  • the ion generator 1 generates ions by generating discharge in a space near the discharge electrodes (the first discharge electrode 141a and the second discharge electrode 141b). For this reason, in the ion generator 1, in order to generate the discharge more reliably, the resistance between the discharge electrodes is set to a relatively high value (for example, 1 G ⁇ or more).
  • the discharge capability of the ion generator 1 is reduced. That is, when the resistance between the discharge electrodes decreases, the ion generation amount of the ion generator 1 decreases.
  • the voltage V1 is a voltage pulse biased in the negative (minus) direction.
  • the pulse width of the negative component increases in the voltage V1 as compared with the pulse width of the positive component.
  • the inventor of the present application evaluates the pulse width of the negative component of the voltage V1 to determine whether or not the resistance between the discharge electrodes has decreased (the amount of ions generated by the ion generator 1 has decreased). A new technical idea of detecting whether or not).
  • the inventors of the present application configured the above-described ion generator 1 for the purpose of easily evaluating the pulse width of the negative component of the voltage V1.
  • the voltage V5 is a voltage in which only the negative component of the voltage V1 is allowed to pass and the magnitude of the component is adjusted. For this reason, the pulse width of the voltage V5 is equal to the pulse width of the negative component of the voltage V1.
  • the pulse measurement unit 16 may be understood as a measurement unit that measures the pulse width and frequency of the voltage V1.
  • FIG. 2 is a table showing an example of the measurement result.
  • FIG. 3 is a graph showing the measurement results.
  • “normal” indicates that the discharge electrodes are not contaminated and the resistance between the discharge electrodes is 1 G ⁇ or more.
  • “soil equivalent to 10 M ⁇ ” indicates a state in which the resistance between the discharge electrodes is 10 M ⁇ (that is, a state in which the discharge electrodes are connected to each other with a resistance of 10 M ⁇ ). This state is an experimental condition that simulates the case where dirt that causes the resistance between the discharge electrodes to be about 10 M ⁇ adheres to the discharge electrodes. The same applies to “soil equivalent to 1 M ⁇ ”, “soil equivalent to 100 k ⁇ ”, and “soil equivalent to 100 ⁇ ”.
  • electrode short-circuit failure indicates a state in which the discharge electrodes are short-circuited (that is, a state in which the discharge electrodes are connected by a conductive wire having a resistance of approximately 0 ⁇ ). This state is an experimental condition that simulates a case where a short circuit failure occurs between the discharge electrodes.
  • the “oscillation failure” is a state in which the operation of the pulse generator 11 is stopped. In this case, since the voltage V1 is not generated, the pulse frequency fp and the pulse width Tp are both zero.
  • Tp 18 ⁇ s.
  • the pulse width Tp (18 ⁇ s) and the pulse frequency (120 Hz) in the case of “normal” may be referred to as normal values.
  • Tp 24 ⁇ s. That is, it was confirmed that the pulse width Tp is increased when the discharge electrode is contaminated (when the amount of ion generation is reduced) as compared to the “normal” case.
  • Tp 40 ⁇ s. In other words, it was confirmed that the pulse width Tp increases as the discharge electrode becomes more conspicuous (as the ion generation amount decreases).
  • the discharge state of the ion generator 1 (in other words, the amount of generated ions). ) Can be easily estimated.
  • an abnormality determination unit 171 described below is provided in the ion generator 1, and whether or not an abnormality has occurred in the discharge state of the ion generator 1 in the abnormality determination unit 171 (that is, the ion generation device 1 has normal ions). It may be determined whether or not it is generated.
  • the abnormality determination unit 171 acquires the measurement result (value of the pulse frequency fp and the pulse width Tp) from the pulse measurement unit 16 from the pulse measurement unit 16.
  • the abnormality determination unit 171 determines that (i) the pulse frequency fp is equal to fs, and (ii) a certain level of contamination (exceeding an allowable range) on the discharge electrode when the pulse width Tp is greater than the threshold Tth. It is determined that the dirt is attached.
  • the threshold value Tth is the above-mentioned “normal” case, and the case where the contamination of the discharge electrode is within an allowable range (example: “contamination equivalent to 10 M ⁇ ”, that is, the discharge capacity of the ion generator 1 is reduced). It may be arbitrarily set by the manufacturer of the ion generator 1 according to the measurement result of the pulse width Tp in the case of being within the allowable range.
  • the predetermined value fs may be arbitrarily set by the manufacturer of the ion generator 1 according to the measurement result of the pulse frequency fp in the case of “normal” described above.
  • the value of fs only needs to correspond to the value of fp when the ion generator 1 is operating normally.
  • the abnormality determination unit 171 determines that the ion generator 1 has failed.
  • the pulse frequency fp becomes an abnormally large value can be considered as a cause of the oscillation failure
  • the pulse frequency fp is out of a preset range, it may be determined that the ion generator is in failure.
  • the preset frequency range indicates the frequency range of the high-voltage pulse when the ion generator is normally driven.
  • control unit 17 may stop the generation of ions in the ion generator 1.
  • control unit 17 may stop the operation of the high voltage generation unit 10.
  • the above-described determination conditions in the abnormality determination unit 171 are merely examples, and are not limited to these.
  • the abnormality determination unit 171 only needs to be configured to be able to determine the abnormality of the ion generator 1 based on the measurement result of the pulse measurement unit 16 (values of the pulse frequency fp and the pulse width Tp). That is, the determination condition may be arbitrarily set by the manufacturer of the ion generator 1.
  • the abnormality determination part 171 showed the example which determines the abnormality of the ion generator 1 from the measurement result (value of pulse frequency fp and pulse width Tp) of the pulse measurement part 16, it is not limited to this.
  • the abnormality of the ion generator 1 may be determined only from the pulse width Tp.
  • FIG. 4 is a circuit diagram showing a configuration of a main part of the ion generator 1x.
  • the ion generator 1x corresponds to a conventional ion generator.
  • the control part of the ion generator 1x is called the control part 17x for distinction with the above-mentioned control part 17.
  • FIG. 4 is a circuit diagram showing a configuration of a main part of the ion generator 1x.
  • the ion generator 1x corresponds to a conventional ion generator.
  • the control part of the ion generator 1x is called the control part 17x for distinction with the above-mentioned control part 17.
  • the ion generator 1x has (i) an ion sensor 18 and (ii) a waveform shaping unit 15, a pulse measurement unit 16, and an abnormality determination unit 171. It differs from the ion generator 1 in that it does not exist.
  • the ion generator 1x (conventional ion generator), it is necessary to provide the ion sensor 18 in order to detect an abnormality of the ion generator 1x. In addition, in order not to reduce the detection accuracy of the ion sensor 18, it is preferable to arrange the ion sensor in the vicinity of the discharge electrode (eg, on the leeward side of the air passage (not shown) of the ion generator 1 x).
  • the ion generator 1x since the position where the ion sensor 18 is arranged is limited to some extent, there arises a problem that the degree of freedom of arrangement of the ion generator 1x is reduced. In addition, it is difficult to save the space of the ion generator 1x. Therefore, when the position where the ion generator is disposed is severely restricted (for example, when the ion generator is built in an in-vehicle air cleaner), it is difficult to apply the ion generator 1x. .
