WO2018058966A1 - 一种激光薄膜刻蚀装置及方法 - Google Patents

一种激光薄膜刻蚀装置及方法 Download PDF

Info

Publication number
WO2018058966A1
WO2018058966A1 PCT/CN2017/084441 CN2017084441W WO2018058966A1 WO 2018058966 A1 WO2018058966 A1 WO 2018058966A1 CN 2017084441 W CN2017084441 W CN 2017084441W WO 2018058966 A1 WO2018058966 A1 WO 2018058966A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
thin film
workpiece
film etching
galvanometer
Prior art date
Application number
PCT/CN2017/084441
Other languages
English (en)
French (fr)
Inventor
张�杰
马明鸿
秦国双
杨焕
Original Assignee
英诺激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司 filed Critical 英诺激光科技股份有限公司
Publication of WO2018058966A1 publication Critical patent/WO2018058966A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics

Definitions

  • the invention relates to the technical field of laser processing equipment, and in particular to a laser thin film etching apparatus and method.
  • Nano-scale functional films have been widely used in everyday consumer electronics, and have conductive, anti-reflective, anti-corrosive functions, such as ITO conductive film on the surface of mobile phone display screens, and anti-reflection of various optical lens surfaces.
  • the anti-reflection film is usually deposited on a substrate such as silicon or glass by sputtering. In many cases, the film needs to be etched in the practical application, and the damage to the substrate material is required to be as low as possible, and the common mechanical processing is difficult. The etching of a film having a thickness of several hundred nanoseconds is completed, and the solution used for chemical etching causes environmental pollution. Conventional laser processing uses laser to ablate the film directly.
  • a laser thin film etching apparatus of the present invention includes: a laser for emitting an ultrafast laser; a beam expander for expanding a laser; a diaphragm for controlling light beam transmission; a galvanometer for driving laser scanning, a field mirror, and an industrial computer; wherein, in the industrial computer Under control, the laser emits laser light, and the laser passes through the beam expanding device in sequence, and the galvanometer and the field mirror are disposed on the workpiece on the processing platform on the surface of which the film is provided for film etching.
  • the processing platform is further provided with a vacuum device, and the workpiece to be processed is located in the vacuum device to form a vacuum etching environment for the workpiece.
  • the wavelength is: the absorption rate of the surface film is less than 20%, and the absorption rate to the substrate is greater than 50%.
  • the mode in which the laser emits laser light is a pulse train.
  • the burst mode is: decomposing a single high-energy laser pulse into three or more consecutive pulse trains.
  • the galvanometer is a 3D galvanometer.
  • a laser film etching method includes the following steps:
  • the workpiece to be processed is placed in a vacuum device on the processing platform;
  • the vacuum device is turned on to place the workpiece in a vacuum environment
  • the laser is turned on, and the laser is adjusted to the burst mode to scan and etch the workpiece.
  • the laser emitted by the laser is an ultra-fast laser
  • the laser wavelength is selected according to the characteristics of the substrate and the surface film of the workpiece: the absorption rate of the surface film is less than 20%, and the absorption rate to the substrate is greater than 50%.
  • the laser light emitted by the laser is applied to the workpiece after being adjusted by an optical path system, the optical path system comprising: a beam expanding device for expanding the laser beam; a diaphragm for controlling the transmission of the light beam; and a galvanometer for driving the laser scanning a field mirror and an industrial computer; wherein, under the control of the industrial computer, the laser emits laser light, and the laser sequentially passes through the beam expanding device, and the galvanometer and the field mirror are disposed on the surface of the processing platform and are provided with a film workpiece. On, a thin film etching is performed.
  • the burst mode is: decomposing a single high-energy laser pulse into three or more consecutive pulse trains.
  • the laser thin film etching apparatus and method disclosed by the invention have the beneficial effects compared with the prior art in that the workpiece is processed under vacuum by using a vacuum device to prevent the influence of sediment on the subsequent performance, and the laser output is pulsed.
  • the mode prevents the ordinary laser Gaussian distribution from causing the problem of poor edge quality, and selects a laser of a suitable wavelength to protect the substrate from damage under the requirement of rapid etching.
  • FIG. 1 is a block diagram of functional modules of a laser thin film etching apparatus of the present invention.
  • FIG. 2 is a schematic view of a general laser pulse of the laser thin film etching apparatus of the present invention.
  • FIG. 3 is a schematic diagram of a pulse train mode pulse of the laser thin film etching apparatus of the present invention.
  • FIG. 4 is a flow chart of a method of etching a laser film according to the present invention.
