WO2018059548A1 - 数据发送方法、装置及信源 - Google Patents

数据发送方法、装置及信源 Download PDF

Info

Publication number
WO2018059548A1
WO2018059548A1 PCT/CN2017/104420 CN2017104420W WO2018059548A1 WO 2018059548 A1 WO2018059548 A1 WO 2018059548A1 CN 2017104420 W CN2017104420 W CN 2017104420W WO 2018059548 A1 WO2018059548 A1 WO 2018059548A1
Authority
WO
WIPO (PCT)
Prior art keywords
coding
transport block
preset threshold
encoding
block
Prior art date
Application number
PCT/CN2017/104420
Other languages
English (en)
French (fr)
Inventor
许进
徐俊
李立广
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059548A1 publication Critical patent/WO2018059548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0014Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the source coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Definitions

  • the present disclosure relates to the field of communications, and in particular to a data transmission method, apparatus, and source.
  • the transmitting end of the digital communication system usually includes a source, a source encoder, a channel encoder and a modulator
  • the receiving end usually includes a demodulator, a channel decoder, a source decoder and a sink, as shown in FIG. .
  • the channel coder is arranged to introduce redundant information into the information bits according to certain rules, so that the receiving channel coder can correct the error occurring when the information is transmitted on the channel to some extent.
  • FEC Forward Error Correction
  • coding is a process of generating a check bit sequence from an information bit sequence.
  • the information bit sequence and the check bit sequence together constitute a code word bit sequence that we often say.
  • Commonly used FEC codes include a Turbo code, a Low Density Party Check Code (LDPC), a polarization code, a convolutional code, and the like.
  • LDPC Low Density Party Check Code
  • polarization code a convolutional code
  • convolutional code and the like.
  • LTE Long-Term Evolution
  • IEEE 802.11 uses an LDPC code and a convolutional code.
  • Common channel coding methods include LDPC codes, Turbo codes, polarization codes, convolutional codes, and the like. Different channel coding methods usually have different characteristics and applicable scenarios.
  • the LDPC code is a linear block code based on the sparse check matrix, which utilizes the sparsity of its check matrix to realize high-throughput and low-complexity codec, thus making the LDPC code practical.
  • the Gallager code is a regular LDPC code (regular ldpcc).
  • the related art also promotes the Gallager code and proposes a non-regular LDPC code (irregular ldpcc).
  • the LDPC code has many decoding algorithms, wherein the Message Passing algorithm or the Belief Propagation algorithm (BP algorithm) is an LDPC code.
  • BP algorithm Belief Propagation algorithm
  • the graphical representation of the LDPC parity check matrix is a bipartite graph.
  • An M*N parity check matrix H defines a constraint that each codeword having N bits satisfies M parity sets.
  • a bipartite graph includes N variable nodes and M parity nodes.
  • the bipartite graph there is no connection between any nodes of the same class, and the total number of edges in the bipartite graph is equal to the number of non-zero elements in the check matrix.
  • the parity check matrix H of the LDPC code be a (M ⁇ z) ⁇ (N ⁇ z) matrix, which is composed of M ⁇ N block matrices, each of which is a basic z ⁇ z matrix. Different powers of the permutation matrix.
  • the basic permutation matrix is a unit matrix
  • the block matrix is a cyclic shift matrix of the unit matrix (the following is the default right shift).
  • the power of the unit matrix can be represented by 0, and the matrix is generally represented by -1.
  • an M ⁇ N power matrix H b is obtained .
  • H b is the basic matrix of H
  • H is called the extension matrix of H b .
  • z code length / number of columns N of the basic matrix, called the spreading factor.
  • the physical layer data sharing channel is transmitted by using a Transmission Block (TB) as a basic unit.
  • TB Transmission Block
  • the receiving end determines whether the current TB is correctly received through the TB Cyclic Redundancy Check (CRC) code. If the TB is correctly received, the receiving end feeds back an ACK message to the transmitting end; if the TB does not receive correctly, the receiving end feeds back a NACK message to the transmitting end.
  • CRC Cyclic Redundancy Check
  • the transmitting end When the transport block (TB) block size exceeds a specified threshold, for example, 6120 bits, the transmitting end usually performs code block (CB) segmentation, and divides one TB into multiple CBs, and each CB encodes separately. , rate matching, code block cascading, modulation and other operations are sent to the receiving end.
  • CB code block
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency
  • mMTC massive communication
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency
  • mMTC massive machine type communication
  • the embodiments of the present disclosure provide a data transmission method, apparatus, and a source to solve at least the problem that the existing coding mode in the related art cannot meet the requirements of the future communication system.
  • a data transmitting method including: determining, according to a data feature for characterizing a transport block to be transmitted, and a preset parameter corresponding to the data feature, for the transmitting Encoding method of encoding the block; encoding the transport block according to the determined encoding manner; and transmitting the encoded transport block to the receiving end.
  • the preset parameter is a first preset threshold
  • the preset parameter is a first preset threshold
  • the first preset threshold is less than or equal to N1 times the determined maximum coding block length of the coding mode, and the N1 is a positive integer less than 10.
  • the preset parameter is a second preset threshold
  • the data Determining, by the preset parameter corresponding to the feature, the encoding manner for encoding the transport block if the code rate of the transport block is not greater than the second preset threshold, determining the The coding mode is Turbo coding or polarization coding; if the code rate of the transmission block is greater than the second preset threshold, determining that the coding mode is low density parity check LDPC code coding code.
  • the second preset threshold is greater than a lowest code rate of the transport block, where the second preset threshold is a positive number less than 1.
  • the preset parameter is a third preset threshold
  • the coding mode is determined to be Turbo coding or polarization coding
  • the coding mode is determined to be a low-density parity check. LDPC code encoding.
  • the third preset threshold is a positive integer not less than 2.
  • the preset parameter is a fourth preset threshold
  • the preset parameter is a fourth preset threshold
  • the fourth preset threshold is a positive integer not less than 2 and not more than 32.
  • the encoding manner for encoding the transport block includes: the user equipment type index is smaller than the fifth pre- If the threshold is set, the coding mode is determined to be Turbo coding or polarization coding; and if the user equipment type index is not less than the fifth preset threshold, determining that the coding mode is low density parity check LDPC code encoding;
  • the fifth preset threshold is a positive integer greater than 6.
  • the data feature is a channel type carrying the transport block
  • the preset parameter is a control channel and a data channel
  • Determining, by the preset parameter corresponding to the data feature, the coding manner for encoding the transport block includes: when a channel type carrying the transport block is the control channel, Determining that the coding mode is Turbo coding or polarization coding; if the channel type carrying the transport block is the data channel, determining that the coding mode is low density parity check LDPC code coding.
  • the coding mode used to encode the transport block comprises: in a link direction of the data block, from a terminal to a base station Or, in the case of the uplink direction from the terminal to the relay, determining that the coding mode is Turbo coding or polarization coding or convolutional coding; in the link direction of the data block, from the base station to the terminal or from the middle In the case of the downlink direction to the terminal, it is determined that the coding mode is low density parity check LDPC code coding.
  • the method further includes: when the transport block length of the transport block is greater than the determined maximum coding block length of the coding mode, dividing the transport block into multiple coding blocks; using the determined coding manner Forward error correction coding is performed on each of the divided code blocks.
  • the coded block length of the divided coding block is a function of a size of a basic check matrix of the LDPC code and a maximum coded block length.
  • the coded block length of the divided coding block is a size, a maximum expansion factor, and a coding block length of a basic check matrix of the LDPC code.
  • the minimum value K min of the coded block length of the coded block after the division is: 0.45*K max ⁇ K min ⁇ 0.55*K max , Where K max represents the maximum coding block length of the turbo code or polarization code.
  • the determined coding mode is LDPC code coding
  • the number of the divided coding blocks is greater than a sixth preset threshold
  • the length of the coded block after the segmentation is equal to the The length of the largest coding block.
  • the sixth preset threshold is a positive integer greater than 5.
  • performing forward error correction coding on each of the divided coding blocks by using the determined coding manner includes: using the determined coding manner to be the same in each of the divided coding blocks.
  • the bits at the bit positions are respectively subjected to forward error correction coding.
  • a data transmitting apparatus comprising: a determining module configured to determine according to a data feature for characterizing a transport block to be transmitted, and a preset parameter corresponding to the data feature An encoding method for encoding the transport block; the encoding module is configured to encode the transport block according to the determined encoding manner; and the sending module is configured to send the encoded transport block to the receiving end.
  • the determining module is further configured to determine the encoding mode by using at least one of the following: when the data feature is a transport block length, and the preset parameter is a first preset threshold, in the transport block If the length of the transport block is not greater than the first preset threshold, determining that the coding mode is Turbo coding or polarization coding; if the transport block length of the transport block is greater than the first preset threshold Determining that the coding mode is a low-density parity check LDPC code, where the transport block length and the first preset threshold are both positive integers, and the first preset threshold is the determined coding mode.
  • the preset parameter is a second preset threshold, if the code rate of the transport block is not greater than the second preset threshold Determining that the coding mode is Turbo coding or polarization coding; if the code rate of the transport block is greater than the second preset threshold, determining that the coding mode is low density parity check LDPC code coding; The data If the number of available physical resource blocks is the third preset threshold, if the number of available physical resource blocks of the transport block is not greater than the third preset threshold, determining that the coding mode is Turbo coding or polarization coding; if the number of available physical resource blocks of the transport block is greater than the third preset threshold, determining that the coding mode is low density parity check LDPC code coding; For the modulation coding level, when the preset parameter is the fourth preset threshold, if the modulation and coding level of the transport block is not greater than the fourth preset threshold, the modulation and coding level of the transport block is not greater than the fourth preset threshold, the modulation
  • the user equipment type If the type index is not less than the fifth preset threshold, determining that the encoding mode is a low density parity check LDPC code encoding; where the data feature is a channel type carrying the transport block, the preset parameter In the case of the control channel and the data channel, if the channel type carrying the transport block is the control channel, the coding mode is determined to be Turbo coding or polarization coding; and the channel type carrying the transport block is In the case of the data channel, determining that the coding mode is a low density parity check LDPC code; in the link direction of the data feature, the preset parameter is a downlink direction and an uplink.
  • the coding mode is Turbo coding or polarization coding or convolution Encoding
  • the link direction of the data block is from the base station to the terminal or from the relay to the downlink direction of the terminal, determining that the coding mode is low density parity check L DPC code encoding.
  • the apparatus further includes: a segmentation module, configured to divide the transport block into multiple codes if a transport block length of the transport block is greater than a determined maximum coding block length of the coding mode
  • the encoding module is further configured to perform forward error correction coding on each of the divided coding blocks by using the determined coding manner.
  • a source comprising: a processing device and a transmission device, wherein the processing device is configured to be based on a data feature for characterizing a transport block to be transmitted, and a preset parameter corresponding to the data feature, determining an encoding mode for encoding the transport block; encoding the transport block according to the determined encoding mode; and the transmitting device is connected to the processing device, and configured to The encoded transport block is transmitted to the receiving end.
  • the processing device is further configured to determine the encoding mode by using at least one of the following: when the data feature is a transport block length, and the preset parameter is a first preset threshold, in the transport block If the length of the transport block is not greater than the first preset threshold, determining that the coding mode is Turbo coding or polarization coding; if the transport block length of the transport block is greater than the first preset threshold Determining that the coding mode is a low-density parity check LDPC code, where the transport block length and the first preset threshold are both positive integers, and the first preset threshold is the determined coding mode.
  • the preset parameter is the second preset threshold, if the code rate of the transport block is not greater than the second preset threshold, determining that the coding mode is Turbo coding or polarization coding And determining, in the case that the code rate of the transport block is greater than the second preset threshold, that the encoding mode is a low density parity check LDPC code encoding; wherein the data feature is a number of available physical resource blocks,
  • the preset parameter is the third preset threshold, if the number of available physical resource blocks of the transport block is not greater than the third preset threshold, determining that the encoding mode is Turbo coding or polarization coding; If the number of available physical resource blocks of the transport block is greater than the third preset threshold, determining that the encoding mode is low density parity check LDPC code encoding; where the data feature is a modulation coding level, the preset When the parameter is the fourth preset threshold, if the code rate of the transport block is not greater than the second preset threshold, determining that
  • the data channel if the channel type carrying the transport block is the control channel, determining that the coding mode is Turbo coding or polarization coding; and the channel type carrying the transport block is the data channel
  • the encoding mode is low-density parity check LDPC code encoding
  • the preset parameter is In the link direction and the uplink direction, when the link direction of the data block is the uplink direction from the terminal to the base station or from the terminal to the relay, determining that the coding mode is Turbo coding or Polarization coding or convolutional coding; in the case where the link direction of the data block is from the base station to the terminal or from the relay to the downlink direction of the terminal, determining that the coding mode is low density parity check LDPC Code coding.
  • the processing device is further configured to divide the transport block into multiple edits if a transport block length of the transport block is greater than a determined maximum coding block length of the coding mode. a code block; performing forward error correction coding on each of the divided coding blocks by using the determined coding manner.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the step of determining to encode the transport block based on a data characteristic used to characterize a transport block to be transmitted and a preset parameter corresponding to the data feature
  • the encoding mode is performed according to the determined encoding mode, and the encoded transport block is sent to the receiving end.
  • the storage medium is further configured to store program code for performing the following steps: in case the data feature is a transport block length, where the preset parameter is a first preset threshold, according to Determining, by the data feature of the transport block, and the preset parameter corresponding to the data feature, the encoding manner for encoding the transport block comprises: a transport block in the transport block If the length of the transport block is greater than the first preset threshold,
  • the coding mode is a low-density parity check LDPC code, where the transport block length and the first preset threshold are both positive integers, and the first preset threshold is a determined maximum coding of the coding mode.
