WO2018059071A1 - 一种锂离子电池负极极片及其制备方法和锂离子二次电池 - Google Patents

一种锂离子电池负极极片及其制备方法和锂离子二次电池 Download PDF

Info

Publication number
WO2018059071A1
WO2018059071A1 PCT/CN2017/092643 CN2017092643W WO2018059071A1 WO 2018059071 A1 WO2018059071 A1 WO 2018059071A1 CN 2017092643 W CN2017092643 W CN 2017092643W WO 2018059071 A1 WO2018059071 A1 WO 2018059071A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion battery
current collector
electrode tab
Prior art date
Application number
PCT/CN2017/092643
Other languages
English (en)
French (fr)
Inventor
王志勇
刘辰光
王平华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018059071A1 publication Critical patent/WO2018059071A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a lithium ion battery negative pole piece, a preparation method thereof and a lithium ion secondary battery.
  • Lithium-ion batteries have been widely used in portable electronic devices, electric vehicles, energy storage appliances, etc. due to their high energy density, long cycle life, and maintenance-free.
  • lithium-ion battery systems silicon-based anode materials can be used to achieve doubled battery energy density.
  • the expansion in the process of lithium insertion and deintercalation is remarkable, thus causing the silicon particles to rapidly pulverize away from the electrical contact and lose the lithium storage capacity, and finally the capacity of the battery is rapidly attenuated.
  • the first aspect of the present invention provides a negative electrode tab for a lithium ion battery, which has an integrated three-stage structure, which can effectively buffer not only the negative influence caused by the volume change of the anode active material such as silicon during the charging and discharging process, but also improve the negative impact.
  • the cycle characteristics of the battery can also increase the content of lithium intercalation active material in the negative electrode and increase the energy density of the cell.
  • the present invention provides a negative electrode tab for a lithium ion battery, comprising a current collector and a tertiary composite film layer disposed on the surface of the current collector, the tertiary composite film layer comprising a raised array of the current collector surface, a fibrous fine structure grown on the convex surface, and a negative active material filled in the remaining spaces of the tertiary composite film layer.
  • the anode active material comprises at least one of silicon, a silicon-based alloy, tin and a tin-based alloy.
  • the bump array is made of at least one of copper, aluminum, magnesium, iron, cobalt, and nickel.
  • the material of the fibrous fine structure is at least one of carbon nanotubes, carbon nanofibers, and graphene.
  • the fibrous fine structure is at least one of a filament, a sheet, and a mesh.
  • the fibrous fine structure may be a one-dimensional structure or a two-dimensional structure.
  • the diameter is from 0.001 ⁇ m to 0.1 ⁇ m, and the length is from 0.01 ⁇ m to 1 ⁇ m.
  • the fibrous fine structure has a two-dimensional structure, the diameter is from 0.1 ⁇ m to 1 ⁇ m, and the thickness is from 0.001 ⁇ m to 0.1 ⁇ m.
  • the mass ratio of the bump array is 5%-30%.
  • the fibrous fine structure has a mass ratio of 5% to 20%.
  • the array of protrusions is disposed perpendicular to the surface of the current collector.
  • the fibrous fine structure is parallel to the current collector surface.
  • the shape of the raised array may be at least one of a cylinder, a prism, an arc, a five-pointed star, a pyramid, and a grid.
  • the height of the raised array is from 0.1 ⁇ m to 50 ⁇ m.
  • the protrusions have a diameter of from 0.01 ⁇ m to 1 ⁇ m.
  • the silicon-based alloy is an alloy of silicon and at least one of aluminum, magnesium, copper, nickel, cobalt, zinc, titanium, and antimony.
  • the material of the current collector may be at least one of a copper alloy, a nickel alloy, a chromium alloy, a titanium alloy, an iron alloy, a molybdenum alloy, a tungsten alloy, and a zirconium alloy.
  • the current collector has a thickness of from 1 ⁇ m to 1000 ⁇ m.
  • the lithium ion battery negative electrode sheet provided by the first aspect of the invention has an integrated three-stage structure, comprising a current collector and a three-stage composite film layer disposed on the current collector, the three-stage composite film layer not only improving the negative electrode
  • the bonding force between the active material film and the current collector can also effectively suppress the internal pulverization and detachment of the film caused by the expansion stress of the negative electrode active material, so that the lithium ion battery has high energy density and good cycle performance.
  • the present invention provides a method for preparing a negative electrode tab for a lithium ion battery, comprising the steps of:
  • the negative electrode active material is filled in the remaining space by vapor deposition, vapor deposition or magnetron sputtering to form a three-stage composite film layer, that is, a lithium ion battery negative electrode piece is obtained, and the lithium ion battery negative electrode piece includes a current collector and a tertiary composite film layer disposed on the surface of the current collector, the tertiary composite film layer comprising a convex array disposed on a surface of the current collector, and a fibrous fine crystal grown on the convex surface
  • the anode active material filled in the remaining spaces of the tertiary composite film layer.
  • the material of the bump array is at least one of copper, aluminum, magnesium, iron, cobalt and nickel.
  • the material of the fibrous fine structure is at least one of carbon nanotubes, carbon nanofibers, and graphene.
  • the method for preparing a negative electrode tab of a lithium ion battery provided by the second aspect of the invention has a simple process and is easy to control.
  • the present invention provides a lithium ion secondary battery comprising the lithium ion battery negative electrode tab of the first aspect of the invention.
  • the lithium ion secondary battery provided by the third aspect of the invention has high capacity and high cycle stability.
  • FIG. 1 is a schematic structural view of a negative electrode tab of a lithium ion battery according to Embodiment 1 of the present invention.
  • FIG. 2 is a flow chart showing the preparation of a negative electrode tab of a lithium ion battery according to Embodiment 1 of the present invention.
  • an embodiment of the present invention provides a A lithium ion battery negative pole piece having high capacity and high cycle stability, the lithium ion battery negative electrode piece can effectively improve the bonding force between the silicon-based material film and the current collector, and inhibit the silicon self-expansion stress. Powdering and polarization problems increase electrode capacity and cycle life.
  • an embodiment of the present invention provides a negative electrode tab for a lithium ion battery, comprising a current collector and a tertiary composite film layer disposed on the surface of the current collector, wherein the tertiary composite film layer is disposed in the A convex array of current collector surfaces, a fibrous fine structure grown on the convex surface, and a negative active material filled in the remaining spaces of the tertiary composite film layer.