  • the laser thin film etching apparatus includes: a laser 1 for emitting an ultrafast laser; a beam expanding device 2 for expanding a laser beam; a diaphragm 3 for controlling light beam transmission; a galvanometer 4 for driving laser scanning, a field lens 5, and an industrial computer 8; Under the control of the industrial computer 8, the laser 1 emits laser light, and the laser light sequentially passes through the beam expanding device 2, and the galvanometer mirror 3 and the field lens 4 act on the workpiece on the surface of the processing platform 7 and are provided with a film. Thin film etching.
  • the processing platform 7 is further provided with a vacuum device 6 in which the workpiece to be processed is located to form a vacuum etching environment.
  • the laser 1 has a wavelength of less than 20% for the surface film and more than 50% for the substrate according to the characteristics of the substrate to be processed and the surface film to be processed.
  • a functional film of several hundred nanometers thick is highly transparent to a laser of a specific wavelength. Therefore, when laser processing is used, a laser wavelength having a low absorption rate of the substrate and a high absorption rate of the substrate is selected by selecting a film. The laser can be focused through the film at the interface between the film and the substrate.
  • the ultra-fast laser directly acts on the substrate, the trace substrate material is vaporized instantaneously, and the gas rapidly expands in a small space, so that the functional film can be separated from the material. Surface, to achieve the purpose of processing and removal.
  • the mode in which the laser 1 emits laser light is a pulse train.
  • the burst mode is: decomposing a single high-energy laser pulse into three or more consecutive bursts. More specifically, the so-called burst is Burst. Mode, when the laser is output in the normal way, its pulse distribution is shown in Figure 2. The time interval between adjacent pulses is determined by the pulse frequency.
  • the burst mode output as shown in Figure 3, the total power output of the laser is unchanged, and a single high-energy pulse is decomposed into a continuous plurality of low-energy pulses.
  • the pulse width of the low-energy pulse is the same as the high-energy pulse, and the sum of the energy is also
  • the high energy pulses are the same, and within the burst, the interval between adjacent pulses is 10-100 ns.
  • the above problems can be solved as the number of pulses in the pulse train increases.
  • the pulse energy decreases, the gradient of the energy density in a single spot decreases, and the uniformity of the energy distribution is enhanced, which can reduce the unevenness of the Gaussian distribution etching. Therefore, as the number of pulses in the pulse train increases The etching uniformity is continuously increased.
  • a plurality of low-energy pulses remove the material at the same position in a period of several hundred nanoseconds, and the film in the laser action region is completely removed;
  • the pulse train is output, the laser energy density at the center of the spot is reduced, which reduces the damage degree of the substrate, and reduces the thermal effect during processing to avoid the generation of thermal effect edges.
  • the intensity of the laser plasma is reduced, and the utilization efficiency of the laser energy is improved.
  • the galvanometer 5 is a 3D galvanometer.
  • the embodiment further discloses a laser thin film etching method, which comprises the following steps:
  • the workpiece to be processed is placed in a vacuum device on the processing platform;
  • the vacuum device is turned on to place the workpiece in a vacuum environment
  • the laser is turned on, and the laser is adjusted to the pulse train mode to scan and etch the workpiece.
  • the laser emitted by the laser is an ultra-fast laser
  • the laser wavelength is selected according to the characteristics of the substrate and the surface film of the workpiece: the absorption rate of the surface film is less than 20%, and the absorption rate to the substrate is greater than 50%.
  • the laser light emitted by the laser is applied to the workpiece after being adjusted by an optical path system, the optical path system comprising: a beam expanding device for expanding the laser beam; a diaphragm for controlling the transmission of the light beam; and a galvanometer for driving the laser scanning a field mirror and an industrial computer; wherein, under the control of the industrial computer, the laser emits laser light, and the laser sequentially passes through the beam expanding device, and the galvanometer and the field mirror are disposed on the surface of the processing platform and are provided with a film workpiece. On, a thin film etching is performed.
  • the burst mode is: decomposing a single high-energy laser pulse into three or more consecutive pulse trains.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光薄膜刻蚀装置,包括:用于发射超快激光的激光器(1)、对激光进行扩束的扩束装置(2)、用于控制光束透过的光阑(3)、驱动激光扫描的振镜(4)、场镜(5)以及工控机(8),在所述工控机(8)的控制下,所述激光器(1)发射激光,激光依次经过所述扩束装置(2),振镜(4)以及场镜(5)作用位于加工平台(7)上的表面设有薄膜的工件上,进行薄膜刻蚀。还公开了激光薄膜的刻蚀方法,采用真空装置将工件在真空下加工,防止沉渣对后续性能的影响,同时将激光输出为脉冲串模式,防止普通激光高斯分布导致边缘质量差的问题,并且选择合适波长的激光,在实现快速刻蚀的要求下,保护基底不受损伤。