  • the inventor of the present application sets the ion generator 1 so that the ion generation state can be detected based on a technical idea (method) different from the above-described ion generator 1x (conventional ion generator). Configured.
  • the voltage V1 (monitor output) is generated in the waveform shaping unit 15 by shunting the voltage V1 to the waveform shaping unit 15. Therefore, by measuring the voltage V5 in the pulse measuring unit 16, the pulse width and pulse frequency of the voltage V1 can be easily measured. As a result, the abnormality determination unit 171 can determine (detect) an abnormality of the ion generator 1 based on the measurement result (the above-described pulse width Tp and pulse frequency fp) of the pulse measurement unit 16.
  • the ion generator 1 by providing the waveform shaping unit 15, the pulse measurement unit 16, and the abnormality determination unit 171, abnormality in the ion generation state 1 can be easily detected. Therefore, according to the ion generator 1, the ion sensor 18 can be omitted. That is, according to the ion generator 1, it is possible to determine abnormality of the ion generator without using the ion sensor 18.
  • the ion generator 1 since the ion sensor 18 becomes unnecessary, the freedom degree of arrangement
  • Embodiment 1 described above the case where the ion generator 1 generates both positive ions and negative ions by discharge has been described as an example.
  • the ion generator according to one embodiment of the present invention may be configured to generate either positive ions or negative ions by discharge. In this embodiment and Embodiment 3 to be described later, an example is shown.
  • FIG. 5 is a circuit diagram showing a configuration of a main part of the ion generator 2 of the present embodiment.
  • the ion generator 2 is obtained by replacing the discharge unit 14 with a discharge unit 24 in the ion generator 1 of the first embodiment.
  • the discharge unit 24 includes only the first discharge electrode 141a. That is, the ion generator 2 (more specifically, the discharge unit 24) is configured to generate only positive ions by discharge.
  • the ion generator 2 also has the same effect as that of the first embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a main part of the ion generator 3 of the present embodiment.
  • the ion generator 3 is obtained by replacing the discharge unit 14 with the discharge unit 34 in the ion generator 1 of the first embodiment.
  • the discharge part 34 includes only the second discharge electrode 141b. That is, the ion generator 3 (more specifically, the discharge unit 34) is configured to generate only negative ions by discharge.
  • the ion generator 3 also has the same effect as that of the first embodiment.
  • the ion generator which concerns on 1 aspect of this invention may be provided in an electronic device (example: air cleaner).
  • the ion generator 1 may be provided in an air cleaner.
  • the ion generator 1 may be configured so as to be integrated into the electronic device, or may be provided so as to be removable from the electronic device. Since the ion generator 1 is provided so as to be detachable from the electric device, the ion generator 1 can be replaced or cleaned, and the maintenance of the electronic device is facilitated.
  • the type of the electronic device is not particularly limited.
  • the electronic device may be an air conditioner, a dehumidifier, a humidifier, a fan heater, or other devices.
  • the electronic device may be for home use or for in-vehicle use.
  • the electronic device is preferably used to adjust the air in a room of a house, a room of a building, a hospital room, a car cabin, an airplane or a ship, for example.
  • control blocks (particularly the control unit 17) of the ion generators 1 to 3 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or using a CPU (Central Processing Unit). It may be realized by software.
  • the ion generators 1 to 3 include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only) in which the program and various data are recorded so as to be readable by the computer (or CPU) Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like.
  • the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • an arbitrary transmission medium such as a communication network or a broadcast wave
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the ion generator (1) includes a discharge electrode (first discharge electrode 141a and second discharge electrode 141b) that generates ions by discharge, and high-voltage pulse generation that generates a high-voltage pulse (voltage V1).
  • a circuit for pulse generator 11 and a high voltage generating circuit (voltage V3, voltage V4) for further boosting the high voltage pulse generated by the high voltage pulse generating circuit and applying it to the discharge electrode (voltage V3, voltage V4)
  • An ion generator comprising a transformer 12 and a rectifier circuit 13), a pulse width measuring circuit (pulse width measuring unit 162) for measuring a pulse width of a high voltage pulse generated by the high voltage pulse generating circuit;
  • An abnormality determination circuit (abnormality determination unit 171) for determining abnormality of the ion generator from the pulse width of the high-pressure pulse measured by the pulse width measurement circuit. That.
  • a monitor output (frequency and pulse width are normal values) corresponding to the high voltage pulse can be obtained. Therefore, when the ion generator is out of order, no high voltage pulse is generated, so the frequency and pulse width of the monitor output deviate from normal values. This makes it possible to detect that the ion generator is out of order. Further, when the discharge electrode is contaminated in the ion generator, the resistance value between the discharge electrodes is lowered, so that when the high voltage pulse is input to the high voltage generation circuit, it flows to the secondary side of the high voltage generation circuit. The current increases. For this reason, the back electromotive force generated on the primary side of the high voltage generation circuit increases, and the time during which the high voltage pulse swings negatively increases.
  • the pulse width of the monitor output increases, and the frequency and pulse width of the monitor output deviate from normal values. Thereby, the contamination of the discharge electrode can be detected.
  • the frequency and pulse width of the monitor output of the high voltage pulse it is possible to detect abnormality of the ion generator such as failure of the ion generator or contamination of the discharge electrode.
  • an abnormality determination circuit that measures the pulse width of the high-voltage pulse generated by the high-voltage pulse generation circuit and determines the abnormality of the ion generator from the measured pulse width of the high-voltage pulse. It is not necessary to determine abnormality from the amount of ions detected by the ion sensor. That is, it is possible to determine abnormality such as contamination of the discharge electrode without using an ion sensor.
  • the ion generator according to Aspect 2 of the present invention is the ion generator according to Aspect 1, wherein the abnormality determination circuit applies a discharge electrode to the discharge electrode when the pulse width of the high voltage pulse measured by the pulse width measurement circuit is larger than a preset value. It is preferable to determine that a certain amount or more of dirt is attached.
  • the abnormality determination circuit when the pulse width of the measured high voltage pulse is larger than a preset value by the abnormality determination circuit, it can be determined that a certain amount or more of dirt is attached to the discharge electrode. That is, it becomes possible to determine the contamination of the discharge electrode.
  • the ion generator according to aspect 3 of the present invention further includes a pulse frequency measurement circuit (pulse frequency measurement unit 161) that measures the frequency of the high-voltage pulse generated by the high-voltage pulse generation circuit in the aspect 1, and the abnormality determination Preferably, the circuit determines an abnormality of the ion generator from the frequency of the high voltage pulse measured by the pulse frequency measurement circuit and the pulse width of the high voltage pulse measured by the pulse width measurement circuit.
  • a pulse frequency measurement circuit pulse frequency measurement unit 161
  • the circuit determines an abnormality of the ion generator from the frequency of the high voltage pulse measured by the pulse frequency measurement circuit and the pulse width of the high voltage pulse measured by the pulse width measurement circuit.