  • the negative electrode pole piece of the lithium ion battery provided by the embodiment of the invention provides a three-stage composite film layer on the surface of the current collector, wherein the convex array can enhance the surface of the negative active material (such as silicon, silicon-based alloy, etc.) on the current collector surface
  • the convex array can enhance the surface of the negative active material (such as silicon, silicon-based alloy, etc.) on the current collector surface
  • the combined force of the fibrous structure can enhance the bonding force inside the film, and effectively suppress the pulverization and detachment caused by the expansion of the negative active material; the convex array and the fibrous fine structure together constitute the skeleton structure of the tertiary composite film layer,
  • the negative active material is better bonded to the current collector, ultimately increasing the capacity and cycle performance of the electrode.
  • the negative active material may be a lithium intercalation element or a lithium intercalation alloy. Specifically, it may include at least one of silicon, a silicon-based alloy, tin, and a tin-based alloy.
  • the material of the bump array is a metal having catalytic activity, specifically, a metal capable of catalytically growing a fine fibrous structure of carbon material.
  • the material of the bump array may be at least one of copper, aluminum, magnesium, iron, cobalt, and nickel.
  • the raised array has a rough surface that facilitates the catalytic growth of fibrous fine structures.
  • the material of the fibrous fine structure is at least one of carbon nanotubes, carbon nanofibers, and graphene.
  • Carbon nanotubes, carbon nanofibers, and graphene can act as reinforcing agents in the pole piece and also as a negative electrode active ingredient.
  • the fibrous fine structure may be at least one of a filament, a sheet, and a mesh.
  • the fibrous fine structure may be a one-dimensional structure or a two-dimensional structure.
  • the diameter is 0.001 ⁇ m to 0.1 ⁇ m, and the length is 0.01 ⁇ m to 1 ⁇ m.
  • the fibrous fine structure has a two-dimensional structure, the diameter is from 0.1 ⁇ m to 1 ⁇ m, and the thickness is from 0.001 ⁇ m to 0.1 ⁇ m.
  • the mass ratio of the convex array is 5%-30%, and further may be 10%-20%, 15%-25 %.
  • the fine structure has a mass ratio of 5% to 20%, and further may be 10% to 15%.
  • the array of protrusions is vertically disposed on the surface of the current collector.
  • the fibrous fine structure is parallel to the current collector surface.
  • the convex array and the fibrous fine structure constitute a crisscross network structure, which can better enhance the bonding force between the inside of the negative electrode active material and the ashamed active material and the current collector.
  • the shape of the raised array may be at least one of a cylinder, a prism, an arc, a five-pointed star, a pyramid, and a mesh.
  • the height of the bump array is from 0.1 ⁇ m to 50 ⁇ m, and further, the height ranges from 3 ⁇ m to 20 ⁇ m. Since the filling height of the negative active material such as silicon or a silicon-based alloy is substantially the same as the height of the bump array, the height of the control bump array is the height of the silicon or silicon-based alloy.
  • the suitable array height can not only ensure the content of silicon or silicon-based alloy, but also make the battery have higher energy density, and at the same time ensure the good mechanical properties of the pole piece and meet the preparation of flexible battery.
  • the protrusion has a diameter of 0.01 ⁇ m to 1 ⁇ m.
  • the silicon-based alloy is an alloy of silicon and at least one of aluminum, magnesium, copper, nickel, cobalt, zinc, titanium, and antimony.
  • the anode active material fills a void of the tertiary composite film layer.
  • the material of the current collector may be at least one of a copper alloy, a nickel alloy, a chromium alloy, a titanium alloy, an iron alloy, a molybdenum alloy, a tungsten alloy, and a zirconium alloy.
  • the current collector may have a thickness of from 1 ⁇ m to 1000 ⁇ m.
  • Embodiments of the present invention provide a lithium ion battery negative electrode sheet having an integrated three-stage structure including a current collector and a tertiary composite film layer disposed on the surface of the current collector, the tertiary composite film layer not only capable of The adhesion between the negative active material film and the current collector is improved, and the internal pulverization of the film caused by the expansion stress of the negative active material can be effectively suppressed, so that the lithium ion battery has high energy density and good circulation. performance.
  • the embodiment of the invention further provides a method for preparing a negative electrode tab of a lithium ion battery, comprising the following steps:
  • the pole piece includes a current collector and a tertiary composite film layer disposed on the surface of the current collector, the tertiary composite film layer including a convex array disposed on the surface of the current collector, and growing on the convex surface a fibrous fine structure, and a negative active material filled in the remaining spaces of the tertiary composite film layer.
  • the material of the bump array is a metal capable of catalytically growing a fibrous fine structure on a surface thereof.
  • the material of the bump array may be at least one of copper, aluminum, magnesium, iron, cobalt, and nickel.
  • the raised array has a rough surface that facilitates the catalytic growth of fibrous fine structures.
  • the precursor used may be at least one of methyl aluminum, magnesium ferrocene, ferrocene, cobalt acetate, and nickel acetate, and the gas atmosphere is a reducing atmosphere such as hydrogen.
  • the bump array can be set to different shapes, different heights, different diameter sizes, and different growth directions by controlling process conditions and process parameters.
  • the raised array is arranged in at least one of a cylinder, a prism, an arc, a five-pointed star, a pyramid, and a grid.
  • the height of the bump array is set to be from 0.1 ⁇ m to 50 ⁇ m.
  • the suitable array height not only can effectively improve the bonding force between the silicon-based alloy and the current collector, but also can well control the thickness of the pole piece to meet the preparation of the flexible battery.
  • the diameter of the protrusion is set to be 0.01 ⁇ m to 1 ⁇ m.
  • the material of the fibrous fine structure is at least one of carbon nanotubes, carbon nanofibers, and graphene.
  • Carbon nanotubes, carbon nanofibers, and graphene can act as reinforcing agents in the pole piece and also as a negative electrode active ingredient.
  • the precursor may be at least one of methane, ethane, acetylene, acetonitrile, benzene, and toluene, and the carrier gas is argon.
  • the fibrous fine structure may be at least one of a filament, a sheet, and a mesh.