Description

一种激光薄膜刻蚀装置及方法
技术领域
本发明涉及激光加工设备技术领域,尤其涉及一种激光薄膜刻蚀装置及方法。
背景技术
纳米级的功能性薄膜已广泛应用于日常的消费电子之中,根据应用需求具有导电、增透、防腐等功能,如手机显示屏表面的ITO导电膜,以及各种光学镜头表面的增透和增反膜,通常采用溅射的方式沉积于硅或玻璃等基底,在实际应用中很多情况下都需要对薄膜进行刻蚀,同时要求对基底材料的损伤越低越好,常用的机械加工难以完成厚度数百纳秒的薄膜的刻蚀,而化学腐蚀所采用的溶液会对环境造成污染。而常规的激光加工采用激光直接对薄膜进行烧蚀,存在以下问题:(1)工业生产中,对于大幅面加工,要求激光高速单次扫描便可完成加工,这就需要较高的激光能量密度,而较高的激光能量密度会产生较强的熔融物飞溅,这些熔渣堆积在刻槽两侧和底部,会严重影响薄膜器件后续的性能;(2)激光束高斯分布的特征难以获得陡峭的刻蚀边缘;(3)加工过程中伴随的热效应容易对基底材料产生损伤,同时激光刻蚀区域两侧的薄膜容易出现裂纹。
发明内容
本发明的目的在于提供一种激光薄膜刻蚀装置及方法,用于解决现有激光加工装置对薄膜刻蚀边缘质量差且易损伤工件基底的技术问题。
为达到上述目的,本发明所提出的技术方案为:
本发明的一种激光薄膜刻蚀装置,其包括: 用于发射超快激光的激光器;对激光进行扩束的扩束装置;用于控制光束透过的光阑;驱动激光扫描的振镜,场镜以及工控机;其中,在所述工控机的控制下,所述激光器发射激光,激光依次经过所述扩束装置,振镜以及场镜作用位于加工平台上的表面设有薄膜的工件上,进行薄膜刻蚀。
其中,所述的加工平台上还设有一真空装置,待加工的工件位于所述真空装置内以使工件形成真空刻蚀环境。
其中,所述激光器根据待加工的工件基底与表面薄膜的特性,波长为:对表面薄膜吸收率小于20%,对基底的吸收率大于50%。
其中,所述的激光器发射激光的模式为脉冲串。
其中,所述的脉冲串模式为:将单个高能量激光脉冲分解为三个及以上的连续脉冲串。
其中,所述的振镜为3D振镜。
一种激光薄膜刻蚀方法,其包括以下步骤:
第一步,将待加工的工件放置位于加工平台上的真空装置内;
第二步,开启真空装置,使工件处于真空环境中;
第三步,开启激光器,并将激光器调整至脉冲串模式,对工件进行扫描刻蚀。
其中,所述激光器发射的激光为超快激光,激光波长根据工件的基底及表面薄膜特性选择为:对表面薄膜吸收率低于20%,对基底的吸收率大于50%。
其中,所述激光器发射的激光经过一光路系统调节后作用于工件,所述光路系统包括:对激光进行扩束的扩束装置;用于控制光束透过的光阑;驱动激光扫描的振镜,场镜以及工控机;其中,在所述工控机的控制下,所述激光器发射激光,激光依次经过所述扩束装置,振镜以及场镜作用位于加工平台上的表面设有薄膜的工件上,进行薄膜刻蚀。
其中,所述的脉冲串模式为:将单个高能量激光脉冲分解为三个及以上的连续脉冲串。
本发明公开的激光薄膜刻蚀装置及方法,其相比现有技术而言的有益效果在于,采用真空装置将工件在真空下加工,防止沉渣对后续性能的影响,同时将激光输出为脉冲串模式,防止普通激光高斯分布导致边缘质量差的问题,并且选择合适波长的激光,在实现快速刻蚀的要求下,保护基底不受损伤。
附图说明
图1为本发明激光薄膜刻蚀装置的功能模块框图。
图2为本发明激光薄膜刻蚀装置的普通激光脉冲示意图。
图3为本发明激光薄膜刻蚀装置的脉冲串模式脉冲示意图。
图4为本发明激光薄膜刻蚀方法的流程图。
具体实施方式
以下参考附图,对本发明予以进一步地详尽阐述。
请参阅附图1至图3,在本实施例中,该激光薄膜刻蚀装置,其包括: 用于发射超快激光的激光器1;对激光进行扩束的扩束装置2;用于控制光束透过的光阑3;驱动激光扫描的振镜4,场镜5以及工控机8;其中,在所述工控机8的控制下,所述激光器1发射激光,激光依次经过所述扩束装置2,振镜3以及场镜4作用位于加工平台7上的表面设有薄膜的工件上,进行薄膜刻蚀。