  • the function of the block length is a transport block length, where the preset parameter is a first preset threshold, according to Determining, by the data feature of the transport block, and the preset parameter corresponding to the data feature
  • the encoding manner for encoding the transport block comprises: a transport block in the transport block If the length of the transport block is greater than the first
  • the storage medium is further configured to store program code for performing the following steps: the first preset threshold is less than or equal to N1 times the determined maximum coding block length of the coding mode, and the N1 is less than 10 Positive integer.
  • the storage medium is further configured to store program code for performing the following steps: in case the data feature is a code rate, and the preset parameter is a second preset threshold, according to the feature for characterization to be sent Determining, by the data feature of the transport block, and the preset parameter corresponding to the data feature, that the encoding manner used to encode the transport block includes: a code rate of the transport block is not If the second preset threshold is greater than the second preset threshold, determining that the encoding mode is Turbo coding or polarization coding; and determining that the coding mode is performed when a code rate of the transport block is greater than the second preset threshold Coding for low density parity check LDPC codes.
  • the storage medium is further configured to store program code for performing the steps of:
  • the second preset threshold is greater than the lowest code rate of the transport block, wherein the second preset threshold is a positive number less than 1.
  • the storage medium is further configured to store program code for performing the following steps: in case the data feature is the number of available physical resource blocks, and the preset parameter is a third preset threshold, according to Determining, by the data feature of the transport block to be sent, and the preset parameter corresponding to the data feature, determining the encoding manner for encoding the transport block comprises: at the transport block If the number of available physical resource blocks is not greater than the third preset threshold, determining that the coding mode is Turbo coding or polarization coding; the number of available physical resource blocks in the transport block is greater than the third preset threshold. In the case, it is determined that the coding mode is low density parity check LDPC code coding.
  • the storage medium is further configured to store program code for performing the step of: the third predetermined threshold being a positive integer not less than two.
  • the storage medium is further configured to store program code for performing the following steps: in case the data feature is a modulation coding level, and the preset parameter is a fourth preset threshold, according to Determining, by the data feature of the transport block, and the preset parameter corresponding to the data feature, the encoding manner for encoding the transport block comprises: modulation coding at the transport block If the level is not greater than the fourth preset threshold, determining that the coding mode is Turbo coding or polarization coding; and if the modulation coding level of the transmission block is greater than the fourth preset threshold, determining The encoding method is low density parity check LDPC code encoding.
  • the storage medium is further arranged to store program code for performing the step of: the fourth predetermined threshold being a positive integer not less than 2 and not greater than 32.
  • the storage medium is further configured to store program code for performing the following steps: the data feature is a user equipment type index of the user equipment receiving the transport block, and the preset parameter is a fifth preset threshold Determining, according to the data feature for characterizing the transport block to be transmitted, and the preset parameter corresponding to the data feature, the coding manner for encoding the transport block
  • the method includes: the user equipment type index is less than the first Determining, in the case of five preset thresholds, that the coding mode is Turbo coding or polarization coding; and determining that the coding mode is low density parity if the user equipment type index is not less than the fifth preset threshold. Verify the LDPC code encoding;
  • the storage medium is further arranged to store program code for performing the step of: the fifth predetermined threshold being a positive integer greater than 6.
  • the storage medium is further configured to store program code for performing the following steps: in case the data feature is a channel type carrying the transport block, the preset parameter is a control channel and a data channel, according to Determining, by the data feature of the transport block to be sent, and the preset parameter corresponding to the data feature, determining the encoding manner for encoding the transport block comprises: at a bearer If the channel type of the transport block is the control channel, determining that the coding mode is Turbo coding or polarization coding; and determining that the channel type of the transport block is the data channel, The mode is low density parity check LDPC code encoding.
  • the storage medium is further configured to store program code for performing the following steps: in the link direction of the data block, the preset parameters are in a downlink direction and an uplink direction Determining, according to the data feature for characterizing the transport block to be transmitted, and the preset parameter corresponding to the data feature, determining the coding manner for encoding the transport block includes Determining that the coding mode is Turbo coding or polarization coding or convolutional coding in a case where the link direction of the data block is the uplink direction from the terminal to the base station or from the terminal to the relay; In the case where the link direction of the data block is from the base station to the terminal or from the relay to the downlink direction of the terminal, it is determined that the coding mode is low density parity check LDPC code coding.
  • the storage medium is further configured to store program code for performing the following steps: according to the data feature for characterizing the transport block to be transmitted, and the preset parameter corresponding to the data feature
  • the method further includes: if the transport block length of the transport block is greater than a determined maximum coding block length of the coding mode, the transmitting Blocking into multiple coded blocks; using the determined The coding method performs forward error correction coding on each of the divided coding blocks.
  • the storage medium is further configured to store program code for performing the following steps: in case the determined encoding mode is LDPC code encoding, the coded block length of the divided coded block is the LDPC code The function of the base check matrix size and the maximum code block length.
  • the storage medium is further configured to store program code for performing the following steps: in case the determined encoding mode is LDPC code encoding, the coded block length of the divided coded block is the LDPC code a function of a base check matrix size and a maximum spreading factor and a step size of the encoding block length, wherein the step size of the encoding block length is a difference between any two adjacent encoding block lengths supported by the LDPC code value.
  • the storage medium is further configured to store program code for performing the following steps: in the case where the determined encoding mode is LDPC code encoding, the minimum value K min of the coded block length of the divided encoding block It is: 0.45*K max ⁇ K min ⁇ 0.55*K max , where K max represents the maximum coding block length of the turbo code or polarization code.
  • the storage medium is further configured to store program code for performing the following steps: when the determined encoding mode is LDPC code encoding, when the number of the divided encoding blocks is greater than a sixth preset threshold The length of the segmented coded block is equal to the length of the maximum coded block.
  • the storage medium is further arranged to store program code for performing the step of: the sixth predetermined threshold being a positive integer greater than five.
  • the storage medium is further configured to store program code for performing the following steps: performing forward error correction coding on each of the divided coding blocks by using the determined coding manner comprises: performing segmentation by using the determined coding manner The bits at the same bit position in each of the subsequent code blocks are subjected to forward error correction coding, respectively.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the coding method for encoding the transport block to be transmitted because the appropriate pattern is selected according to the data characteristics of the data block, satisfies the requirements of the future communication system, and therefore, the existing coding method in the related art cannot solve the future.
  • the problem of communication system requirements has the effect of improving the flexibility of coding mode selection.
  • FIG. 1 is a schematic diagram of a digital communication system in the related art
  • FIG. 2 is a block diagram showing a hardware structure of a source of a data transmitting method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a data transmitting method according to an embodiment of the present disclosure
  • FIG. 4 is a block diagram 1 of a structure of a data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram 2 of a structure of a data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 6 is a structural block diagram of a source according to an embodiment of the present disclosure.
  • FIG. 2 is a hardware structural block diagram of a source of a data transmitting method according to an embodiment of the present disclosure.
  • source 20 may include one or more (only one of which is shown) processing device 22 (processor 22 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • a memory 24 for storing data, and a transmission device 26 for communication functions may be included in FIG. 2 merely illustrative and does not limit the structure of the above electronic device.
  • source 20 may also include more or fewer components than shown in FIG. 2, or have a different configuration than that shown in FIG. 2.
  • the memory 24 may be provided as a software program and a module for storing application software, such as program instructions/modules corresponding to the data transmission method in the embodiment of the present disclosure, and the processor 22 executes each by executing a software program and a module stored in the memory 24. Functional applications and data processing, That is, the above method is implemented.
  • Memory 24 may include high speed random access memory and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 24 may further include memory remotely located relative to processor 22, which may be connected to source 20 via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 26 is arranged to receive or transmit data via a network.
  • the network optional examples described above may include a wireless network provided by a communication provider of the source 20.
  • transmission device 26 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • NIC Network Interface Controller
  • the transmission device 26 can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • RF Radio Frequency
  • FIG. 3 is a flowchart of a data sending method according to an embodiment of the present disclosure. As shown in FIG. 3, the process includes the following steps:
  • Step S302 Determine, according to a data feature used to represent a transport block to be transmitted, and a preset parameter corresponding to the data feature, an encoding manner used to encode the transport block.
  • Step S304 encoding the transport block according to the determined coding manner
  • Step S306 the encoded transport block is sent to the receiving end.
  • the coding mode for encoding the transmission block to be transmitted is determined according to the data characteristics of the data block and the preset parameters corresponding to the data feature, and the existing coding mode in the related art cannot meet the requirements of the future communication system.
  • the problem has improved the flexibility of coding options.
  • the execution body of the foregoing steps may be a base station, a signal transmitter, or the like, but is not limited thereto.
  • the receiving end in the foregoing step S306 may be a sink (for example, a terminal, a signal receiver, etc.), but is not limited thereto.
  • the data characteristics of the transport block may include multiple types, for example, data transmission direction (on Line or downlink), channel conditions, terminal type, channel resources, transmission code rate, etc.
  • the preset parameters may include one or more.
  • the above encoding method can be determined in various ways. For example, when the data feature is the transport block length and the preset parameter is the first preset threshold, if the transport block length of the transport block is not greater than the first preset threshold, the coding mode is determined to be Turbo coding or polarization coding; And determining, in the case that the transport block length of the transport block is greater than the first preset threshold, the coding mode is LDPC code coding; wherein, the transport block length and the first preset threshold are both positive integers, and the first preset threshold is a determined code.
  • the function of the maximum coding block length of the mode (the first preset threshold may be less than or equal to N1 times the maximum coding block length of the determined coding mode, and N1 is a positive integer less than 10).
  • the coding mode is determined to be Turbo coding or polarization coding; In a case where the code rate of the transport block is greater than the second preset threshold, it is determined that the coding mode is LDPC code coding (the second preset threshold may be a positive number less than 1 and greater than the lowest code rate of the transport block).
  • the preset parameter is the third preset threshold
  • the third preset threshold if the number of available physical resource blocks of the transport block is not greater than the third preset threshold, determining that the coding mode is Turbo coding Or polarization coding; if the number of available physical resource blocks of the transport block is greater than a third preset threshold, determining that the coding mode is LDPC code coding (the third preset threshold may be a positive integer not less than 2).
  • the coding mode is determined to be Turbo coding or polarization coding.
  • the modulation coding level of the transport block is greater than the fourth preset threshold, determining that the coding mode is LDPC code coding (the fourth preset threshold may be a positive integer not less than 2 and not greater than 32).
  • the fourth preset threshold may be a positive integer not less than 2 and not greater than 32.
  • Encoding or polarization coding if the user equipment type index is not less than the fifth preset threshold, determining that the coding mode is LDPC code coding (the fifth preset threshold may be a positive integer greater than 6).
  • the fifth preset threshold may be a positive integer greater than 6.
  • the data feature is a channel type carrying a transport block
  • the preset parameters are a control channel and a data channel
  • the coding mode is determined to be Turbo.
  • Encoding or polarization coding in the case where the channel type carrying the transport block is a data channel, it is determined that the coding mode is low density parity check LDPC code coding.
  • the link direction of the data block is an uplink from the terminal to the base station or from the terminal to the relay.
  • the coding mode is Turbo coding or polarization coding or convolutional coding; when the link direction of the data block is from the base station to the terminal or from the relay to the downlink direction of the terminal, the coding mode is determined. Coding for low density parity check LDPC codes.
  • the foregoing coding manner may be determined according to the combination of the foregoing data features and preset parameters.
  • an optional determination manner eg, multiple data features and preset parameters are sequentially compared, combined, compared, weighted, etc.
  • Different data features can correspond to different preset parameters), and can be set according to actual needs.
  • the transport block may be divided into multiple coding blocks; Each coding block performs forward error correction coding.
  • the coded block length of the divided coding block may be a function of a size of the basic check matrix of the LDPC code and a maximum coded block length.
  • the coded block length of the divided coding block may also be the size of the basic check matrix of the LDPC code and the maximum spreading factor and the step length of the coding block length.
  • the function, wherein the step size of the encoding block length is the difference between the lengths of any two adjacent encoding blocks supported by the LDPC code.
  • the coded block length of the divided coding block may be:
  • nb is the number of columns of the basic check matrix of the LDPC code
  • mb is the number of rows of the basic check matrix of the LDPC code
  • kb is the number of columns of the base check matrix system bits of the LDPC code
  • kb nb-mb
  • z max is the maximum spreading factor
  • D is the step size of the coding block
  • q being a positive integer.
  • the minimum value of the length of the divided coding block may be close to half of the maximum coding block length of the turbo code or the polarization code.
  • the minimum value K min of the coded block length of the divided coded block may be:
  • K max represents the maximum coding block length of the turbo code or polarization code
  • the coefficients 0.45 and 0.55 in the above formula are to limit the degree of approaching K max and may be other values, for example, 0.4 and 0.6, 0.455 and 0.555, 0.47. And 0.53 and so on, as long as it is within the preset range of about 0.5.
  • the sum of the two coefficients may be 1 or not 1, as long as the two coefficients are on both sides of 0.5.
  • the length of the divided coding block may be equal to the maximum coding block.
  • the length, wherein the sixth preset threshold may be a positive integer greater than 5.
  • the forward error correction coding may be performed on each of the divided coding blocks in multiple manners.
  • each of the coding blocks may be forward error-corrected and encoded, for example, in each of the divided coding blocks.
  • Forward error correction coding is performed.
  • Performing forward error correction coding between the divided coding blocks may be performing forward error correction coding on the bits at the same bit position in the N cb coding blocks, respectively.
  • each coding block is preceded by n bit positions (n is an integer greater than 0, for example, a maximum coding block length), before the bits at the first bit position of the divided 5 coding block Perform error correction coding on the second bit position of the divided 5 coding block, and perform forward error correction coding on the bit at the nth bit position in the divided 5 coding block.
  • a data sending method is provided, considering a data transmission direction (uplink or downlink), channel conditions, terminal types, channels. Resources, transmission rate, etc. can all affect the choice of pattern. Therefore, the data transmission method will be described below in conjunction with different examples.
  • the transmitting end has a transport block to be transmitted, which needs to be encoded before being transmitted, wherein the encoding process includes: according to the length T of the transport block and a preset threshold E 1 bit (where T and E 1 are both positive An integer, the role of E 1 is similar to the aforementioned first preset threshold, determines the encoding mode of the transport block.
  • the threshold E 1 is a function of the maximum coding block length of the turbo code.
  • E 1 is set to be no more than 10 times the maximum code block length K max of the turbo code encoder.
  • the transport block code encoder uses Tubo, when T> E 1, the transport block using LDPC encoding.
  • T 3000 bits
  • the transport block is Turbo encoded.
  • the transport block When the length T of the transport block is greater than the maximum coding block length K max of the turbo code, the transport block is to be divided into a plurality of coded blocks; since the length of the transport block is less than K max in this example, no transmission is required in this example.
  • the block performs code block partitioning, that is, the transport block includes only one code block.
  • the transmitting end has a transport block to be transmitted, which needs to be encoded before being sent.
  • the encoding process includes:
  • the encoding mode of the transport block is determined according to the length T bit of the transport block and a preset threshold E 1 bit (where T and E 1 are both positive integers).
  • the threshold E 1 is a function of the length of the LDPC code.
  • the transport block code encoder uses polarization, when T> E 1, the transport block using LDPC encoding.
  • T 60000 bits
  • the transport block is LDPC encoded.
  • the transport block is split into Code block, where Indicates the rounding up operation.
  • Each code block contains Bit information bits and 596 padding bits.
  • the transmitting end uses the LDPC code to encode each of the divided coding blocks.
  • the transmitting end has a transport block to be transmitted, which needs to be encoded before being transmitted, wherein the encoding process includes: according to the length T of the transport block and a preset threshold E 1 bit (where T and E 1 are both positive Integer) determines the encoding of the transport block.
  • the threshold E 1 is a function of the length of the turbo code.
  • the transport block code encoder uses polarization, when T> E 1, the transport block using LDPC encoding.
  • T 6208 bits
  • the transport block is LDPC encoded.
  • the transport block is divided into a plurality of coded blocks.
  • the transport block can be divided into two coded blocks each having a size of 3104 bits.
  • the length K cb of the divided coding block can have various values, wherein the minimum value K min is close to the maximum coding block length Kmax of the turbo code or the polarization code. half. That is, the minimum value of the length of the coded block after division can be expressed as: 0.45*K max ⁇ K min ⁇ 0.55*K max . In this example, the minimum value of K cb should satisfy 0.45 * 6144 ⁇ K min ⁇ 0.55 * 6144.
  • the difference between the example 5 and any one of the examples 1 to 4 is that the coding of the transport block is determined according to the code rate R of the transport block to be transmitted and the preset threshold E 2 (acting similar to the aforementioned second preset threshold) In a mode, when the code rate R of the transport block is not greater than the threshold E 2 , determining that the coding mode of the transport block is Turbo coding or polarization coding; when the code rate of the transport block is greater than the threshold E 2 , determining that the coding mode of the transport block is LDPC code.
  • the threshold E 2 is a positive number (eg, 0.5) less than one, and the threshold E 2 is greater than the lowest code rate of the transport block.
  • the difference between the example 6 and any one of the examples 1 to 4 is that the transport block is determined according to the number of available physical resource blocks of the transport block to be transmitted and a preset threshold E 3 (acting similar to the aforementioned third preset threshold)
  • the coding mode is determined when the number of available physical resource blocks N PRB of the transport block is not greater than the threshold E 3 , and the coding mode of the transport block is determined to be Turbo coding or polarization coding; when the code rate of the transport block is greater than the threshold E 3 , the transmission is determined.
  • the coding mode of the block is LDPC code coding.
  • the threshold E 3 may be a positive integer (for example, 4) not less than 2.
  • the difference between the example 7 and any one of the examples 1 to 4 is that the coding of the transport block is determined according to the modulation coding level of the transport block to be transmitted and the preset threshold E 4 (acting similar to the aforementioned fourth preset threshold) In a manner, when the modulation coding level I MCS of the transport block is not greater than the threshold E 4 , determining that the coding mode of the transport block is Turbo coding or polarization coding; when the modulation coding level I MCS of the transport block is greater than the threshold E 4 , determining the transport block
  • the coding method is LDPC code coding.
  • the threshold E 4 may be a positive integer (for example, 5) of not less than 2 and not more than 32.
  • the coding mode of the transport block is determined according to the user equipment type of the user equipment receiving the transport block and the preset sets S 1 and S 2 when the transport block to be received when the device type is set in an element S 1, determining a coding mode for the transport block coding or Turbo coding polarization; type device when the transmission to be received when the block is a set of elements 2 S, coded transport blocks is determined
  • the mode is LDPC code encoding.
  • the intersection of the set S 1 and S 2 is an empty set.
  • the coding mode of the transport block is determined according to the user equipment type index of the user equipment receiving the transport block and the threshold E 5 (acting with the aforementioned fifth preset threshold).
  • the threshold E 5 may be a positive integer (e.g., 8) is greater than 6.
  • the coding mode of the transport block is determined according to the type of the channel carrying the transport block.
  • the coding mode of the transport block is determined to be Turbo coding or polarization coding or convolutional coding.
  • the channel type carrying the transport block is a data channel, it is determined that the coding mode of the transport block is LDPC code coding.
  • the encoding mode of the transport block is determined according to the link direction of the transport block, when the transport block is in the downlink direction from the base station to the terminal or the relay to the terminal, Determining the coding mode of the transport block is low-density parity check code coding.
  • the coding mode of the transport block is Turbo coding or polarization coding or volume.
  • the threshold E 6 may be a positive integer greater than 5.
  • Forward error correction coding is performed between the divided N cb code blocks. That is, forward error correction coding is performed on the bits at the corresponding positions (same bit positions) of the N cb code blocks.
  • an appropriate coding mode can be selected from a plurality of coding modes according to the characteristics of the data to be transmitted, which satisfies the needs of the future communication system.
  • a data transmitting apparatus is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a block diagram 1 of a structure of a data transmitting apparatus according to an embodiment of the present disclosure. As shown in FIG. 4, the apparatus includes:
  • the determining module 42 is configured to determine, according to a data feature used to represent the transport block to be transmitted, and a preset parameter corresponding to the data feature, an encoding manner used to encode the transport block;
  • the encoding module 44 is connected to the determining module 42 and configured to encode the transport block according to the determined encoding manner;
  • the sending module 46 is connected to the encoding module 44, and is configured to send the encoded transport block to the receiving end.
  • the determining module 42 is further configured to determine, by using at least one of the following: when the data feature is a transport block length, and the preset parameter is the first preset threshold, the transport block length of the transport block is not greater than the first In the case of a preset threshold, determining whether the coding mode is Turbo coding or polarization coding; if the transmission block length of the transport block is greater than the first preset threshold, determining that the coding mode is LDPC code coding; wherein, the transmission block length and the A preset threshold is a positive integer, and the first preset threshold is a function of a maximum coding block length of the determined coding mode; when the data feature is a code rate, and the preset parameter is a second preset threshold, the code of the transport block If the rate is not greater than the second preset threshold, the coding mode is determined to be Turbo coding or polarization coding; and when the code rate of the transmission block is greater than the second preset threshold, the coding mode is determined to be LDPC
  • Turbo coding or polarization Encoding determining that the coding mode is LDPC code coding if the number of available physical resource blocks of the transport block is greater than a third preset threshold; and transmitting when the data feature is a modulation coding level, and the preset parameter is a fourth preset threshold If the modulation coding level of the block is not greater than the fourth preset threshold, determining whether the coding mode is Turbo coding or polarization coding; and determining that the coding mode is the LDPC code when the modulation coding level of the transmission block is greater than the fourth preset threshold Encoding, when the data feature is a user equipment type index of the user equipment that receives the transport block, and when the preset parameter is a fifth preset threshold, if the user equipment type index is less than the fifth preset threshold, determining that the coding mode is Turbo coding or Polarization coding; if the user equipment type index is not less than the fifth preset threshold, determining that the coding mode is low density parity check LDPC code coding;
  • the first preset threshold may be less than or equal to N1 times the maximum coding block length of the determined coding mode, and the N1 is a positive integer less than 10 (for example, 4, 6).
  • the second preset threshold may be greater than a lowest code rate of the transport block, where the second preset threshold may be a positive number less than 1 (eg, 0.5).
  • the third preset threshold may be a positive integer (for example, 4, 5) not less than 2.
  • the fourth preset threshold may be a positive integer (for example, 5) of not less than 2 and not more than 32.
  • FIG. 5 is a block diagram showing the structure of a data transmitting apparatus according to an embodiment of the present disclosure. As shown in FIG. 5, the apparatus includes a dividing module 52 in addition to all the modules shown in FIG. Combined with the split mode Block 52 describes the data transmitting device.
  • the segmentation module 52 is connected to the determining module 42 and configured to divide the transport block into a plurality of coded blocks if the transport block length of the transport block is greater than the maximum coding block length of the determined coding mode;
  • the encoding module 44 is further configured to perform forward error correction coding on each of the divided coding blocks by using a determined coding manner.
  • the coded block length of the divided coding block may be a function of a size of the basic check matrix of the LDPC code and a maximum coded block length.
  • the coded block length of the divided coding block may be:
  • K cb (nb-mb)*2 X
  • K cb kb*2 X
  • kb is the number of columns of the base check matrix system bits of the LDCP code
  • kb nb-mb
  • nb is the number of columns of the basic check matrix of the LDPC code
  • mb is the basic check matrix of the LDPC code
  • the coded block length of the divided coding block may be a function of a size and a maximum spreading factor of the basic check matrix of the LDPC code and a step size of the coding block length.
  • the step size of the coding block length is the difference between the lengths of any two adjacent coding blocks supported by the LDPC code.
  • the coded block length of the divided coding block may be:
  • kb is the number of columns of the basic check matrix system bits of the LDPC code
  • kb nb-mb
  • nb is the number of columns of the basic check matrix of the LDPC code
  • mb is the number of rows of the basic check matrix of the LDPC code
  • the minimum value K min of the coded block length of the divided coding block may be: 0.45*K max ⁇ K min ⁇ 0.55*K max , where K max represents the maximum coding block length codes or Turbo codes polarization.
  • the length of the coded block that is divided may be equal to the maximum coded block length.
  • the sixth preset threshold may be a positive integer greater than 5 (eg, 6).
  • performing forward error correction coding on each of the divided coding blocks by using a determined coding manner may perform forward error correction coding on the bits at the same bit position in each of the divided coding blocks by using a determined coding manner.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 6 is a structural block diagram of a source according to an embodiment of the present disclosure. As shown in FIG. 6, the source includes: a processing device 62 and a transmission device 64. The source is explained.
  • the processing device 62 is configured to determine, according to a data feature used to represent the transport block to be transmitted, and a preset parameter corresponding to the data feature, an encoding mode used to encode the transport block; and the transport block according to the determined encoding mode Coding
  • the transmitting device 64 is coupled to the processing device 62 and configured to transmit the encoded transport block to the receiving end.
  • the processing device 62 is further configured to determine, by using at least one of the following: when the data feature is a transport block length, and the preset parameter is the first preset threshold, the transport block length of the transport block is not greater than the first In the case of a preset threshold, it is determined that the coding mode is Turbo coding or polarization coding; and when the transmission block length of the transport block is greater than the first preset threshold, the coding side is determined.
  • the LDPC code is encoded; wherein the transport block length and the first preset threshold are positive integers, and the first preset threshold is a function of a maximum coding block length of the determined coding mode; the data feature is a code rate, and the preset parameter
  • the second preset threshold is used, if the code rate of the transport block is not greater than the second preset threshold, determining that the coding mode is Turbo coding or polarization coding; when the code rate of the transport block is greater than the second preset threshold And determining that the coding mode is LDPC code coding; when the data feature is the number of available physical resource blocks, and the preset parameter is the third preset threshold, if the number of available physical resource blocks of the transport block is not greater than the third preset threshold, Determining whether the coding mode is Turbo coding or polarization coding; if the number of available physical resource blocks of the transport block is greater than a third preset threshold, determining that the coding mode is LDPC code coding; the data feature is
  • the coding mode is determined to be Turbo coding or polarization coding
  • the encoding mode is determined to be LDPC code encoding
  • Urbo coding or polarization coding or convolutional coding in the case where the link direction of the data block is from the base station to the terminal or from the relay to the downlink direction of the terminal, the coding mode is determined to be LDPC code coding.
  • the first preset threshold may be less than or equal to N1 times the maximum coding block length of the determined coding mode, and the N1 is a positive integer less than 10 (for example, 4, 6).