  • the fibrous fine structure may be a one-dimensional structure or a two-dimensional structure.
  • the diameter is 0.001 ⁇ m to 0.1 ⁇ m, and the length is 0.01 ⁇ m to 1 ⁇ m.
  • the fibrous fine structure has a two-dimensional structure, the diameter is from 0.1 ⁇ m to 1 ⁇ m, and the thickness is from 0.001 ⁇ m to 0.1 ⁇ m.
  • the mass ratio of the convex array is 5%-30%, and further may be 10%-20%, 15%-25 %.
  • the fine structure has a mass ratio of 5% to 20%, and further may be 10% to 15%.
  • the raised array is formed vertically on the surface of the current collector.
  • fibrous fine knots The configuration is parallel to the surface of the current collector.
  • the convex array and the fibrous fine structure constitute a crisscross network structure, which can better enhance the bonding force between the inside of the anode active material and the anode active material and the current collector.
  • the anode active material may be a lithium intercalation element or a lithium intercalation alloy. Specifically, it may include at least one of silicon, a silicon-based alloy, tin, and a tin-based alloy.
  • the silicon-based alloy is an alloy of silicon and at least one of aluminum, magnesium, copper, nickel, cobalt, zinc, titanium, and antimony.
  • the anode active material fills a void of the tertiary composite film layer.
  • the material of the current collector may be at least one of a copper alloy, a nickel alloy, a chromium alloy, a titanium alloy, an iron alloy, a molybdenum alloy, a tungsten alloy, and a zirconium alloy.
  • the current collector may have a thickness of from 1 ⁇ m to 1000 ⁇ m.
  • the method for preparing the negative electrode tab of the lithium ion battery provided by the above embodiment of the invention has a simple process and is easy to control.
  • an embodiment of the present invention further provides a lithium ion secondary battery comprising the above-described lithium ion battery negative electrode tab of the present invention.
  • the lithium ion secondary battery provided by the embodiment of the invention has high capacity and high cycle stability.
  • a method for preparing a negative electrode tab of a lithium ion battery comprising the steps of:
  • a current collector a NiCr stainless steel foil having a size of A4 paper and a thickness of 20 ⁇ m is selected as a current collector, and ultrasonically washed with n-hexane, acetone, and ethanol in sequence, and then dried for use;
  • the method of magnetron sputtering is used to fill the remaining gaps with silicon-aluminum alloy to form a three-stage composite film layer, and the negative electrode sheet of the lithium ion battery is obtained: the horizontal placement step (3) in the magnetron sputtering apparatus is obtained.
  • the current collector maintains a background vacuum of 2.0 ⁇ 10 -5 Pa; two separate targets are silicon and aluminum, and the sputtering power is 200 W and 50 W, respectively; after the start of sputtering, the flow rate of argon gas is kept at 50 sccm.
  • the working pressure was 0.5 Pa and the sputtering time was 4 h.
  • the negative electrode tab of the lithium ion battery includes a current collector 10 and a tertiary composite film layer 20 disposed on the surface of the current collector 10, and the tertiary composite film layer 20 includes a convex array 21 disposed on the surface of the current collector 10, and is grown on The one-dimensional carbon nanotube fine structure 22 of the convex surface, and the silicon aluminum alloy 23 filled in the remaining space.
  • the negative electrode tab of the lithium ion battery can be directly used as a negative electrode tab in a lithium ion battery.
  • a method for preparing a negative electrode tab of a lithium ion battery comprising the steps of:
  • the step (3) is horizontally placed in the magnetron sputtering apparatus.
  • the current collector maintains a background vacuum of 2.0 ⁇ 10 -5 Pa; with silicon and magnesium as two separate targets, the sputtering power is 200 W and 40 W, respectively; after the start of sputtering, the argon flow rate is maintained at 55 sccm.
  • the working pressure was 0.6 Pa and the sputtering time was 5 h.
  • the negative electrode pieces of the lithium ion battery prepared in the above embodiments 1 and 2 of the present invention are respectively punched into a disk shape, and then assembled into a button type battery in a glove box for testing, wherein the counter electrode is made of lithium metal and the diaphragm is celgard. C2400, the electrolyte was a solution of 1.3 M LiPF 6 in EC, PC and DEC (3:1:6 by volume).
  • the button cell produced by the negative electrode tab of the lithium ion battery of Example 1 it was charged with a current of 100 mA / 1 g of active material to a voltage of 0.001 V, followed by a constant voltage until the current was less than 10 mA / 1 g of active material; after leaving for 10 mins; The above button cell was discharged to a current of 200 mA / 1 g of active material to 2.5 V. The completion of the above charging and discharging process is recorded as one charging/discharging cycle.
  • the button cell of the negative electrode tab of the lithium ion battery of Example 2 it was charged with a current of 100 mA / 1 g of active material to a voltage of 4.4 V, followed by a constant voltage until the current was less than 10 mA / 1 g of active substance; after leaving for 10 mins; The button cell was then discharged to 3.0 V at a current of 100 mA / 1 g of active material. The completion of the above charging and discharging process is recorded as one charging/discharging cycle.
  • Table 1 shows the electrochemical performance test results of the charge and discharge of the button battery produced by the negative electrode tab of the lithium ion battery of Examples 1 and 2 of the present invention.
  • the capacity retention ratio (%) of the nth cycle the discharge capacity at the nth cycle / the discharge capacity at the first cycle ⁇ 100%.
  • the above electrochemical performance test results prove that the negative electrode tab of the lithium ion battery of the embodiment of the invention has good cycle stability and high capacity, because the negative electrode piece of the lithium ion battery of the embodiment of the invention passes through the current collector.
  • the surface is provided with a three-stage composite film layer, wherein the convex array can enhance the bonding force of the silicon or silicon-based alloy film on the surface of the current collector; and the fibrous fine structure can enhance the bonding force inside the silicon or silicon-based alloy film, effectively suppressing The pulverization and detachment caused by the expansion of silicon or silicon-based alloy; the convex array and the fibrous fine structure together constitute the skeleton structure of the tertiary composite film layer, so that the silicon or silicon-based alloy is better combined on the current collector, and finally the electrode is improved. Capacity and cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明提供了一种锂离子电池负极极片,包括集流体和设置于所述集流体表面的三级结构复合膜层,所述三级结构复合膜层包括设置于所述集流体表面的凸起阵列、生长在所述凸起表面的纤维状精细结构、以及填充在所述三级结构复合膜层其余空隙处的负极活性材料。该锂离子电池负极极片具有一体化三级结构,不仅可以有效缓冲充放电过程中负极活性材料的体积变化带来的负面影响,提高电池的循环特性,同时还可提高负极嵌锂活性物质含量进而提升电芯能量密度。本发明还提供了一种锂离子电池负极极片的制备方法即包含该锂离子电池负极极片的锂离子二次电池。