其中,对于大幅面加工,要求激光高速单次扫描便可完成加工需要较高的激光能量密度,而较高的激光能量密度会产生较强的熔融物飞溅,这些熔渣堆积在刻槽两侧和底部,会严重影响薄膜器件后续的性能,因此,所述的加工平台7上还设有一真空装置6,待加工的工件位于所述真空装置6内以使工件形成真空刻蚀环境。
加工过程中伴随的热效应容易对基底材料产生损伤,同时激光刻蚀区域两侧的薄膜容易出现裂纹。因此,所述激光器1根据待加工的工件基底与表面薄膜的特性,波长为:对表面薄膜吸收率小于20%,对基底的吸收率大于50%。通常情况下数百纳米厚的功能性薄膜对于特定波长的激光具有较强的透过性,因此,在采用激光进行加工时,通过选择薄膜吸收率较低而基板具有较高吸收率的激光波长,可使激光透过薄膜聚焦于薄膜与基板的交界处,当超快激光直接作用于基板时,瞬间使微量基板材料气化,在狭小的空间内气体迅速膨胀,可使功能性薄膜脱离材料表面,达到加工去除的目的。
由于激光束高斯分布的特征难以获得陡峭的刻蚀边缘,所述的激光器1发射激光的模式为脉冲串。
其中,请再次参阅附图2和附图3,所述的脉冲串模式为:将单个高能量激光脉冲分解为三个及以上的连续脉冲串。更具体的,所谓脉冲串即Burst mode,当激光以普通方式输出时其脉冲分布如图2所示,相邻脉冲间的时间间隔由脉冲频率来决定。而采用脉冲串模式输出时,如图3,激光器总的功率输出不变,单个高能量脉冲分解为连续的多个低能量脉冲,低能量脉冲的脉宽与高能量脉冲相同,能量总和也与高能量脉冲相同,在脉冲串内,相邻脉冲间的间隔为10-100ns。
在实际生产中,当激光在普通模式下对薄膜进行刻蚀时,存在以下问题:工业生产中要求单个脉冲便可完成薄膜的完全出去,但由于激光脉冲高斯光束的特性,光斑边缘处仍然存在薄膜的残留;而光斑中心处由于激光能量较高,不仅使薄膜完全出去,基板也受到一定程度地损伤;由于激光单个脉冲能量较高,多个光斑耦合刻蚀直线时容易产生热积累,导致热效应边缘的产生;能量密度较高时产生的等离子也较强,加工过程中会对激光能量产生屏蔽,降低刻蚀效率。
而采用脉冲串的方式输出时,当保持激光输出功率、频率和其他参数不变的情况下,随着脉冲串中脉冲个数的增加,可解决以上问题: 随着脉冲能量的减小,单个光斑内能量密度的梯度差减小,能量分布的均匀性增强,可减小高斯分布刻蚀不均匀的缺陷,因此,随着脉冲串中脉冲个数的增加,刻蚀均匀性不断增加,当脉冲数大于4时,多个低能量的脉冲在数百纳秒的时间内对同一位置处的材料进行去除,激光作用区域内的薄膜被完全去除;当采用脉冲串的方式输出时,光斑中心处的激光能量密度减小,减小了基底的损伤程度,同时减小了加工过程中的热效应,避免热效应边缘的产生;但采用脉冲串模式输出时,减小了激光等离子体的强度,提高了激光能量的利用效率。
在本实施例中,所述的振镜5为3D振镜。
请参阅附图4,本实施例还公开了一种激光薄膜刻蚀方法,其包括以下步骤:
第一步S1,将待加工的工件放置位于加工平台上的真空装置内;
第二步S2,开启真空装置,使工件处于真空环境中;
第三步S3,开启激光器,并将激光器调整至脉冲串模式,对工件进行扫描刻蚀。
其中,所述激光器发射的激光为超快激光,激光波长根据工件的基底及表面薄膜特性选择为:对表面薄膜吸收率低于20%,对基底的吸收率大于50%。
其中,所述激光器发射的激光经过一光路系统调节后作用于工件,所述光路系统包括:对激光进行扩束的扩束装置;用于控制光束透过的光阑;驱动激光扫描的振镜,场镜以及工控机;其中,在所述工控机的控制下,所述激光器发射激光,激光依次经过所述扩束装置,振镜以及场镜作用位于加工平台上的表面设有薄膜的工件上,进行薄膜刻蚀。
其中,所述的脉冲串模式为:将单个高能量激光脉冲分解为三个及以上的连续脉冲串。
上述内容,仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,故本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (10)