  • the abnormality determination circuit determines abnormality from the amount of ions detected by the ion sensor in order to determine abnormality of the ion generator from the frequency of the high voltage pulse in addition to the pulse width of the high voltage pulse. There is no need. In addition, it is possible to determine not only dirt on the discharge electrode but also abnormalities such as a failure of the ion generator itself based on the frequency of the high-voltage pulse.
  • the ion generator according to aspect 4 of the present invention is the ion generator according to aspect 3, wherein the abnormality determination circuit has a preset value of the frequency of the high voltage pulse measured by the pulse frequency measurement circuit, and the pulse width measurement circuit.
  • the pulse width of the high-pressure pulse measured by the method is larger than a preset value, it is preferable to determine that a certain level or more of dirt is attached to the discharge electrode.
  • the discharge electrode when the frequency of the high-voltage pulse measured by the abnormality determination circuit is a preset value and the pulse width is greater than the preset value, the discharge electrode is more than a certain amount of dirt. Can be determined. That is, it becomes possible to determine the contamination of the discharge electrode.
  • the abnormality determination circuit when the abnormality determination circuit has a frequency of the high-pressure pulse measured by the pulse frequency measurement circuit that is out of a preset frequency range, It is preferable to determine that the ion generator is malfunctioning.
  • the abnormality determination circuit may determine that the ion generator has failed.
  • the preset frequency range indicates the frequency range of the high-voltage pulse when the ion generator is normally driven.
  • the discharge electrode may generate positive ions and negative ions by discharge.
  • the electronic apparatus according to Aspect 7 of the present invention includes the ion generator according to any one of Aspects 1 to 6.
  • Pulse generator high voltage pulse generator
  • Transformer High voltage generation circuit
  • Rectifier circuit high voltage generator circuit
  • Pulse measurement section Pulse width / frequency measurement circuit
  • 141a First discharge electrode discharge electrode
  • 141b Second discharge electrode discharge electrode
  • 161 Pulse frequency measurement unit Pulse frequency measurement circuit
  • 162 Pulse width measurement unit Pulse width measurement circuit
  • Abnormality determination unit Abnormality determination circuit
  • V1 voltage high voltage pulse
  • V3, V4 voltage high voltage for ion generation

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

イオンセンサを用いず、放電電極の汚れやイオン発生装置自体の故障等の異常を判定するイオン発生装置を提供する。イオン発生装置(1)は、パルス発生部(11)にて発生した高圧パルスをさらに昇圧したイオン発生用高電圧を第1及び第2放電電極(141a)(141b)に印加するとともに、測定した上記高圧パルスのパルス幅及び周波数から、当該イオン発生装置(1)の異常を判定する異常判定部(171)を備える。

Description

イオン発生装置及び電子機器
 本発明は、放電によりイオンを発生するイオン発生装置及び電子機器に関する。
 通常、イオン発生装置が正常にイオンを出していることを保証するために、当該イオン発生装置近傍の風下側(イオンの吹出し口近傍)にイオンセンサを配置している。イオンセンサは、センサ表面に到達するイオンによる電流を測定し、測定した電流によりデバイスからのイオンの量を検知している(例えば特許文献1,2)。
 また、特許文献2には、イオンセサにより検出したイオンの量が所定の量よりも少ない場合に、イオンを発生する放電電極に汚れが付着していると判断し、当該放電電極の清掃を促す報知を行うことが記載されている。
日本国公開特許公報「特開2010-92773号公報(2010年4月22日公開)」 日本国公開特許公報「特開2013-37831号公報(2013年2月21日公開)」
 しかしながら、特許文献2に開示された技術では、放電電極が汚れているか否かの判定を行うために、イオンセンサにより検知したイオンの量を用いている。つまり、特許文献2に開示された技術では、イオンセンサは必須の構成要素となる。
 また、イオンセンサにより検出したイオンの量が限りなく0に近い場合、イオン発生装置自体が故障していると判定することも可能である。しかしながら、この場合も、イオンセンサは必須の構成要素となる。