Description

一种锂离子电池负极极片及其制备方法和锂离子二次电池 技术领域
本发明涉及锂离子电池技术领域,特别是涉及一种锂离子电池负极极片及其制备方法和锂离子二次电池。
背景技术
锂离子电池由于具有能量密度较高、循环寿命长、免维护等优点,目前已广泛应用于便携式电子设备、电动汽车、储能电器等领域。
近年来,随着手机等便携式电子设备的功耗逐年增大,市场对高能量密度锂离子电池的需求也越来越迫切。研究表明,在锂离子电池体系中,采用硅系负极材料可实现电池能量密度倍增。然而由于硅材料单位嵌锂量大,在锂的嵌入和脱嵌过程中膨胀显著,因此导致硅颗粒快速粉化脱离电接触而失去储锂能力,最终电池的容量迅速衰减。
为了解决硅材料的体积膨胀问题,业界采用了如下方式以期在提高电池能量密度的同时,获得良好的循环性能,但效果均不是很理想。例如,(1)将硅与石墨混合或将硅进行石墨包覆,但这种方式不能有效改善硅材料膨胀粉化问题,也无法提高硅材料的压实密度;(2)采用CMC、PAA、PI、PVA等高分子材料作为粘结剂抑制硅粉化,但是这些高分子需要在较高的添加量下才能实现好的粉化抑制效果;(3)将硅与石墨烯或碳纳米管混合,石墨烯或碳纳米管可在极片中起到增强作用,但加入石墨烯或碳纳米管后,粘结剂分子将会发生团聚很难分散完全,因而该方式限制硅颗粒膨胀时的位移效果有限。
发明内容
鉴于此,本发明第一方面提供了一种锂离子电池负极极片,其具有一体化三级结构,不仅可以有效缓冲充放电过程中硅等负极活性材料的体积变化带来的负面影响,提高电池的循环特性,同时还可提高负极嵌锂活性物质含量进而提升电芯能量密度。
具体地,第一方面,本发明提供了一种锂离子电池负极极片,包括集流体和设置于所述集流体表面的三级结构复合膜层,所述三级结构复合膜层包括设置于所述集流体表面的凸起阵列、生长在所述凸起表面的纤维状精细结构、以及填充在所述三级结构复合膜层其余空隙处的负极活性材料。
其中,所述负极活性材料包括硅、硅基合金、锡和锡基合金中的至少一种。
所述凸起阵列的材质为铜、铝、镁、铁、钴和镍中的至少一种。
所述纤维状精细结构的材质为碳纳米管、碳纳米纤维和石墨烯中的至少一种。所述纤维状精细结构为丝状、片状和网状中的至少一种。
所述纤维状精细结构可以是一维结构,也可以是二维结构。当所述纤维状精细结构为一维结构时,直径为0.001μm-0.1μm,长度为0.01μm-1μm。当所述纤维状精细结构为二维结构时,直径为0.1μm-1μm,厚度为0.001μm-0.1μm。
所述三级结构复合膜层中,所述凸起阵列的质量占比为5%-30%。
所述三级结构复合膜层中,所述纤维状精细结构的质量占比为5%-20%。
可选地,所述凸起阵列垂直设置于所述集流体表面。
可选地,所述纤维状精细结构平行于所述集流体表面。
其中,所述凸起阵列的形状可以是圆柱、棱柱、弧形、五角星、金字塔和网格中的至少 一种。
可选地,所述凸起阵列的高度为0.1μm-50μm。
可选地,所述凸起的直径为0.01μm-1μm。
其中,所述硅基合金为硅与铝、镁、铜、镍、钴、锌、钛、铍中的至少一种元素形成的合金。
另外,所述集流体的材质可以是铜合金、镍合金、铬合金、钛合金、铁合金、钼合金、钨合金和锆合金中的至少一种。
所述集流体的厚度为1μm-1000μm。
本发明第一方面提供的锂离子电池负极极片,其具有一体化三级结构,包括集流体和设置在集流体上的三级结构复合膜层,该三级结构复合膜层不仅能改善负极活性材料薄膜与集流体之间的结合力,还可以有效抑制负极活性材料自身膨胀应力作用下造成的薄膜内部自身的粉化脱离,从而使得锂离子电池兼具高能量密度和良好的循环性能。
第二方面,本发明提供了一种锂离子电池负极极片的制备方法,包括以下步骤:
提供集流体,采用气相沉积、电化学沉积或刻蚀的方法,在所述集流体表面形成凸起阵列;
采用化学气相沉积的方法,在所述凸起阵列的凸起表面催化生长纤维状精细结构;
再通过气相沉积、蒸镀或磁控溅射的方法,在其余空隙处填充负极活性材料,形成三级结构复合膜层,即得到锂离子电池负极极片,所述锂离子电池负极极片包括集流体和设置于所述集流体表面的三级结构复合膜层,所述三级结构复合膜层包括设置于所述集流体表面的凸起阵列、生长在所述凸起表面的纤维状精细结构、以及填充在所述三级结构复合膜层其余空隙处的负极活性材料。
其中,所述凸起阵列的材质为铜、铝、镁、铁、钴和镍中的至少一种。
所述纤维状精细结构的材质为碳纳米管、碳纳米纤维和石墨烯中的至少一种。
本发明第二方面提供的锂离子电池负极极片的制备方法,工艺简单,易于控制。
第三方面,本发明提供了一种锂离子二次电池,其包含本发明第一方面所述的锂离子电池负极极片。
本发明第三方面提供的锂离子二次电池具有高容量和高循环稳定性。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
图1为本发明实施例1的锂离子电池负极极片的结构示意图;
图2为本发明实施例1的锂离子电池负极极片的制备流程图。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
锂离子电池体系中,负极容量的提升对电池比能量水平的提高至关重要,而目前硅系负极材料的产业化应用受限于其循环寿命的提高。为了解决这一问题,本发明实施例提供了一 种兼具高容量和高循环稳定性的锂离子电池负极极片,该锂离子电池负极极片能够有效改善硅基材料薄膜与集流体之间的结合力,抑制硅自身膨胀应力作用下造成的粉化和极化问题,提高电极的容量与循环寿命。
具体地,本发明实施例提供了一种锂离子电池负极极片,包括集流体和设置于所述集流体表面的三级结构复合膜层,所述三级结构复合膜层包括设置于所述集流体表面的凸起阵列、生长在所述凸起表面的纤维状精细结构、以及填充在所述三级结构复合膜层其余空隙处的负极活性材料。
本发明实施例提供的锂离子电池负极极片,通过在集流体表面设置三级结构复合膜层,其中,凸起阵列可增强负极活性材料(如硅、硅基合金等)薄膜在集流体表面的结合力;而纤维状精细结构可增强薄膜内部的结合力,有效抑制负极活性材料膨胀造成的粉化脱离;凸起阵列与纤维状精细结构共同构成三级结构复合膜层的骨架结构,使负极活性材料更好地结合在集流体上,最终提高电极的容量和循环性能。