  1. 一种激光薄膜刻蚀装置,其特征在于,包括: 用于发射超快激光的激光器;对激光进行扩束的扩束装置;用于控制光束透过的光阑;驱动激光扫描的振镜,场镜以及工控机;其中,在所述工控机的控制下,所述激光器发射激光,激光依次经过所述扩束装置,振镜以及场镜作用位于加工平台上的表面设有薄膜的工件上,进行薄膜刻蚀。
  2. 如权利要求1所述的激光薄膜刻蚀装置,其特征在于,所述的加工平台上还设有一真空装置,待加工的工件位于所述真空装置内以使工件形成真空刻蚀环境。
  3. 如权利要求1所述的激光薄膜刻蚀装置,其特征在于,所述激光器根据待加工的工件基底与表面薄膜的特性,波长为:对表面薄膜吸收率小于20%,对基底的吸收率大于50%。
  4. 如权利要求1至3任意一项所述的激光薄膜刻蚀装置,其特征在于,所述的激光器发射激光的模式为脉冲串。
  5. 如权利要求4所述的激光薄膜刻蚀装置,其特征在于,所述的脉冲串模式为:将单个高能量激光脉冲分解为三个及以上的连续脉冲串。
  6. 如权利要求1所述的激光薄膜刻蚀装置,其特征在于,所述的振镜为3D振镜。
  7. 一种激光薄膜刻蚀方法,其特征在于,包括以下步骤:
    第一步,将待加工的工件放置位于加工平台上的真空装置内;
    第二步,开启真空装置,使工件处于真空环境中;
    第三步,开启激光器,并将激光器调整至脉冲串模式,对工件进行扫描刻蚀。
  8. 如权利要求7所述的激光薄膜刻蚀方法,其特征在于,所述激光器发射的激光为超快激光,激光波长根据工件的基底及表面薄膜特性选择为:对表面薄膜吸收率低于20%,对基底的吸收率大于50%。
  9. 如权利要求7所述的激光薄膜刻蚀方法,其特征在于,所述激光器发射的激光经过一光路系统调节后作用于工件,所述光路系统包括:对激光进行扩束的扩束装置;用于控制光束透过的光阑;驱动激光扫描的振镜,场镜以及工控机;其中,在所述工控机的控制下,所述激光器发射激光,激光依次经过所述扩束装置,振镜以及场镜作用位于加工平台上的表面设有薄膜的工件上,进行薄膜刻蚀。
  10. 如权利要求7所述的激光薄膜刻蚀方法,其特征在于,所述的脉冲串模式为:将单个高能量激光脉冲分解为三个及以上的连续脉冲串。
PCT/CN2017/084441 2016-09-30 2017-05-16 一种激光薄膜刻蚀装置及方法 WO2018058966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610874943.6A CN106271089B (zh) 2016-09-30 2016-09-30 一种激光薄膜刻蚀装置及方法
CN201610874943.6 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018058966A1 true WO2018058966A1 (zh) 2018-04-05

Family

ID=57716828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084441 WO2018058966A1 (zh) 2016-09-30 2017-05-16 一种激光薄膜刻蚀装置及方法

Country Status (2)

Country Link
CN (1) CN106271089B (zh)
WO (1) WO2018058966A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108747032A (zh) * 2018-06-20 2018-11-06 君泰创新(北京)科技有限公司 一种电池片除膜方法及系统
CN109648200A (zh) * 2019-02-18 2019-04-19 英诺激光科技股份有限公司 激光焊接系统及焊接方法
CN110760842A (zh) * 2019-12-02 2020-02-07 湖北汽车工业学院 一种基于振镜扫描的热锻模具激光仿生强化设备及方法
WO2020044266A1 (en) 2018-08-31 2020-03-05 Pfizer Inc. Combinations for treatment of nash/nafld and related diseases
CN110921613A (zh) * 2019-11-21 2020-03-27 武汉大学 电磁场控制等离子体的激光掩膜刻蚀方法以及系统
WO2020234726A1 (en) 2019-05-20 2020-11-26 Pfizer Inc. Combinations comprising benzodioxol as glp-1r agonists for use in the treatment of nash/nafld and related diseases
CN112775567A (zh) * 2020-12-28 2021-05-11 友芯(厦门)半导体设备有限公司 一种激光切割窄带通滤光片的预处理方法、装置及方法
CN112872579A (zh) * 2020-12-24 2021-06-01 西安中科微精光子制造科技有限公司 激光加工的控制方法、装置、设备及计算机存储介质
CN114453734A (zh) * 2021-12-24 2022-05-10 深圳市大族数控科技股份有限公司 板材激光表面粗化处理装置及方法
EP4219487A1 (en) 2018-06-13 2023-08-02 Pfizer Inc. Glp-1 receptor agonists and uses thereof
WO2023228023A1 (en) 2022-05-23 2023-11-30 Pfizer Inc. Treatment of type 2 diabetes or weight management control with 2-((4-((s)-2-(5-chloropyridin-2-yl)-2-methylbenzo[d][1,3]dioxol-4-yl)piperidin-1-yl)methyl)-1-(((s)-oxetan-2-yl)methyl)-1h-benzo[d]imidazole-6-carboxylic acid or a pharmaceutically salt thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271089B (zh) * 2016-09-30 2019-01-25 英诺激光科技股份有限公司 一种激光薄膜刻蚀装置及方法
CN107876968A (zh) * 2017-12-26 2018-04-06 英诺激光科技股份有限公司 一种用于平行加工的激光加工设备
CN108558413B (zh) * 2018-07-02 2021-05-18 上海安费诺永亿通讯电子有限公司 一种陶瓷基电子线路的制备方法
CN108817700B (zh) * 2018-09-04 2020-08-14 京东方科技集团股份有限公司 保护膜及激光切割方法
CN109014615A (zh) * 2018-09-29 2018-12-18 英诺激光科技股份有限公司 一种短脉宽激光切割装置及其切割方法
CN110523715A (zh) * 2019-08-28 2019-12-03 中国人民解放军国防科技大学 一种铝合金反射镜表面超快激光清洗的方法及装置
CN113075863B (zh) * 2020-01-03 2024-05-10 大族激光科技产业集团股份有限公司 丝印网版的制版方法
CN112775559A (zh) * 2020-12-25 2021-05-11 大族激光科技产业集团股份有限公司 一种薄膜铂电阻中阻栅结构的加工方法
CN112705857B (zh) * 2021-03-29 2021-07-13 清华大学 一种宏观耐高温网格的制备方法
CN113823713B (zh) * 2021-08-12 2023-07-14 苏州浪潮智能科技有限公司 一种激光辅助改善led芯片ito表面发花的方法
CN114799534A (zh) * 2022-03-30 2022-07-29 深圳市海目星激光智能装备股份有限公司 发光器件修补方法及修补设备
CN115430916B (zh) * 2022-09-16 2023-05-23 中山大学 一种基于匹配层的激光制备微纳结构的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19501279A1 (de) * 1995-01-18 1996-07-25 Blz Gmbh Verfahren zur abtragenden Bearbeitung von Werkstücken mit Laserstrahlung
CN101804515A (zh) * 2010-03-26 2010-08-18 苏州德龙激光有限公司 大幅面精密激光刻线和打点的设备
CN102196880A (zh) * 2008-10-23 2011-09-21 住友电气工业株式会社 激光加工方法以及激光加工装置
CN102583228A (zh) * 2012-03-14 2012-07-18 贵州大学 利用可控脉冲激光加工纳米结构的方法及装置
CN102717190A (zh) * 2012-06-07 2012-10-10 江阴德力激光设备有限公司 一种脉冲激光刻蚀有机玻璃上导电膜层的装置和方法
CN102939183A (zh) * 2010-06-07 2013-02-20 太阳能公司 太阳能电池制造工艺中膜叠堆的烧蚀
CN106271089A (zh) * 2016-09-30 2017-01-04 深圳英诺激光科技有限公司 一种激光薄膜刻蚀装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5795682B2 (ja) * 2011-04-28 2015-10-14 クヮンジュ・インスティテュート・オブ・サイエンス・アンド・テクノロジー パルスレーザー装置、これを用いた制御方法、及び可変バストモード制御方法
RU2469433C1 (ru) * 2011-07-13 2012-12-10 Юрий Георгиевич Шретер Способ лазерного отделения эпитаксиальной пленки или слоя эпитаксиальной пленки от ростовой подложки эпитаксиальной полупроводниковой структуры (варианты)
CN202667927U (zh) * 2012-06-07 2013-01-16 江阴德力激光设备有限公司 一种脉冲激光刻蚀有机玻璃上导电膜层的装置
CN103586586A (zh) * 2013-10-22 2014-02-19 苏州镭明激光科技有限公司 用于透明导电薄膜的脉冲激光刻蚀装置及其控制方法
JP2015096272A (ja) * 2013-11-15 2015-05-21 キヤノン株式会社 レーザ加工方法及び基板の製造方法
CN204303766U (zh) * 2014-12-16 2015-04-29 桂林电子科技大学 一种激光刻蚀与磁控溅射复合装置
CN104973794A (zh) * 2015-05-28 2015-10-14 同济大学 一种激光薄膜元件用光学基板的离子束刻蚀装置及方法
CN105665925B (zh) * 2016-03-25 2017-08-25 南京京晶光电科技有限公司 在基材表面刻蚀加工cd纹并激光切割形成logo的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19501279A1 (de) * 1995-01-18 1996-07-25 Blz Gmbh Verfahren zur abtragenden Bearbeitung von Werkstücken mit Laserstrahlung
CN102196880A (zh) * 2008-10-23 2011-09-21 住友电气工业株式会社 激光加工方法以及激光加工装置
CN101804515A (zh) * 2010-03-26 2010-08-18 苏州德龙激光有限公司 大幅面精密激光刻线和打点的设备
CN102939183A (zh) * 2010-06-07 2013-02-20 太阳能公司 太阳能电池制造工艺中膜叠堆的烧蚀
CN102583228A (zh) * 2012-03-14 2012-07-18 贵州大学 利用可控脉冲激光加工纳米结构的方法及装置
CN102717190A (zh) * 2012-06-07 2012-10-10 江阴德力激光设备有限公司 一种脉冲激光刻蚀有机玻璃上导电膜层的装置和方法
CN106271089A (zh) * 2016-09-30 2017-01-04 深圳英诺激光科技有限公司 一种激光薄膜刻蚀装置及方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4219487A1 (en) 2018-06-13 2023-08-02 Pfizer Inc. Glp-1 receptor agonists and uses thereof
CN108747032A (zh) * 2018-06-20 2018-11-06 君泰创新(北京)科技有限公司 一种电池片除膜方法及系统
WO2020044266A1 (en) 2018-08-31 2020-03-05 Pfizer Inc. Combinations for treatment of nash/nafld and related diseases
CN109648200A (zh) * 2019-02-18 2019-04-19 英诺激光科技股份有限公司 激光焊接系统及焊接方法
WO2020234726A1 (en) 2019-05-20 2020-11-26 Pfizer Inc. Combinations comprising benzodioxol as glp-1r agonists for use in the treatment of nash/nafld and related diseases
CN110921613A (zh) * 2019-11-21 2020-03-27 武汉大学 电磁场控制等离子体的激光掩膜刻蚀方法以及系统
CN110921613B (zh) * 2019-11-21 2023-06-27 武汉大学 电磁场控制等离子体的激光掩膜刻蚀方法以及系统
CN110760842A (zh) * 2019-12-02 2020-02-07 湖北汽车工业学院 一种基于振镜扫描的热锻模具激光仿生强化设备及方法
CN112872579A (zh) * 2020-12-24 2021-06-01 西安中科微精光子制造科技有限公司 激光加工的控制方法、装置、设备及计算机存储介质
CN112775567A (zh) * 2020-12-28 2021-05-11 友芯(厦门)半导体设备有限公司 一种激光切割窄带通滤光片的预处理方法、装置及方法
CN114453734A (zh) * 2021-12-24 2022-05-10 深圳市大族数控科技股份有限公司 板材激光表面粗化处理装置及方法
WO2023228023A1 (en) 2022-05-23 2023-11-30 Pfizer Inc. Treatment of type 2 diabetes or weight management control with 2-((4-((s)-2-(5-chloropyridin-2-yl)-2-methylbenzo[d][1,3]dioxol-4-yl)piperidin-1-yl)methyl)-1-(((s)-oxetan-2-yl)methyl)-1h-benzo[d]imidazole-6-carboxylic acid or a pharmaceutically salt thereof

Also Published As

Publication number Publication date
CN106271089A (zh) 2017-01-04
CN106271089B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2018058966A1 (zh) 一种激光薄膜刻蚀装置及方法
JP6181031B2 (ja) バースト超高速のレーザーパルスのエネルギー移転による基板への前方堆積の方法および装置
CN102759863B (zh) 激光光刻机
RU2401185C2 (ru) Способ лазерной обработки и устройство обработки, основанные на обычных вызванных лазером изменениях материала
US20170170455A1 (en) Method for removing coating layer of electrode plate
JP6081993B2 (ja) プラズマエッチングを伴うハイブリッドガルバニックレーザスクライビングプロセスを用いたウェハダイシング
US9312177B2 (en) Screen print mask for laser scribe and plasma etch wafer dicing process
US20130017668A1 (en) Wafer dicing using hybrid split-beam laser scribing process with plasma etch
JPH10242489A (ja) 薄膜太陽電池の製造方法
US20120322236A1 (en) Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch
TW201740460A (zh) 使用分裂光束雷射劃線處理與電漿蝕刻處理的混合式晶圓切割方法
CN110449734B (zh) 一种气体保护下激光诱导反向转移制备导电图案的方法
JP2010082645A (ja) レーザスクライブ方法及びレーザスクライブ装置
CN108925059B (zh) 一种派瑞林膜层的除膜方法
CN103071925A (zh) 用于刻蚀触摸屏上以石墨烯为导电层的装置及其方法
Kántor et al. Dynamics of long‐pulse laser transfer of micrometer‐sized metal patterns as followed by time‐resolved measurements of reflectivity and transmittance
CN211840637U (zh) 激光成像法切割pi网板的装置
JP2010087041A (ja) レーザービームによる薄膜の除去方法及び薄膜太陽電池パネルの製造方法
CN206425691U (zh) 一种激光薄膜刻蚀装置
JP2012164740A (ja) レーザスクライブ方法
JP2012050988A (ja) レーザスクライブ方法
CN111136389A (zh) 激光成像法切割pi网板的装置及其方法
JP2008209797A (ja) レーザ照射装置、及び、露光方法
JP2014183152A (ja) ビアホール形成方法及びデスミア装置
WO2017145330A1 (ja) レーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854422

Country of ref document: EP

Kind code of ref document: A1