  • the second preset threshold may be greater than a lowest code rate of the transport block, where the second preset threshold may be a positive number less than 1 (eg, 0.5).
  • the third preset threshold may be a positive integer (for example, 4, 5) not less than 2.
  • the fourth preset threshold may be a positive integer (for example, 5) of not less than 2 and not more than 32.
  • the fifth preset threshold may be a positive integer greater than 6 (eg, 8).
  • the processing device 62 may be further configured to: when the transport block length of the transport block is greater than the maximum coding block length of the determined coding mode, divide the transport block into multiple coded blocks; Each coding block performs forward error correction coding.
  • the coded block length of the divided coding block may be a function of a size of the basic check matrix of the LDPC code and a maximum coded block length.
  • the coded block length of the divided coding block may be:
  • K cb (nb-mb)*2 X
  • K cb kb*2 X
  • kb is the number of columns of the base check matrix system bits of the LDCP code
  • kb nb-mb
  • nb is the number of columns of the basic check matrix of the LDPC code
  • mb is the basic check matrix of the LDPC code
  • the coded block length of the divided coding block may be a function of a size and a maximum spreading factor of the basic check matrix of the LDPC code and a step size of the coding block length.
  • the step size of the coding block length is the difference between the lengths of any two adjacent coding blocks supported by the LDPC code.
  • the coded block length of the divided coding block may be:
  • kb is the number of columns of the basic check matrix system bits of the LDPC code
  • kb nb-mb
  • nb is the number of columns of the basic check matrix of the LDPC code
  • mb is the number of rows of the basic check matrix of the LDPC code
  • the minimum value K min of the coded block length of the divided coding block may be: 0.45*K max ⁇ K min ⁇ 0.55*K max , where K Max represents the maximum coding block length of the turbo code or polarization code.
  • the length of the coded block that is divided may be equal to the maximum coded block length.
  • the sixth preset threshold may be a positive integer greater than 5 (eg, 6).
  • performing forward error correction coding on each of the divided coding blocks by using a determined coding manner may perform forward error correction coding on the bits at the same bit position in each of the divided coding blocks by using a determined coding manner.
  • Embodiments of the present disclosure also provide a storage medium.
  • the storage medium includes a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the encoding method for encoding includes:
  • the mode is Turbo coding or polarization coding
  • the transport block length and the first preset threshold are both positive integers, and the first preset threshold is a function of a maximum coding block length of the determined coding mode.
  • the storage medium is further arranged to store program code for performing the step of: the first predetermined threshold being less than or equal to N1 times the maximum coding block length of the determined coding mode, N1 being a positive integer less than 10.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the encoding of the encoding includes:
  • the code rate of the transport block is not greater than the second preset threshold, determine that the coding mode is Turbo coding or polarization coding.
  • the storage medium is further configured to store program code for performing the step of: the second predetermined threshold is greater than a lowest code rate of the transport block, wherein the second predetermined threshold is a positive number less than one.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the encoding method for encoding the transport block includes:
  • the storage medium is further arranged to store program code for performing the following steps: the third predetermined threshold is a positive integer not less than two.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the encoding method for encoding includes:
  • the modulation and coding level of the transport block is not greater than the fourth preset threshold, determine that the coding mode is Turbo coding or polarization coding.
  • the modulation coding level of the transport block is greater than the fourth preset threshold, determine that the coding mode is low density parity check LDPC code coding.
  • the storage medium is further arranged to store program code for performing the step of: the fourth predetermined threshold being a positive integer not less than 2 and not greater than 32.
  • the storage medium is further arranged to store program code for performing the following steps:
  • a parameter that determines the encoding used to encode the transport block includes:
  • the storage medium is further arranged to store program code for performing the step of: the fifth predetermined threshold being a positive integer greater than 6.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the data feature is a channel type carrying a transport block
  • the preset parameters are a control channel and a data channel
  • determining coding methods for encoding the transport block include:
  • the channel type of the bearer transport block is a control channel, determine that the coding mode is Turbo coding or polarization coding.
  • the channel type carrying the transport block is a data channel
  • the storage medium is further arranged to store program code for performing the following steps:
  • determining the encoding method used to encode the transport block includes:
  • the link direction of the data block is an uplink direction from the terminal to the base station or from the terminal to the relay, determining that the coding mode is Turbo coding or polarization coding or convolutional coding;
  • the link direction of the data block is the downlink direction from the base station to the terminal or from the relay to the terminal, it is determined that the coding mode is low density parity check LDPC code coding.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes:
  • S2 Perform forward error correction coding on each of the divided coding blocks by using a determined coding manner.
  • the storage medium is further configured to store program code for performing the following steps: in the case that the determined coding mode is LDPC code coding, the coded block length of the divided coding block is a basic check matrix of the LDPC code The size and function of the maximum encoding block length.
  • the storage medium is further configured to store program code for performing the following steps: in the case that the determined coding mode is LDPC code coding, the coded block length of the divided coding block is a basic check matrix of the LDPC code The size and the maximum spreading factor and a function of the step size of the encoding block length, wherein the step size of the encoding block length is the difference between the lengths of any two adjacent encoding blocks supported by the LDPC code.
  • the storage medium is further configured to store program code for performing the following steps: in the case that the determined coding mode is LDPC code coding, the minimum value K min of the coded block length of the divided coding block is: 0.45 *K max ⁇ K min ⁇ 0.55 * K max , where K max represents the maximum coding block length of the turbo code or polarization code.
  • the storage medium is further configured to store program code for performing the following steps: in the case that the determined coding mode is LDPC code coding, when the number of the divided coding blocks is greater than a sixth preset threshold, the segmentation The length of the subsequent coded block is equal to the length of the largest coded block.
  • the storage medium is further configured to store program code for performing the following steps:
  • the six preset threshold is a positive integer greater than 5.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Performing forward error correction coding on each of the divided coding blocks by using a determined coding manner includes:
  • S1 Perform forward error correction coding on the bits at the same bit position in each of the divided coding blocks by using a certain coding manner.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs, according to the stored program code in the storage medium, determining, according to the data feature used to represent the transport block to be sent, and the preset parameter corresponding to the data feature,
  • the coding mode of the transport block is encoded; the transport block is encoded according to the determined coding mode; and the encoded transport block is sent to the receiving end.
  • the processor performs, according to the stored program code in the storage medium, if the data feature is a transport block length, and the preset parameter is the first preset threshold, according to the identifier used to be sent.
  • the data feature of the transport block, and the preset parameter corresponding to the data feature, determining the encoding manner for encoding the transport block includes: determining the encoding if the transport block length of the transport block is not greater than the first preset threshold
  • the method is Turbo coding or polarization coding; if the transmission block length of the transport block is greater than the first preset threshold, determining that the coding mode is low density parity check LDPC code coding; wherein, the transport block length and the first preset threshold All are positive integers, and the first preset threshold is a function of the maximum coding block length of the determined coding mode.
  • the processor performs, according to the stored program code in the storage medium, that the first preset threshold is less than or equal to N1 times the maximum coding block length of the determined coding mode, and N1 is less than 10 Integer.
  • the processor performs, according to the stored program code in the storage medium, in the case that the data feature is a code rate, and the preset parameter is a second preset threshold, according to the identifier used to be sent.
  • the data characteristics of the transport block and the preset parameters corresponding to the data features are determined.
  • the encoding method for encoding the transport block includes: determining that the encoding mode is Turbo coding or polarization coding if the code rate of the transport block is not greater than the second preset threshold; and the code rate of the transport block is greater than the second preset.
  • the threshold it is determined that the encoding mode is low density parity check LDPC code encoding.
  • the processor executes according to the stored program code in the storage medium: the second preset threshold is greater than the lowest code rate of the transport block, wherein the second preset threshold is a positive number less than 1.
  • the processor performs, according to the stored program code in the storage medium, in the case that the data feature is the number of available physical resource blocks, and the preset parameter is the third preset threshold, Determining, by the data feature of the transport block to be sent, and the preset parameter corresponding to the data feature, the coding manner for encoding the transport block includes: if the number of available physical resource blocks of the transport block is not greater than a third preset threshold And determining that the coding mode is Turbo coding or polarization coding; if the number of available physical resource blocks of the transport block is greater than a third preset threshold, determining that the coding mode is low density parity check LDPC code coding.
  • the processor executes according to the stored program code in the storage medium: the third preset threshold is a positive integer not less than 2.
  • the processor performs, according to the stored program code in the storage medium, in the case that the data feature is a modulation and coding level, and the preset parameter is a fourth preset threshold,
  • the data feature of the transport block, and the preset parameter corresponding to the data feature, determining the encoding manner for encoding the transport block includes: determining the encoding if the modulation and coding level of the transport block is not greater than the fourth preset threshold
  • the mode is Turbo coding or polarization coding; if the modulation coding level of the transmission block is greater than the fourth preset threshold, the coding mode is determined to be low density parity check LDPC code coding.
  • the processor executes according to the stored program code in the storage medium: the fourth preset threshold is a positive integer not less than 2 and not more than 32.
  • the processor performs, according to the stored program code in the storage medium, the user equipment type index of the user equipment that receives the transport block in the data feature, and the preset parameter.
  • determining an encoding manner for encoding the transport block includes: at the user equipment type If the index is less than the fifth preset threshold, determine that the coding mode is Turbo coding or polarization coding; and if the user equipment type index is not less than the fifth preset threshold, determine that the coding mode is low density parity check LDPC code coding. ;
  • the processor executes according to the stored program code in the storage medium: the fifth preset threshold is a positive integer greater than 6.
  • the processor performs, according to the stored program code in the storage medium, in a case where the data feature is a channel type carrying a transport block, and the preset parameter is a control channel and a data channel, Determining a data feature of the transport block to be transmitted, and a preset parameter corresponding to the data feature, and determining an encoding manner for encoding the transport block includes: determining, when the channel type of the transport block is a control channel, For Turbo coding or polarization coding; in the case where the channel type carrying the transport block is a data channel, it is determined that the coding mode is low density parity check LDPC code coding.
  • the processor performs, according to the stored program code in the storage medium, in a case where the data feature is a link direction of the data block, and the preset parameter is a downlink direction and an uplink direction.
  • Determining, according to the data feature used to represent the transport block to be transmitted, and the preset parameter corresponding to the data feature, the coding manner used to encode the transport block includes: in the link direction of the data block, from the terminal to the base station or In the case of the uplink direction from the terminal to the relay, it is determined that the coding mode is Turbo coding or polarization coding or convolutional coding; the link direction of the data block is from the base station to the terminal or from the relay to the terminal. In the case of the direction, it is determined that the encoding mode is low density parity check LDPC code encoding.
  • the processor performs, according to the stored program code in the storage medium, determining, according to the data feature used to represent the transport block to be sent, and the preset parameter corresponding to the data feature, After the coding mode of the transport block is encoded, the method further includes: dividing the transport block into multiple coded blocks when the transport block length of the transport block is greater than the maximum coding block length of the determined coding mode; using the determined coding mode pair Before dividing each code block Code to error correction.
  • the processor performs, according to the stored program code in the storage medium, if the determined coding mode is LDPC code coding, the coded block length of the divided coding block is the basis of the LDPC code.
  • the processor performs, according to the stored program code in the storage medium, if the determined coding mode is LDPC code coding, the coded block length of the divided coding block is the basis of the LDPC code.
  • the processor performs, according to the stored program code in the storage medium, in a case where the determined encoding mode is LDPC code encoding, the minimum value of the coding block length of the divided coding block is Kmin. It is: 0.45*K max ⁇ K min ⁇ 0.55*K max , where K max represents the maximum coding block length of the turbo code or polarization code.
  • the processor performs, according to the stored program code in the storage medium, when the determined encoding mode is LDPC code encoding, when the number of the divided coded blocks is greater than a sixth preset threshold.
  • the length of the divided coded block is equal to the length of the largest coded block.
  • the processor executes according to the stored program code in the storage medium: the sixth preset threshold is a positive integer greater than 5.
  • the processor performs, according to the stored program code in the storage medium, performing forward error correction coding on each of the divided coded blocks by using the determined coding manner, including: performing segmentation by using the determined coding mode.
  • the bits at the same bit position in each subsequent coding block are respectively subjected to forward error correction coding.
  • Embodiments of the present disclosure also provide a processor for running a program, wherein the program executes the steps of any of the above methods when executed.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure relates to the field of communications, and in particular to a data transmission method, apparatus, and source. Determining an encoding method for encoding a transport block to be transmitted according to a data feature of the data block and a preset parameter corresponding to the data feature, and selecting a suitable pattern according to the data feature of the data block satisfies the requirements of the future communication system. Therefore, the problem that the existing coding mode cannot meet the requirements of the future communication system in the related art can be solved, and the effect of improving the flexibility of the coding mode selection is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Error Detection And Correction (AREA)

Abstract

本公开提供了一种数据发送方法、装置及信源,其中,该方法包括:根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;根据确定的编码方式,对所述传输块进行编码;将编码后的所述传输块发送给接收端。通过本公开,解决了相关技术中存在已有的编码方式不能满足未来通信系统需求的问题,达到了提高编码方式选择灵活性的效果。

Description

数据发送方法、装置及信源 技术领域
本公开涉及通信领域,具体而言,涉及一种数据发送方法、装置及信源。
背景技术
数字通信系统发射端通常包括信源、信源编码器、信道编码器和调制器等部分,接收端通常包括解调器、信道译码器、信源译码器和信宿,如图1所示。信道编码器设置为给信息比特按照一定的规则引入冗余信息,以便接收端信道译码器能够在一定程度上纠正信息在信道上传输时发生的误码。
一般来讲,前向纠错(Forward Error Correction,简称为FEC)编码就是由信息比特序列生成校验比特序列的过程,信息比特序列和校验比特序列共同组成了我们常说的码字比特序列。常用的FEC编码包括Turbo码、低密度奇偶校验码(Low Density Party Check Code,简称为LDPC)、极化码、卷积码等。例如,长期演进(Long-Term Evolution,简称为LTE)系统中就采用了Turbo码用于数据传输;IEEE 802.11系统中采用的是LDPC码和卷积码。
常见的信道编码方法(或者又称码型)包括LDPC码、Turbo码、极化码、卷积码等。不同的信道编码方法通常有不同的特点和适用场景。
LDPC码是一种基于稀疏校验矩阵的线性分组码,利用了它的校验矩阵的稀疏性,实现高吞吐量低复杂度的编译码,从而使得LDPC码走向实用化。Gallager码是一种正则的LDPC码(regular ldpcc),相关技术中还对Gallager码进行了推广,提出非正则的LDPC码(irregular ldpcc)。LDPC码具有很多译码算法,其中,信息传递算法(Message Passing algorithm)或者置信度传播算法(Belief Propagation algorithm,BP算法)是LDPC码 的主流和基础算法,目前出现了很多改进的有效译码算法。
LDPC奇偶校验矩阵的图形表示形式是二分图。二分图和校验矩阵之间具有一一对应的关系,一个M*N的奇偶校验矩阵H定义了每个具有N比特的码字满足M个奇偶校验集的约束。一个二分图包括N个变量节点和M个奇偶校验节点。当第m个校验涉及到第n个比特位,即H中第m行第n列的元素Hm,n=1时,将有一根连线连接校验节点m和变量节点n。二分图中,任何同一类的节点之间都不会有连接,并且二分图中的总边数和校验矩阵中非零元素的个数相等。
一类特殊LDPC码由于具有结构化的特征,逐渐成为主流应用。设这种LDPC码的奇偶校验矩阵H为(M×z)×(N×z)矩阵,该矩阵是由M×N个分块矩阵构成,每个分块矩阵都是z×z的基本置换矩阵的不同幂次。在基本置换矩阵为单位阵时,分块矩阵均为单位阵的循环移位矩阵(以下默认为右移)。具有如下的形式:
Figure PCTCN2017104420-appb-000001
如果
Figure PCTCN2017104420-appb-000002
Figure PCTCN2017104420-appb-000003
如果
Figure PCTCN2017104420-appb-000004
是大于或者等于0的整数,定义
Figure PCTCN2017104420-appb-000005
在这里P是一个z×z的标准置换矩阵,如下所示:
Figure PCTCN2017104420-appb-000006
通过这样的幂次
Figure PCTCN2017104420-appb-000007
就可以唯一标识每一个分块矩阵,单位矩阵的幂次可用0表示,矩阵一般用-1来表示。这样,如果将H的每个分块矩阵都用它的幂次代替,就得到一个M×N的幂次矩阵Hb。这里,定义Hb是H 的基础矩阵,H称为Hb的扩展矩阵。在实际编码时,z=码长/基础矩阵的列数N,称为扩展因子。
例如,如下矩阵:
Figure PCTCN2017104420-appb-000008
可以用下面的参数z和一个2×4的基础矩阵Hb扩展得到:其中,z=3,
Figure PCTCN2017104420-appb-000009
在现有LTE系统里,物理层数据共享信道是以传输块(Transmission Block,简称为TB)为基本单位进行数据传输的。接收端通过TB的循环冗余校验(Cyclic Redundancy Check,简称为CRC)码来判断当前TB是否被正确接收。若TB被正确接收,接收端向发送端反馈ACK消息;若TB没有正确接收,接收端向发送端反馈NACK消息。
当传输块(TB)块大小超过规定的门限,例如6120比特时,发送端通常要进行码块(Code Block,简称为CB)分割,将一个TB分割成多个CB,每个CB分别进行编码、速率匹配、码块级联、调制等操作后再发送给接收端。
随着需求的增长,通信的应用场景也不断丰富,在下一代无线通信系统中,大体可分为增强的移动宽带(enhanced mobile broadband,简称为eMBB),超可靠低延时(ultra reliability low latency,简称为URLLC)和巨量通信(massive machine type communication,简称为mMTC)三种应用场景。这三种应用场景对纠错编码的要求不同。例如,eMBB要求编译码器具有较高的峰值吞吐量,URLLC要求极高的编译码性能和超低的延迟,mMTC要求编码具有极低的复杂度。
因此,相关技术中存在已有的编码方式不能满足未来通信系统需求的问题。
发明内容
本公开实施例提供了一种数据发送方法、装置及信源,以至少解决相关技术中存在已有的编码方式不能满足未来通信系统需求的问题。
根据本公开的一个实施例,提供了一种数据发送方法,包括:根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;根据确定的编码方式,对所述传输块进行编码;将编码后的所述传输块发送给接收端。
可选地,在所述数据特征为传输块长度,所述预设参数为第一预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的传输块长度不大于所述第一预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的传输块长度大于所述第一预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;其中,所述传输块长度和所述第一预设阈值均为正整数,所述第一预设阈值为确定的所述编码方式的最大编码块长度的函数。
可选地,所述第一预设阈值小于或等于确定的所述编码方式的最大编码块长度的N1倍,所述N1为小于10的正整数。
可选地,在所述数据特征为码率,所述预设参数为第二预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的码率不大于所述第二预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的码率大于所述第二预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编 码。
可选地,所述第二预设阈值大于所述传输块的最低码率,其中,所述第二预设阈值为小于1的正数。
可选地,在所述数据特征为可用物理资源块数,所述预设参数为第三预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的可用物理资源块数不大于所述第三预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的可用物理资源块数大于所述第三预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,所述第三预设阈值为一个不小于2的正整数。
可选地,在所述数据特征为调制编码等级,所述预设参数为第四预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的调制编码等级不大于所述第四预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的调制编码等级大于所述第四预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,所述第四预设阈值为不小于2并且不大于32的正整数。
可选地,在所述数据特征为接收所述传输块的用户设备的用户设备类型索引,所述预设参数为第五预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述用户设备类型索引小于所述第五预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述用户设备类型索引不小于所述第五预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
可选地,所述第五预设阈值为大于6的正整数。
可选地,在所述数据特征为承载所述传输块的信道类型,所述预设参数为控制信道和数据信道的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在承载所述传输块的信道类型为所述控制信道的情况下,确定所述编码方式为Turbo编码或者极化编码;在承载所述传输块的信道类型为所述数据信道的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,在所述数据特征为所述数据块的链路方向,所述预设参数为下行链路方向和上行链路方向的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述数据块的链路方向为从终端到基站或者从终端到中继的所述上行链路方向的情况下,确定所述编码方式为Turbo编码或者极化编码或者卷积编码;在所述数据块的链路方向为从基站到终端或者从中继到终端的所述下行链路方向的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,在根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式之后,还包括:在所述传输块的传输块长度大于确定的所述编码方式的最大编码块长度的情况下,将所述传输块分割为多个编码块;采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码。
可选地,在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度为所述LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
可选地,分割后的所述编码块的所述编码块长度为:Kcb=(nb-mb)*2X,其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于所述最大编码块长度的最大取值;或者,Kcb=kb*2X,其中,kb为所述 LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于所述最大编码块长度的最大取值。
可选地,在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度为所述LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,所述编码块长度的步长为所述LDPC码所支持的任意相邻的两种编码块长度的差值。
可选地,分割后的编码块的编码块长度为:Kcb=(mb-nb)*zmax-q*D,其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,zmax为所述最大扩展因子,D是编码块的步长,q是正整数;或者,Kcb=kb*zmax-q*D,其中,kb为所述LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,nb为所述LDPC码的基础校验矩阵的列数,mb为所述LDPC码的基础校验矩阵的行数,D为编码块的步长,q是正整数。
可选地,所述编码块的所述步长为:D=(mb-nb)*2w,其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,w为正整数。
可选地,在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度的最小值Kmin为:0.45*Kmax≤Kmin≤0.55*Kmax,其中,Kmax表示Turbo码或极化码的最大编码块长度。
可选地,在确定的所述编码方式为LDPC码编码的情况下,当分割后的所述编码块的数目大于第六预设阈值时,分割后的所述编码块的长度均等于所述最大编码块的长度。
可选地,所述第六预设阈值为大于5的正整数。
可选地,采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码包括:采用确定的所述编码方式对分割后的各个所述编码块中相同 比特位置上的比特分别进行前向纠错编码。
根据本公开的另一个实施例,提供了一种数据发送装置,包括:确定模块,设置为根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;编码模块,设置为根据确定的编码方式,对所述传输块进行编码;发送模块,设置为将编码后的所述传输块发送给接收端。
可选地,所述确定模块还设置为通过以下至少之一确定所述编码方式:在所述数据特征为传输块长度,所述预设参数为第一预设阈值时,在所述传输块的传输块长度不大于所述第一预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的传输块长度大于所述第一预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;其中,所述传输块长度和所述第一预设阈值均为正整数,所述第一预设阈值为确定的所述编码方式的最大编码块长度的函数;在所述数据特征为码率,所述预设参数为第二预设阈值时,在所述传输块的码率不大于所述第二预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的码率大于所述第二预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为可用物理资源块数,所述预设参数为第三预设阈值时,在所述传输块的可用物理资源块数不大于所述第三预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的可用物理资源块数大于所述第三预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为调制编码等级,所述预设参数为第四预设阈值时,在所述传输块的调制编码等级不大于所述第四预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的调制编码等级大于所述第四预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为接收所述传输块的用户设备的用户设备类型索引,所述预设参数为第五预设阈值时,在所述用户设备类型索引小于所述第五预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述用户设备类 型索引不小于所述第五预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为承载所述传输块的信道类型,所述预设参数为控制信道和数据信道时,在承载所述传输块的信道类型为所述控制信道的情况下,确定所述编码方式为Turbo编码或者极化编码;在承载所述传输块的信道类型为所述数据信道的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为所述数据块的链路方向,所述预设参数为下行链路方向和上行链路方向时,在所述数据块的链路方向为从终端到基站或者从终端到中继的所述上行链路方向的情况下,确定所述编码方式为Turbo编码或者极化编码或者卷积编码;在所述数据块的链路方向为从基站到终端或者从中继到终端的所述下行链路方向的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,所述装置还包括:分割模块,设置为在所述传输块的传输块长度大于确定的所述编码方式的最大编码块长度的情况下,将所述传输块分割为多个编码块;所述编码模块,还设置为采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码。
根据本公开的又一个实施例,提供了一种信源,包括:处理装置和传输装置,其中,所述处理装置,设置为根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;根据确定的编码方式,对所述传输块进行编码;所述传输装置,与所述处理装置相连,设置为将编码后的所述传输块发送给接收端。
可选地,所述处理装置还设置为通过以下至少之一确定所述编码方式:在所述数据特征为传输块长度,所述预设参数为第一预设阈值时,在所述传输块的传输块长度不大于所述第一预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的传输块长度大于所述第一预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;其中,所述传输块长度和所述第一预设阈值均为正整数,所述第一预设阈值为确定的所述编码方式的最大编码块长度的函数;在所述数据特征 为码率,所述预设参数为第二预设阈值时,在所述传输块的码率不大于所述第二预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的码率大于所述第二预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为可用物理资源块数,所述预设参数为第三预设阈值时,在所述传输块的可用物理资源块数不大于所述第三预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的可用物理资源块数大于所述第三预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为调制编码等级,所述预设参数为第四预设阈值时,在所述传输块的调制编码等级不大于所述第四预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的调制编码等级大于所述第四预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为接收所述传输块的用户设备的用户设备类型索引,所述预设参数第五预设阈值时,在所述用户设备类型索引小于所述第五预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述用户设备类型索引不小于所述第五预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为承载所述传输块的信道类型,所述预设参数为控制信道和数据信道时,在承载所述传输块的信道类型为所述控制信道的情况下,确定所述编码方式为Turbo编码或者极化编码;在承载所述传输块的信道类型为所述数据信道的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;在所述数据特征为所述数据块的链路方向,所述预设参数为下行链路方向和上行链路方向时,在所述数据块的链路方向为从终端到基站或者从终端到中继的所述上行链路方向的情况下,确定所述编码方式为Turbo编码或者极化编码或者卷积编码;在所述数据块的链路方向为从基站到终端或者从中继到终端的所述下行链路方向的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,所述处理装置还设置为在所述传输块的传输块长度大于确定的所述编码方式的最大编码块长度的情况下,将所述传输块分割为多个编 码块;采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;根据确定的编码方式,对所述传输块进行编码;将编码后的所述传输块发送给接收端。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在所述数据特征为传输块长度,所述预设参数为第一预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的传输块长度不大于所述第一预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的传输块长度大于所述第一预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;其中,所述传输块长度和所述第一预设阈值均为正整数,所述第一预设阈值为确定的所述编码方式的最大编码块长度的函数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一预设阈值小于或等于确定的所述编码方式的最大编码块长度的N1倍,所述N1为小于10的正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在所述数据特征为码率,所述预设参数为第二预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的码率不大于所述第二预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的码率大于所述第二预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述 第二预设阈值大于所述传输块的最低码率,其中,所述第二预设阈值为小于1的正数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在所述数据特征为可用物理资源块数,所述预设参数为第三预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的可用物理资源块数不大于所述第三预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的可用物理资源块数大于所述第三预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第三预设阈值为一个不小于2的正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在所述数据特征为调制编码等级,所述预设参数为第四预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述传输块的调制编码等级不大于所述第四预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的调制编码等级大于所述第四预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第四预设阈值为不小于2并且不大于32的正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在所述数据特征为接收所述传输块的用户设备的用户设备类型索引,所述预设参数为第五预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述用户设备类型索引小于所述第 五预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述用户设备类型索引不小于所述第五预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第五预设阈值为大于6的正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在所述数据特征为承载所述传输块的信道类型,所述预设参数为控制信道和数据信道的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在承载所述传输块的信道类型为所述控制信道的情况下,确定所述编码方式为Turbo编码或者极化编码;在承载所述传输块的信道类型为所述数据信道的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在所述数据特征为所述数据块的链路方向,所述预设参数为下行链路方向和上行链路方向的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:在所述数据块的链路方向为从终端到基站或者从终端到中继的所述上行链路方向的情况下,确定所述编码方式为Turbo编码或者极化编码或者卷积编码;在所述数据块的链路方向为从基站到终端或者从中继到终端的所述下行链路方向的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式之后,还包括:在所述传输块的传输块长度大于确定的所述编码方式的最大编码块长度的情况下,将所述传输块分割为多个编码块;采用确定的所述 编码方式对分割后的各个编码块进行前向纠错编码。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度为所述LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:分割后的所述编码块的所述编码块长度为:Kcb=(nb-mb)*2X,其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于所述最大编码块长度的最大取值;或者,Kcb=kb*2X,其中,kb为所述LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于所述最大编码块长度的最大取值。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度为所述LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,所述编码块长度的步长为所述LDPC码所支持的任意相邻的两种编码块长度的差值。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:分割后的编码块的编码块长度为:Kcb=(mb-nb)*zmax-q*D,其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,zmax为所述最大扩展因子,D是编码块的步长,q是正整数;或者,Kcb=kb*zmax-q*D,其中,kb为所述LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,nb为所述LDPC码的基础校验矩阵的列数,mb为所述LDPC码的基础校验矩阵的行数,D为编码块的步长,q是正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述编码块的所述步长为:D=(mb-nb)*2w,其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数, w为正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度的最小值Kmin为:0.45*Kmax≤Kmin≤0.55*Kmax,其中,Kmax表示Turbo码或极化码的最大编码块长度。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在确定的所述编码方式为LDPC码编码的情况下,当分割后的所述编码块的数目大于第六预设阈值时,分割后的所述编码块的长度均等于所述最大编码块的长度。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第六预设阈值为大于5的正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码包括:采用确定的所述编码方式对分割后的各个所述编码块中相同比特位置上的比特分别进行前向纠错编码。