 従って、従来のイオン発生装置では、イオンセンサを用いなければ、放電電極の汚れやイオン発生装置自体の故障等の異常を判定することができなかった。
 本発明の一態様は、イオンセンサを用いること無く、放電電極の汚れやイオン発生装置自体の故障等の異常を判定できるイオン発生装置を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係るイオン発生装置は、放電によりイオンを発生させる放電電極と、高圧パルスを発生する高圧パルス発生回路と、上記高圧パルス発生回路により発生した高圧パルスをさらに昇圧して上記放電電極に印加するイオン発生用高電圧を発生する高電圧発生回路と、上記高圧パルス発生回路により生じた高圧パルスのパルス幅を測定するパルス幅測定回路と、上記パルス幅測定回路によって測定された高圧パルスのパルス幅から、上記イオン発生装置の異常を判定する異常判定回路と、を備えている。
 本発明の一態様によれば、イオンセンサを用いること無く、放電電極の汚れやイオン発生装置自体の故障等の異常を判定できるという効果を奏する。
本発明の実施形態1に係るイオン発生装置の要部の構成を示す回路図である。 図1のイオン発生装置の各状態における、パルス周波数及びパルス幅の測定結果の一例を示す表である。 図2の測定結果を示すグラフである。 図1のイオン発生装置の比較例としてのイオン発生装置の要部の構成を示す回路図である。 本発明の実施形態2に係るイオン発生装置の要部の構成を示す回路図である。 本発明の実施形態3に係るイオン発生装置の要部の構成を示す回路図である。
 〔実施形態1〕
 以下、本発明の実施形態1について、図1~図4に基づいて詳細に説明する。なお、本実施形態のイオン発生装置1が備える各部材のうち、不図示の部材(例:送風機、ダクト、及びルーバ等)については、公知のものと同様であるため説明を省略する。
 (イオン発生装置1の概要)
 図1は、イオン発生装置1の要部の構成を示す回路図である。はじめに、イオン発生装置1の概要について述べる。イオン発生装置1は、以下に述べる放電電極の近傍の空間に放電(例:コロナ放電)を生じさせることにより、イオンを発生させる。
 イオン発生装置1は、高電圧発生部10、パルス発生部11(高圧パルス発生回路)、変圧器12(高電圧発生回路)、整流回路13(高電圧発生回路)、放電部14、波形整形部15、パルス測定部16、及び制御部17を備えている。まず、波形整形部15、パルス測定部16、及び制御部17の異常判定部171(異常判定回路)(後述)以外の各部材について説明する。
 高電圧発生部10は、自身に入力される電圧を、より高い電圧に変換する。高電圧発生部10は、公知の昇圧回路であってよい。高電圧発生部10の入力側(不図示)は、イオン発生装置1の外部の交流電源(不図示)(例:電圧100V,周波数60Hzの商用電源)に接続されている。高電圧発生部10は、上記交流電源から入力される電圧を昇圧し、昇圧した電圧をパルス発生部11に与える。
 パルス発生部11は、高電圧発生部10から入力される電圧の波形(例:正弦波波形)を変換し、高電圧の電圧パルス(例:矩形波電圧パルス)を生成する。以下、パルス発生部11が生成する電圧パルスを、電圧V1(高圧パルス)とも称する。パルス発生部11は、公知の発振回路(例:自励式の発振回路)であってよい。一例として、パルス発生部11は、電圧V1を、周波数120Hzの電圧パルスとして生成する。
 図1に示されるように、パルス発生部11、変圧器12、及び波形整形部15は、節点N1を介して互いに接続されている。このため、パルス発生部11は、節点N1を介して、変圧器12(より具体的には、一次側巻線121)及び波形整形部15(より具体的には、ダイオード151のカソード)のそれぞれに、電圧V1を供給できる。
 変圧器12は、一次側巻線121と二次側巻線122とを備えている。一次側巻線121は、パルス発生部11に接続されている。また、二次側巻線122は、整流回路13に接続されている。なお、変圧器12及び整流回路13を総称して、高電圧発生回路とも称する。以下に述べるように、高電圧発生回路は、上述の電圧V1をさらに昇圧して、放電電極に印加するイオン発生用高電圧(後述する電圧V3及びV4)を発生する。
 図1に示されるように、一次側巻線121において、一方の端子は節点N1に接続され、他方の端子は接地されている。また、二次側巻線122において、一方の端子は節点N2に接続され、他方の端子は節点Nmに接続されている。ここで、節点N2の電圧(電位)をV2、節点Nmの電圧をVmとそれぞれ表す。
 変圧器12は、一次側巻線121に入力された電圧V1(一次側電圧)を、より高い電圧(二次側電圧)に変換(変圧)して二次側巻線122に出力する。このように、変圧器12は、電圧V1を昇圧し、昇圧後の電圧を整流回路13に供給できる。変圧器12は、公知の昇圧トランスであってよい。なお、変圧器12は昇圧トランスであるため、一次側巻線121と二次側巻線122との巻数比を1:Kとすると、K>1である。また、K=(V2-Vm)/V1である。
 整流回路13は、二次側巻線122から供給された電圧を整流する。つまり、整流回路13は、交流電圧を直流電圧に変換する。整流回路13は、ダイオード131a・131b及びコンデンサ132a・132bを備えている。
 図1に示されるように、節点N2は、ダイオード131aのアノードに接続されている。すなわち、ダイオード131aのアノードには、電圧V2が入力される。このため、ダイオード131aは、電圧V2の正の成分のみ(すなわち、V2>0である部分の電圧波形)のみを通過させる整流素子として機能する。
 また、節点N2は、ダイオード131bのカソードにも接続されている。すなわち、ダイオード131bのカソードにも、電圧V2が入力される。このため、ダイオード131bは、電圧V2の負の成分のみ(すなわち、V2<0である部分の電圧波形)のみを通過させる整流素子として機能する。
 また、図1に示されるように、ダイオード131aのカソード、コンデンサ132aの一方の端子、及び放電部14はそれぞれ、節点N3を介して互いに接続されている。また、ダイオード131bのアノード、コンデンサ132bの一方の端子、及び放電部14はそれぞれ、節点N4を介して互いに接続されている。また、上述の節点Nmには、コンデンサ132aの他方の端子とコンデンサ132bの他方の端子とが接続されている。
 コンデンサ132aは、ダイオード131aによる整流後の電圧を平滑化する素子(つまり、平滑コンデンサ)として機能する。ここで、節点N3の電圧をV3として表す。電圧V3は、ダイオード131aによる整流後の電圧(正の電圧パルス)が、コンデンサ132aによって平滑化された電圧である。このため、電圧V3は、振幅がほぼ一定の正の電圧パルスとなる。
 他方、コンデンサ132bは、ダイオード131bによる整流後の電圧を平滑化する素子として機能する。ここで、節点N4の電圧をV4として表す。電圧V4は、ダイオード131bによる整流後の電圧(負の電圧パルス)が、コンデンサ132bによって平滑化された電圧である。このため、電圧V4は、振幅がほぼ一定の負の電圧パルスとなる。
 このように、整流回路13が設けられることにより、正の電圧パルス(電圧V3)及び負の電圧パルス(電圧V4)を、放電部14に交互に供給できる。なお、以下に述べるように、電圧V3及びV4は、イオン発生用高電圧と称されてもよい。電圧V3及びV4は、放電によってイオンを生じさせるために放電電極に印加される電圧であるためである。
 放電部14は、第1放電電極141a(放電電極)及び第2放電電極141b(放電電極)を備えている。なお、図1では、簡単のために、第1放電電極141a及び第2放電電極141bがそれぞれ1つのみ図示されているが、第1放電電極141a及び第2放電電極141bのそれぞれは、複数設けられていてよい。
 第1放電電極141a及び第2放電電極141bは、対向電極(不図示)に対向するように配置された棒状の電極である。なお、第1放電電極141a及び第2放電電極141bは、針状の電極として形成されることが好ましい。各放電電極の先端部を尖らせる(尖端部を設ける)ことで、対向電極との間に放電を生じさせやすくするためである。
 放電部14において、第1放電電極141aには、上述の電圧V3が供給される。従って、第1放電電極141aは、当該第1放電電極141aと対向電極との間の放電によって、所定の種類の正イオン(プラスイオン)を生じさせる放電電極として機能する。一例として、この正イオンは、H(HO)(nは任意の自然数)であってよい。但し、正イオンの種類はこれに限定されない。