本发明实施方式中,所述负极活性材料可以是嵌锂元素、嵌锂元素合金。具体可以包括硅、硅基合金、锡和锡基合金中的至少一种。
本发明实施方式中,所述凸起阵列的材质为具有催化活性的金属,具体是指可催化生长碳材质纤维状精细结构的金属。具体地,所述凸起阵列的材质可以是铜、铝、镁、铁、钴和镍中的至少一种。本发明实施方式中,所述凸起阵列具有粗糙表面,其有利于催化生长纤维状精细结构。
本发明实施方式中,所述纤维状精细结构的材质为碳纳米管、碳纳米纤维和石墨烯中的至少一种。碳纳米管、碳纳米纤维和石墨烯可在极片中起到增强作用,同时也可充当负极活性成分。
本发明实施方式中,所述纤维状精细结构可以是丝状、片状和网状中的至少一种。
本发明实施方式中,所述纤维状精细结构可以是一维结构,也可以是二维结构。其中,可选地,当所述纤维状精细结构为一维结构时,直径为0.001μm-0.1μm,长度为0.01μm-1μm。可选地,当所述纤维状精细结构为二维结构时,直径为0.1μm-1μm,厚度为0.001μm-0.1μm。
本发明实施方式中,可选地,所述三级结构复合膜层中,所述凸起阵列的质量占比为5%-30%,进一步地可以是10%-20%、15%-25%。所述三级结构复合膜层中,所述精细结构的质量占比为5%-20%,进一步地可以是10%-15%。
本发明实施方式中,可选地,所述凸起阵列垂直设置于所述集流体表面。可选地,所述纤维状精细结构平行于所述集流体表面。凸起阵列与纤维状精细结构构成纵横交错的网状骨架结构,能更好地增强负极活性材料内部、以及妒忌活性材料与集流体之间的结合力。
本发明实施方式中,所述凸起阵列的形状可以是圆柱、棱柱、弧形、五角星、金字塔和网格中的至少一种。
本发明实施方式中,所述凸起阵列的高度为0.1μm-50μm,进一步地,高度范围为3μm-20μm。由于硅、硅基合金等负极活性材料填充高度与凸起阵列高度大体相同,因此控制凸起阵列高度即是调节硅或硅基合金填充高度。适合的阵列高度,既能保证硅或硅基合金含量,使电池具有较高能量密度,同时能保证极片具有良好的机械性能,满足柔性电池的制备。
本发明实施方式中,所述凸起的直径为0.01μm-1μm。
本发明实施方式中,所述硅基合金为硅与铝、镁、铜、镍、钴、锌、钛、铍中的至少一种元素形成的合金。
本发明实施方式中,所述负极活性材料填充满所述三级结构复合膜层的空隙。
另外,本发明实施方式中,所述集流体的材质可以是铜合金、镍合金、铬合金、钛合金、铁合金、钼合金、钨合金和锆合金中的至少一种。所述集流体的厚度可为1μm-1000μm。
本发明实施例上述提供的锂离子电池负极极片,其具有一体化三级结构,包括集流体和设置于所述集流体表面的三级结构复合膜层,该三级结构复合膜层不仅能改善负极活性材料薄膜与集流体之间的结合力,还可以有效抑制负极活性材料自身膨胀应力作用下造成的薄膜内部自身的粉化脱离,从而使得锂离子电池兼具高能量密度和良好的循环性能。
相应地,本发明实施例还提供了一种锂离子电池负极极片的制备方法,包括以下步骤:
(1)提供集流体,采用气相沉积、电化学沉积或刻蚀的方法,在所述集流体表面形成凸起阵列;
(2)采用化学气相沉积法(CVD)在所述凸起阵列的凸起表面催化生长纤维状精细结构;
(3)再通过气相沉积、蒸镀或磁控溅射的方法,在其余空隙处填充负极活性材料,形成三级结构复合膜层,即得到锂离子电池负极极片,所述锂离子电池负极极片包括集流体和设置于所述集流体表面的三级结构复合膜层,所述三级结构复合膜层包括设置于所述集流体表面的凸起阵列、生长在所述凸起表面的纤维状精细结构、以及填充在所述三级结构复合膜层其余空隙处的负极活性材料。
本发明实施方式中,步骤(1)中,所述凸起阵列的材质为可在其表面实现催化生长纤维状精细结构的金属。具体地,所述凸起阵列的材质可以是铜、铝、镁、铁、钴和镍中的至少一种。本发明实施方式中,所述凸起阵列具有粗糙表面,其有利于催化生长纤维状精细结构。
当采用气相沉积方法形成凸起阵列时,所用的前躯体可以是甲基铝、二茂镁、二茂铁、醋酸钴和醋酸镍的至少一种,气体气氛为还原性气氛(如氢气)。
本发明实施方式中,通过控制工艺条件、工艺参数可将所述凸起阵列设置成不同形状、不同高度、不同直径尺寸、以及不同生长方向。例如,将所述凸起阵列设置成圆柱、棱柱、弧形、五角星、金字塔和网格中的至少一种。将所述凸起阵列的高度设置为0.1μm-50μm。适合的阵列高度,不但能有效改善硅基合金与集流体之间的结合力,还能很好地控制极片的厚度,满足柔性电池的制备。将所述凸起的直径设置为0.01μm-1μm。
本发明实施方式中,步骤(2)中,所述纤维状精细结构的材质为碳纳米管、碳纳米纤维和石墨烯中的至少一种。碳纳米管、碳纳米纤维和石墨烯可在极片中起到增强作用,同时也可充当负极活性成分。采用化学气相沉积法在凸起阵列表面催化生长纤维状精细结构时,所采用的前躯体可以是甲烷、乙烷、乙炔、乙腈、苯、甲苯的至少一种,载气为氩气。
本发明实施方式中,通过控制化学气相沉积过程中的具体工艺条件参数,可获得不同形状、不同结构、不同尺寸的纤维状精细结构。
本发明实施方式中,所述纤维状精细结构可以是丝状、片状和网状中的至少一种。
本发明实施方式中,所述纤维状精细结构可以是一维结构,也可以是二维结构。其中,可选地,当所述纤维状精细结构为一维结构时,直径为0.001μm-0.1μm,长度为0.01μm-1μm。可选地,当所述纤维状精细结构为二维结构时,直径为0.1μm-1μm,厚度为0.001μm-0.1μm。
本发明实施方式中,可选地,所述三级结构复合膜层中,所述凸起阵列的质量占比为5%-30%,进一步地可以是10%-20%、15%-25%。所述三级结构复合膜层中,所述精细结构的质量占比为5%-20%,进一步地可以是10%-15%。
本发明实施方式中,所述凸起阵列垂直形成在所述集流体表面。可选地,纤维状精细结 构平行于所述集流体表面。凸起阵列与纤维状精细结构构成纵横交错的网状骨架结构,能更好地增强负极活性材料内部、以及负极活性材料与集流体之间的结合力。
本发明实施方式中,步骤(3)中,所述负极活性材料可以是嵌锂元素、嵌锂元素合金。具体可以包括硅、硅基合金、锡和锡基合金中的至少一种。
本发明实施方式中,所述硅基合金为硅与铝、镁、铜、镍、钴、锌、钛、铍中的至少一种元素形成的合金。