根据本公开的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本公开,根据数据块的数据特征(例如,数据块长度,数据块的码率等)以及与数据特征对应的预设参数(例如,与不同的数据特征对应的不同的预设阈值)确定用于对待发送的传输块进行编码的编码方式,由于根据数据块的数据特征选择合适的码型,满足了未来通信系统的需求,因此,可以解决相关技术中存在已有的编码方式不能满足未来通信系统需求的问题,达到提高编码方式选择灵活性的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公 开的不当限定。在附图中:
图1是相关技术中数字通信系统的示意图;
图2是本公开实施例的一种数据发送方法的信源的硬件结构框图;
图3是根据本公开实施例的数据发送方法的流程图;
图4是根据本公开实施例的数据发送装置的结构框图一;
图5是根据本公开实施例的数据发送装置的结构框图二;
图6是根据本公开实施例的信源的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例2所提供的方法实施例可以在信源、计算机终端或者类似的信号发送装置中执行。以运行在信源上为例,图2是本公开实施例的一种数据发送方法的信源的硬件结构框图。如图2所示,信源20可以包括一个或多个(图中仅示出一个)处理装置22(处理器22可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器24、以及用于通信功能的传输装置26。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,信源20还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器24可设置为存储应用软件的软件程序以及模块,如本公开实施例中的数据发送方法对应的程序指令/模块,处理器22通过运行存储在存储器24内的软件程序以及模块,从而执行各种功能应用以及数据处理, 即实现上述的方法。存储器24可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器24可进一步包括相对于处理器22远程设置的存储器,这些远程存储器可以通过网络连接至信源20。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置26设置为经由一个网络接收或者发送数据。上述的网络可选实例可包括信源20的通信供应商提供的无线网络。在一个实例中,传输装置26包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置26可以为射频(Radio Frequency,RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述信源的数据发送方法,图3是根据本公开实施例的数据发送方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式;
步骤S304,根据确定的编码方式,对传输块进行编码;
步骤S306,将编码后的传输块发送给接收端。
通过上述步骤,根据数据块的数据特征以及与数据特征对应的预设参数确定用于对待发送的传输块进行编码的编码方式,解决了相关技术中存在已有的编码方式不能满足未来通信系统需求的问题,提高了编码方式选择灵活性。
可选地,上述步骤的执行主体可以为基站、信号发射器等,但不限于此。
可选地,上述步骤S306中的接收端可以为信宿(例如,终端、信号接收器等),但不限于此。
可选地,传输块的数据特征可以包括多种,例如,数据传输方向(上 行或者下行),信道条件,终端类型,信道资源,传输码率等。预设参数可以包括一个或者多个。
可选地,可以采用多种方式确定上述编码方式。例如,在数据特征为传输块长度,预设参数为第一预设阈值时,在传输块的传输块长度不大于第一预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的传输块长度大于第一预设阈值的情况下,确定编码方式为LDPC码编码;其中,传输块长度和第一预设阈值均为正整数,第一预设阈值为确定的编码方式的最大编码块长度的函数(第一预设阈值可以小于或等于确定的编码方式的最大编码块长度的N1倍,N1为小于10的正整数)。又例如,在数据特征为码率,预设参数为第二预设阈值时,在传输块的码率不大于第二预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的码率大于第二预设阈值的情况下,确定编码方式为LDPC码编码(第二预设阈值可以为小于1的正数,并且大于传输块的最低码率)。再例如,在数据特征为可用物理资源块数,预设参数为第三预设阈值时,在传输块的可用物理资源块数不大于第三预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的可用物理资源块数大于第三预设阈值的情况下,确定编码方式为LDPC码编码(第三预设阈值可以是不小于2的正整数)。再例如,在数据特征为调制编码等级,预设参数为第四预设阈值时,在传输块的调制编码等级不大于第四预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的调制编码等级大于第四预设阈值的情况下,确定编码方式为LDPC码编码(第四预设阈值可以是不小于2并且不大于32的正整数)。再例如,在数据特征为接收传输块的用户设备的用户设备类型索引,预设参数为第五预设阈值时,在用户设备类型索引小于第五预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在用户设备类型索引不小于第五预设阈值的情况下,确定编码方式为LDPC码编码(第五预设阈值可以为大于6的正整数)。再例如,在数据特征为承载传输块的信道类型,预设参数为控制信道和数据信道时,在承载传输块的信道类型为控制信道的情况下,确定编码方式为Turbo 编码或者极化编码;在承载传输块的信道类型为数据信道的情况下,确定编码方式为低密度奇偶校验LDPC码编码。再例如,在数据特征为数据块的链路方向,预设参数为下行链路方向和上行链路方向时,在数据块的链路方向为从终端到基站或者从终端到中继的上行链路方向的情况下,确定编码方式为Turbo编码或者极化编码或者卷积编码;在数据块的链路方向为从基站到终端或者从中继到终端的下行链路方向的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,可以根据上述数据特征的结合与预设参数,确定上述编码方式,此时,可选的确定方式(例如,多个数据特征与预设参数依次比较、联合比较、权重比较等,不同的数据特征可以对应不同的预设参数),可以根据实际需要进行设定。
可选地,在步骤S202之后,还可以在传输块的传输块长度大于确定的编码方式的最大编码块长度的情况下,将传输块分割为多个编码块;采用确定的编码方式对分割后的各个编码块进行前向纠错编码。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度可以为LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
可选地,分割后的编码块的编码块长度可以为:Kcb=(nb-mb)*2X,或者,Kcb=kb*2X,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,kb为LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,X是正整数,X的取值为使得Kcb为不大于最大编码块长度的最大取值。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度还可以为LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,编码块长度的步长为LDPC码所支持的任意相邻的两种编码块长度的差值。
可选地,分割后的编码块的编码块长度可以为:
Kcb=(mb-nb)*zmax-q*D,或者,Kcb=kb*zmax-q*D,
其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,kb为LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,zmax为最大扩展因子,D是编码块的步长,q是正整数。
可选地,编码块的步长可以为:D=(mb-nb)*2w,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,w为正整数。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的长度的最小值可以接近Turbo码或者极化码的最大编码块长度的一半。例如,分割后的编码块的编码块长度的最小值Kmin可以为:
0.45*Kmax≤Kmin≤0.55*Kmax
其中,Kmax表示Turbo码或极化码的最大编码块长度,上述公式中的系数0.45和0.55是为了限定接近Kmax的程度,可以为其他值,例如,0.4和0.6,0.455和0.555,0.47和0.53等等,只要在0.5左右预设范围内即可。可选地,两个系数的和可以为1,也可以不为1,只要两个系数在分别在0.5的两侧即可。
可选地,在确定的编码方式为LDPC码编码的情况下,当分割后的编码块的数目Ncb大于第六预设阈值的时候,分割后的编码块的长度可以都等于最大编码块的长度,其中,第六预设阈值可以是一个大于5的正整数。
可选地,可以采用多种方式对分割后的各个编码块进行前向纠错编码,例如,可以分别对各个编码块进行前向纠错编码,又例如,可以在分割后的各个编码块之间进行前向纠错编码。在分割后的各个编码块之间进行前向纠错编码可以是对Ncb个编码块中相同比特位置上的比特分别进行前向纠错编码。例如,在Ncb等于5,每个编码块由n个比特位置(n为大于0的整数,例如,最大编码块长度),对分割后的5编码块第一个比特位置上的比特进行前向纠错编码,对分割后的5编码块第二个比特位置上的比特进行前向纠错编码……对分割后的5编码块中第n个比特位置上的 比特进行前向纠错编码。
基于上述实施例及优选实施方式,为说明方案的整个流程交互,在本优选实施例中,提供了一种数据发送方法,考虑到数据传输方向(上行或者下行),信道条件,终端类型,信道资源,传输码率等都可以影响码型的选择。因此,下面结合不同的实例对该数据发送方法进行说明。
实例1:
发送端有一个待传输的传输块,在发送前需要对其进行编码,其中,编码过程包括:根据传输块的长度T比特和预先设定的阈值E1比特(其中,T和E1都是正整数,E1的作用与前述第一预设阈值类似),确定传输块的编码方式。其中,阈值E1是Turbo码最大编码块长度的函数。
在本实例中设定E1不大于Turbo码编码器最大码块长度Kmax的10倍,在实例中,假定Turbo码的最大码块长度Kmax=6144比特,阈值E1是Kmax的5倍,即,E1=6144*5=30720比特。
当T≤E1时,传输块采用Tubo码编码,当T>E1时,传输块采用LDPC编码。在本例中,假设传输块的长度为T=3000比特,则传输块采用Turbo编码。
当传输块的长度T大于Turbo码的最大编码块长度Kmax时,要将传输块分割为多个编码块;由于在本实例中传输块的长度小于Kmax,因此本实例中不需要对传输块进行码块分割,即传输块只包括一个编码块。
实例2:
发送端有一个待传输的传输块,在发送前需要对其进行编码,其中,编码过程包括:
根据传输块的长度T比特和预先设定的阈值E1比特(其中,T和E1都是正整数),确定传输块的编码方式。其中,阈值E1是LDPC码长度的函数。
在本实例中,设定E1不大于LDPC码编码器最大码块长度Kmax的10 倍,假定LDPC码的最大码块长度Kmax=8096比特,阈值E1是Kmax的5倍,即,E1=8096*5=40480比特。
当T≤E1时,传输块采用极化码编码,当T>E1时,传输块采用LDPC编码。在本实例中,假定传输块的长度为T=60000比特,则传输块采用LDPC编码。
当传输块的长度T大于LDPC码的最大编码块长度Kmax时,将传输块分割为多个编码块;在本实例中,分割后的编码块的长度Kcb可以表示为Kcb=(nb-mb)*2X,或者Kcb=kb*2X,其中nb是LDPC码的基础校验矩阵的列数;mb是低密度奇偶校验矩阵的行数,kb是低密度奇偶校验码的基础校验矩阵系统位的列数,kb=nb-mb。
在本实例中,假设LDPC码的基础校验矩阵具有以下参数,nb=24,mb=16,kb=8,则分割后的编码长度Kcb可以表示为Kcb=8*2X,其中X是正整数,并且X的取值应该使得Kcb为不大于最大编码块长度8096的最大取值;在本实例中,X=10,分割后的编码块长度Kcb=8096。
传输块被分割为
Figure PCTCN2017104420-appb-000010
个编码块,其中
Figure PCTCN2017104420-appb-000011
表示向上取整操作。每个编码块包含
Figure PCTCN2017104420-appb-000012
比特的信息比特和596个填充比特。发送端对分割后的各个编码块采用LDPC码编码。
实例3:
发送端有一个待传输的传输块,在发送前需要对其进行编码,其中,编码过程包括:根据传输块的长度T比特和预先设定的阈值E1比特(其中,T和E1都是正整数),确定传输块的编码方式。
其中,阈值E1是turbo码长度的函数。在本实例中,设定E1不大于turbo码编码器最大码块长度Kmax的10倍,假定Turbo码的最大码块长度Kmax=6144比特,阈值E1是Kmax的1倍,即E1=6144比特。
当T≤E1时,传输块采用极化码编码,当T>E1时,传输块采用LDPC编码。在本实例中,假定传输块的长度为T=6208比特,则传输块采用LDPC 编码。
当传输块的长度T大于LDPC码的最大编码块长度Kmax时,要将传输块分割为多个编码块。
在本实例中,分割后的编码块的长度Kcb的取值可以满足:Kcb=(mb-nb)*zmax-q*D或者Kcb=kb*zmax-q*D,其中nb是低密度奇偶校验码的基础校验矩阵的列数,mb是低密度奇偶校验矩阵的行数,kb是低密度奇偶校验码的基础校验矩阵系统位的列数,kb=nb-mb;q是正整数,编码块的步长D可以表示为kb与2的幂次的乘积。即D=(kb)*2w或者D=(mb-nb)*2w,其中w是正整数;zmax是低密度奇偶校验码的最大扩展因子。
在本实例中,假设LDPC码的基础校验矩阵具有以下参数,nb=24,mb=16,kb=8,zmax=1024,则D=8*2w,低密度奇偶校验码分割后的编码长度Kcb满足Kcb=kb*zmax-q*D=8192-q*8*2w
在本实例中,取q=159,w=5,则,分割后的编码块的长度Kcb=3104,则传输块可分割为两个大小均为3104比特的编码块。
实例4:
实例4与实例3的主要区别在于,在实例4中,分割后的编码块的长度Kcb可以有多种取值,其中最小值Kmin接近Turbo码或者极化码的最大编码块长度Kmax的一半。即,分割后的编码块长度的最小值可以表示为:0.45*Kmax≤Kmin≤0.55*Kmax。在本实例中,Kcb的最小值应该满足0.45*6144≤Kmin≤0.55*6144。
实例5:
实例5与实例1至实例4中任一实例的区别在于,根据待发送的传输块的码率R和预先设定的阈值E2(作用与前述第二预设阈值类似)确定传输块的编码方式,当传输块的码率R不大于阈值E2时,确定传输块的编码方式为Turbo编码或者极化编码;当传输块的码率大于阈值E2时,确定传输块的编码方式为LDPC码。其中,阈值E2是一个小于1的正数(例如,0.5),并且阈值E2大于传输块的最低码率。
实例6:
实例6与实例1至实例4中任一实例的区别在于,根据待发送的传输块的可用物理资源块数和预先设定的阈值E3(作用与前述第三预设阈值类似)确定传输块的编码方式,当传输块的可用物理资源块数NPRB不大于阈值E3时,确定传输块的编码方式为Turbo编码或者极化编码;当传输块的码率大于阈值E3时,确定传输块的编码方式为LDPC码编码。其中,阈值E3可以是不小于2的正整数(例如,4)。
实例7:
实例7与实例1至实例4中任一实例的区别在于,根据待发送的传输块的调制编码等级和预先设定的阈值E4(作用与前述第四预设阈值类似)确定传输块的编码方式,当传输块的调制编码等级IMCS不大于阈值E4时,确定传输块的编码方式为Turbo编码或者极化编码;当传输块的调制编码等级IMCS大于阈值E4时,确定传输块的编码方式为LDPC码编码。其中,阈值E4可以是不小于2并且不大于32的正整数(例如,5)。
实例8:
实例8与实例1至实例4中任一实例的区别在于,根据接收传输块的用户设备的用户设备类型和预先设定的集合S1和S2确定传输块的编码方式,当待接收传输块的设备类型是集合S1中的一个元素时,确定传输块的编码方式为Turbo编码或者极化编码;当待接收传输块的设备类型是集合S2中的一个元素时,确定传输块的编码方式为LDPC码编码。其中,集合S1和S2的交集为空集。
实例9:
实例9与实例1至实例4中任一实例的区别在于,根据接收传输块的用户设备的用户设备类型索引和阈值E5(作用与前述第五预设阈值)确定传输块的编码方式,当接收传输块的用户设备的用户设备类型索引小于阈值E5时,确定传输块的编码方式为Turbo编码或者极化编码;当接收传输块的用户设备的用户设备类型索引不小于阈值E5时,确定传输块的编码方式为LDPC码编码。其中,阈值E5可以为大于6的正整数(例如,8)。
实例10:
实例10与实例1至实例4中任一实例的区别在于,根据承载传输块的信道的类型确定传输块的编码方式,当承载传输块的信道类型是控制信道时,确定传输块的编码方式是Turbo编码或者极化编码或者卷积编码,当承载传输块的信道类型是数据信道时,确定传输块的编码方式是LDPC码编码。
实例11:
实例11与实例1至实例4中任一实例的区别在于,根据传输块的链路方向确定传输块的编码方式,当传输块是从基站到终端或者中继到终端的下行链路方向上,确定传输块的编码方式是低密度奇偶校验码编码,当传输块是从终端到基站或者终端到中继的上行链路方向上,确定传输块的编码方式是Turbo编码或者极化编码或者卷积编码。
实例12:
实例12与实例1至实例4中任一实例的区别是:在确定的编码方式为LDPC码编码的情况下,分割后的编码块的数目Ncb大于阈值E6(作用与前述第六预设阈值),例如,分割后的分割后的编码块的数目Ncb=7。则编码块的长度都必须等于最大编码块的长度。
其中,阈值E6可以是一个大于5的正整数。
对分割后的Ncb个编码块之间进行前向纠错编码。即对Ncb个编码块的对应位置上(相同比特位置上)的比特分别进行前向纠错编码。
通过本公开优选实施例的上述技术方案,可以根据待传输数据的特征,从多个编码方式中选择合适的编码方式,满足了未来通信系统的需要。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可 以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例的方法。
实施例2
在本实施例中还提供了一种数据发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本公开实施例的数据发送装置的结构框图一,如图4所示,该装置包括:
确定模块42,设置为根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式;
编码模块44,连接至上述确定模块42,设置为根据确定的编码方式,对传输块进行编码;
发送模块46,连接至上述编码模块44,设置为将编码后的传输块发送给接收端。
可选地,确定模块42还可以设置为通过以下至少之一确定编码方式:在数据特征为传输块长度,预设参数为第一预设阈值时,在传输块的传输块长度不大于第一预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的传输块长度大于第一预设阈值的情况下,确定编码方式为LDPC码编码;其中,传输块长度和第一预设阈值均为正整数,第一预设阈值为确定的编码方式的最大编码块长度的函数;在数据特征为码率,预设参数为第二预设阈值时,在传输块的码率不大于第二预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的码率大于第二预设阈值的情况下,确定编码方式为LDPC码编码;在数据特征为可用物理资源块数,预设参数为第三预设阈值时,在传输块的可用物理资源块数不大于第三预设阈值的情况下,确定编码方式为Turbo编码或者极化 编码;在传输块的可用物理资源块数大于第三预设阈值的情况下,确定编码方式为LDPC码编码;在数据特征为调制编码等级,预设参数为第四预设阈值时,在传输块的调制编码等级不大于第四预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的调制编码等级大于第四预设阈值的情况下,确定编码方式为LDPC码编码;在数据特征为接收传输块的用户设备的用户设备类型索引,预设参数第五预设阈值时,在用户设备类型索引小于第五预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在用户设备类型索引不小于第五预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码;在数据特征为承载传输块的信道类型,预设参数为控制信道和数据信道时,在承载传输块的信道类型为控制信道的情况下,确定编码方式为Turbo编码或者极化编码;在承载传输块的信道类型为数据信道的情况下,确定编码方式为LDPC码编码;在数据特征为数据块的链路方向,预设参数为下行链路方向和上行链路方向时,在数据块的链路方向为从终端到基站或者从终端到中继的上行链路方向的情况下,确定编码方式为Turbo编码或者极化编码或者卷积编码;在数据块的链路方向为从基站到终端或者从中继到终端的下行链路方向的情况下,确定编码方式为LDPC码编码。
可选地,上述第一预设阈值可以小于或等于确定的编码方式的最大编码块长度的N1倍,上述N1为小于10的正整数(例如,4、6)。
可选地,上述第二预设阈值可以大于传输块的最低码率,其中,第二预设阈值可以是小于1的正数(例如,0.5)。
可选地,上述第三预设阈值可以是不小于2的正整数(例如,4、5)。
可选地,上述第四预设阈值可以是不小于2并且不大于32的正整数(例如,5)。
可选地,上述第五预设阈值可以是大于6的正整数(例如,8)。图5是根据本公开实施例的数据发送装置的结构框图二,如图5所示,该装置除包括图4所示的所有模块外,还包括:分割模块52。下面结合该分割模 块52对该数据发送装置进行说明。
分割模块52,连接至上述确定模块42,设置为在传输块的传输块长度大于确定的编码方式的最大编码块长度的情况下,将传输块分割为多个编码块;
编码模块44,还设置为采用确定的编码方式对分割后的各个编码块进行前向纠错编码。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度可以为LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
可选地,分割后的编码块的编码块长度可以为:
Kcb=(nb-mb)*2X,或者,Kcb=kb*2X
其中,kb为LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的所述基础校验矩阵的列数,mb为LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于最大编码块长度的最大取值。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度可以为LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,编码块长度的步长为LDPC码所支持的任意相邻的两种编码块长度的差值。
可选地,分割后的编码块的编码块长度可以为:
Kcb=(mb-nb)*zmax-q*D,或者,Kcb=kb*zmax-q*D,
其中,kb为LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,D为编码块的步长,q是正整数。
可选地,编码块的步长可以为:D=(mb-nb)*2w,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,w为 正整数。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度的最小值Kmin可以为:0.45*Kmax≤Kmin≤0.55*Kmax,其中,Kmax表示Turbo码或极化码的最大编码块长度。
可选地,在确定的编码方式为LDPC码编码的情况下,当分割后的编码块的数目大于第六预设阈值时,分割后的编码块的长度可以均等于上述最大编码块长度。
可选地,第六预设阈值可以是大于5的正整数(例如,6)。
可选地,采用确定的编码方式对分割后的各个编码块进行前向纠错编码可以为采用确定的编码方式对分割后的各个编码块中相同比特位置上的比特分别进行前向纠错编码。需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
在本实施例中还提供了一种信源,图6是根据本公开实施例的信源的结构框图,如图6所示,该信源包括:处理装置62和传输装置64,下面对该信源进行说明。
处理装置62,设置为根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式;根据确定的编码方式,对传输块进行编码;
传输装置64,与处理装置相连62,设置为将编码后的传输块发送给接收端。
可选地,处理装置62还可以设置为通过以下至少之一确定编码方式:在数据特征为传输块长度,预设参数为第一预设阈值时,在传输块的传输块长度不大于第一预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的传输块长度大于第一预设阈值的情况下,确定编码方 式为LDPC码编码;其中,传输块长度和第一预设阈值均为正整数,第一预设阈值为确定的编码方式的最大编码块长度的函数;在数据特征为码率,预设参数为第二预设阈值时,在传输块的码率不大于第二预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的码率大于第二预设阈值的情况下,确定编码方式为LDPC码编码;在数据特征为可用物理资源块数,预设参数为第三预设阈值时,在传输块的可用物理资源块数不大于第三预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的可用物理资源块数大于第三预设阈值的情况下,确定编码方式为LDPC码编码;在数据特征为调制编码等级,预设参数为第四预设阈值时,在传输块的调制编码等级不大于第四预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的调制编码等级大于第四预设阈值的情况下,确定编码方式为LDPC码编码;在数据特征为接收传输块的用户设备的用户设备类型索引,预设参数第五预设阈值时,在用户设备类型索引小于第五预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在用户设备类型索引不小于第五预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码;在数据特征为承载传输块的信道类型,预设参数为控制信道和数据信道时,在承载传输块的信道类型为控制信道的情况下,确定编码方式为Turbo编码或者极化编码;在承载传输块的信道类型为数据信道的情况下,确定编码方式为LDPC码编码;在数据特征为数据块的链路方向,预设参数为下行链路方向和上行链路方向时,在数据块的链路方向为从终端到基站或者从终端到中继的上行链路方向的情况下,确定编码方式为Turbo编码或者极化编码或者卷积编码;在数据块的链路方向为从基站到终端或者从中继到终端的下行链路方向的情况下,确定编码方式为LDPC码编码。
可选地,上述第一预设阈值可以小于或等于确定的编码方式的最大编码块长度的N1倍,上述N1为小于10的正整数(例如,4、6)。
可选地,上述第二预设阈值可以大于传输块的最低码率,其中,第二预设阈值可以是小于1的正数(例如,0.5)。
可选地,上述第三预设阈值可以是不小于2的正整数(例如,4、5)。
可选地,上述第四预设阈值可以是不小于2并且不大于32的正整数(例如,5)。
可选地,上述第五预设阈值可以是大于6的正整数(例如,8)。
可选地,处理装置62还可以设置为在传输块的传输块长度大于确定的编码方式的最大编码块长度的情况下,将传输块分割为多个编码块;采用确定的编码方式对分割后的各个编码块进行前向纠错编码。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度可以为LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
可选地,分割后的编码块的编码块长度可以为:
Kcb=(nb-mb)*2X,或者,Kcb=kb*2X
其中,kb为LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的所述基础校验矩阵的列数,mb为LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于最大编码块长度的最大取值。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度可以为LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,编码块长度的步长为LDPC码所支持的任意相邻的两种编码块长度的差值。
可选地,分割后的编码块的编码块长度可以为:
Kcb=(mb-nb)*zmax-q*D,或者,Kcb=kb*zmax-q*D,
其中,kb为LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,D为编码块的步长,q是正整数。
可选地,编码块的步长可以为:D=(mb-nb)*2w,其中,nb为LDPC 码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,w为正整数。
可选地,在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度的最小值Kmin可以为:0.45*Kmax≤Kmin≤0.55*Kmax,其中,Kmax表示Turbo码或极化码的最大编码块长度。
可选地,在确定的编码方式为LDPC码编码的情况下,当分割后的编码块的数目大于第六预设阈值时,分割后的编码块的长度可以均等于上述最大编码块长度。
可选地,第六预设阈值可以是大于5的正整数(例如,6)。
可选地,采用确定的编码方式对分割后的各个编码块进行前向纠错编码可以为采用确定的编码方式对分割后的各个编码块中相同比特位置上的比特分别进行前向纠错编码。
实施例4
本公开的实施例还提供了一种存储介质。,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式;
S2,根据确定的编码方式,对传输块进行编码;
S3,将编码后的传输块发送给接收端。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在数据特征为传输块长度,预设参数为第一预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:
S1,在传输块的传输块长度不大于第一预设阈值的情况下,确定编码 方式为Turbo编码或者极化编码;
S2,在传输块的传输块长度大于第一预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码;
其中,传输块长度和第一预设阈值均为正整数,第一预设阈值为确定的编码方式的最大编码块长度的函数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第一预设阈值小于或等于确定的编码方式的最大编码块长度的N1倍,N1为小于10的正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在数据特征为码率,预设参数为第二预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:
S1,在传输块的码率不大于第二预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;
S2,在传输块的码率大于第二预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第二预设阈值大于传输块的最低码率,其中,第二预设阈值为小于1的正数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在数据特征为可用物理资源块数,预设参数为第三预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:
S1,在传输块的可用物理资源块数不大于第三预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;
S2,在传输块的可用物理资源块数大于第三预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第三预设阈值为不小于2的正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在数据特征为调制编码等级,预设参数为第四预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:
S1,在传输块的调制编码等级不大于第四预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;
S2,在传输块的调制编码等级大于第四预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第四预设阈值为不小于2并且不大于32的正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在数据特征为接收传输块的用户设备的用户设备类型索引,预设参数为第五预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:
S1,在用户设备类型索引小于第五预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;
S2,在用户设备类型索引不小于第五预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第五预设阈值为大于6的正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在数据特征为承载传输块的信道类型,预设参数为控制信道和数据信道的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征 对应的预设参数,确定用于对传输块进行编码的编码方式包括:
S1,在承载传输块的信道类型为控制信道的情况下,确定编码方式为Turbo编码或者极化编码;
S2,在承载传输块的信道类型为数据信道的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在数据特征为数据块的链路方向,预设参数为下行链路方向和上行链路方向的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:
S1,在数据块的链路方向为从终端到基站或者从终端到中继的上行链路方向的情况下,确定编码方式为Turbo编码或者极化编码或者卷积编码;
S2,在数据块的链路方向为从基站到终端或者从中继到终端的下行链路方向的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
在根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式之后,还包括:
S1,在传输块的传输块长度大于确定的编码方式的最大编码块长度的情况下,将传输块分割为多个编码块;
S2,采用确定的编码方式对分割后的各个编码块进行前向纠错编码。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度为LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:分割后的编码块的编码块长度为:Kcb=(nb-mb)*2X,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于最大编码块长度的最大取值;或者, Kcb=kb*2X,其中,kb为LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于最大编码块长度的最大取值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度为LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,编码块长度的步长为LDPC码所支持的任意相邻的两种编码块长度的差值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:分割后的编码块的编码块长度为:Kcb=(mb-nb)*zmax-q*D,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,zmax为最大扩展因子,D是编码块的步长,q是正整数;或者,Kcb=kb*zmax-q*D,其中,kb为LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,D为编码块的步长,q是正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:编码块的步长为:D=(mb-nb)*2w,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,w为正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度的最小值Kmin为:0.45*Kmax≤Kmin≤0.55*Kmax,其中,Kmax表示Turbo码或极化码的最大编码块长度。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:在确定的编码方式为LDPC码编码的情况下,当分割后的编码块的数目大于第六预设阈值时,分割后的编码块的长度均等于最大编码块的长度。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第 六预设阈值为大于5的正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
采用确定的编码方式对分割后的各个编码块进行前向纠错编码包括:
S1,采用确定的编码方式对分割后的各个编码块中相同比特位置上的比特分别进行前向纠错编码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式;根据确定的编码方式,对传输块进行编码;将编码后的传输块发送给接收端。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在数据特征为传输块长度,预设参数为第一预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:在传输块的传输块长度不大于第一预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的传输块长度大于第一预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码;其中,传输块长度和第一预设阈值均为正整数,第一预设阈值为确定的编码方式的最大编码块长度的函数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一预设阈值小于或等于确定的编码方式的最大编码块长度的N1倍,N1为小于10的正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在数据特征为码率,预设参数为第二预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用 于对传输块进行编码的编码方式包括:在传输块的码率不大于第二预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的码率大于第二预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第二预设阈值大于传输块的最低码率,其中,第二预设阈值为小于1的正数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在数据特征为可用物理资源块数,预设参数为第三预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:在传输块的可用物理资源块数不大于第三预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的可用物理资源块数大于第三预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第三预设阈值为一个不小于2的正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在数据特征为调制编码等级,预设参数为第四预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:在传输块的调制编码等级不大于第四预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在传输块的调制编码等级大于第四预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第四预设阈值为不小于2并且不大于32的正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在数据特征为接收传输块的用户设备的用户设备类型索引,预设参数 为第五预设阈值的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:在用户设备类型索引小于第五预设阈值的情况下,确定编码方式为Turbo编码或者极化编码;在用户设备类型索引不小于第五预设阈值的情况下,确定编码方式为低密度奇偶校验LDPC码编码;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第五预设阈值为大于6的正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在数据特征为承载传输块的信道类型,预设参数为控制信道和数据信道的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:在承载传输块的信道类型为控制信道的情况下,确定编码方式为Turbo编码或者极化编码;在承载传输块的信道类型为数据信道的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在数据特征为数据块的链路方向,预设参数为下行链路方向和上行链路方向的情况下,根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式包括:在数据块的链路方向为从终端到基站或者从终端到中继的上行链路方向的情况下,确定编码方式为Turbo编码或者极化编码或者卷积编码;在数据块的链路方向为从基站到终端或者从中继到终端的下行链路方向的情况下,确定编码方式为低密度奇偶校验LDPC码编码。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在根据用于表征待发送的传输块的数据特征,以及与数据特征对应的预设参数,确定用于对传输块进行编码的编码方式之后,还包括:在传输块的传输块长度大于确定的编码方式的最大编码块长度的情况下,将传输块分割为多个编码块;采用确定的编码方式对分割后的各个编码块进行前 向纠错编码。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度为LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:分割后的编码块的编码块长度为:Kcb=(nb-mb)*2X,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于最大编码块长度的最大取值;或者,Kcb=kb*2X,其中,kb为LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于最大编码块长度的最大取值。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度为LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,编码块长度的步长为LDPC码所支持的任意相邻的两种编码块长度的差值。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:分割后的编码块的编码块长度为:Kcb=(mb-nb)*zmax-q*D,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,zmax为最大扩展因子,D是编码块的步长,q是正整数;或者,Kcb=kb*zmax-q*D,其中,kb为LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,D为编码块的步长,q是正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:编码块的步长为:D=(mb-nb)*2w,其中,nb为LDPC码的基础校验矩阵的列数,mb为LDPC码的基础校验矩阵的行数,w为正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在确定的编码方式为LDPC码编码的情况下,分割后的编码块的编码块长度的最小值Kmin为:0.45*Kmax≤Kmin≤0.55*Kmax,其中,Kmax表示Turbo码或极化码的最大编码块长度。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在确定的编码方式为LDPC码编码的情况下,当分割后的编码块的数目大于第六预设阈值时,分割后的编码块的长度均等于最大编码块的长度。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第六预设阈值为大于5的正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:采用确定的编码方式对分割后的各个编码块进行前向纠错编码包括:采用确定的编码方式对分割后的各个编码块中相同比特位置上的比特分别进行前向纠错编码。
本公开的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,本实施例中的可选示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领 域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开涉及通信领域,具体而言,涉及一种数据发送方法、装置及信源。根据数据块的数据特征以及与数据特征对应的预设参数确定用于对待发送的传输块进行编码的编码方式,由于根据数据块的数据特征选择合适的码型,满足了未来通信系统的需求,因此,可以解决相关技术中存在已有的编码方式不能满足未来通信系统需求的问题,达到提高编码方式选择灵活性的效果。