 他方、第2放電電極141bには、上述の電圧V4が供給される。従って、第2放電電極141bは、当該第2放電電極141bと対向電極との間の放電によって、所定の種類の負イオン(マイナスイオン)を生じさせる放電電極として機能する。一例として、この負イオンは、O (HO)(mは任意の自然数)であってよい。但し、負イオンの種類はこれに限定されない。
 このように、イオン発生装置1では、(i)正イオンのみを発生させる専用の電極として第1放電電極141aが、(ii)負イオンのみを発生させる専用の電極として第2放電電極141bが、それぞれ設けられている。このため、イオン発生装置1は、放電により正イオン(プラスイオン)及び負イオン(マイナスイオン)の両方を発生させることができる。
 制御部17は、イオン発生装置1の各部を統括的に制御する。制御部17は、例えばマイクロプロセッサ(マイクロコンピュータ)であってよい。図1に示されるように、制御部17は、異常判定部171を備えている。異常判定部171の具体的な動作については後述する。
 制御部17の機能は、記憶部(不図示)に記憶されたプログラムを、CPU(Central Processing Unit)が実行することによって実現されてよい。当該記憶部は、制御部17が実行する各種のプログラム、及びプログラムによって使用されるデータを格納する記憶装置である。
 (波形整形部15)
 上述のように、波形整形部15は、節点N1を介して、パルス発生部11に接続されている。つまり、イオン発生装置1は、パルス発生部11が出力した電圧V1が波形整形部15へと分路されるように構成されている。
 波形整形部15は、ダイオード151・153及び抵抗152を備えている。図1に示されるように、ダイオード151のカソードは、節点N1に接続されている。このため、ダイオード151は、電圧V1の負の成分のみ(すなわち、V1<0である部分の電圧波形)のみを通過させる整流素子として機能する。
 図1に示されるように、抵抗152は、一方の端子がダイオード151のアノードに、他方の端子が節点N5に接続されている。ここで、節点N5の電圧をV5として表す。抵抗152は、ダイオード151が整流した電圧(負の電圧パルス)の大きさを低下させるための素子である。つまり、抵抗152は、パルス測定部16に供給される電圧V5(負の電圧パルス)の大きさを調整するための分圧抵抗として機能する。抵抗152が設けられることで、パルス測定部16に過大な電圧V5が供給されることを防止できるので、パルス測定部16の電気部品が破損するリスクを低減できる。
 ダイオード153のアノードは、接地されている。また、ダイオード153のカソードは、節点N5に接続されている。ダイオード153は、大地(接地点)から節点N5に向かうノイズ(つまり、電圧V5に対するノイズ)を抑制する役割を果たす。以上のように、波形整形部15は、上述の電圧V1の波形を整形して、電圧V5を生成する。そして、波形整形部15は、節点N5を介して、パルス測定部16に電圧V5を供給する。
 (パルス測定部16)
 パルス測定部16は、波形整形部15から供給される電圧V5(負の電圧パルス)を測定(分析)する。パルス測定部16は、例えばオシロスコープまたはネットワークアナライザであってよい。パルス測定部16は、パルス周波数測定部161(パルス周波数測定回路)及びパルス幅測定部162(パルス幅測定回路)を備えている。
 なお、本実施形態では、説明の便宜上、パルス周波数測定部161とパルス幅測定部162とを別体の機能部として例示している。但し、パルス周波数測定部161とパルス幅測定部162とは、一体の機能部として設けられてもよい。
 パルス周波数測定部161は、電圧V5の周波数(パルス周波数)fpを測定する。パルス幅測定部162は、電圧V5のパルス幅Tpを測定する。そして、パルス測定部16は、自身が測定したパルス周波数fp及びパルス幅Tpの値を、制御部17に与える。
 (イオン発生装置1の各状態とパルス周波数fp及びパルス幅Tpとの関係)
 上述のように、イオン発生装置1は、放電電極(第1放電電極141a及び第2放電電極141b)の近傍の空間に放電を生じさせることにより、イオンを発生させる。このため、イオン発生装置1では、上記放電をより確実に発生させるために、放電電極間の抵抗は比較的高い値(例:1GΩ以上)に設定されている。
 しかしながら、放電電極間の抵抗が低下した場合(例:放電電極に汚れが付着した場合)には、イオン発生装置1の放電能力が低下する。つまり、放電電極間の抵抗が低下した場合には、イオン発生装置1のイオン発生量が低下する。
 ところで、放電電極間の抵抗が低下した場合には、当該放電電極間に流れる電流が増加する。従って、二次側巻線122に流れる電流(二次側電流)も増加する。それゆえ、当該二次側電流の増加に伴い、一次側巻線121に流れる電流(一次側電流)も増加する。その結果、当該一次側電流の増加に伴い、一次側巻線121に誘起される逆起電力が増加する。
 つまり、放電電極間の抵抗が低下した場合には、上述の電圧V1において、正の成分に比べて負の成分が顕著となる。すなわち、電圧V1は負(マイナス)方向にバイアスされた電圧パルスとなる。このように、電圧V1は負方向に振れる時間が長くなるため、電圧V1において、正の成分のパルス幅に比べて、負の成分のパルス幅が増加する。
 この点を踏まえ、本願の発明者は、電圧V1の負の成分のパルス幅を評価することにより、放電電極間の抵抗が低下しているか否か(イオン発生装置1のイオン発生量が低下しているか否か)を検知するという技術的思想を新たに想到した。
 そして、本願の発明者は、電圧V1の負の成分のパルス幅を容易に評価することを目的として、上述のイオン発生装置1を構成した。上述のように、電圧V5は、電圧V1の負の成分のみを通過させ、当該成分の大きさを調整した電圧である。このため、電圧V5のパルス幅は、電圧V1の負の成分のパルス幅に等しい。
 従って、電圧V5(低電圧)のパルス幅を測定することで、電圧V1(高電圧)の負の成分のパルス幅を容易に評価できる。また、電圧V5の周波数は、電圧V1の周波数に等しい。このため、電圧V5のパルス幅及び周波数を測定することで、電圧V1のパルス幅及び周波数を間接的に測定できる。このように、電圧V5は、電圧V1に応じたモニタ出力(モニタ信号)として使用されてよい。以上のことから、パルス測定部16は、電圧V1のパルス幅及び周波数を測定する測定部であると理解されてもよい。
 続いて、本願の発明者は、イオン発生装置1の各状態とパルス周波数fp及びパルス幅Tpとの関係を確認した。つまり、イオン発生装置1の様々な状態において、パルス測定部16によってパルス周波数fp及びパルス幅Tpを測定した。図2は、当該測定結果の一例を示す表である。また、図3は、当該測定結果を示すグラフである。
 なお、上記測定において、電極間距離は30mm、放電電圧(上述の電圧V3及びV4)のピーク値は3kVであった。また、放電繰り返し周波数(つまり、上述のパルス周波数fp)は120Hzであった。このため、図2に示されるように、後述する「発振故障」を除く各状態において、fp=120Hz(つまり、後述する正常値の周波数)であった。
 図2及び図3において、「正常」は、放電電極に汚れが付着しておらず、放電電極間の抵抗が1GΩ以上である状態を示す。また、「汚れ10MΩ相当」は、放電電極間の抵抗を10MΩにした状態(つまり、放電電極同士を10MΩの抵抗によって接続した状態)を示す。当該状態は、放電電極間の抵抗が10MΩ程度となるような汚れが放電電極に付着した場合を模擬する実験条件である。この点については、「汚れ1MΩ相当」、「汚れ100kΩ相当」、「汚れ100Ω相当」においても同様である。
 また、「電極間短絡故障」は、放電電極間を短絡させた状態(つまり、放電電極間を抵抗がほぼ0Ωの導線によって接続した状態)を示す。当該状態は、放電電極間に短絡故障が生じた場合を模擬する実験条件である。なお、「発振故障」は、パルス発生部11の動作を停止させた状態である。この場合、上述の電圧V1は生成されないので、パルス周波数fp及びパルス幅Tpはいずれも0となる。