本发明实施方式中,所述负极活性材料填充满所述三级结构复合膜层的空隙。
另外,本发明实施方式中,所述集流体的材质可以是铜合金、镍合金、铬合金、钛合金、铁合金、钼合金、钨合金和锆合金中的至少一种。所述集流体的厚度可为1μm-1000μm。
本发明实施例上述提供的锂离子电池负极极片的制备方法,工艺简单,易于控制。
另外,本发明实施例还提供了一种锂离子二次电池,其包含本发明上述的锂离子电池负极极片。
本发明实施例提供的锂离子二次电池具有高容量和高循环稳定性。
下面分多个实施例对本发明实施例进行进一步的说明。其中,本发明实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
实施例1
一种锂离子电池负极极片的制备方法,包括以下步骤:
(1)提供集流体:选取一A4纸大小、厚度为20μm的NiCr不锈钢箔片作为集流体,依次采用正己烷、丙酮、乙醇超声清洗后,干燥备用;
(2)采用电化学沉积的方法在集流体表面制备凸起阵列:先配制电沉积铜的电镀液,电镀液中含有Na4P2O7 150g/L,CuSO4 40g/L,Na2HPO4 25g/L,NH4NO3 12g/L,肉桂酸3g/L;将电镀液pH调节至8.5后,将集流体表面用预先设计好的掩膜板覆盖好,再浸入该电镀液中,以集流体为阴极,铜片为阳极,极板间距1.5cm,接通直流稳压电源,在25℃、0.50-0.75A·dm-2电流密度下,电沉积15min,沉积完毕后,以去离子水清洗集流体表面,得到垂直生长于所述集流体表面的铜材质凸起阵列;其中凸起阵列为柱状,凸起的直径为0.6μm,高度为5μm;
(3)采用化学气相沉积法在凸起阵列的表面催化生长纤维状精细结构:将步骤(2)制备的表面生长有凸起阵列的集流体放入气氛炉中,按体积比5:95通入乙炔和氩气的混合气体,900℃下反应2h,得到一维碳纳米管精细结构;
(4)采用磁控溅射的方法在其余空隙处填充硅铝合金,形成三级结构复合膜层,得到锂离子电池负极极片:在磁控溅射仪内水平放置步骤(3)获得的集流体,保持本底真空度为2.0×10-5Pa;以硅和铝为两个单独分开的靶材,溅射功率分别为200W和50W;溅射开始后,保持氩气流量为50sccm,工作气压为0.5Pa,溅射时间为4h。
图1所示为本发明实施例1所制备得到的锂离子电池负极极片的结构示意图。所述锂离子电池负极极片包括集流体10和设置于集流体10表面的三级结构复合膜层20,三级结构复合膜层20包括设置于集流体10表面的凸起阵列21、生长在凸起表面的一维碳纳米管精细结构22、以及填充在其余空隙处的硅铝合金23。该锂离子电池负极极片可在锂离子电池中直接作为负极极片使用。
实施例2
一种锂离子电池负极极片的制备方法,包括以下步骤:
(1)提供集流体:选取一A4纸大小、厚度为20μm的钛箔片作为集流体,依次采用正 己烷、丙酮、乙醇超声清洗后,干燥备用;
(2)采用刻蚀的方法在集流体表面制备凸起阵列:先在集流体表面以磁控溅射方法沉积一层5μm的钴薄膜,然后以355nm波长的激光在钴薄膜表面聚焦刻蚀得到正方形孔的网格状凸起阵列;其中,正方形孔的边长为50μm,孔深度为4μm,相邻正方形孔的中心间距为60μm;
(3)采用化学气相沉积法在凸起阵列的表面催化生长纤维状精细结构:将步骤(2)制备的表面生长有凸起阵列的集流体放入气氛炉中,按体积比3:97通入乙腈和氩气的混合气体,850℃下反应3hh,得到二维石墨烯精细结构;
(4)采用磁控溅射的方法在其余空隙处填充硅镁合金,形成三级结构复合膜层,得到锂离子电池负极极片:在磁控溅射仪内水平放置步骤(3)获得的集流体,保持本底真空度为2.0×10-5Pa;以硅和镁为两个单独分开的靶材,溅射功率分别为200W和40W;溅射开始后,保持氩气流量为55sccm,工作气压为0.6Pa,溅射时间为5h。
扣式电池制备
分别将本发明上述实施例1和2制得的锂离子电池负极极片冲切成圆片状,然后在手套箱中组装成扣式电池进行测试,其中,对电极采用锂金属,隔膜为celgard C2400,电解液为1.3M LiPF6的EC、PC和DEC(体积比为3:1:6)溶液。
效果实施例
为对本发明实施例技术方案带来的有益效果进行有力支持,特提供以下电化学性能测试:
对于实施例1锂离子电池负极极片制得的扣式电池,将其以100mA/1g活性物质的电流充电至电压为0.001V,接着恒压直至电流小于10mA/1g活性物质;搁置10mins后;再将上述扣式电池以100mA/1g活性物质的电流放电至2.5V。完成上述充、电放电过程记为1个充/放电循环。
对于实施例2锂离子电池负极极片制得的扣式电池,将其以100mA/1g活性物质的电流充电至电压为4.4V,接着恒压直至电流小于10mA/1g活性物质;搁置10mins后;再将上述扣式电池以100mA/1g活性物质的电流放电至3.0V。完成上述充、电放电过程记为1个充/放电循环。
表1为本发明实施例1和2的锂离子电池负极极片制得的扣式电池充放电50次的电化学性能测试结果。
电池的首次库伦效率和容量保持率的公式分别如下:
首次库伦效率(%)=首次放电容量/首次充电容量×100%;
第n次循环的容量保持率(%)=第n次循环的放电容量/第1次循环的放电容量×100%。
表1
Figure PCTCN2017092643-appb-000001
上述电化学性能测试结果证明本发明实施例的锂离子电池负极极片,具有良好的循环稳定性及较高的容量,这是由于,本发明实施例的锂离子电池负极极片通过在集流体表面设置三级结构复合膜层,其中,凸起阵列可增强硅或硅基合金薄膜在集流体表面的结合力;而纤维状精细结构可增强硅或硅基合金薄膜内部的结合力,有效抑制硅或硅基合金膨胀造成的粉化脱离;凸起阵列与纤维状精细结构共同构成三级结构复合膜层的骨架结构,使硅或硅基合金更好地结合在集流体上,最终提高电极的容量和循环性能。
需要说明的是,根据上述说明书的揭示和和阐述,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些等同修改和变更也应当在本发明的权利要求的保护范围之内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (20)

  1. 一种锂离子电池负极极片,其特征在于,包括集流体和设置于所述集流体表面的三级结构复合膜层,所述三级结构复合膜层包括设置于所述集流体表面的凸起阵列、生长在所述凸起表面的纤维状精细结构、以及填充在所述三级结构复合膜层其余空隙处的负极活性材料。
  2. 如权利要求1所述的锂离子电池负极极片,其特征在于,所述负极活性材料包括硅、硅基合金、锡和锡基合金中的至少一种。
  3. 如权利要求1或2所述的锂离子电池负极极片,其特征在于,所述凸起阵列的材质为铜、铝、镁、铁、钴和镍中的至少一种。
  4. 如权利要求1-3任一项所述的锂离子电池负极极片,其特征在于,所述纤维状精细结构的材质为碳纳米管、碳纳米纤维和石墨烯中的至少一种。
  5. 如权利要求1-4任一项所述的锂离子电池负极极片,其特征在于,所述纤维状精细结构为丝状、片状和网状中的至少一种。
  6. 如权利要求1-5任一项所述的锂离子电池负极极片,其特征在于,所述纤维状精细结构为一维结构,直径为0.001μm-0.1μm,长度为0.01μm-1μm。
  7. 如权利要求1-5任一项所述的锂离子电池负极极片,其特征在于,所述纤维状精细结构为二维结构,直径为0.1μm-1μm,厚度为0.001μm-0.1μm。
  8. 如权利要求1-7任一项所述的锂离子电池负极极片,其特征在于,所述三级结构复合膜层中,所述凸起阵列的质量占比为5%-30%。
  9. 如权利要求1-8任一项所述的锂离子电池负极极片,其特征在于,所述三级结构复合膜层中,所述纤维状精细结构的质量占比为5%-20%。
  10. 如权利要求1-9任一项所述的锂离子电池负极极片,其特征在于,所述凸起阵列垂直设置于所述集流体表面。
  11. 如权利要求1-10任一项所述的锂离子电池负极极片,其特征在于,所述凸起阵列的形状为圆柱、棱柱、弧形、五角星、金字塔和网格中的至少一种。
  12. 如权利要求1-11任一项所述的锂离子电池负极极片,其特征在于,所述凸起阵列的高度为0.1μm-50μm。
  13. 如权利要求1-12任一项所述的锂离子电池负极极片,其特征在于,所述凸起的直径为0.01μm-1μm。
  14. 如权利要求2所述的锂离子电池负极极片,其特征在于,所述硅基合金为硅与铝、镁、铜、镍、钴、锌、钛、铍中的至少一种元素形成的合金。
  15. 如权利要求1-14任一项所述的锂离子电池负极极片,其特征在于,所述集流体的材质为铜合金、镍合金、铬合金、钛合金、铁合金、钼合金、钨合金和锆合金中的至少一种。
  16. 如权利要求1-15任一项所述的锂离子电池负极极片,其特征在于,所述集流体的厚度为1μm-1000μm。
  17. 一种锂离子电池负极极片的制备方法,其特征在于,包括以下步骤:
    提供集流体,采用气相沉积、电化学沉积或刻蚀的方法,在所述集流体表面形成凸起阵列;
    采用化学气相沉积的方法,在所述凸起阵列的凸起表面催化生长纤维状精细结构;
    再通过气相沉积、蒸镀或磁控溅射的方法,在其余空隙处填充负极活性材料,形成三级结构复合膜层,即得到锂离子电池负极极片,所述锂离子电池负极极片包括集流体和设置于所述集流体表面的三级结构复合膜层,所述三级结构复合膜层包括设置于所述集流体表面的凸起阵列、生长在所述凸起表面的纤维状精细结构、以及填充在所述三级结构复合膜层其余空隙处的负极活性材料。
  18. 如权利要求17所述的锂离子电池负极极片的制备方法,其特征在于,所述凸起阵列的材质为铜、铝、镁、铁、钴和镍中的至少一种。
  19. 如权利要求17或18所述的锂离子电池负极极片的制备方法,其特征在于,所述纤维状精细结构的材质为碳纳米管、碳纳米纤维和石墨烯中的至少一种。
  20. 一种锂离子二次电池,其特征在于,所述锂离子二次电池包含如权利要求1-16任一项所述的锂离子电池负极极片。
PCT/CN2017/092643 2016-09-29 2017-07-12 一种锂离子电池负极极片及其制备方法和锂离子二次电池 WO2018059071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610863527.6 2016-09-29
CN201610863527.6A CN107887572B (zh) 2016-09-29 2016-09-29 一种锂离子电池负极极片及其制备方法和锂离子二次电池

Publications (1)

Publication Number Publication Date
WO2018059071A1 true WO2018059071A1 (zh) 2018-04-05

Family

ID=61763709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092643 WO2018059071A1 (zh) 2016-09-29 2017-07-12 一种锂离子电池负极极片及其制备方法和锂离子二次电池

Country Status (2)

Country Link
CN (1) CN107887572B (zh)
WO (1) WO2018059071A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312990A (zh) * 2020-02-26 2020-06-19 天津国安盟固利新材料科技股份有限公司 多功能复合负极片、制备方法及二次电池
CN111477863A (zh) * 2020-05-15 2020-07-31 宁波锋成纳米科技有限公司 一种石墨烯/磷酸钛锂复合材料、其制备方法和锂离子电池
CN111856293A (zh) * 2020-06-03 2020-10-30 天津力神电池股份有限公司 一种锂离子电池硅负极材料容量的测试方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807888B (zh) * 2018-05-24 2021-05-18 天津工业大学 一种三维多孔铜硅碳复合一体化电极及其制备方法
CN108598365B (zh) * 2018-05-25 2020-11-03 哈尔滨工业大学 一种锂二次电池用负极及其制备方法及其锂二次电池
CN111740078A (zh) * 2019-10-21 2020-10-02 中国科学院深圳先进技术研究院 锂离子电池负极结构的制造方法及锂离子电池负极结构
CN114944490A (zh) * 2022-01-21 2022-08-26 清华大学 一体化干法电极材料及其制备方法
CN114614022A (zh) * 2022-03-31 2022-06-10 蜂巢能源科技股份有限公司 一种极片及其制备方法、锂电池及其制备方法
CN115064659B (zh) * 2022-08-19 2022-12-09 江苏正力新能电池技术有限公司 一种复合负极片及其制备方法与应用
CN115207278B (zh) * 2022-09-13 2022-12-20 深圳海润新能源科技有限公司 负极极片、其制备方法、电池及用电设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187574A (zh) * 2011-12-28 2013-07-03 清华大学 锂离子电池电极的制备方法
CN104916809A (zh) * 2014-03-12 2015-09-16 中国科学院金属研究所 一种一体化柔性电极

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022418B (zh) * 2012-12-21 2015-03-11 湘潭大学 一种碳纳米管增强的锡铜镍合金负极及其制备方法
CN104201332B (zh) * 2014-08-18 2017-01-18 浙江大学 一种衬底上生长有钴纳米线阵列的锂离子电池负极及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187574A (zh) * 2011-12-28 2013-07-03 清华大学 锂离子电池电极的制备方法
CN104916809A (zh) * 2014-03-12 2015-09-16 中国科学院金属研究所 一种一体化柔性电极

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312990A (zh) * 2020-02-26 2020-06-19 天津国安盟固利新材料科技股份有限公司 多功能复合负极片、制备方法及二次电池
CN111477863A (zh) * 2020-05-15 2020-07-31 宁波锋成纳米科技有限公司 一种石墨烯/磷酸钛锂复合材料、其制备方法和锂离子电池
CN111477863B (zh) * 2020-05-15 2021-09-03 宁波锋成纳米科技有限公司 一种石墨烯/磷酸钛锂复合材料、其制备方法和锂离子电池
CN111856293A (zh) * 2020-06-03 2020-10-30 天津力神电池股份有限公司 一种锂离子电池硅负极材料容量的测试方法
CN111856293B (zh) * 2020-06-03 2022-12-06 天津力神电池股份有限公司 一种锂离子电池硅负极材料容量的测试方法

Also Published As

Publication number Publication date
CN107887572A (zh) 2018-04-06
CN107887572B (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2018059071A1 (zh) 一种锂离子电池负极极片及其制备方法和锂离子二次电池
Qiu et al. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance
Gowda et al. Three-dimensionally engineered porous silicon electrodes for Li ion batteries
US9356281B2 (en) Intercalation electrode based on ordered graphene planes
WO2018040542A1 (zh) 一种硅基复合负极片及其制备方法和锂离子二次电池
EP2546908B1 (en) Organic polymer-silicon composite particle, preparation method for same, and cathode and lithium secondary battery including same
Klankowski et al. A high-performance lithium-ion battery anode based on the core–shell heterostructure of silicon-coated vertically aligned carbon nanofibers
JP5169156B2 (ja) 電気化学素子用電極
CN102569805B (zh) 储能复合粒子、电池负极材料以及电池
CN103474632B (zh) 一种用于锂电池的负极材料及其制备方法和应用
US20120034524A1 (en) Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
Stokes et al. Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes
Sun et al. Copper–silicon core–shell nanotube arrays for free-standing lithium ion battery anodes
CN102709531B (zh) 一种锂离子电池及其负极
TW201244235A (en) Electrical appliance
JP2009523923A (ja) シリコン又はシリコンベースの物質で構成される繊維を製造する方法及びリチウム蓄電池におけるそれらの使用
JPWO2011132428A1 (ja) リチウムイオン電池用負極およびその製造方法、ならびにリチウムイオン電池
US10403889B2 (en) High-capacity silicon nanowire based anode for lithium-ion batteries
US11581575B2 (en) All-solid-state battery comprising electrolyte layer having recess pattern
WO2019210673A1 (zh) 一种有效抑制锂金属电池枝晶不可控生长的集流体、其制备方法及用途
Ryu et al. Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries
KR20160001337A (ko) 고내식성 플렉서블 그래핀 박막 집전체를 이용한 리튬이온전지의 제조방법
US11005091B2 (en) Composite electrode material and method for manufacturing the same
WO2022259870A1 (ja) カーボンナノウォール成長用金属基板とカーボンナノウォール付き金属基板とこれらの製造方法
Cao et al. Ultrahigh density nucleation leading to extraordinary long-cycle dendrite-free Li metal deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854525

Country of ref document: EP

Kind code of ref document: A1