Claims (31)

  1. 一种数据发送方法,包括:
    根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;
    根据确定的编码方式,对所述传输块进行编码;
    将编码后的所述传输块发送给接收端。
  2. 根据权利要求1所述的方法,其中,在所述数据特征为传输块长度,所述预设参数为第一预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:
    在所述传输块的传输块长度不大于所述第一预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;
    在所述传输块的传输块长度大于所述第一预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    其中,所述传输块长度和所述第一预设阈值均为正整数,所述第一预设阈值为确定的所述编码方式的最大编码块长度的函数。
  3. 根据权利要求2所述的方法,其中,所述第一预设阈值小于或等于确定的所述编码方式的最大编码块长度的N1倍,所述N1为小于10的正整数。
  4. 根据权利要求1所述的方法,其中,在所述数据特征为码率,所述预设参数为第二预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:
    在所述传输块的码率不大于所述第二预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;
    在所述传输块的码率大于所述第二预设阈值的情况下,确定所述 编码方式为低密度奇偶校验LDPC码编码。
  5. 根据权利要求4所述的方法,其中,所述第二预设阈值大于所述传输块的最低码率,其中,所述第二预设阈值是小于1的正数。
  6. 根据权利要求1所述的方法,其中,在所述数据特征为可用物理资源块数,所述预设参数为第三预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:
    在所述传输块的可用物理资源块数不大于所述第三预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;
    在所述传输块的可用物理资源块数大于所述第三预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
  7. 根据权利要求6所述的方法,其中,所述第三预设阈值是不小于2的正整数。
  8. 根据权利要求1所述的方法,其中,在所述数据特征为调制编码等级,所述预设参数为第四预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:
    在所述传输块的调制编码等级不大于所述第四预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;
    在所述传输块的调制编码等级大于所述第四预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
  9. 根据权利要求8所述的方法,其中,所述第四预设阈值是不小于2并且不大于32的正整数。
  10. 根据权利要求1所述的方法,其中,在所述数据特征为接收所述传输块的用户设备的用户设备类型索引,所述预设参数为第五预设阈值的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:
    在所述用户设备类型索引小于所述第五预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;
    在所述用户设备类型索引不小于所述第五预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
  11. 根据权利要求10所述的方法,其中,所述第五预设阈值是大于6的正整数。
  12. 根据权利要求1所述的方法,其中,在所述数据特征为承载所述传输块的信道类型,所述预设参数为控制信道和数据信道的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:
    在承载所述传输块的信道类型为所述控制信道的情况下,确定所述编码方式为Turbo编码或者极化编码;
    在承载所述传输块的信道类型为所述数据信道的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
  13. 根据权利要求1所述的方法,其中,在所述数据特征为所述数据块的链路方向,所述预设参数为下行链路方向和上行链路方向的情况下,根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式包括:
    在所述数据块的链路方向为从终端到基站或者从终端到中继的 所述上行链路方向的情况下,确定所述编码方式为Turbo编码或者极化编码或者卷积编码;
    在所述数据块的链路方向为从基站到终端或者从中继到终端的所述下行链路方向的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
  14. 根据权利要求1至13中任一项所述的方法,其中,在根据用于表征待发送的所述传输块的所述数据特征,以及与所述数据特征对应的所述预设参数,确定用于对所述传输块进行编码的所述编码方式之后,还包括:
    在所述传输块的传输块长度大于确定的所述编码方式的最大编码块长度的情况下,将所述传输块分割为多个编码块;
    采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码。
  15. 根据权利要求14所述的方法,其中,在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度为所述LDPC码的基础校验矩阵的大小和最大编码块长度的函数。
  16. 根据权利要求15所述的方法,其中,分割后的所述编码块的所述编码块长度为:
    Kcb=(nb-mb)*2X
    其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于所述最大编码块长度的最大取值;或者,
    Kcb=kb*2X
    其中,kb为所述LDCP码的基础校验矩阵系统位的列数,kb=nb-mb,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所 述LDPC码的所述基础校验矩阵的行数,X是正整数,X的取值为使得Kcb为不大于所述最大编码块长度的最大取值。
  17. 根据权利要求14所述的方法,其中,在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度为所述LDPC码的基础校验矩阵的大小和最大扩展因子以及编码块长度的步长的函数,其中,所述编码块长度的步长为所述LDPC码所支持的任意相邻的两种编码块长度的差值。
  18. 根据权利要求17所述的方法,其中,分割后的所述编码块的所述编码块长度为:
    Kcb=(mb-nb)*zmax-q*D,
    其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,zmax为所述最大扩展因子,D是编码块的步长,q是正整数;或者,
    Kcb=kb*zmax-q*D,
    其中,kb为所述LDPC码的基础校验矩阵系统位的列数,kb=nb-mb,nb为所述LDPC码的基础校验矩阵的列数,mb为所述LDPC码的基础校验矩阵的行数,D为编码块的步长,q是正整数。
  19. 根据权利要求17所述的方法,其中,所述编码块的所述步长为:
    D=(mb-nb)*2w
    其中,nb为所述LDPC码的所述基础校验矩阵的列数,mb为所述LDPC码的所述基础校验矩阵的行数,w为正整数。
  20. 根据权利要求14所述的方法,其中,在确定的所述编码方式为LDPC码编码的情况下,分割后的所述编码块的编码块长度的最小值Kmin为:
    0.45*Kmax≤Kmin≤0.55*Kmax
    其中,Kmax表示Turbo码或极化码的最大编码块长度。
  21. 根据权利要求14所述的方法,其中,在确定的所述编码方式为LDPC码编码的情况下,当分割后的所述编码块的数目大于第六预设阈值时,分割后的所述编码块的长度均等于所述最大编码块的长度。
  22. 根据权利要求21所述的方法,其中,所述第六预设阈值是大于5的正整数。
  23. 根据权利要求21所述的方法,其中,采用确定的所述编码方式对分割后的各个所述编码块进行前向纠错编码包括:
    采用确定的所述编码方式对分割后的各个所述编码块中相同比特位置上的比特分别进行前向纠错编码。
  24. 一种数据发送装置,包括:
    确定模块,设置为根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;
    编码模块,设置为根据确定的编码方式,对所述传输块进行编码;
    发送模块,设置为将编码后的所述传输块发送给接收端。
  25. 根据权利要求24所述的装置,其中,所述确定模块还设置为通过以下至少之一确定所述编码方式:
    在所述数据特征为传输块长度,所述预设参数为第一预设阈值时,在所述传输块的传输块长度不大于所述第一预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的传输块长度大于所述第一预设阈值的情况下,确定所述编码方式为低密度 奇偶校验LDPC码编码;其中,所述传输块长度和所述第一预设阈值均为正整数,所述第一预设阈值为确定的所述编码方式的最大编码块长度的函数;
    在所述数据特征为码率,所述预设参数为第二预设阈值时,在所述传输块的码率不大于所述第二预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的码率大于所述第二预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为可用物理资源块数,所述预设参数为第三预设阈值时,在所述传输块的可用物理资源块数不大于所述第三预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的可用物理资源块数大于所述第三预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为调制编码等级,所述预设参数为第四预设阈值时,在所述传输块的调制编码等级不大于所述第四预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的调制编码等级大于所述第四预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为接收所述传输块的用户设备的用户设备类型索引,所述预设参数为第五预设阈值时,在所述用户设备类型索引小于所述第五预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述用户设备类型索引不小于所述第五预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为承载所述传输块的信道类型,所述预设参数为控制信道和数据信道时,在承载所述传输块的信道类型为所述控制信道的情况下,确定所述编码方式为Turbo编码或者极化编码;在承载所述传输块的信道类型为所述数据信道的情况下,确定所述编码方式 为低密度奇偶校验LDPC码编码;
    在所述数据特征为所述数据块的链路方向,所述预设参数为下行链路方向和上行链路方向时,在所述数据块的链路方向为从终端到基站或者从终端到中继的所述上行链路方向的情况下,确定所述编码方式为Turbo编码或者极化编码或者卷积编码;在所述数据块的链路方向为从基站到终端或者从中继到终端的所述下行链路方向的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
  26. 根据权利要求24或25中所述的装置,其中,还包括:
    分割模块,设置为在所述传输块的传输块长度大于确定的所述编码方式的最大编码块长度的情况下,将所述传输块分割为多个编码块;
    所述编码模块,还设置为采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码。
  27. 一种信源,包括:处理装置和传输装置,其中,
    所述处理装置,设置为根据用于表征待发送的传输块的数据特征,以及与所述数据特征对应的预设参数,确定用于对所述传输块进行编码的编码方式;根据确定的编码方式,对所述传输块进行编码;
    所述传输装置,与所述处理装置相连,设置为将编码后的所述传输块发送给接收端。
  28. 根据权利要求27所述的信源,其中,所述处理装置还设置为通过以下至少之一确定所述编码方式:
    在所述数据特征为传输块长度,所述预设参数为第一预设阈值时,在所述传输块的传输块长度不大于所述第一预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的传输块长度大于所述第一预设阈值的情况下,确定所述编码方式为低密度 奇偶校验LDPC码编码;其中,所述传输块长度和所述第一预设阈值均为正整数,所述第一预设阈值为确定的所述编码方式的最大编码块长度的函数;
    在所述数据特征为码率,所述预设参数为第二预设阈值时,在所述传输块的码率不大于所述第二预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的码率大于所述第二预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为可用物理资源块数,所述预设参数为第三预设阈值时,在所述传输块的可用物理资源块数不大于所述第三预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的可用物理资源块数大于所述第三预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为调制编码等级,所述预设参数为第四预设阈值时,在所述传输块的调制编码等级不大于所述第四预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述传输块的调制编码等级大于所述第四预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为接收所述传输块的用户设备的用户设备类型索引,所述预设参数第五预设阈值时,在所述用户设备类型索引小于所述第五预设阈值的情况下,确定所述编码方式为Turbo编码或者极化编码;在所述用户设备类型索引不小于所述第五预设阈值的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码;
    在所述数据特征为承载所述传输块的信道类型,所述预设参数为控制信道和数据信道时,在承载所述传输块的信道类型为所述控制信道的情况下,确定所述编码方式为Turbo编码或者极化编码;在承载所述传输块的信道类型为所述数据信道的情况下,确定所述编码方式 为低密度奇偶校验LDPC码编码;
    在所述数据特征为所述数据块的链路方向,所述预设参数为下行链路方向和上行链路方向时,在所述数据块的链路方向为从终端到基站或者从终端到中继的所述上行链路方向的情况下,确定所述编码方式为Turbo编码或者极化编码或者卷积编码;在所述数据块的链路方向为从基站到终端或者从中继到终端的所述下行链路方向的情况下,确定所述编码方式为低密度奇偶校验LDPC码编码。
  29. 根据权利要求27或28中所述的信源,其中,所述处理装置还设置为在所述传输块的传输块长度大于确定的所述编码方式的最大编码块长度的情况下,将所述传输块分割为多个编码块;采用确定的所述编码方式对分割后的各个编码块进行前向纠错编码。
  30. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至23中任一项所述的方法。
  31. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至23中任一项所述的方法。
PCT/CN2017/104420 2016-09-30 2017-09-29 数据发送方法、装置及信源 WO2018059548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610879503.X 2016-09-30
CN201610879503.XA CN107888331A (zh) 2016-09-30 2016-09-30 数据发送方法、装置及信源

Publications (1)

Publication Number Publication Date
WO2018059548A1 true WO2018059548A1 (zh) 2018-04-05

Family

ID=61763139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104420 WO2018059548A1 (zh) 2016-09-30 2017-09-29 数据发送方法、装置及信源

Country Status (2)

Country Link
CN (1) CN107888331A (zh)
WO (1) WO2018059548A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995278A (zh) * 2019-12-16 2020-04-10 重庆邮电大学 一种改进极性码串行消除列表比特翻转译码方法及系统
CN113660056A (zh) * 2020-05-12 2021-11-16 华为技术有限公司 信息传输方法、装置及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115664583A (zh) * 2017-01-09 2023-01-31 中兴通讯股份有限公司 一种数据处理方法和装置
CN110034851B (zh) * 2018-01-12 2020-12-01 华为技术有限公司 编码方法、编码设备以及系统
CN110890894A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 级联编码的方法和装置
WO2020087431A1 (en) * 2018-11-01 2020-05-07 Qualcomm Incorporated Hybrid code design for wireless communications
CN111782569B (zh) * 2020-06-30 2024-05-28 联想(北京)有限公司 一种电子设备
CN117083820A (zh) * 2021-03-15 2023-11-17 华为技术有限公司 数据传输方法、通信设备及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584143A (zh) * 2007-01-05 2009-11-18 高通股份有限公司 基于分组大小的fec码和码率选择
CN102664705A (zh) * 2012-04-03 2012-09-12 西北工业大学 一种飞行器数据链自适应编码调制方法
WO2015196551A1 (zh) * 2014-06-23 2015-12-30 中兴通讯股份有限公司 数据发送方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584143A (zh) * 2007-01-05 2009-11-18 高通股份有限公司 基于分组大小的fec码和码率选择
CN102664705A (zh) * 2012-04-03 2012-09-12 西北工业大学 一种飞行器数据链自适应编码调制方法
WO2015196551A1 (zh) * 2014-06-23 2015-12-30 中兴通讯股份有限公司 数据发送方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995278A (zh) * 2019-12-16 2020-04-10 重庆邮电大学 一种改进极性码串行消除列表比特翻转译码方法及系统
CN110995278B (zh) * 2019-12-16 2024-01-12 山东希尔信息技术有限公司 一种改进极性码串行消除列表比特翻转译码方法及系统
CN113660056A (zh) * 2020-05-12 2021-11-16 华为技术有限公司 信息传输方法、装置及存储介质
CN113660056B (zh) * 2020-05-12 2024-05-17 华为技术有限公司 信息传输方法、装置及存储介质

Also Published As

Publication number Publication date
CN107888331A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2018059548A1 (zh) 数据发送方法、装置及信源
US11139835B2 (en) Method and apparatus for data processing with structured LDPC codes
CN107888198B (zh) 准循环ldpc编译码方法、装置及ldpc编译码器
CN106685586B (zh) 生成用于在信道中传输的低密度奇偶校验码的方法及设备
JP4602418B2 (ja) 検査行列生成方法、符号化方法、復号方法、通信装置、符号化器および復号器
RU2716044C1 (ru) Способы и системы кодирования и декодирования ldpc кодов
WO2017194013A1 (zh) 纠错编码方法及装置
KR102343780B1 (ko) 데이터 인코딩 방법 및 디바이스, 저장 매체, 및 프로세서
US9215457B2 (en) Method and system for communicating multimedia using reconfigurable rateless codes and decoding in-process status feedback
WO2019062145A1 (zh) Ploar编码方法和编码装置、译码方法和译码装置
US20090138785A1 (en) Communication device, decoding device, information transmission method, and decoding method
US11133894B2 (en) Information transmission method, and decoding method and apparatus
WO2018171043A1 (zh) 一种准循环低密度奇偶校验编码处理方法及装置
CN108631925B (zh) 一种准循环低密度奇偶校验编码处理方法及装置
RU2733826C1 (ru) Высокоскоростные длинные ldpc коды
CN111446969B (zh) 一种级联crc码的极化码编码方法及装置
EP3107214A1 (en) Method and apparatus for processing information
CN107733440B (zh) 多边类型结构化ldpc处理方法及装置
WO2020147527A1 (zh) 一种极化编译码方法及装置
WO2018127198A1 (zh) 数据处理方法和装置
WO2017214851A1 (zh) 一种信号传输的方法、发射端及接收端
WO2018126914A1 (zh) 准循环低密度奇偶校验码的编码方法及装置、存储介质
US11777524B2 (en) Method for supporting rate-compatible non-binary LDPC code, and wireless terminal using same
CN110380734B (zh) 低密度奇偶检查码的编码及译码方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854998

Country of ref document: EP

Kind code of ref document: A1