 図2に示されるように、「正常」の場合には、Tp=18μsであった。なお、「正常」の場合におけるパルス幅Tp(18μs)及びパルス周波数(120Hz)は、正常値と称されてもよい。
 また、「汚れ10MΩ相当」の場合には、Tp=24μsであった。つまり、放電電極に汚れが付着した場合(イオン発生量が低下した場合)には、「正常」の場合に比べてパルス幅Tpが増加することが確認された。
 また、「汚れ1MΩ相当」の場合には、Tp=40μsであった。つまり、放電電極の汚れが顕著になるにつれて(イオン発生量が低下するにつれて)、パルス幅Tpが増加することが確認された。
 また、「汚れ100kΩ相当」、「汚れ100Ω相当」、及び「電極間短絡故障」の場合には、いずれもTp=48μsであった。つまり、放電がほぼ不能となるレベルまで放電電極間の抵抗が低下した場合(イオン発生量が極めて少ない場合)には、パルス幅Tpはほぼ一定の値(最大値)となることが確認された。
 以上のように、イオン発生装置1によれば、パルス測定部16の測定結果(パルス周波数fp及びパルス幅Tpの値)に基づいて、イオン発生装置1の放電状態(換言すれば、イオン発生量)を簡便に推測できる。例えば、以下に述べる異常判定部171をイオン発生装置1に設け、当該異常判定部171にイオン発生装置1の放電状態に異常が生じているか否か(つまり、イオン発生装置1がイオンを正常に発生させているか否か)を判定させてもよい。
 異常判定部171は、パルス測定部16から、当該パルス測定部16の測定結果(パルス周波数fp及びパルス幅Tpの値)を取得する。一例として、異常判定部171は、(i)パルス周波数fpが所定の値fs(例:fs=120Hz)に等しく、かつ、(ii)パルス幅Tpが所定の閾値Tth(例:Tth=25μs)以下である場合に、イオン発生装置1の放電状態が正常であると判定する。
 他方、異常判定部171は、(i)パルス周波数fpがfsに等しく、かつ、(ii)パルス幅Tpが閾値Tthよりも大きい場合には、放電電極にある一定以上の汚れ(許容範囲を超えた汚れ)が付着していると判定する。
 なお、閾値Tthは、上述の「正常」の場合、及び、放電電極の汚れが許容範囲内にある場合(例:「汚れ10MΩ相当」の場合,つまり、イオン発生装置1の放電能力の低下が許容範囲内にある場合)におけるパルス幅Tpの測定結果に応じて、イオン発生装置1の製造者によって任意に設定されてよい。
 また、所定の値fsは、上述の「正常」の場合におけるパルス周波数fpの測定結果に応じて、イオン発生装置1の製造者によって任意に設定されてよい。fsの値は、イオン発生装置1が正常に動作している場合のfpの値に相当するものであればよい。
 なお、イオン発生装置が故障している場合(例:上述の発振故障が生じた場合)、電圧V1が生成されないので、パルス周波数fpが0Hzになる。つまり、fpの値が上述の所定の値fsから大きく外れる。このように、fpの値に基づいて、イオン発生装置1が故障していることを検出することもできる。そこで、異常判定部171は、パルス周波数fpが0Hzである場合には、イオン発生装置1が故障していると判定する。なお、発振故障の原因として、パルス周波数fpが異常に大きな値になる場合も考えられるため、パルス周波数fpが予め設定した範囲から外れる場合、イオン発生装置の故障であると判定してもよい。ここで、予め設定した周波数の範囲とは、イオン発生装置が正常に駆動している場合の高圧パルスの周波数の範囲を示す。
 また、イオン発生装置1において、(i)放電電極にある一定以上の汚れが付着していると判定された場合、または、(ii)当該イオン発生装置1が故障していると判定された場合には、制御部17は、イオン発生装置1におけるイオンの発生を停止させてもよい。例えば、制御部17は、高電圧発生部10の動作を停止させてもよい。
 なお、異常判定部171における上述の判定条件は単なる一例であり、これらに限定されないことに留意されたい。異常判定部171は、パルス測定部16の測定結果(パルス周波数fp及びパルス幅Tpの値)に基づいて、イオン発生装置1の異常を判定できるように構成されていればよい。つまり、上記判定条件は、イオン発生装置1の製造者によって任意に設定されてよい。
 また、異常判定部171は、パルス測定部16の測定結果(パルス周波数fp及びパルス幅Tpの値)から、イオン発生装置1の異常を判定する例を示したが、これに限定されるものではなく、例えばパルス幅Tpのみからイオン発生装置1の異常を判定してもよい。
 (比較例)
 続いて、図4を参照して、イオン発生装置1の比較例としてのイオン発生装置1xについて述べる。図4は、イオン発生装置1xの要部の構成を示す回路図である。イオン発生装置1xは、従来のイオン発生装置に相当する。なお、上述の制御部17との区別のため、イオン発生装置1xの制御部を、制御部17xと称する。
 図4に示されるように、イオン発生装置1xは、(i)イオンセンサ18を有しており、かつ、(ii)波形整形部15、パルス測定部16、及び異常判定部171を有していないという点において、イオン発生装置1とは異なる。
 上述のように、イオン発生装置1x(従来のイオン発生装置)では、当該イオン発生装置1xの異常を検知するために、イオンセンサ18を設ける必要があった。加えて、イオンセンサ18の検知精度を低下させないためには、当該イオンセンサを放電電極の付近(例:イオン発生装置1xの送風路(不図示)の風下側)に配置することが好ましい。
 このように、イオン発生装置1xにおいて、イオンセンサ18を配置する位置はある程度制限されるため、イオン発生装置1xの配置の自由度が低くなるという問題が生じる。また、イオン発生装置1xの省スペース化も困難である。それゆえ、イオン発生装置を配置する位置が厳しく制限される場合(例:車載用の空気清浄機にイオン発生装置を内蔵する場合)には、当該イオン発生装置1xを適用することが困難である。
 (イオン発生装置1の効果)
 上述のように、イオン発生装置1において異常(例:イオン発生装置の故障、放電電極の汚れ)が発生した場合には、電圧V1のパルス幅またはパルス周波数の少なくともいずれかが、正常値から顕著に増加する。
 この点を踏まえ、本願の発明者は、上述のイオン発生装置1x(従来のイオン発生装置)とは異なる技術的思想(方法)に基づいてイオン発生状態を検知できるように、イオン発生装置1を構成した。
 具体的には、イオン発生装置1では、電圧V1を波形整形部15へと分路させることにより、当該波形整形部15において電圧V5(モニタ出力)が生成される。それゆえ、パルス測定部16において電圧V5を測定することにより、電圧V1のパルス幅及びパルス周波数を容易に測定できる。その結果、異常判定部171は、パルス測定部16の測定結果(上述のパルス幅Tp及びパルス周波数fp)に基づいて、イオン発生装置1の異常を判定(検知)できる。
 このように、イオン発生装置1では、波形整形部15、パルス測定部16、及び異常判定部171を設けることにより、イオン発生状態1の異常を簡便に検知できる。それゆえ、イオン発生装置1によれば、イオンセンサ18を省略することが可能となる。つまり、イオン発生装置1によれば、イオンセンサ18を用いること無く、当該イオン発生装置の異常を判定することが可能となる。
 また、イオン発生装置1によれば、イオンセンサ18が不要となるので、当該イオン発生装置1の配置の自由度を、従来よりも向上させることが可能となる。加えて、イオン発生装置1を省スペース化することもできる。それゆえ、イオン発生装置1は、当該イオン発生装置1を配置する位置が厳しく制限される場合において、特に好適である。
 〔実施形態2〕
 本発明の実施形態2について、図5に基づいて説明すれば、以下の通りである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 上述の実施形態1では、イオン発生装置1が放電により正イオン及び負イオンの両方を発生させる場合を例示して説明を行った。但し、本発明の一態様に係るイオン発生装置は、放電により正イオンまたは負イオンのいずれか一方を発生させるように構成されていてもよい。本実施形態及び後述する実施形態3では、その一例をそれぞれ示す。
 図5は、本実施形態のイオン発生装置2の要部の構成を示す回路図である。図5に示されるように、イオン発生装置2は、実施形態1のイオン発生装置1において、放電部14を放電部24に置き換えたものである。放電部24は、第1放電電極141aのみを備えている。つまり、イオン発生装置2(より具体的には放電部24)は、放電により正イオンのみを発生させるように構成されている。イオン発生装置2によっても、上述の実施形態1と同様の効果を奏する。
 〔実施形態3〕
 本発明の実施形態3について、図6に基づいて説明すれば、以下の通りである。図6は、本実施形態のイオン発生装置3の要部の構成を示す回路図である。
 図6に示されるように、イオン発生装置3は、実施形態1のイオン発生装置1において、放電部14を放電部34に置き換えたものである。放電部34は、第2放電電極141bのみを備えている。つまり、イオン発生装置3(より具体的には放電部34)は、放電により負イオンのみを発生させるように構成されている。イオン発生装置3によっても、上述の実施形態1と同様の効果を奏する。
 〔変形例〕
 なお、本発明に一態様に係るイオン発生装置は、電子機器(例:空気清浄器)に設けられてもよい。例えば、イオン発生装置1が空気清浄機に設けられてもよい。この場合、イオン発生装置1は、電子機器に一体に組み込まれた構成であってもよく、電子機器に対して取り外し自在に設けられてもよい。イオン発生装置1が電気機器に対して取り外し自在に設けられていることで、イオン発生装置1の交換や清掃が可能であり、電子機器のメンテナンスが容易になる。
 また、上記電子機器の種類は、特に限定されない。例えば、当該電子機器は、空気調和機、除湿機、加湿器、ファンヒータまたはその他の機器であってよい。当該電子機器は、家屋用であってもよく、車載用であってもよい。当該電子機器は、例えば、家屋の室内、ビルの一室、病院の病室、自動車の車室内、飛行機の機内または船の船舶内等の空気を調節するために、好適に用いられる。
 〔ソフトウェアによる実現例〕
 イオン発生装置1~3の制御ブロック(特に制御部17)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、イオン発生装置1~3は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラム及び各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係るイオン発生装置(1)は、放電によりイオンを発生させる放電電極(第1放電電極141a,第2放電電極141b)と、高圧パルス(電圧V1)を発生する高圧パルス発生回路(パルス発生部11)と、上記高圧パルス発生回路により発生した高圧パルスをさらに昇圧して上記放電電極に印加するイオン発生用高電圧(電圧V3,電圧V4)を発生する高電圧発生回路(変圧器12,整流回路13)と、を備えたイオン発生装置であって、上記高圧パルス発生回路により生じた高圧パルスのパルス幅を測定するパルス幅測定回路(パルス幅測定部162)と、上記パルス幅測定回路によって測定された高圧パルスのパルス幅から、上記イオン発生装置の異常を判定する異常判定回路(異常判定部171)と、を備えている。
 通常、イオン発生装置が正常に駆動していれば、高圧パルスに応じたモニタ出力(周波数及びパルス幅が正常値)が得られる。従って、イオン発生装置が故障している場合、高圧パルスが発生しないので、モニタ出力の周波数及びパルス幅が正常値から外れる。これにより、イオン発生装置が故障していることが検出可能となる。また、イオン発生装置において放電電極に汚れが付着している場合、放電電極間の抵抗値が下がるため、高圧パルスの高電圧発生回路への入力時に、当該高電圧発生回路の二次側に流れる電流が大きくなる。このため高電圧発生回路の一次側に発生する逆起電力が大きくなり高圧パルスがマイナスに振れる時間が長くなる。このため、モニタ出力(起電力)のパルス幅が大きくなり、モニタ出力の周波数及びパルス幅が正常値から外れる。これにより、放電電極の汚れが検出可能となる。このように、高圧パルスのモニタ出力の周波数及びパルス幅を検出することで、イオン発生装置の故障や放電電極の汚れ等のイオン発生装置の異常が検出可能となる。
 従って、上記の構成のように、高圧パルス発生回路により生じた高圧パルスのパルス幅を測定し、測定された高圧パルスのパルス幅から、イオン発生装置の異常を判定する異常判定回路を備えることで、イオンセンサにより検出したイオンの量から異常を判定する必要はない。すなわち、イオンセンサを用いること無く、放電電極の汚れ等の異常を判定することが可能となる。
 本発明の態様2に係るイオン発生装置は、上記態様1において、上記異常判定回路は、上記パルス幅測定回路によって測定された高圧パルスのパルス幅が予め設定した値よりも大きい場合、放電電極にある一定以上の汚れが付着していると判定することが好ましい。
 上記の構成によれば、異常判定回路によって、測定された高圧パルスのパルス幅が予め設定した値よりも大きい場合、放電電極がある一定以上の汚れが付着していると判定できる。すなわち、放電電極の汚れを判定することが可能となる。
 本発明の態様3に係るイオン発生装置は、上記態様1において、上記高圧パルス発生回路により生じた高圧パルスの周波数を測定するパルス周波数測定回路(パルス周波数測定部161)をさらに備え、上記異常判定回路は、上記パルス周波数測定回路によって測定された上記高圧パルスの周波数と、上記パルス幅測定回路によって測定された高圧パルスのパルス幅とから、上記イオン発生装置の異常を判定することが好ましい。
 上記の構成によれば、異常判定回路は、高圧パルスのパルス幅に加えて、高圧パルスの周波数から、イオン発生装置の異常を判定するため、イオンセンサにより検出したイオンの量から異常を判定する必要はない。しかも、高圧パルスの周波数によって、放電電極の汚れだけでなく、イオン発生装置自体の故障等の異常を判定することが可能となる。
 本発明の態様4に係るイオン発生装置は、上記態様3において、上記異常判定回路が、上記パルス周波数測定回路によって測定された高圧パルスの周波数が予め設定した値であり、且つ上記パルス幅測定回路によって測定された上記高圧パルスのパルス幅が予め設定した値よりも大きい場合、放電電極にある一定以上の汚れが付着していると判定することが好ましい。
 上記の構成によれば、異常判定回路によって、測定された高圧パルスの周波数が予め設定した値であり、且つパルス幅が予め設定した値よりも大きい場合、放電電極がある一定以上の汚れが付着していると判定できる。すなわち、放電電極の汚れを判定することが可能となる。
 本発明の態様5に係るイオン発生装置は、上記態様3または4において、上記異常判定回路が、上記パルス周波数測定回路によって測定された高圧パルスの周波数が、予め設定した周波数の範囲から外れる場合、イオン発生装置の故障であると判定することが好ましい。
 上述のように、イオン発生装置が故障している場合、高圧パルスが発生しないか、あるいは異常に高圧パルスの周波数になっている。つまり、高圧パルスに応じたモニタ出力の周波数が正常値から大きく外れることになる。このように、モニタ出力の周波数に基づいて、イオン発生装置が故障していることが検出可能となる。
 そこで、上記の構成のように、パルス周波数測定回路によって測定された高圧パルスの周波数が、予め設定した周波数の範囲から外れる場合、異常判定回路によってイオン発生装置が故障していると判定させてもよい。ここで、予め設定した周波数の範囲とは、イオン発生装置が正常に駆動している場合の高圧パルスの周波数の範囲を示す。
 本発明の態様6に係るイオン発生装置は、上記態様1から5のいずれか1つにおいて、上記放電電極が、放電によりプラスイオン及びマイナスイオンを発生させてもよい。
 上記の構成によれば、イオン発生装置に正イオン及び負イオンの両方を発生させることが可能となる。
 本発明の態様7に係る電子機器は、上記態様1から6のいずれか1つに係るイオン発生装置を備えていることが好ましい。
 上記の構成によれば、本発明の一態様に係るイオン発生装置と同様の効果を奏する。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1,2,3 イオン発生装置
 11 パルス発生部(高圧パルス発生回路)
 12 変圧器(高電圧発生回路)
 13 整流回路(高電圧発生回路)
 16 パルス測定部(パルス幅・周波数測定回路)
 141a 第1放電電極(放電電極)
 141b 第2放電電極(放電電極)
 161 パルス周波数測定部(パルス周波数測定回路)
 162 パルス幅測定部(パルス幅測定回路)
 171 異常判定部(異常判定回路)
 V1 電圧(高圧パルス)
 V3,V4 電圧(イオン発生用高電圧)

Claims (7)

  1.  放電によりイオンを発生させる放電電極と、
     高圧パルスを発生する高圧パルス発生回路と、
     上記高圧パルス発生回路により発生した高圧パルスをさらに昇圧して上記放電電極に印加するイオン発生用高電圧を発生する高電圧発生回路と、を備えたイオン発生装置であって、
     上記高圧パルス発生回路により生じた高圧パルスのパルス幅を測定するパルス幅測定回路と、
     上記パルス幅測定回路によって測定された高圧パルスのパルス幅から、上記イオン発生装置の異常を判定する異常判定回路と、
    を備えていることを特徴とするイオン発生装置。
  2.  上記異常判定回路は、
     上記パルス幅測定回路によって測定された高圧パルスのパルス幅が予め設定した値よりも大きい場合、放電電極にある一定以上の汚れが付着していると判定することを特徴とする請求項1に記載のイオン発生装置。
  3.  上記高圧パルス発生回路により生じた高圧パルスの周波数を測定するパルス周波数測定回路をさらに備え、
     上記異常判定回路は、
     上記パルス周波数測定回路によって測定された上記高圧パルスの周波数と、上記パルス幅測定回路によって測定された高圧パルスのパルス幅とから、上記イオン発生装置の異常を判定することを特徴とする請求項1に記載のイオン発生装置。
  4.  上記異常判定回路は、
     上記パルス周波数測定回路によって測定された高圧パルスの周波数が予め設定した値であり、且つ上記パルス幅測定回路によって測定された上記高圧パルスのパルス幅が予め設定した値よりも大きい場合、放電電極にある一定以上の汚れが付着していると判定することを特徴とする請求項3に記載のイオン発生装置。
  5.  上記異常判定回路は、
     上記パルス周波数測定回路によって測定された高圧パルスの周波数が予め設定した範囲から外れる場合、イオン発生装置の故障であると判定することを特徴とする請求項3または4に記載のイオン発生装置。
  6.  上記放電電極は、放電によりプラスイオン及びマイナスイオンを発生することを特徴とする請求項1~5の何れか1項に記載のイオン発生装置。
  7.  請求項1~6の何れか1項のイオン発生装置を備えた電子機器。
PCT/JP2017/002763 2016-09-27 2017-01-26 イオン発生装置及び電子機器 WO2018061234A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-188788 2016-09-27
JP2016188788 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018061234A1 true WO2018061234A1 (ja) 2018-04-05

Family

ID=61759366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002763 WO2018061234A1 (ja) 2016-09-27 2017-01-26 イオン発生装置及び電子機器

Country Status (1)

Country Link
WO (1) WO2018061234A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157195A (ja) * 2019-03-25 2020-10-01 三菱電機株式会社 空気清浄装置
WO2024105734A1 (ja) * 2022-11-14 2024-05-23 三菱電機株式会社 放電装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227638A (ja) * 2002-11-29 2003-08-15 Sharp Corp イオン発生装置及びこれを搭載した空調機器
JP2007027015A (ja) * 2005-07-21 2007-02-01 Sharp Corp イオン発生装置及び空気調節装置
JP2012221761A (ja) * 2011-04-08 2012-11-12 Keyence Corp 除電装置及び除電制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227638A (ja) * 2002-11-29 2003-08-15 Sharp Corp イオン発生装置及びこれを搭載した空調機器
JP2007027015A (ja) * 2005-07-21 2007-02-01 Sharp Corp イオン発生装置及び空気調節装置
JP2012221761A (ja) * 2011-04-08 2012-11-12 Keyence Corp 除電装置及び除電制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157195A (ja) * 2019-03-25 2020-10-01 三菱電機株式会社 空気清浄装置
JP7243360B2 (ja) 2019-03-25 2023-03-22 三菱電機株式会社 空気清浄装置
WO2024105734A1 (ja) * 2022-11-14 2024-05-23 三菱電機株式会社 放電装置

Similar Documents

Publication Publication Date Title
US7833322B2 (en) Air treatment apparatus having a voltage control device responsive to current sensing
JP5046390B2 (ja) 除電装置
KR101625780B1 (ko) 임펄스 전압 발생 장치
EP1647776A2 (en) Apparatus and method for controlling air cleaning
JP4111348B2 (ja) 除電装置
EP1647777A2 (en) Apparatus and method for controlling air cleaning in an air conditioner
WO2018061234A1 (ja) イオン発生装置及び電子機器
WO2008075677A1 (ja) 除電装置
KR20120085204A (ko) 제전기
US8681470B2 (en) Active ionization control with interleaved sampling and neutralization
JP4367580B2 (ja) 除電装置
JP5328262B2 (ja) オゾン発生装置
JP4931192B2 (ja) 除電装置
JP4871684B2 (ja) 電気集塵機の電源装置
JP2011054579A (ja) 除電装置
WO2013187383A1 (ja) 除電装置
TWI555315B (zh) 電源供應裝置及電源處理方法
TWI572875B (zh) 故障檢測電路及採用該故障檢測電路檢測電路故障的方法
KR101599591B1 (ko) 마이크로 펄스 시스템, 마이크로 펄스 시스템의 제어방법, 및 마이크로 펄스 시스템을 포함하는 전기 집진장치
JP5299989B2 (ja) イオナイザ
TWI283808B (en) Method and apparatus for power supply having brownout protection
ES2747698T3 (es) Dispositivo de rectificación y dispositivo de accionamiento de motor
JP6530483B2 (ja) 閉ループフィードバックおよびインターリーブサンプリングによるアクティブイオン化制御
JP6272135B2 (ja) 電力消費システム、漏電検知方法、および、プログラム
CN111009822B (zh) 离子产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP