WO2018058369A1 - 传输数据的方法、接收端设备和发送端设备 - Google Patents

传输数据的方法、接收端设备和发送端设备 Download PDF

Info

Publication number
WO2018058369A1
WO2018058369A1 PCT/CN2016/100566 CN2016100566W WO2018058369A1 WO 2018058369 A1 WO2018058369 A1 WO 2018058369A1 CN 2016100566 W CN2016100566 W CN 2016100566W WO 2018058369 A1 WO2018058369 A1 WO 2018058369A1
Authority
WO
WIPO (PCT)
Prior art keywords
data signal
transport block
data stream
data
end device
Prior art date
Application number
PCT/CN2016/100566
Other languages
English (en)
French (fr)
Inventor
唐海
许华
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to JP2019500585A priority Critical patent/JP6965335B2/ja
Priority to EP16917124.6A priority patent/EP3457648A4/en
Priority to KR1020197011524A priority patent/KR20190061021A/ko
Priority to CN201680087366.4A priority patent/CN109417522B/zh
Priority to PCT/CN2016/100566 priority patent/WO2018058369A1/zh
Priority to TW106129662A priority patent/TWI734828B/zh
Publication of WO2018058369A1 publication Critical patent/WO2018058369A1/zh
Priority to US16/223,476 priority patent/US10644830B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0011Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for transmitting data, a receiving end device, and a transmitting end device.
  • multi-antenna technology can be used for space division multiplexing to improve spectrum utilization.
  • antenna 1 and antenna 2 transmit data signals S1 and S2, respectively, and use the same time and frequency resources.
  • the receiver can recover S1 and S2 through various algorithms, such as Serial Interference Cancellation (SIC).
  • S1 and S2 may also be emitted by different beams, and the beam is formed by multi-antenna via beamforming.
  • different beams may correspond to different data layers, and different data streams may be mapped to the same or different Transmission Blocks (TBs), and the channel coding is in units of TB.
  • the receiving end can recover S1 and S2 by using various receivers according to different mapping manners. For example, an SIC receiver or an Interference Rejection Combining (IRC) receiver can be used. Since S1 and S2 use the same time and frequency resources at the time of transmission, the core of various receivers eliminates the mutual interference between the data stream containing S1 and the data stream containing S2.
  • IRC Interference Rejection Combining
  • the present application provides a method for transmitting data, a transmitting end device, and a receiving end device, which can improve the efficiency of data transmission.
  • a method for transmitting data includes: at a first moment, a sending end device sends, by using a first frequency, a first data signal to a receiving end device by using a first frequency, and adopting the first frequency to pass Transmitting, by the second data stream, the second data signal to the receiving end device, and sending, by the first terminal, the third data signal to the receiving end device by using the first frequency stream, at a second time after the first time, And using the first frequency to pass the second data stream to the Receiving, by the receiving device, a fourth data signal, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal, the first data stream and The second data stream is used by the receiving device to determine the first data signal and the second data signal; or
  • the transmitting end device sends the first data signal to the receiving end device by using the first frequency by using the first frequency, and sending the second data signal to the receiving end device by using the first frequency by using the first frequency
  • the sending end device sends a third data signal to the receiving end device by using the second frequency by using the second frequency, and sending, by using the second frequency, the fourth data signal to the receiving end device by using the second frequency
  • the third data signal is equal to an inverse of a conjugate of the second data signal
  • the fourth data signal being equal to a conjugate of the first data signal
  • the first data stream and the second data stream being used for the receiving
  • the end device determines the first data signal and the second data signal.
  • the method for transmitting data in the embodiment of the present application transmits the first data stream and the second data stream carrying the first data signal and the second data signal by using the same frequency at different times, or at different times and at different times.
  • the frequency transmission carries the first data stream and the second data stream of the first data signal and the second data signal, which can improve the efficiency of data transmission.
  • the first data stream and the second data stream are mapped onto the same transport block.
  • the sending end device is a terminal device, and the receiving end device is a base station; or the sending end device is a base station, and the receiving end device is For terminal equipment.
  • the method further includes: the base station sending, to the terminal device, indication information, where the indication information is used to indicate the terminal device and the base station The way in which data signals are transmitted.
  • the base station when the sending end device is the base station, the base station includes a first base station and a second base station, where the first base station is configured to send the a data signal in the first data stream, the second base station is configured to send the data signal in the second data stream.
  • a second aspect provides a method for transmitting data, where the method includes: at a first moment, a receiving end device receives a first data signal sent by a transmitting end device by using a first frequency by using a first data stream, and adopting the first a second data signal transmitted by the second data stream at the first time At a second moment after the engraving, the receiving end device receives the third data signal sent by the transmitting end device by using the first frequency through the first data stream, and the fourth data signal sent by the second data stream by using the first frequency a data signal, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal is equal to a conjugate of the first data signal, and the receiving device is configured according to the first data stream a second data stream, the first data signal and the second data signal being determined; or
  • the receiving end device receives the first data signal sent by the transmitting end device by using the first frequency through the first data stream, and the second data signal sent by using the first frequency by the second data stream, where the first data signal is used.
  • Receiving, by the receiving end device, the third data signal sent by the transmitting end device by using the second frequency by using the first data stream, and the fourth data signal sent by the second data stream by using the second frequency where The third data signal is equal to the opposite of the conjugate of the second data signal, the fourth data signal is equal to the conjugate of the first data signal, and the receiving end device determines according to the first data stream and the second data stream.
  • the first data signal and the second data signal receives the first data signal sent by the transmitting end device by using the first frequency through the first data stream, and the second data signal sent by using the first frequency by the second data stream, where the first data signal is used.
  • the method for transmitting data in the embodiment of the present application transmits the first data stream and the second data stream carrying the first data signal and the second data signal by using the same frequency at different times, or at different times and at different times.
  • the frequency transmission carries the first data stream and the second data stream of the first data signal and the second data signal, which can improve the efficiency of data transmission.
  • the first data stream and the second data stream are mapped onto the same transport block.
  • the receiving end device is a base station, and the sending end device is a terminal device; or the receiving end device is a terminal device, and the sending end is The device is a base station.
  • the method further includes: receiving, by the terminal device, the indication information sent by the base station, where the indication information is used to indicate the terminal device and the base station The way in which data signals are transmitted.
  • the base station when the sending end device is the base station, the base station includes a first base station and a second base station, where the first base station is configured to send the a data signal in the first data stream, the second base station is configured to send the data signal in the second data stream.
  • a method for transmitting data comprising: sending, by a source device, a first set of transport blocks to at least one receiving end device, where the transport block in the first set of transport blocks is mapped with a first data stream and a second data stream, the first data stream and the second data stream being used to transmit a data stream
  • the data signal includes a first data signal and a second data signal; when the transport block in the first transport block set transmits an error, the transmitting end device sends a second transport block set to the at least one receiving end device, where The transport block in the second set of transport blocks is mapped with a third data stream and a fourth data stream, the third data stream being for transmitting a third data signal, the third data signal being equal to the opposite of the conjugate of the second data signal
  • the fourth data stream is used to transmit a fourth data signal, the fourth data signal is equal to a conjugate of the first data signal, and the second transport block set and the first transport block set are used by the at least one receiving end device to determine
  • the transmitting device transmits the first data signal and the second data signal through the first TB set, and when the TB in the first TB set has an error, passes the TB in the second TB set. Transmitting a third data stream and a fourth data stream, wherein the third data stream transmits an inverse of the conjugate of the second data signal, and the fourth data stream transmits a conjugate of the first data signal to facilitate the receiving device according to the first
  • the TB set and the second TB set acquire the first data signal and the second data signal, and further improve the efficiency of data transmission by the above retransmission mode when an error occurs in data transmission.
  • the first data stream is used to transmit the first data signal
  • the second data stream is used to transmit the second data signal
  • the first data stream is configured to transmit the first data signal by using a first frequency and transmit the first frequency by using a second frequency at a first moment a third data signal;
  • the second data stream is configured to transmit the second data signal by using the first frequency at the first time, and transmit the fourth data signal by using the second frequency.
  • the first data stream is configured to transmit the first data signal by using a first frequency and adopting the first time at a second time Transmitting the third data signal at a frequency;
  • the second data stream is configured to transmit the second data signal by using the first frequency at the first time, and transmitting the fourth data signal by using the first frequency at the second time.
  • the first transport block set includes a first transport block, and the first data stream and the second data stream are both mapped to the first On a transport block, the second transport block set includes a second transport block, and the third data stream and the fourth data stream are both mapped on the second transport block.
  • the first transport block set includes a first transport block and a second transport block, where the first data stream is mapped to the first On the transport block, the second data stream is mapped on the second transport block, the second transport block set includes a third transport block and a fourth transport block, and the third data stream is mapped on the third transport block, The fourth data stream is mapped on the fourth transport block.
  • the sending end device is a base station
  • the at least one receiving end device includes a first terminal device and a second terminal device
  • the sending end device is Transmitting, by the at least one receiving device, the first transporting block set, the base station sending the first transporting block to the first terminal device, and sending the second transporting block to the second terminal device; Transmitting, by the receiving end device, the second transporting block set, the base station sending the third transporting block to the first terminal device, and sending the fourth transporting block to the second terminal device, the first transporting block and the first
  • the third transport block is used by the first terminal device to determine the first data signal
  • the second transport block and the fourth transport block are used by the second terminal device to determine the second data signal.
  • the sending end device is a terminal device, and the at least one receiving end device is a base station; or the sending end device is a base station, where the at least one A receiving end device is a terminal device.
  • the method further includes: the base station sending, to the terminal device, indication information, where the indication information is used to indicate that the terminal device transmits in a transport block The retransmission method used when an error occurs.
  • a fourth aspect provides a method for transmitting data, the method being applied to a communication system, where the communication system includes a transmitting end device and at least one receiving end device, the method comprising: receiving, by the first receiving end device, the sending end device a first transport block set sent by the at least one receiving end device, where the transport block in the first transport block set is mapped with a first data stream and a second data stream, where the first data stream and the second data stream are used for transmitting data a signal, the data signal comprising a first data signal and a second data signal, the first receiving end device being any one of the at least one receiving end device; when the transport block in the first transport block set is transmitted incorrectly Receiving, by the first receiving end device, a second transport block set sent by the sending end device to the at least one receiving end device, where the transport block in the second transport block set is mapped with a third data stream and a fourth data stream, where The third data stream is for transmitting a third data signal, the third data signal being equal to an inverse of the conjug
  • the receiving end device receives the first data signal and the second data signal that are transmitted by the sending end device through the first TB set, and when the TB in the first TB set has an error,
  • the TB of the two TB sets transmits a third data stream and a fourth data stream, wherein the third data stream transmits the opposite of the conjugate of the second data signal, and the fourth data stream transmits the conjugate of the first data signal to facilitate
  • the receiving end device acquires the first data signal and the second data signal according to the first TB set and the second TB set, so that when the data transmission error occurs, the data transmission efficiency is further improved by the above retransmission mode.
  • the first data stream is used to transmit the first data signal
  • the second data stream is used to transmit the second data signal
  • the first data stream is configured to transmit the first data signal by using a first frequency and transmit the first frequency by using a second frequency at a first moment a third data signal;
  • the second data stream is configured to transmit the second data signal by using the first frequency at the first time, and transmit the fourth data signal by using the second frequency.
  • the first data stream is configured to transmit the first data signal by using a first frequency at a first time, and adopting the first data signal at a second time Transmitting the third data signal at a frequency;
  • the second data stream is configured to transmit the second data signal by using the first frequency at the first time, and transmitting the fourth data signal by using the first frequency at the second time.
  • the first transport block set includes a first transport block, and the first data stream and the second data stream are both mapped to the first On a transport block, the second transport block set includes a second transport block, and the third data stream and the fourth data stream are both mapped on the second transport block.
  • the first transport block set includes a first transport block and a second transport block, where the first data stream is mapped to the first transmission Blocking, the second data stream is mapped on the second transport block, the second transport block set includes a third transport block and a fourth transport block, and the third data stream is mapped on the third transport block, the third The four data streams are mapped on the fourth transport block.
  • the at least one receiving end device includes the first terminal device and the second terminal device, where the sending end device is a base station, the first Receiving, by the receiving end device, the first transporting block set sent by the sending end device to the at least one receiving end device, where the first terminal device receives the first transporting block sent by the base station, The second transport block is sent by the base station to the second terminal device; the first receiving end device receives the second transport block set sent by the sending end device to the at least one receiving end device, and includes: the first terminal device Receiving, by the base station, the third transport block, where the fourth transport block is sent by the base station to the second terminal device, where the first transport block and the third transport block are used by the first terminal device to determine the first data. And the second transmission block and the fourth transmission block are used by the second terminal device to determine the second data signal.
  • the first receiving end device is a base station, and the sending end device is a terminal device; or the first receiving end device is a terminal device
  • the transmitting device is a base station.
  • the method further includes: the terminal device receiving the indication information sent by the base station, where the indication information is used to indicate that the terminal device is in the transport block The retransmission method used when transmitting an error.
  • a transmitting device for performing the method in any of the above first aspect or any possible implementation of the first aspect.
  • the sender device comprises means for performing the method of any of the first aspect or the first aspect of the first aspect described above.
  • a receiving end device for performing the method in any of the above-mentioned second aspect or any possible implementation of the second aspect.
  • the receiving end device comprises means for performing the method in any of the possible implementations of the second aspect or the second aspect described above.
  • a transmitting device for performing the method in any of the foregoing third aspect or any possible implementation of the third aspect.
  • the transmitting device comprises means for performing the method in any of the possible implementations of the third aspect or the third aspect described above.
  • a receiving end device for performing the method in any of the above-mentioned fourth aspect or any possible implementation of the fourth aspect.
  • the receiving end device comprises means for performing the method of any of the above mentioned fourth or fourth aspects of the fourth aspect.
  • a transmitting device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the instruction stored in the memory The execution causes the processor to perform the method of the first aspect or any possible implementation of the first aspect.
  • a tenth aspect provides a receiving end device, comprising: a storage unit for storing an instruction, the processor for executing an instruction stored by the memory, and executing, by the processor, the instruction stored in the memory When the execution causes the processor to perform the second aspect or the second party
  • a receiving end device comprising: a storage unit for storing an instruction, the processor for executing an instruction stored by the memory, and executing, by the processor, the instruction stored in the memory
  • the execution causes the processor to perform the second aspect or the second party
  • a transmitting device comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the memory storage When executed, the execution causes the processor to perform the method of any of the third aspect or any of the possible implementations of the third aspect.
  • a receiving end device includes: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the memory storage When executed, the execution causes the processor to perform the method of any of the possible implementations of the fourth aspect or the fourth aspect.
  • a thirteenth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the third aspect or any of the possible implementations of the third aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the fourth aspect or any of the possible implementations of the fourth aspect.
  • FIG. 1 is a schematic flowchart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a data stream for transmitting a data signal in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method of transmitting data according to still another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method of transmitting data according to still another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method of transmitting data according to still another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method of transmitting data according to still another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a transmitting device according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a sink device according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a transmitting device according to another embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a sink device according to another embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of a transmitting device according to still another embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of a receiving end device according to still another embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of a transmitting device according to still another embodiment of the present invention.
  • FIG. 15 is a schematic block diagram of a sink device according to still another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solution of the embodiment of the present application can be applied to communication between a terminal device and a base station, and can also be applied to communication between a terminal device and a device to Device (D2D).
  • D2D device to Device
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or a base station (NodeB) in WCDMA, or may be in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • An evolved Node B (eNB or an e-NodeB) may also be a device for providing an access service in the 5G.
  • the embodiment of the present application is not limited.
  • the terminal device may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device, etc.
  • the terminal device may be a STA (STAION) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, or a WLL (Wireless Local Loop).
  • STAION STA
  • WLAN Wireless Local Area Networks
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities
  • computing device or other processing device connected to the wireless modem
  • in-vehicle device wearable device
  • terminal in future 5G networks A device or a terminal device in a future evolved PLMN network.
  • FIG. 1 is a schematic flowchart of a method 100 for transmitting data according to an embodiment of the present invention.
  • the method 100 may be applied to a communication system including a receiving end device and a transmitting end device.
  • the method 100 may be performed by The transmitting device performs the foregoing, and the transmitting device may be the foregoing base station or the terminal device, and the embodiment of the present invention is not limited thereto.
  • the method 100 includes:
  • the sending end device sends the first data signal to the receiving end device by using the first data stream by using the first frequency, and transmitting, by using the first frequency, the second data signal to the receiving end device by using the first data stream;
  • the second device sends the third data signal to the receiving device by using the first frequency by using the first frequency, and using the first frequency to pass the second data flow.
  • the receiving end device transmits a fourth data signal, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal is equal to a conjugate of the first data signal, the first data stream And the second data stream is used by the receiving end device to determine the first data signal and the second data signal.
  • the first column of the matrix may correspond to the data signal sent at the first moment
  • the second column corresponds to the data signal sent at the second moment, where the first moment is the same as the second moment.
  • the frequency the first frequency.
  • the transmission side apparatus by using a first frequency of a first data stream of the first data signal S 1, using a first transmit frequency via a second data stream of the second data signal S 2; after the first time
  • the transmitting device transmits the opposite of the conjugate of the second data signal through the first data stream by using the first frequency, that is, the third data signal Transmitting, by the first frequency, a conjugate of the first data signal through the second data stream, ie, the fourth data signal
  • the receiving end device parses out the first data signal and the second data signal according to the data signals sent at the two received times.
  • FIG. 3 shows a schematic flowchart of a method 200 for transmitting data according to another embodiment of the present invention.
  • the method 200 may be applied to a communication system including a receiving end.
  • the device and the transmitting device, the method 200 may be performed by the sending device.
  • the sending device may be a base station or a terminal, and the embodiment of the present invention is not limited thereto.
  • the method 200 includes:
  • the first device sends the first data signal to the receiving device by using the first data stream by using the first frequency, and sending, by using the first frequency, the second data signal to the receiving device by using the first frequency. ;
  • the sending end device sends a third data signal to the receiving end device by using the second frequency by using the second frequency, and sending, by using the second frequency, the second data stream to the receiving end device by using the second frequency a fourth data signal, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal, the first data stream and the second data stream being The first data signal and the second data signal are determined at the receiving end device.
  • the first column of the matrix may correspond to the first frequency
  • the second column corresponds to the second frequency
  • the data signals of the first column and the second column are sent at the same time, that is, Both are sent at the first moment.
  • the transmitting end device sends the first data signal S 1 on the first data stream by using the first frequency, and sends the second data signal S 2 on the second data stream by using the first frequency, using the second The frequency transmits the opposite of the conjugate of the second data signal S 2 on the first data stream, ie, the third data signal Transmitting, by the second frequency, a conjugate of the first data signal S 1 on the second data stream, ie, the fourth data signal.
  • the receiving end device parses the first data signal and the second data signal in the data stream according to the received data stream sent by different frequencies at the same time.
  • a symbol data signal S1 or S2 is transmitted, then, at a plurality of times or frequencies, data signals of a plurality of symbols are sequentially transmitted in time, and then The first data stream and the second data stream are composed.
  • the data signal of one symbol is transmitted, that is, the first data signal S 1 ; at the next moment of the first moment, that is, the second moment, the data signal of another symbol is transmitted, ie, Three data signals.
  • the first data stream is formed.
  • the first data stream and the second data stream may be mapped to the same transport block TB, or may be mapped to different TBs, and the embodiment of the present invention is not limited thereto.
  • the transmitting device is any one of the base stations and the receiving device is any one of the terminal devices
  • the first data stream and the second data stream sent by the base station to the terminal device can be mapped to the same or different TBs, and the corresponding terminal device Determining the first data signal and the second data signal according to the same or different TB
  • the transmitting end device is a base station
  • the receiving end device includes two terminal devices, respectively being the first terminal device and the second terminal device
  • the first The data stream and the second data stream are respectively mapped to two different TBs, that is, the first data stream is mapped to the first TB, and the second data stream is mapped to the second TB, and the base station sends the first TB to the first terminal device, respectively.
  • the foregoing method 100 and the method 200 may be used for the transmission process of the uplink data, that is, the source device may be the terminal device, and the corresponding receiver device may be the base station; or may be used for the downlink data transmission process. That is, the sending end device may be a base station, and the corresponding receiving end device may be a terminal device.
  • the sender device and the receiver device may refer to one or more devices.
  • the sender device may be a base station and include the first base station and the second base station.
  • the receiver device may be a terminal device, and the terminal device includes The first terminal device and the second terminal device.
  • the transmitting end device and the receiving end device transmit data by using the foregoing method, and in each transmission, the transmission mode adopted may be indicated by the indication information.
  • the uplink information transmission or the downlink data transmission process may send the indication information to the terminal device by using the base station, where the indication information may be physical layer signaling, such as Downlink Control Information (DCI), by using the indication.
  • DCI Downlink Control Information
  • the information indicating the transmission mode of the data transmission between the base station and the terminal device, the transmission mode may be the spatial diversity method of the method 100 or the method 200 in the embodiment of the present invention, or may also indicate the method of spatial division multiplexing using the prior art.
  • the first data signal is transmitted through the first data stream
  • the second data signal is transmitted through the second data stream
  • the embodiment of the present invention is not limited thereto.
  • the base station and the terminal device can be flexibly switched between different transmission modes by means of indicating the manner in which the terminal device transmits data.
  • the corresponding transmission mode can be selected according to the channel condition, and flexible switching can be implemented by using the indication information.
  • the transmitting end device is a base station
  • the base station includes a first base station and a second base station
  • the receiving end device is any one of the terminal devices, for example.
  • the data stream can be transmitted by the different base stations to the terminal device, that is, the first base station sends the first data stream to the terminal device, and the second base station sends the second data stream to the terminal device.
  • the method 100 at a first time, a first base station using a first frequency by a first data stream of the first data signal S. 1, the second base station using a first frequency transmitted by the second data stream of the second data signal S 2 ; at a second time after the first time, the first base station transmits the opposite of the conjugate of the second data signal through the first data stream by using the first frequency, that is, the third data signal Transmitting, by the second base station, the conjugate of the first data signal by using the second data stream, that is, the fourth data signal
  • the terminal device respectively receives the data streams sent from the two base stations, and the terminal device determines the first data signal and the second data signal according to the first data stream and the second data stream.
  • a first base station using a first frequency by a first data stream of the first data signal S. 1 the second base station using a first frequency transmitted by the second data stream of the second data signal S 2 , the first base station further transmits, by using the second frequency, the opposite of the conjugate of the second data signal S 2 through the first data stream, that is, the third data signal
  • the second base station transmits the conjugate of the first data signal S 1 on the second data stream by using the second frequency, that is, the fourth data signal
  • the terminal device respectively receives the data streams sent from the two base stations, and the terminal device determines the first data signal and the second data signal according to the first data stream and the second data stream.
  • the first data stream and the second data stream are sent by different base stations, which may be a manner in which the adjacent base station performs Coordinated Multiple Points Transmission/Reception (CoMP).
  • CoMP Coordinated Multiple Points Transmission/Reception
  • sending the first data stream and the second data stream by using different base stations may also be a way for neighboring base stations to implement soft handover.
  • the terminal device when the terminal device performs handover, it needs to disconnect the original base station first, and then establish contact with the target base station.
  • two base stations can simultaneously transmit data to the terminal device, and can implement spatial diversity, thereby improving the reliability of data transmission during the handover process.
  • the serving base station in the original base station and the target base station needs to send the indication information to the terminal device, and the indication information may instruct the terminal device to perform data transmission by using the method in the embodiment of the present invention.
  • the serving base station also needs to instruct the terminal device to terminate the mode in which the embodiment of the present invention is used, or can switch one of the data streams to the target base station by means of network cooperation.
  • the first base station acts as the original base station.
  • the second base station serving as the target base station, and transmitting the second data stream; when the terminal device has moved within the range of the target cell, that is, within the range of the second base station, the first data may be obtained by means of network cooperation
  • the flow also migrates to the second base station, so that the terminal device does not need to convert the data transmission manner, and after switching to the second base station, the second base station can continue to adopt the transmission method of the method 100 or the method 200 in the embodiment of the present invention.
  • Data transmission is performed with the terminal device, and data transmission may be performed by other methods in the prior art.
  • the embodiment of the present invention is not limited thereto.
  • the method for transmitting data transmits the first data stream and the second data stream carrying the first data signal and the second data signal by using the same frequency at different times, or at different times and at different times.
  • the frequency transmission carries the first data stream and the second data stream of the first data signal and the second data signal, which can improve the efficiency of data transmission.
  • FIG. 4 shows a schematic flowchart of a method 300 for transmitting data according to still another embodiment of the present invention.
  • the method 300 can be applied to a communication system including a receiving end device and a transmitting end device.
  • the method 300 It can be performed by the receiving device, and the receiving device can be a base station or a terminal device, and the embodiment of the present invention is not limited thereto.
  • the method 300 includes:
  • the receiving end device receives a first data signal that is sent by the sending end device by using the first frequency by using the first data stream, and a second data signal that is sent by using the first frequency by the second data stream.
  • the receiving end device receives a third data signal that is sent by the sending end device by using the first frequency by using the first data stream, and uses the first frequency to pass the second data.
  • a fourth data signal transmitted by the data stream wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal;
  • the receiving end device determines the first data signal and the second data signal according to the first data stream and the second data stream.
  • the method 300 corresponds to the method 100 in the embodiment of the present invention.
  • the method 300 may correspond to the step of executing the receiving device in the method 100, and details are not described herein again.
  • FIG. 5 shows a schematic flowchart of a method 400 for transmitting data according to still another embodiment of the present invention.
  • the method 400 can be applied to a communication system including a receiving device and a transmitting device. The method is not limited to the embodiment of the present invention.
  • the method 400 can be performed by the receiving device.
  • the receiving device can be a base station or a terminal device, and the embodiment of the present invention is not limited thereto.
  • the method 400 includes:
  • the receiving end device receives a first data signal that is sent by the sending end device by using the first frequency by using the first data stream, and a second data signal that is sent by using the first frequency by the second data stream.
  • the receiving end device receives a third data signal that is sent by the sending end device by using the second frequency by using the first data stream, and fourth that is sent by using the second frequency by using the second data stream.
  • a data signal wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal;
  • the receiving end device determines the first data signal and the second data signal according to the first data stream and the second data stream.
  • the method 400 corresponds to the method 200 in the embodiment of the present invention.
  • the method 400 may correspond to the step of executing the receiving device in the method 200, and details are not described herein again.
  • the first data stream and the second data stream are mapped onto the same TB.
  • the receiving end device is a base station, and the sending end device is a terminal device; or the receiving end device is a terminal device, and the sending end device is a base station.
  • the method further includes: the terminal device receiving the base station sending indication information, where the indication information is used to indicate a manner of transmitting a data signal between the terminal device and the base station.
  • the base station when the sending end device is the base station, the base station includes a first base station and a second base station, where the first base station is configured to send a data signal in the first data stream, where The second base station is configured to send the data signal in the second data stream.
  • the method for transmitting data transmits the first data stream and the second data stream carrying the first data signal and the second data signal by using the same frequency at different times, or at different times and at different times.
  • the frequency transmission carries the first data stream and the second data stream of the first data signal and the second data signal, which can improve the efficiency of data transmission.
  • FIG. 6 shows a schematic flowchart of a method 500 for transmitting data according to still another embodiment of the present invention.
  • the method 500 can be applied to a communication system including a transmitting device and at least one receiving device.
  • Method 500 can be performed by a transmitting device, in particular, the transmitting end
  • the device may be a base station or a terminal device, and the embodiment of the present invention is not limited thereto.
  • the method 500 includes:
  • the sending end device sends, to the at least one receiving end device, a first transporting block set, where the transporting block in the first transporting block set is mapped with the first data stream and the second data stream, the first data stream and the second data stream.
  • the stream is for transmitting a data signal, the data signal comprising a first data signal and a second data signal;
  • the sending end device sends a second transport block set to the receiving end device, where the transport block mapping in the second transport block set has a third data stream and a fourth data stream, the third data stream being for transmitting a third data signal, the third data signal being equal to an inverse of a conjugate of the second data signal, the fourth data stream being used for transmitting the fourth data a signal, the fourth data signal is equal to a conjugate of the first data signal, the second transport block set and the first transport block set are used by the at least one receiving end device to determine the first data signal and the second data signal .
  • the sending end device may transmit the first TB set by using a transmission manner in the prior art, that is, transmit the first data signal and the second data signal, for example, the sending end device may transmit the first data by using the first data stream.
  • a data signal the second data signal is transmitted through the second data stream, that is, the transmitting end device transmits the data signal by means of space division multiplexing, and correspondingly, the at least one receiving end device according to the received first data stream and the second data stream
  • the first TB set of the map parses out the first data signal and the second data signal.
  • the transmitting device can also transmit the first TB set by using the transmission method described in the method 100 or the method 200 in the embodiment of the present invention, that is, the transmission is performed.
  • the first data signal and the second data signal are transmitted at a first time.
  • the transmission side apparatus by using a first frequency of a first data stream of the first data signal S 1, using a first transmit frequency via a second data stream of the second data signal S 2; after the first time
  • the transmitting device transmits the opposite of the conjugate of the second data signal through the first data stream by using the first frequency, that is, the third data signal Transmitting, by the first frequency, a conjugate of the first data signal through the second data stream, ie, the fourth data signal
  • at least one receiving end device parses out the first data signal and the second data signal according to the data signals sent at the two received times.
  • the transmission side apparatus transmits a first data using a first frequency signal S 1 on the first data stream, second data transmission using a first frequency of the signal S 2 on the second data stream, using a second frequency Transmitting, on the first data stream, the inverse of the conjugate of the second data signal S 2 , ie, the third data signal Transmitting a conjugate of the first data signal S 1 on the second data stream using the second frequency, ie, the fourth data signal.
  • at least one receiving end device parses the first data signal and the second data signal in the data stream according to the received data stream transmitted by different frequencies at the same time.
  • the sending end device sends the first TB set to the at least one receiving end device
  • the first TB set may include one or more TBs
  • the second TB set may also include one or more TBs.
  • the first TB set includes only one TB, that is, the first TB, and the first data stream and the second data stream are mapped to the first TB
  • the second TB set includes only the second TB
  • the third The data stream and the fourth data stream are mapped to the second TB.
  • the at least one receiving end device includes a receiving end device.
  • the sending end device may be a base station, and the receiving end device may be a terminal device; or, for transmitting uplink data, the sending end device may be a terminal device, and the receiving end device may be a base station.
  • the sending end device sends a first TB to the receiving end device, and the first data stream and the second data stream are mapped on the first TB, and the receiving end device needs to retransmit the data signal when receiving the first TB error.
  • the transmitting device transmits a third data signal through the third data stream, the third data signal being equal to the opposite of the conjugate of the second data signal S 2 Transmitting, by the fourth data stream, a fourth data signal equal to the conjugate of the first data signal S 1
  • the third data stream and the fourth data stream are both mapped onto a second TB in the second TB set.
  • the receiving end device parses out the first data signal and the second data signal according to the first TB in which the error occurs and the second TB received after the retransmission.
  • the base station may send the indication information to the terminal device, where the indication information is used to indicate that the terminal device and the base station perform the method in the embodiment of the present invention.
  • Data signal retransmission when the TB needs to be retransmitted, the base station may send the indication information to the terminal device, where the indication information is used to indicate that the terminal device and the base station perform the method in the embodiment of the present invention.
  • the first TB set includes multiple TBs, where the first TB set includes the first TB and the second TB, and correspondingly, the second TB set includes the third TB and the fourth TB, where the at least one The receiving device can be one or two receiving devices.
  • the at least one receiving end device is a receiving end device, that is, the sending end device sends the first data stream and the second data stream to the receiving end device, where the first data stream and the second data stream are mapped to different TBs, that is, The first data stream is mapped onto the first TB and the second data stream is mapped onto the second TB.
  • the sending end device may be a base station, and the receiving end device may be a terminal device; or, for transmitting uplink data, the sending end device may be a terminal device, and the receiving end device may be a base station.
  • the transmitting device needs to resend the data signal to the receiving device, and corresponding to FIG. 2, the transmitting device passes the third data.
  • Streaming a third data signal equal to the inverse of the conjugate of the second data signal S 2 Transmitting, by the fourth data stream, a fourth data signal equal to the conjugate of the first data signal S 1
  • the third data stream is mapped onto a third TB in the second TB set, and the fourth data stream is mapped onto a fourth TB in the second TB set.
  • the receiving end device parses and obtains the first data signal and the second data signal according to the data signals on the data stream mapped in the first TB set and the second TB set.
  • the base station may send the indication information to the terminal device, where the indication information is used to indicate that the terminal device and the base station perform the method in the embodiment of the present invention.
  • Data signal retransmission when the TB needs to be retransmitted, the base station may send the indication information to the terminal device, where the indication information is used to indicate that the terminal device and the base station perform the method in the embodiment of the present invention.
  • the first TB set includes a first TB and a second TB
  • the second TB set includes a third TB and a fourth TB.
  • the at least one receiving end device may include two receiving end devices, for example, the transmitting end device is a base station, and the receiving end device includes a first terminal device and a second terminal device, that is, one base station sends data signals to the two terminal devices. .
  • the base station sends the first TB to the first terminal device, and sends the second TB to the second terminal device, where the first TB is mapped with the first data stream, and the second TB is mapped with the second data stream, the first data stream.
  • the second data stream is used to transmit the data signal, for example, the first data signal may be sent by using the first data stream, and the second data signal is sent by the second data stream, so that the first terminal acquires the first data signal, and the second terminal acquires The second data signal.
  • the base station needs to resend the data signal to the two terminal devices. Specifically, in the retransmission process, the base station sends a third TB to the first terminal device, where the third TB is mapped with a third data stream, where the third data stream is used to transmit a third data signal to the first terminal, where the third The data signal is equal to the opposite of the conjugate of the second data signal S 2
  • the base station wants the second terminal to send a fourth TB, where the fourth TB is mapped with a fourth data stream, where the fourth data stream is used to transmit a fourth data signal to the second terminal, where the fourth data signal is equal to the first data. Conjugation of signal S 1
  • the first terminal device acquires the first data signal according to the first TB and the third TB
  • the second terminal device acquires the second data signal according to the second TB and the fourth TB.
  • the base station may separately send indication information to the two terminal devices, where the indication information is used to indicate that the two terminal devices and the base station are used in the embodiment of the present invention.
  • the method of data signal retransmission is used to indicate that the two terminal devices and the base station are used in the embodiment of the present invention.
  • the transmitting device transmits the first data signal and the second data signal through the first TB set, and when the TB in the first TB set has an error, passes the TB in the second TB set. Transmitting a third data stream and a fourth data stream, wherein the third data stream transmits an inverse of the conjugate of the second data signal, and the fourth data stream transmits a conjugate of the first data signal to facilitate the receiving device according to the first
  • the TB set and the second TB set acquire the first data signal and the second data signal, and further improve the efficiency of data transmission by the above retransmission mode when an error occurs in data transmission.
  • FIG. 7 shows a schematic flowchart of a method 600 for transmitting data according to still another embodiment of the present invention.
  • the method 600 can be applied to a communication system including a transmitting device and at least one receiving device.
  • the method 600 may be performed by any one of the at least one receiving device, and the receiving device may be a base station or a terminal device, and the embodiment of the present invention is not limited thereto.
  • the method 600 includes:
  • the first receiving end device receives a first transport block set sent by the sending end device to the at least one receiving end device, where the transport block in the first transport block set is mapped with a first data stream and a second data stream, where The first data stream and the second data stream are used to transmit a data signal, where the data signal includes a first data signal and a second data signal, and the first receiving end device is any one of the at least one receiving end device;
  • the first receiving end device receives a second transport block set sent by the sending end device to the at least one receiving end device, where the second transport block set is in the second transport block set.
  • the transport block is mapped with a third data stream and a fourth data stream, the third data stream is for transmitting a third data signal, the third data signal being equal to the opposite of the conjugate of the second data signal, the fourth data stream being used for the fourth data stream Transmitting a fourth data signal, the fourth data signal being equal to a conjugate of the first data signal, the second transport block set and the first transport block set being used by the at least one receiving end device to determine the first data signal and The second data signal.
  • the first data stream is used to transmit the first data signal
  • the second data stream is used to transmit the second data signal
  • the first data stream is used to transmit the first data signal by using a first frequency and the third data signal by using a second frequency at a first time; the second data stream is used to adopt the first time at the first time The second data signal is transmitted at a frequency, and the fourth data signal is transmitted using the second frequency.
  • the first data stream is configured to transmit the first data signal by using a first frequency at a first time, and transmit the third data signal by using the first frequency at a second time; the second data stream is used for The first time uses the first frequency to transmit the second data signal, and the second time uses the first frequency to transmit the fourth data signal.
  • the first TB set includes a first TB, the first data stream and the second data stream are both mapped on the first TB, and the second TB set includes a second TB, the third data stream and The fourth data stream is mapped on the second TB.
  • the first TB set includes a first TB and a second TB, where the first data stream is mapped on the first TB, the second data stream is mapped on the second TB, and the second TB set includes The third TB and the fourth TB are mapped on the third TB, and the fourth data stream is mapped on the fourth TB.
  • the at least one receiving end device includes the first terminal device and the second terminal device, where the sending end device is a base station, and the first receiving end device receives the sending, by the sending end device, to the at least one receiving end device a TB set, comprising: the first terminal device receiving the first TB sent by the base station, the second TB being sent by the base station to the second terminal device; the first receiving end device receiving the sending end device to the at least The second TB set sent by the receiving end device includes: the first terminal device receives the third TB sent by the base station, and the fourth TB is sent by the base station to the second terminal device, the first TB and the first The third TB is used by the first terminal device to determine the first data signal, and the second TB and the fourth TB are used by the second terminal device to determine the second data signal.
  • the first receiving end device is a base station, and the sending end device is a terminal device; or the first receiving end device is a terminal device, and the sending end device is a base station.
  • the method further includes: receiving, by the terminal device, indication information sent by the base station, where the indication information is used to indicate a retransmission mode used by the terminal device when an TB transmission error occurs.
  • the method 600 corresponds to the method 500 in the embodiment of the present invention.
  • the method 600 may correspond to the step of performing the receiving device in the method 500, and details are not described herein again.
  • the receiving end device receives the first data signal and the second data signal that are transmitted by the sending end device through the first TB set, and when the TB in the first TB set has an error,
  • the TB of the two TB sets transmits a third data stream and a fourth data stream, wherein the third data stream transmits the opposite of the conjugate of the second data signal, and the fourth data stream transmits the conjugate of the first data signal to facilitate
  • the receiving end device acquires the first data signal and the second data signal according to the first TB set and the second TB set, so that when the data transmission error occurs, the data transmission efficiency is further improved by the above retransmission mode.
  • the transmitting device 700 includes:
  • the sending module 710 is configured to send, by using the first frequency, the first data signal to the receiving end device by using the first frequency, and sending, by using the first frequency, the second data signal to the receiving end device by using the first frequency,
  • the sending module 710 is further configured to: send, by using the first frequency, the third data signal to the receiving end device by using the first frequency at the second time after the first time, and adopting the second frequency by using the second frequency Transmitting, by the data stream, a fourth data signal to the receiving end device, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal, the first The data stream and the second data stream are used by the receiving end device to determine the first data signal and the second data signal;
  • the sending module 710 is configured to: send, by using the first frequency, the first data signal to the receiving end device by using the first frequency, and send the second data to the receiving end device by using the first frequency by using the first frequency signal,
  • the sending module 710 is further configured to: send, by using the second frequency, the third data signal to the receiving end device by using the second frequency, and use the second frequency to send the second data stream to the receiving end device by using the second frequency Transmitting a fourth data signal, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal, the first data stream and the second
  • the data stream is used by the receiving device to determine the first data signal and the second data signal.
  • the transmitting end device of the embodiment of the present invention transmits the first data stream and the second data stream carrying the first data signal and the second data signal to the receiving end device at different times and using the same frequency, or at the same time.
  • the first data stream and the second data stream carrying the first data signal and the second data signal are sent to the receiving end device by using different frequencies, which can improve the efficiency of data transmission.
  • the first data stream and the second data stream are mapped onto the same transport block.
  • the sending end device is a terminal device, and the receiving end device is a base station; or, the sending The end device is a base station, and the receiving end device is a terminal device.
  • the base station is configured to send indication information to the terminal device, where the indication information is used to indicate a manner of transmitting a data signal between the terminal device and the base station.
  • the base station when the sending end device is the base station, the base station includes a first base station and a second base station, where the first base station includes a first sending unit, the second base station includes a second sending unit, and the sending module 710 includes the a first sending unit, configured to send a data signal in the first data stream, and a second sending unit, configured to send a data signal in the second data stream.
  • the transmitting device 700 may correspond to the method 100 and the method 200 in the embodiment of the present invention, and the foregoing and other operations and/or functions of the respective modules in the transmitting device 700 are respectively implemented.
  • the corresponding processes of the sending end device in each method in FIG. 1 to FIG. 3 are not described herein for brevity.
  • the transmitting end device of the embodiment of the present invention transmits the first data stream and the second data stream carrying the first data signal and the second data signal to the receiving end device at different times and using the same frequency, or at the same time.
  • the first data stream and the second data stream carrying the first data signal and the second data signal are sent to the receiving end device by using different frequencies, which can improve the efficiency of data transmission.
  • the receiving end device 800 includes:
  • the receiving module 810 is configured to: at a first moment, receive a first data signal that is sent by the sending end device by using the first frequency by using the first data stream, and a second data signal that is sent by using the first frequency by the second data stream,
  • the receiving module 810 is further configured to: receive, at a second moment after the first moment, a third data signal sent by the sending end device by using the first frequency by using the first data stream, and adopting the first frequency to pass the a fourth data signal transmitted by the second data stream, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal,
  • a determining module 820 configured to determine the first data signal and the second data signal according to the first data stream and the second data stream;
  • the receiving module 810 is configured to: receive, at a first moment, a first data signal that is sent by the sending end device by using the first frequency by using the first data stream, and send the second data stream by using the first frequency The second data signal sent,
  • the receiving module 810 is further configured to: receive, at the first moment, a third data signal that is sent by the sending end device by using the second frequency by using the first data stream, and send the second data stream by using the second frequency a fourth data signal, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal,
  • the determining module 820 is configured to determine the first data signal and the second data signal according to the first data stream and the second data stream.
  • the receiving end device of the embodiment of the present invention receives the first data stream and the second data stream carrying the first data signal and the second data signal by using the same frequency at different times, or at the same time. At the moment, the first data stream and the second data stream carrying the first data signal and the second data signal transmitted at different frequencies can improve the efficiency of data transmission.
  • the first data stream and the second data stream are mapped onto the same transport block.
  • the receiving end device is a base station, and the sending end device is a terminal device; or the receiving end device is a terminal device, and the sending end device is a base station.
  • the terminal device is configured to receive the base station sending indication information, where the indication information is used to indicate a manner in which the data signal is transmitted between the terminal device and the base station.
  • the base station when the sending end device is the base station, the base station includes a first base station and a second base station, where the first base station is configured to send a data signal in the first data stream, and the second base station is configured to send the The data signal in the second data stream.
  • the receiving end device 800 may correspond to the method 300 and the method 400 in the embodiments of the present invention, and the above and other operations and/or functions of the respective modules in the receiving end device 800 are respectively implemented.
  • the corresponding processes of the receiving end devices in the respective methods in FIG. 4 to FIG. 5 are not described herein for brevity.
  • the receiving end device of the embodiment of the present invention receives the first data stream and the second data stream carrying the first data signal and the second data signal by using the same frequency at different times, or at the same time. At the moment, the first data stream and the second data stream carrying the first data signal and the second data signal transmitted at different frequencies can improve the efficiency of data transmission.
  • a transmitting device 900 includes:
  • the first sending module 910 is configured to send, to the at least one receiving end device, a first transport block set, where the transport block in the first transport block set is mapped with a first data stream and a second data stream, the first data stream and the The second data stream is for transmitting a data signal, the data signal including the first data signal and the second Data signal
  • the second sending module 920 is configured to: when the transport block in the first transport block set transmits an error, send a second transport block set to the at least one receiving end device, where the transport block mapping in the second transport block set has a a third data stream and a fourth data stream, the third data stream being for transmitting a third data signal, the third data signal being equal to an inverse of a conjugate of the second data signal, the fourth data stream being used for transmitting a fourth data signal
  • the fourth data signal is equal to the conjugate of the first data signal, and the second transport block set and the first transport block set are used by the at least one receiving end device to determine the first data signal and the second data signal.
  • the transmitting end device of the embodiment of the present invention transmits the first data signal and the second data signal through the first TB set, and when the TB in the first TB set has an error, transmits the third data through the TB in the second TB set.
  • a fourth data stream wherein the third data stream transmits an inverse of the conjugate of the second data signal, and the fourth data stream transmits a conjugate of the first data signal to facilitate the receiving device according to the first TB set and the
  • the two TB sets acquire the first data signal and the second data signal, and further improve the efficiency of data transmission by the above retransmission mode when an error occurs in data transmission.
  • the first data stream is used to transmit the first data signal
  • the second data stream is used to transmit the second data signal
  • the first data stream is used to transmit the first data signal by using a first frequency and the third data signal by using a second frequency at a first time; the second data stream is used to adopt the first time at the first time The second data signal is transmitted at a frequency, and the fourth data signal is transmitted using the second frequency.
  • the first data stream is configured to transmit the first data signal by using a first frequency at a first time, and transmit the third data signal by using the first frequency at a second time; the second data stream is used in the first The second data signal is transmitted at the first frequency and the fourth data signal is transmitted at the second time.
  • the first transport block set includes a first transport block, the first data stream and the second data stream are both mapped on the first transport block, and the second transport block set includes a second transport block, where The third data stream and the fourth data stream are both mapped on the second transport block.
  • the first transport block set includes a first transport block and a second transport block, the first data stream is mapped on the first transport block, and the second data stream is mapped on the second transport block, where
  • the second transport block set includes a third transport block and a fourth transport block, the third data stream is mapped on the third transport block, and the fourth data stream is mapped on the fourth transport block.
  • the sending end device is a base station, and the at least one receiving end device includes a first terminal set And the second sending device, the first sending module 910 is specifically configured to: send the first transport block to the first terminal device, and send the second transport block to the second terminal device; the second sending module 920 Specifically, the method is: sending the third transport block to the first terminal device, and sending the fourth transport block to the second terminal device, where the first transport block and the third transport block are used by the first terminal device to determine The first data signal, the second transport block and the fourth transport block are used by the second terminal device to determine the second data signal.
  • the sending end device is a terminal device, and the at least one receiving end device is a base station; or the sending end device is a base station, and the at least one receiving end device is a terminal device.
  • the base station is configured to send, to the terminal device, indication information, where the indication information is used to indicate a retransmission mode used by the terminal device when a transmission block transmission error occurs.
  • the transmitting device 900 may correspond to the method 500 in the embodiment of the present invention, and the foregoing and other operations and/or functions of the respective modules in the transmitting device 900 are respectively implemented in FIG. The corresponding process of the sending end device in each method is not repeated here for brevity.
  • the transmitting end device of the embodiment of the present invention transmits the first data signal and the second data signal through the first TB set, and when the TB in the first TB set has an error, transmits the third data through the TB in the second TB set.
  • a fourth data stream wherein the third data stream transmits an inverse of the conjugate of the second data signal, and the fourth data stream transmits a conjugate of the first data signal to facilitate the receiving device according to the first TB set and the
  • the two TB sets acquire the first data signal and the second data signal, and further improve the efficiency of data transmission by the above retransmission mode when an error occurs in data transmission.
  • FIG. 11 shows a schematic block diagram of a receiving end device 1000, which is located in a communication system, including a transmitting end device and at least one receiving end device, the receiving end device, according to another embodiment of the present invention. 1000 is any one of the at least one receiving end device. As shown in FIG. 11, the receiving end device 1000 includes:
  • the first receiving module 1010 is configured to receive a first transport block set sent by the sending end device to the at least one receiving end device, where the transport block in the first transport block set is mapped with the first data stream and the second data stream, The first data stream and the second data stream are for transmitting a data signal, the data signal comprising a first data signal and a second data signal;
  • the second receiving module 1020 is configured to: when the transport block in the first transport block set transmits an error, receive a second transport block set sent by the sending end device to the at least one receiving end device, where the second transport block set is in the second transport block set
  • the transport block map has a third data stream and a fourth data stream, and the third data stream is used for Transmitting a third data signal equal to an inverse of a conjugate of the second data signal, the fourth data stream for transmitting a fourth data signal, the fourth data signal being equal to a conjugate of the first data signal
  • the second transport block set and the first transport block set are used by the at least one receiving end device to determine the first data signal and the second data signal.
  • the receiving end device of the embodiment of the present invention receives the first data signal and the second data signal transmitted by the transmitting end device through the first TB set, and when the TB in the first TB set has an error, passes through the second TB set.
  • the TB transmits a third data stream and a fourth data stream, wherein the third data stream transmits the opposite of the conjugate of the second data signal, and the fourth data stream transmits the conjugate of the first data signal to facilitate the receiving end device And acquiring the first data signal and the second data signal according to the first TB set and the second TB set, so that when an error occurs in the data transmission, the efficiency of data transmission is further improved by the above retransmission manner.
  • the first data stream is used to transmit the first data signal
  • the second data stream is used to transmit the second data signal
  • the first data stream is used to transmit the first data signal by using a first frequency and the third data signal by using a second frequency at a first time; the second data stream is used to adopt the first time at the first time The second data signal is transmitted at a frequency, and the fourth data signal is transmitted using the second frequency.
  • the first data stream is configured to transmit the first data signal by using a first frequency at a first time, and transmit the third data signal by using the first frequency at a second time; the second data stream is used in the first The second data signal is transmitted at the first frequency and the fourth data signal is transmitted at the second time.
  • the first transport block set includes a first transport block, the first data stream and the second data stream are both mapped on the first transport block, and the second transport block set includes a second transport block, where The third data stream and the fourth data stream are both mapped on the second transport block.
  • the first transport block set includes a first transport block and a second transport block, the first data stream is mapped on the first transport block, and the second data stream is mapped on the second transport block, where
  • the second transport block set includes a third transport block and a fourth transport block, the third data stream is mapped on the third transport block, and the fourth data stream is mapped on the fourth transport block.
  • the at least one receiving end device includes the first terminal device and the second terminal device, where the sending end device is a base station, and the first receiving module 1010 is specifically configured to: receive the first transport block sent by the base station, The second transport block is sent by the base station to the second terminal device; the second receiving module 1020 is specifically configured to: receive the third transport block sent by the base station, where the fourth transport block is configured by Sending, by the base station, the second terminal device, the first transport block and the third transport block are used by the first terminal device to determine the first data signal, where the second transport block and the fourth transport block are used for the first The second terminal device determines the second data signal.
  • the receiving end device is a base station, and the sending end device is a terminal device; or the receiving end device is a terminal device, and the sending end device is a base station.
  • the terminal device is configured to receive the indication information sent by the base station, where the indication information is used to indicate a retransmission mode used by the terminal device when an error occurs in the transmission block transmission.
  • the receiving end device 1000 may correspond to the method 600 in the embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the receiving end device 1000 are respectively implemented in FIG. 7 .
  • the corresponding processes of the receiving end devices in the respective methods are not described herein for the sake of brevity.
  • the receiving end device of the embodiment of the present invention receives the first data signal and the second data signal transmitted by the transmitting end device through the first TB set, and when the TB in the first TB set has an error, passes through the second TB set.
  • the TB transmits a third data stream and a fourth data stream, wherein the third data stream transmits the opposite of the conjugate of the second data signal, and the fourth data stream transmits the conjugate of the first data signal to facilitate the receiving end device And acquiring the first data signal and the second data signal according to the first TB set and the second TB set, so that when an error occurs in the data transmission, the efficiency of data transmission is further improved by the above retransmission manner.
  • FIG. 12 shows a schematic block diagram of a transmitting device 1100 according to still another embodiment of the present invention.
  • the transmitting device 1100 includes a processor 1110 and a transceiver 1120, and a processor 1110 and a transceiver 1120.
  • the source device 1100 further includes a memory 1130.
  • the memory 1130 is coupled to the processor 1110.
  • the source device 1100 includes a bus system 1140.
  • the processor 1110, the memory 1130, and the transceiver 1120 may be connected by a bus system 1140, where the memory 1130 may be used to store instructions, and the processor 1110 is configured to execute instructions stored by the memory 1130 to control the transceiver 1120 to send information or signal,
  • the transceiver 1120 is configured to send, by using the first frequency, the first data signal to the receiving end device by using the first frequency, and transmitting, by using the first frequency, the second data signal to the receiving end device by using the first frequency ,
  • the transceiver 1120 is further configured to: send, by using the first frequency, the third data signal to the receiving end device by using the first frequency at a second time after the first time, and adopting the second frequency by using the second frequency
  • the data stream sends a fourth data signal to the receiving device, where the third data signal a number equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal, the first data stream and the second data stream being used by the receiving device to determine the first data a signal and the second data signal;
  • the transceiver 1120 is configured to: send, by using a first frequency, a first data signal to the receiving end device by using the first frequency, and send the second data to the receiving end device by using the first frequency by using the first frequency signal,
  • the transceiver 1120 is further configured to: send, by using the second frequency, the third data signal to the receiving end device by using the second frequency, and use the second frequency to send the second data stream to the receiving end device by using the second frequency Transmitting a fourth data signal, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal, the first data stream and the second
  • the data stream is used by the receiving device to determine the first data signal and the second data signal.
  • the transmitting end device of the embodiment of the present invention transmits the first data stream and the second data stream carrying the first data signal and the second data signal to the receiving end device at different times and using the same frequency, or at the same time.
  • the first data stream and the second data stream carrying the first data signal and the second data signal are sent to the receiving end device by using different frequencies, which can improve the efficiency of data transmission.
  • the first data stream and the second data stream are mapped onto the same transport block.
  • the sending end device is a terminal device, and the receiving end device is a base station; or the sending end device is a base station, and the receiving end device is a terminal device.
  • the base station is configured to send indication information to the terminal device, where the indication information is used to indicate a manner of transmitting a data signal between the terminal device and the base station.
  • the base station when the sending end device is the base station, the base station includes a first base station and a second base station, where the first base station includes a first sending unit, and the second base station includes a second sending unit, where the transceiver 1120 includes the a first sending unit, configured to send a data signal in the first data stream, and a second sending unit, configured to send a data signal in the second data stream.
  • the source device 1100 may correspond to the sender device 700 in the embodiment of the present invention, and may correspond to executing the corresponding body in the method 100 and the method 200 according to the embodiment of the present invention, and send The above and other operations of the various modules in the end device 1100
  • the corresponding processes of the respective methods in FIG. 1 to FIG. 3 are respectively implemented for the sake of brevity, and are not described herein again for brevity.
  • the transmitting end device of the embodiment of the present invention transmits the first data stream and the second data stream carrying the first data signal and the second data signal to the receiving end device at different times and using the same frequency, or at the same time.
  • the first data stream and the second data stream carrying the first data signal and the second data signal are sent to the receiving end device by using different frequencies, which can improve the efficiency of data transmission.
  • FIG. 13 shows a schematic block diagram of a receiving end device 1200 according to still another embodiment of the present invention.
  • the receiving end device 1200 includes a processor 1210 and a transceiver 1220, and a processor 1210 and a transceiver 1220.
  • the receiving device 1200 further includes a memory 1230 that is coupled to the processor 1210.
  • the receiving device 1200 includes a bus system 1240.
  • the processor 1210, the memory 1230, and the transceiver 1220 can be connected by a bus system 1240.
  • the memory 1230 can be used to store instructions for executing the instructions stored by the memory 1230 to control the transceiver 1220 to send information or signal,
  • the transceiver 1220 is configured to: at a first moment, receive a first data signal that is sent by the sending end device by using the first frequency by using the first data stream, and a second data signal that is sent by using the first frequency by the second data stream,
  • the transceiver 1220 is further configured to: receive, at a second moment after the first moment, a third data signal sent by the sending end device by using the first frequency by using the first data stream, and adopting the first frequency to pass the a fourth data signal transmitted by the second data stream, wherein the third data signal is equal to an inverse of a conjugate of the second data signal, the fourth data signal being equal to a conjugate of the first data signal,
  • the processor 1210 is configured to determine the first data signal and the second data signal according to the first data stream and the second data stream;
  • the transceiver 1220 is configured to receive, at a first moment, a first data signal that is sent by the sending end device by using the first frequency by using the first data stream, and a second data signal that is sent by using the first frequency by the second data stream.
  • the transceiver 1220 is further configured to: receive, at the first moment, a third data signal that is sent by the sending end device by using the second frequency by using the first data stream, and send the second data stream by using the second frequency a fourth data signal, wherein the third data signal is equal to the second data signal The opposite of the conjugate, the fourth data signal being equal to the conjugate of the first data signal,
  • the processor 1210 is configured to: determine the first data signal and the second data signal according to the first data stream and the second data stream.
  • the receiving end device of the embodiment of the present invention receives the first data stream and the second data stream carrying the first data signal and the second data signal by using the same frequency at different times, or at the same time. At the moment, the first data stream and the second data stream carrying the first data signal and the second data signal transmitted at different frequencies can improve the efficiency of data transmission.
  • the first data stream and the second data stream are mapped onto the same transport block.
  • the receiving end device is a base station, and the sending end device is a terminal device; or the receiving end device is a terminal device, and the sending end device is a base station.
  • the terminal device is configured to receive the base station sending indication information, where the indication information is used to indicate a manner in which the data signal is transmitted between the terminal device and the base station.
  • the base station when the sending end device is the base station, the base station includes a first base station and a second base station, where the first base station is configured to send a data signal in the first data stream, and the second base station is configured to send the The data signal in the second data stream.
  • the receiving end device 1200 may correspond to the receiving end device 800 in the embodiment of the present invention, and may correspond to executing the corresponding body in the method 300 and the method 400 according to the embodiment of the present invention, and receiving
  • the foregoing and other operations and/or functions of the respective modules in the end device 1200 are respectively implemented in order to implement the respective processes of the respective methods in FIG. 4 to FIG. 5, and are not described herein again for brevity.
  • the receiving end device of the embodiment of the present invention receives the first data stream and the second data stream carrying the first data signal and the second data signal, which are transmitted by the transmitting end device at different times and using the same frequency, or are the same.
  • the first data stream and the second data stream carrying the first data signal and the second data signal transmitted at different frequencies can improve the efficiency of data transmission.
  • FIG. 14 shows a schematic block diagram of a transmitting device 1300 according to still another embodiment of the present invention.
  • the transmitting device 1300 includes a processor 1310 and a transceiver 1320, and a processor 1310 and a transceiver 1320.
  • the source device 1300 further includes a memory 1330 that is coupled to the processor 1310.
  • the source device 1300 includes a bus system 1340.
  • the processor 1310, the memory 1330, and the transceiver 1320 can be connected by a bus system 1340.
  • the memory 1330 can be used to store instructions for executing the instructions stored by the memory 1330 to control the transceiver 1320 to send information or Signal,
  • the transceiver 1320 is configured to send, to the at least one receiving end device, a first transport block set, where the transport block in the first transport block set is mapped with a first data stream and a second data stream, the first data stream and the first data stream
  • the second data stream is for transmitting a data signal, the data signal comprising a first data signal and a second data signal; when the transport block in the first transport block set transmits an error, transmitting the second transport block set to the at least one receiving end device
  • the transport block in the second set of transport blocks is mapped with a third data stream and a fourth data stream, the third data stream being used for transmitting a third data signal, the third data signal being equal to the conjugate of the second data signal
  • the fourth data stream is for transmitting a fourth data signal, the fourth data signal is equal to a conjugate of the first data signal, and the second transport block set and the first transport block set are used for the at least one receiving end
  • the device determines the first data signal and the second data signal.
  • the transmitting end device of the embodiment of the present invention transmits the first data signal and the second data signal through the first TB set, and when the TB in the first TB set has an error, transmits the third data through the TB in the second TB set.
  • a fourth data stream wherein the third data stream transmits an inverse of the conjugate of the second data signal, and the fourth data stream transmits a conjugate of the first data signal to facilitate the receiving device according to the first TB set and the
  • the two TB sets acquire the first data signal and the second data signal, and further improve the efficiency of data transmission by the above retransmission mode when an error occurs in data transmission.
  • the first data stream is used to transmit the first data signal
  • the second data stream is used to transmit the second data signal
  • the first data stream is used to transmit the first data signal by using a first frequency and the third data signal by using a second frequency at a first time; the second data stream is used to adopt the first time at the first time The second data signal is transmitted at a frequency, and the fourth data signal is transmitted using the second frequency.
  • the first data stream is configured to transmit the first data signal by using a first frequency at a first time, and transmit the third data signal by using the first frequency at a second time; the second data stream is used in the first The second data signal is transmitted at the first frequency and the fourth data signal is transmitted at the second time.
  • the first transport block set includes a first transport block, the first data stream and the second data stream are both mapped on the first transport block, and the second transport block set includes a second transport block, where The third data stream and the fourth data stream are both mapped on the second transport block.
  • the first transport block set includes a first transport block and a second transport block, the first data stream is mapped on the first transport block, and the second data stream is mapped on the second transport block, where
  • the second transport block set includes a third transport block and a fourth transport block, the third data stream is mapped on the third transport block, and the fourth data stream is mapped on the fourth transport block.
  • the sending end device is a base station
  • the at least one receiving end device includes a first terminal device and a second terminal device
  • the transceiver 1320 is specifically configured to: send the first transport block to the first terminal device, and Transmitting the second transport block to the second terminal device; transmitting the third transport block to the first terminal device, and transmitting the fourth transport block to the second terminal device, the first transport block and the third transmission
  • the block is used by the first terminal device to determine the first data signal
  • the second transport block and the fourth transport block are used by the second terminal device to determine the second data signal.
  • the sending end device is a terminal device, and the at least one receiving end device is a base station; or the sending end device is a base station, and the at least one receiving end device is a terminal device.
  • the base station is configured to send, to the terminal device, indication information, where the indication information is used to indicate a retransmission mode used by the terminal device when a transmission block transmission error occurs.
  • the source device 1300 may correspond to the sender device 900 in the embodiment of the present invention, and may correspond to the corresponding body in the method 500 according to the embodiment of the present invention, and the sender device 1300
  • the above-mentioned and other operations and/or functions of the respective modules in order to implement the corresponding processes of the respective methods in FIG. 6 are omitted for brevity.
  • the transmitting end device of the embodiment of the present invention transmits the first data signal and the second data signal through the first TB set, and when the TB in the first TB set has an error, transmits the third data through the TB in the second TB set.
  • a fourth data stream wherein the third data stream transmits an inverse of the conjugate of the second data signal, and the fourth data stream transmits a conjugate of the first data signal to facilitate the receiving device according to the first TB set and the
  • the two TB sets acquire the first data signal and the second data signal, and further improve the efficiency of data transmission by the above retransmission mode when an error occurs in data transmission.
  • FIG. 15 shows a schematic block diagram of a receiving end device 1400 in a communication system including a transmitting end device and at least one receiving end device, the receiving end device according to still another embodiment of the present invention.
  • 1400 is any one of the at least one receiving end device.
  • the receiving end device 1400 includes: a processor 1410 and a transceiver 1420.
  • the processor 1410 is connected to the transceiver 1420.
  • the The sink device 1400 also includes a memory 1430 that is coupled to the processor 1410. Further optionally, the sink device 1400 includes a bus system 1440.
  • the processor 1410, the memory 1430, and the transceiver 1420 can be connected by a bus system 1440, which can be used to store instructions, and the processor 1410 is configured to execute instructions stored by the memory 1430 to control the transceiver 1420 to send information or signal,
  • the transceiver 1420 is configured to receive, by the sending end device, the sending device to the at least one receiving end device a first transport block set, the transport block in the first transport block set being mapped with a first data stream and a second data stream, the first data stream and the second data stream being used for transmitting a data signal, the data signal including the first a data signal and a second data signal; when the transport block in the first transport block set transmits an error, receiving a second transport block set sent by the sending end device to the at least one receiving end device, where the second transport block set is The transport block is mapped with a third data stream and a fourth data stream, the third data stream is for transmitting a third data signal, the third data signal being equal to the opposite of the conjugate of the second data signal, the fourth data stream being used for the fourth data stream Transmitting a fourth data signal, the fourth data signal being equal to a conjugate of the first data signal, the second transport block set and the first transport block set being used by the at least one receiving end device to determine the
  • the receiving end device of the embodiment of the present invention receives the first data signal and the second data signal transmitted by the transmitting end device through the first TB set, and when the TB in the first TB set has an error, passes through the second TB set.
  • the TB transmits a third data stream and a fourth data stream, wherein the third data stream transmits the opposite of the conjugate of the second data signal, and the fourth data stream transmits the conjugate of the first data signal to facilitate the receiving end device And acquiring the first data signal and the second data signal according to the first TB set and the second TB set, so that when an error occurs in the data transmission, the efficiency of data transmission is further improved by the above retransmission manner.
  • the first data stream is used to transmit the first data signal
  • the second data stream is used to transmit the second data signal
  • the first data stream is used to transmit the first data signal by using a first frequency and the third data signal by using a second frequency at a first time; the second data stream is used to adopt the first time at the first time The second data signal is transmitted at a frequency, and the fourth data signal is transmitted using the second frequency.
  • the first data stream is configured to transmit the first data signal by using a first frequency at a first time, and transmit the third data signal by using the first frequency at a second time; the second data stream is used in the first The second data signal is transmitted at the first frequency and the fourth data signal is transmitted at the second time.
  • the first transport block set includes a first transport block, the first data stream and the second data stream are both mapped on the first transport block, and the second transport block set includes a second transport block, where The third data stream and the fourth data stream are both mapped on the second transport block.
  • the first transport block set includes a first transport block and a second transport block, the first data stream is mapped on the first transport block, and the second data stream is mapped on the second transport block, where
  • the second transport block set includes a third transport block and a fourth transport block, and the third data stream is mapped to the third transport block The fourth data stream is mapped on the fourth transport block.
  • the at least one receiving end device includes the first terminal device and the second terminal device, where the sending end device is a base station, and the transceiver 1420 is specifically configured to: receive the first transport block sent by the base station, where the The second transport block is sent by the base station to the second terminal device; the third transport block sent by the base station is received, and the fourth transport block is sent by the base station to the second terminal device, where the first transport block and the first transport block
  • the third transport block is used by the first terminal device to determine the first data signal
  • the second transport block and the fourth transport block are used by the second terminal device to determine the second data signal.
  • the receiving end device is a base station, and the sending end device is a terminal device; or the receiving end device is a terminal device, and the sending end device is a base station.
  • the terminal device is configured to receive the indication information sent by the base station, where the indication information is used to indicate a retransmission mode used by the terminal device when an error occurs in the transmission block transmission.
  • the receiving end device 1400 may correspond to the receiving end device 1000 in the embodiment of the present invention, and may correspond to executing a corresponding body in the method 600 according to an embodiment of the present invention, and the receiving end device 1400
  • the above-mentioned and other operations and/or functions of the respective modules in order to implement the corresponding processes of the respective methods in FIG. 7 are omitted for brevity.
  • the receiving end device of the embodiment of the present invention receives the first data signal and the second data signal transmitted by the transmitting end device through the first TB set, and when the TB in the first TB set has an error, passes through the second TB set.
  • the TB transmits a third data stream and a fourth data stream, wherein the third data stream transmits the opposite of the conjugate of the second data signal, and the fourth data stream transmits the conjugate of the first data signal to facilitate the receiving end device And acquiring the first data signal and the second data signal according to the first TB set and the second TB set, so that when an error occurs in the data transmission, the efficiency of data transmission is further improved by the above retransmission manner.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及传输数据的方法、接收端设备和发送端设备。该方法包括:向至少一个接收端设备发送映射有第一数据流和第二数据流的第一TB集合,该第一数据流和该第二数据流用于传输第一数据信号和第二数据信号;当该第一TB集合中的TB传输错误时,向该至少一个接收端设备发送映射有第三数据流和第四数据流的第二TB集合,该第三数据流传输的第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流传输的第四数据信号等于该第一数据信号的共轭,该第二TB集合和该第一TB集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。本发明实施例的传输数据的方法、接收端设备和发送端设备,能够提高数据传输的效率。

Description

传输数据的方法、接收端设备和发送端设备 技术领域
本发明涉及通信领域,尤其涉及传输数据的方法、接收端设备和发送端设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,可以利用多天线技术进行空分复用,以提高频谱利用率。例如,天线1和天线2分别传输数据信号S1和S2,并且使用相同的时间和频率资源。接收端通过各种算法,譬如,串行干扰消除(Serial Interference Cancellation,SIC),可以恢复出S1和S2。在这个例子中,S1和S2也可以是由不同的波束发出,波束是由多天线经由波束赋形形成。
在LTE中,不同的波束可以对应不同的数据流(layer),不同的数据流可以映射到相同或不同的传输块(Transmission block,TB)上,而信道编码是以TB为单位的。接收端可以根据不同的映射方式,采用各种接收机恢复出S1和S2,例如,可以采用SIC接收机,或者,干扰抑制合并(Interference Rejection Combining,IRC)接收机。由于S1和S2在发射时是采用相同的时间和频率资源,各种接收机的核心是如何消除含有S1的数据流和含有S2的数据流间的相互干扰。
在LTE的空分复用中,由于传输S1和S2的数据流相互干扰,容易造成接收端设备出现错误的情况。
发明内容
本申请提供了一种传输数据的方法、发送端设备和接收端设备,能够提高数据传输的效率。
第一方面,提供了一种传输数据的方法,该方法包括:在第一时刻,发送端设备采用第一频率通过第一数据流向接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号,在该第一时刻之后的第二时刻,该发送端设备采用该第一频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第一频率通过该第二数据流向该 接收端设备发送第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号;或
在第一时刻,该发送端设备采用第一频率通过第一数据流向该接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号,在该第一时刻,该发送端设备采用第二频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第二频率通过该第二数据流向该接收端设备发送第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号。
因此,本申请实施例的传输数据的方法,通过在不同时刻、采用相同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
结合第一方面,在第一方面的一种实现方式中,该第一数据流和该第二数据流映射到相同传输块上。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该发送端设备为终端设备,该接收端设备为基站;或,该发送端设备为基站,该接收端设备为终端设备。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该方法还包括:该基站向该终端设备发送指示信息,该指示信息用于指示该终端设备与该基站之间传输数据信号的方式。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该发送端设备为该基站时,该基站包括第一基站和第二基站,该第一基站用于发送该第一数据流中的数据信号,该第二基站用于发送该第二数据流中的数据信号。
第二方面,提供了一种传输数据的方法,该方法包括:在第一时刻,接收端设备接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发送的第二数据信号,在该第一时 刻之后的第二时刻,该接收端设备接收该发送端设备采用该第一频率通过该第一数据流发送的第三数据信号,以及采用该第一频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该接收端设备根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号;或
在第一时刻,接收端设备接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发送的第二数据信号,在该第一时刻,该接收端设备接收该发送端设备采用第二频率通过该第一数据流发送的第三数据信号,以及采用该第二频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该接收端设备根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号。
因此,本申请实施例的传输数据的方法,通过在不同时刻、采用相同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
结合第二方面,在第二方面的一种实现方式中,该第一数据流和该第二数据流映射到相同传输块上。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该接收端设备为基站,该发送端设备为终端设备;或,该接收端设备为终端设备,该发送端设备为基站。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该方法还包括:该终端设备接收该基站发送指示信息,该指示信息用于指示该终端设备与该基站之间传输数据信号的方式。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该发送端设备为该基站时,该基站包括第一基站和第二基站,该第一基站用于发送该第一数据流中的数据信号,该第二基站用于发送该第二数据流中的数据信号。
第三方面,提供了一种传输数据的方法,该方法包括:发送端设备向至少一个接收端设备发送第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信 号,该数据信号包括第一数据信号和第二数据信号;当该第一传输块集合中的传输块传输错误时,该发送端设备向该至少一个接收端设备发送第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
因此,本申请实施例的传输数据的方法,发送端设备通过第一TB集合传输第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
结合第三方面,在第三方面的一种实现方式中,该第一数据流用于传输该第一数据信号,该第二数据流用于传输该第二数据信号。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、采用第二频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、采用该第二频率传输该第四数据信号。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、在第二时刻采用该第一频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、在该第二时刻采用该第一频率传输该第四数据信号。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,该第一传输块集合包括第一传输块,该第一数据流和该第二数据流均映射在该第一传输块上,该第二传输块集合包括第二传输块,该第三数据流和该第四数据流均映射在该第二传输块上。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,该第一传输块集合包括第一传输块和第二传输块,该第一数据流映射在该第一 传输块上,该第二数据流映射在该第二传输块上,该第二传输块集合包括第三传输块和第四传输块,该第三数据流映射在该第三传输块上,该第四数据流映射在该第四传输块上。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,该发送端设备为基站,该至少一个接收端设备包括第一终端设备和第二终端设备,发送端设备向至少一个接收端设备发送第一传输块集合,包括:该基站向该第一终端设备发送该第一传输块,且向该第二终端设备发送该第二传输块;该发送端设备向该至少一个接收端设备发送第二传输块集合,包括:该基站向该第一终端设备发送该第三传输块,且向该第二终端设备发送该第四传输块,该第一传输块和该第三传输块用于该第一终端设备确定该第一数据信号,该第二传输块和该第四传输块用于该第二终端设备确定该第二数据信号。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,该发送端设备为终端设备,该至少一个接收端设备为基站;或,该发送端设备为基站,该至少一个接收端设备为终端设备。
结合第三方面及其上述实现方式,在第三方面的另一种实现方式中,该方法还包括:该基站向该终端设备发送指示信息,该指示信息用于指示该终端设备在传输块传输发生错误时采用的重传方式。
第四方面,提供了一种传输数据的方法,该方法应用于通信系统中,该通信系统包括发送端设备和至少一个接收端设备,该方法包括:第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信号,该数据信号包括第一数据信号和第二数据信号,该第一接收端设备为该至少一个接收端设备中任意一个接收端设备;当该第一传输块集合中的传输块传输错误时,该第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
因此,本申请实施例的传输数据的方法,接收端设备接收发送端设备通过第一TB集合传输的第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,再通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,使得在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
结合第四方面,在第四方面的一种实现方式中,该第一数据流用于传输该第一数据信号,该第二数据流用于传输该第二数据信号。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、采用第二频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、采用该第二频率传输该第四数据信号。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、在第二时刻采用该第一频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、在该第二时刻采用该第一频率传输该第四数据信号。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,该第一传输块集合包括第一传输块,该第一数据流和该第二数据流均映射在该第一传输块上,该第二传输块集合包括第二传输块,该第三数据流和该第四数据流均映射在该第二传输块上。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,该第一传输块集合包括第一传输块和第二传输块,该第一数据流映射在该第一传输块上,该第二数据流映射在该第二传输块上,该第二传输块集合包括第三传输块和第四传输块,该第三数据流映射在该第三传输块上,该第四数据流映射在该第四传输块上。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,该至少一个接收端设备包括该第一终端设备和第二终端设备,该发送端设备为基站,该第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第一传输块集合,包括:该第一终端设备接收该基站发送的该第一传输块, 该第二传输块由该基站备向该第二终端设备发送;该第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第二传输块集合,包括:该第一终端设备接收该基站发送的该第三传输块,该第四传输块由该基站向该第二终端设备发送,该第一传输块和该第三传输块用于该第一终端设备确定该第一数据信号,该第二传输块和该第四传输块用于该第二终端设备确定该第二数据信号。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,该第一接收端设备为基站,该发送端设备为终端设备;或,该第一接收端设备为终端设备,该发送端设备为基站。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,该方法还包括:该终端设备接收该基站发送的指示信息,该指示信息用于指示该终端设备在传输块传输发生错误时采用的重传方式。
第五方面,提供了一种发送端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该发送端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第六方面,提供了一种接收端设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该接收端设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第七方面,提供了一种发送端设备,用于执行上述第三方面或第三方面的任意可能的实现方式中的方法。具体地,该发送端设备包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的单元。
第八方面,提供了一种接收端设备,用于执行上述第四方面或第四方面的任意可能的实现方式中的方法。具体地,该接收端设备包括用于执行上述第四方面或第四方面的任意可能的实现方式中的方法的单元。
第九方面,提供了一种发送端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种接收端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方 面的任意可能的实现方式中的方法。
第十一方面,提供了一种发送端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第三方面或第三方面的任意可能的实现方式中的方法。
第十二方面,提供了一种接收端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第四方面或第四方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十四方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十五方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
第十六方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第四方面或第四方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的传输数据的方法的示意性流程图。
图2是根据本发明实施例的传输数据信号的数据流的示意图。
图3是根据本发明另一实施例的传输数据的方法的示意性流程图。
图4是根据本发明再一实施例的传输数据的方法的示意性流程图。
图5是根据本发明再一实施例的传输数据的方法的示意性流程图。
图6是根据本发明再一实施例的传输数据的方法的示意性流程图。
图7是根据本发明再一实施例的传输数据的方法的示意性流程图。
图8是根据本发明实施例的发送端设备的示意性框图。
图9是根据本发明实施例的接收端设备的示意性框图。
图10是根据本发明另一实施例的发送端设备的示意性框图。
图11是根据本发明另一实施例的接收端设备的示意性框图。
图12是根据本发明再一实施例的发送端设备的示意性框图。
图13是根据本发明再一实施例的接收端设备的示意性框图。
图14是根据本发明再一实施例的发送端设备的示意性框图。
图15是根据本发明再一实施例的接收端设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunicatio5nSystem,简称为“UMTS”)、或全球互联微波接入(Worldwide Interoperabilityfor Microwave Access,简称为“WiMAX”)通信系统等。
本申请实施例的技术方案可以应用于终端设备与基站之间的通信,也可以适用于终端设备对终端设备(Device to Device,D2D)的通信。
本申请实施例中,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的 演进型基站(evolved Node B,eNB或e-NodeB),还可以是5G中的用于提供接入服务的设备,本申请实施例并不限定。
终端设备也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN(Wireless Local Area Networks,无线局域网)中的ST(STAION,站点),可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
图1示出了根据本发明实施例的传输数据的方法100的示意性流程图,该方法100可以应用于通信系统中,该通信系统中包括接收端设备和发送端设备,该方法100可以由发送端设备执行,具体地,该发送端设备可以为上述基站或终端设备,本发明实施例并不限于此。如图1所示,该方法100包括:
S110,在第一时刻,发送端设备采用第一频率通过第一数据流向接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号;
S120,在该第一时刻之后的第二时刻,该发送端设备采用该第一频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第一频率通过该第二数据流向该接收端设备发送第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号。
在本发明实施例中,如图2所示,该矩阵的第一列可以对应第一时刻发送的数据信号,第二列对应第二时刻发送的数据信号,第一时刻与第二时刻采用相同的频率,即第一频率。具体地,在第一时刻,发送端设备采用第一频率通过第一数据流发送第一数据信号S1,采用第一频率通过第二数据流发送第二数据信号S2;在第一时刻之后的第二时刻,发送端设备则采用第一频率通过第一数据流发送第二数据信号的共轭的相反数,即第三数据信号
Figure PCTCN2016100566-appb-000001
采用第一频率通过第二数据流发送第一数据信号的共轭,即第四数据信号
Figure PCTCN2016100566-appb-000002
则接收端设备根据接收到的两个时刻发送的数据信号,解析出第一数据信号和第二数据信号。
可选地,作为一个实施例,图3示出了根据本发明另一实施例的传输数据的方法200的示意性流程图,该方法200可以应用于通信系统中,该通信系统中包括接收端设备和发送端设备,该方法200可以由发送端设备执行,具体地,该发送端设备可以为基站或终端,本发明实施例并不限于此。如图3所示,该方法200包括:
S210,在第一时刻,该发送端设备采用第一频率通过第一数据流向该接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号;
S220,在该第一时刻,该发送端设备采用第二频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第二频率通过该第二数据流向该接收端设备发送第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号。
在本发明实施例中,如图2所示,该矩阵的第一列可以对应第一频率,第二列对应第二频率,且第一列和第二列的数据信号在相同时刻发送,即均在第一时刻发送。具体地,在第一时刻,发送端设备采用第一频率在第一数据流上发送第一数据信号S1,采用第一频率在第二数据流上发送第二数据信号S2,采用第二频率在第一数据流上发送第二数据信号S2的共轭的相反数,即第三数据信号
Figure PCTCN2016100566-appb-000003
采用第二频率在第二数据流上发送第一数据信号S1的共轭,即第四数据信号
Figure PCTCN2016100566-appb-000004
则接收端设备根据接收到的同一时刻通过不同频率发送的数据流,解析出数据流中的第一数据信号和第二数据信号。
应理解,对于上述方法100以及方法200,在每一时刻,一个符号的数据信号S1或S2被传输,那么,多个时刻或频率上,多个符号的数据信号在时间上依次传输,便可以组成第一数据流和第二数据流。例如,对于任意时刻,即第一时刻,传输一个符号的数据信号,即第一数据信号S1;在第一时刻的下一时刻,即第二时刻,传输另一个符号的数据信号,即第三数据信号
Figure PCTCN2016100566-appb-000005
则在在一段时间内,即连续的多个时刻后,组成第一数据流。
应理解,对于上述方法100以及方法200,该第一数据流和第二数据流可以映射到相同的传输块TB上,或者也可以映射到不同的TB上,本发明实施例并不限于此。例如,当发送端设备为任意一个基站,接收端设备为任意一个终端设备时,基站向终端设备发送的第一数据流和第二数据流可以映射到相同或不同的TB上,对应的终端设备根据该相同或不同的TB确定第一数据信号和第二数据信号;当发送端设备为基站,接收端设备包括两个终端设备,分别为第一终端设备和第二终端设备时,则第一数据流与第二数据流分别映射到两个不同的TB上,即第一数据流映射到第一TB,第二数据流映射到第二TB,基站分别向第一终端设备发送第一TB,向第二终端设备发送第二TB,则对应地,第一终端设备根据第一TB的第一数据流确定第一数据信号,第二终端设备则根据第二TB的第二数据流确定第二数据信号。
应理解,对于上述方法100以及方法200,可以用于上行数据的传输过程,即发送端设备可以为终端设备,则对应接收端设备可以为基站;或者,也可以用于下行数据的传输过程,即该发送端设备可以为基站,则对应接收端设备可以为终端设备。另外,发送端设备和接收端设备可以指一个或多个设备,例如,发送端设备可以为基站,且包括第一基站和第二基站;或者,接收端设备可以为终端设备,且终端设备包括第一终端设备和第二终端设备。
应理解,对于上述方法100以及方法200,发送端设备和接收端设备采用上述方法传输数据,在每次传输中,可以通过指示信息指示采用的传输方式。具体地,无论是上行数据传输还是下行数据传输过程,都可以通过基站向终端设备发送指示信息,该指示信息可以为物理层信令,例如下行控制信息(Downlink Control Information,DCI),通过该指示信息指示基站与终端设备之间传输数据采用的传输方式,该传输方式可以为本发明实施例方法100或方法200的空间分集的方式,或者也可以指示采用现有技术的空分复用的方法,即通过第一数据流传输第一数据信号,通过第二数据流传输第二数据信号,本发明实施例并不限于此。这样,通过基站指示终端设备传输数据的方式,可以使得基站与终端设备在不同传输方式之间灵活切换,例如,可以根据信道条件,选择相应的传输方式,并通过指示信息,实现灵活切换。
应理解,对于上述方法100以及方法200,对于发送端设备为基站,且该基站包括第一基站和第二基站,接收端设备为任意一个终端设备为例,则 数据流可以分别由不同基站向终端设备传输,即第一基站向终端设备发送第一数据流,第二基站向终端设备发送第二数据流。
具体地,对于方法100,在第一时刻,第一基站采用第一频率通过第一数据流发送第一数据信号S1,第二基站采用第一频率通过第二数据流发送第二数据信号S2;在第一时刻之后的第二时刻,第一基站采用第一频率通过第一数据流发送第二数据信号的共轭的相反数,即第三数据信号
Figure PCTCN2016100566-appb-000006
第二基站采用第一频率通过第二数据流发送第一数据信号的共轭,即第四数据信号
Figure PCTCN2016100566-appb-000007
而终端设备则分别接收来自两个基站发送的数据流,且终端设备根据第一数据流和第二数据流确定第一数据信号和第二数据信号。
类似地,对于方法200,在第一时刻,第一基站采用第一频率通过第一数据流发送第一数据信号S1,第二基站采用第一频率通过第二数据流发送第二数据信号S2,第一基站还采用第二频率通过第一数据流发送第二数据信号S2的共轭的相反数,即第三数据信号
Figure PCTCN2016100566-appb-000008
第二基站采用第二频率在第二数据流上发送第一数据信号S1的共轭,即第四数据信号
Figure PCTCN2016100566-appb-000009
而终端设备则分别接收来自两个基站发送的数据流,且终端设备根据第一数据流和第二数据流确定第一数据信号和第二数据信号。
在本发明实施例中,对于上述通过不同基站发送第一数据流和第二数据流,可以是相邻的基站进行多点协作(Coordinated Multiple Points Transmission/Reception,CoMP)的一种方式。通过两个基站分别传输两个数据流,可以提高在小区边缘的数据传输的可靠程度。
可选地,通过不同基站发送第一数据流和第二数据流,也可以是相邻基站实现软切换(soft handover)的一种方式。在目前LTE中,终端设备在进行切换时,需要先断开与原基站的连接,然后再与目标基站建立联系。而采用本发明实施例中的方法100或方法200的方法,两个基站可以同时向终端设备发送数据,并且能实现空间分集,提高在切换过程中的数据传输的可靠程度。
具体地,在软切换过程中,原基站与目标基站中的服务基站需要向终端设备发送指示信息,该指示信息可以指示终端设备采用本发明实施例的方法进行数据传输。当终端已切换到目标小区范围内时,服务基站也需要指示终端设备终止采用本发明实施例的方式,或者可以通过网络协作的方式,将其中一路数据流切换到目标基站上。例如,在切换前,第一基站作为原基站, 传输第一数据流,第二基站作为目标基站,传输第二数据流;当终端设备已移动到目标小区范围内,即第二基站的范围内,则通过网络协作的方式,可以将第一数据流也迁移到通过第二基站传输,这样,终端设备无需转换数据传输的方式,并且,在切换至第二基站后,第二基站可以继续采用本发明实施例中方法100或方法200的传输方式与终端设备进行数据传输,也可以采用现有技术中其它方法进行数据传输,本发明实施例并不限于此。
因此,本发明实施例的传输数据的方法,通过在不同时刻、采用相同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
上文中结合图1至图3,从发送端设备的角度详细描述了根据本发明实施例的传输数据的方法,下面将结合图4至图5,从接收端设备的角度描述根据本发明实施例的传输数据的方法。
图4示出了根据本发明再一实施例的传输数据的方法300的示意性流程图,该方法300可以应用于通信系统中,该通信系统中包括接收端设备和发送端设备,该方法300可以由接收端设备执行,具体地,该接收端设备可以为基站或终端设备,本发明实施例并不限于此。如图4所示,该方法300包括:
S310,在第一时刻,接收端设备接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发送的第二数据信号;
S320,在该第一时刻之后的第二时刻,该接收端设备接收该发送端设备采用该第一频率通过该第一数据流发送的第三数据信号,以及采用该第一频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭;
S330,该接收端设备根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号。
应理解,该方法300与本发明实施例中的方法100相对应,方法300可对应执行方法100中接收端设备的步骤,再次不再赘述。
图5示出了根据本发明再一实施例的传输数据的方法400的示意性流程图,该方法400可以应用于通信系统中,该通信系统中包括接收端设备和发 送端设备,该方法400可以由接收端设备执行,具体地,该接收端设备可以为基站或终端设备,本发明实施例并不限于此。如图5所示,该方法400包括:
S410,在第一时刻,接收端设备接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发送的第二数据信号;
S420,在该第一时刻,该接收端设备接收该发送端设备采用第二频率通过该第一数据流发送的第三数据信号,以及采用该第二频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭;
S430,该接收端设备根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号。
应理解,该方法400与本发明实施例中的方法200相对应,方法400可对应执行方法200中接收端设备的步骤,再次不再赘述。
可选地,对于上述方法300和方法400,该第一数据流和该第二数据流映射到相同TB上。
可选地,对于上述方法300和方法400,该接收端设备为基站,该发送端设备为终端设备;或,该接收端设备为终端设备,该发送端设备为基站。
可选地,对于上述方法300和方法400,该方法还包括:该终端设备接收该基站发送指示信息,该指示信息用于指示该终端设备与该基站之间传输数据信号的方式。
可选地,对于上述方法300和方法400,该发送端设备为该基站时,该基站包括第一基站和第二基站,该第一基站用于发送该第一数据流中的数据信号,该第二基站用于发送该第二数据流中的数据信号。
因此,本发明实施例的传输数据的方法,通过在不同时刻、采用相同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率传输承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
图6示出了根据本发明再一实施例的传输数据的方法500的示意性流程图,该方法500可以应用于通信系统中,该通信系统中包括发送端设备和至少一个接收端设备,该方法500可以由发送端设备执行,具体地,该发送端 设备可以为基站或终端设备,本发明实施例并不限于此。如图6所示,该方法500包括:
S510,发送端设备向至少一个接收端设备发送第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信号,该数据信号包括第一数据信号和第二数据信号;
S520,当该接收端设备确定该第一传输块集合中的传输块传输错误时,该发送端设备向该接收端设备发送第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
可选地,该发送端设备可以采用现有技术中的传输方式传输第一TB集合,即传输该第一数据信号和第二数据信号,例如,发送端设备可以通过第一数据流传输第一数据信号,通过第二数据流传输第二数据信号,即发送端设备采用空分复用的方式传输数据信号,则对应地该至少一个接收端设备根据接收的第一数据流和第二数据流映射的第一TB集合,解析出第一数据信号和第二数据信号。
可选地,发送端设备也可以不采用现有技术中的传输方式传输第一TB集合,而采用本发明实施例中方法100或方法200所述的传输方式传输该第一TB集合,即传输该第一数据信号和第二数据信号。具体地,在第一时刻,发送端设备采用第一频率通过第一数据流发送第一数据信号S1,采用第一频率通过第二数据流发送第二数据信号S2;在第一时刻之后的第二时刻,发送端设备则采用第一频率通过第一数据流发送第二数据信号的共轭的相反数,即第三数据信号
Figure PCTCN2016100566-appb-000010
采用第一频率通过第二数据流发送第一数据信号的共轭,即第四数据信号
Figure PCTCN2016100566-appb-000011
则至少一个接收端设备根据接收到的两个时刻发送的数据信号,解析出第一数据信号和第二数据信号。或者,在第一时刻,发送端设备采用第一频率在第一数据流上发送第一数据信号S1,采用第一频率在第二数据流上发送第二数据信号S2,采用第二频率在第一数据流上发送第二数据信号S2的共轭的相反数,即第三数据信号
Figure PCTCN2016100566-appb-000012
采用第二频率在第二 数据流上发送第一数据信号S1的共轭,即第四数据信号
Figure PCTCN2016100566-appb-000013
则至少一个接收端设备根据接收到的同一时刻通过不同频率发送的数据流,解析出数据流中的第一数据信号和第二数据信号。
应理解,发送端设备向至少一个接收端设备发送第一TB集合,该第一TB集合可以包括一个或多个TB,对应地,第二TB集合也可以包括一个或多个TB。可选地,对于第一TB集合只包括一个TB,即第一TB,第一数据流和第二数据流映射到第一TB上,对应地,第二TB集合只包括第二TB,第三数据流和第四数据流映射到第二TB上,此时,至少一个接收端设备包括一个接收端设备。例如,对于传输下行数据,该发送端设备可以为基站,该接收端设备可以为终端设备;或者,对于传输上行数据,该发送端设备可以为终端设备,该接收端设备可以为基站。
具体地,发送端设备向接收端设备发送第一TB,在该第一TB上映射有第一数据流和第二数据流,接收端设备接收该第一TB出现错误时,需要重传数据信号,如图2所示的第二列,发送端设备通过第三数据流传输第三数据信号,该第三数据信号等于第二数据信号S2的共轭的相反数
Figure PCTCN2016100566-appb-000014
通过第四数据流传输第四数据信号,该第四数据信号等于第一数据信号S1的共轭
Figure PCTCN2016100566-appb-000015
第三数据流和第四数据流均映射到第二TB集合中的第二TB上。对应地,接收端设备根据出现错误的第一TB,以及重传后接收到的第二TB,解析出第一数据信号和第二数据信号。
应理解,无论对于上行数据或下行数据的传输,当TB出现错误需要重传时,基站可以向终端设备发送指示信息,该指示信息用于指示终端设备和基站采用本发明实施例中的方法进行数据信号重传。
可选地,对于第一TB集合包括多个TB,以第一TB集合包括第一TB和第二TB为例,对应地,第二TB集合包括第三TB和第四TB,则该至少一个接收端设备可以为一个或两个接收端设备。以至少一个接收端设备为一个接收端设备为例,即发送端设备向接收端设备发送第一数据流和第二数据流,该第一数据流和第二数据流映射到不同TB上,即第一数据流映射到第一TB上,第二数据流映射到第二TB上。例如,对于传输下行数据,该发送端设备可以为基站,该接收端设备可以为终端设备;或者,对于传输上行数据,该发送端设备可以为终端设备,该接收端设备可以为基站。
当第一TB或者第二TB出现错误,或第一TB和第二TB都错误时,发 送端设备需要向接收端设备重新发送数据信号,则对应图2所示,发送端设备通过第三数据流传输第三数据信号,该第三数据信号等于第二数据信号S2的共轭的相反数
Figure PCTCN2016100566-appb-000016
通过第四数据流传输第四数据信号,该第四数据信号等于第一数据信号S1的共轭
Figure PCTCN2016100566-appb-000017
第三数据流映射到第二TB集合中的第三TB上,第四数据流映射到第二TB集合中的第四TB上。对应地,接收端设备根据第一TB集合和第二TB集合中映射的数据流上的数据信号,解析获得第一数据信号和第二数据信号。
应理解,无论对于上行数据或下行数据的传输,当TB出现错误需要重传时,基站可以向终端设备发送指示信息,该指示信息用于指示终端设备和基站采用本发明实施例中的方法进行数据信号重传。
可选地,对于第一TB集合包括第一TB和第二TB,对应地,第二TB集合包括第三TB和第四TB。此时,至少一个接收端设备可以包括两个接收端设备,例如,发送端设备为基站,而接收端设备包括第一终端设备和第二终端设备,即一个基站向两个终端设备发送数据信号。
具体地,基站向第一终端设备发送第一TB,向第二终端设备发送第二TB,其中,第一TB映射有第一数据流,第二TB映射有第二数据流,第一数据流和第二数据流用于传输数据信号,例如,可以通过第一数据流发送第一数据信号,通过第二数据流发送第二数据信号,以便于第一终端获取第一数据信号,第二终端获取第二数据信号。
当第一TB集合中的两个TB中任意一个TB出现错误,或两个TB都出现错误时,基站需要向两个终端设备重新发送数据信号。具体地,在重传过程中,基站向第一终端设备发送第三TB,该第三TB映射有第三数据流,该第三数据流用于向第一终端传输第三数据信号,该第三数据信号等于第二数据信号S2的共轭的相反数
Figure PCTCN2016100566-appb-000018
对应地,该基站想第二终端发送第四TB,该第四TB映射有第四数据流,该第四数据流用于向第二终端传输第四数据信号,该第四数据信号等于第一数据信号S1的共轭
Figure PCTCN2016100566-appb-000019
则第一终端设备根据第一TB和第三TB,获取第一数据信号;第二终端设备根据第二TB和第四TB,获取第二数据信号。
应理解,当基站向两个终端设备发送的TB出现错误需要重传时,基站可以向两个终端设备分别发送指示信息,该指示信息用于指示两个终端设备和基站采用本发明实施例中的方法进行数据信号重传。
因此,本发明实施例的传输数据的方法,发送端设备通过第一TB集合传输第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
图7示出了根据本发明再一实施例的传输数据的方法600的示意性流程图,该方法600可以应用于通信系统中,该通信系统中包括发送端设备和至少一个接收端设备,该方法600可以由该至少一个接收端设备中任意一个接收端设备执行,具体地,该接收端设备可以为基站或终端设备,本发明实施例并不限于此。如图7所示,该方法600包括:
S610,第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信号,该数据信号包括第一数据信号和第二数据信号,该第一接收端设备为该至少一个接收端设备中任意一个接收端设备;
S620,当该第一传输块集合中的传输块传输错误时,该第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
可选地,该第一数据流用于传输该第一数据信号,该第二数据流用于传输该第二数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、采用第二频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、采用该第二频率传输该第四数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、在第二时刻采用该第一频率传输该第三数据信号;该第二数据流用于在 该第一时刻采用该第一频率传输该第二数据信号、在该第二时刻采用该第一频率传输该第四数据信号。
可选地,该第一TB集合包括第一TB,该第一数据流和该第二数据流均映射在该第一TB上,该第二TB集合包括第二TB,该第三数据流和该第四数据流均映射在该第二TB上。
可选地,该第一TB集合包括第一TB和第二TB,该第一数据流映射在该第一TB上,该第二数据流映射在该第二TB上,该第二TB集合包括第三TB和第四TB,该第三数据流映射在该第三TB上,该第四数据流映射在该第四TB上。
可选地,该至少一个接收端设备包括该第一终端设备和第二终端设备,该发送端设备为基站,该第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第一TB集合,包括:该第一终端设备接收该基站发送的该第一TB,该第二TB由该基站向该第二终端设备发送;该第一接收端设备接收该发送端设备向该至少一个接收端设备发送的第二TB集合,包括:该第一终端设备接收该基站发送的该第三TB,该第四TB由该基站向该第二终端设备发送,该第一TB和该第三TB用于该第一终端设备确定该第一数据信号,该第二TB和该第四TB用于该第二终端设备确定该第二数据信号。
可选地,该第一接收端设备为基站,该发送端设备为终端设备;或,该第一接收端设备为终端设备,该发送端设备为基站。
可选地,该方法还包括:该终端设备接收该基站发送的指示信息,该指示信息用于指示该终端设备在TB传输发生错误时采用的重传方式。
应理解,该方法600与本发明实施例中的方法500相对应,方法600可对应执行方法500中接收端设备的步骤,再次不再赘述。
因此,本发明实施例的传输数据的方法,接收端设备接收发送端设备通过第一TB集合传输的第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,再通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,使得在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味 着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中结合图1至图7,详细描述了根据本发明实施例的传输数据的方法,下面将结合图8至图15,描述根据本发明实施例的传输数据的装置。
如图8所示,根据本发明实施例的发送端设备700包括:
发送模块710,用于在第一时刻,采用第一频率通过第一数据流向接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号,
该发送模块710还用于:在该第一时刻之后的第二时刻,采用该第一频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第一频率通过该第二数据流向该接收端设备发送第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号;
该发送模块710用于:在第一时刻,采用第一频率通过第一数据流向该接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号,
该发送模块710还用于:在该第一时刻,采用第二频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第二频率通过该第二数据流向该接收端设备发送第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号。
因此,本发明实施例的发送端设备,通过在不同时刻、采用相同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
可选地,该第一数据流和该第二数据流映射到相同传输块上。
可选地,该发送端设备为终端设备,该接收端设备为基站;或,该发送 端设备为基站,该接收端设备为终端设备。
可选地,该基站用于向该终端设备发送指示信息,该指示信息用于指示该终端设备与该基站之间传输数据信号的方式。
可选地,该发送端设备为该基站时,该基站包括第一基站和第二基站,该第一基站包括第一发送单元,该第二基站包括第二发送单元,该发送模块710包括该第一发送单元和该第二发送单元,该第一发送单元用于发送该第一数据流中的数据信号,该第二发送单元用于发送该第二数据流中的数据信号。
应理解,根据本发明实施例的发送端设备700可对应于执行本发明实施例中的方法100和方法200,并且发送端设备700中的各个模块的上述和其它操作和/或功能分别为了实现图1至图3中的各个方法中发送端设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的发送端设备,通过在不同时刻、采用相同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
如图9所示,根据本发明实施例的接收端设备800包括:
接收模块810,用于在第一时刻,接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发送的第二数据信号,
该接收模块810还用于:在该第一时刻之后的第二时刻,接收该发送端设备采用该第一频率通过该第一数据流发送的第三数据信号,以及采用该第一频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,
确定模块820,用于根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号;
该接收模块810用于:在第一时刻,接收该发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发 送的第二数据信号,
该接收模块810还用于:在该第一时刻,接收该发送端设备采用第二频率通过该第一数据流发送的第三数据信号,以及采用该第二频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,
该确定模块820用于:根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号。
因此,本发明实施例的接收端设备,通过接收发送端设备在不同时刻、采用相同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
可选地,该第一数据流和该第二数据流映射到相同传输块上。
可选地,该接收端设备为基站,该发送端设备为终端设备;或,该接收端设备为终端设备,该发送端设备为基站。
可选地,该终端设备用于接收该基站发送指示信息,该指示信息用于指示该终端设备与该基站之间传输数据信号的方式。
可选地,该发送端设备为该基站时,该基站包括第一基站和第二基站,该第一基站用于发送该第一数据流中的数据信号,该第二基站用于发送该第二数据流中的数据信号。
应理解,根据本发明实施例的接收端设备800可对应于执行本发明实施例中的方法300和方法400,并且接收端设备800中的各个模块的上述和其它操作和/或功能分别为了实现图4至图5中的各个方法中接收端设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的接收端设备,通过接收发送端设备在不同时刻、采用相同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
如图10所示,根据本发明另一实施例的发送端设备900包括:
第一发送模块910,用于向至少一个接收端设备发送第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信号,该数据信号包括第一数据信号和第二 数据信号;
第二发送模块920,用于当该第一传输块集合中的传输块传输错误时,向该至少一个接收端设备发送第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
因此,本发明实施例的发送端设备,通过第一TB集合传输第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
可选地,该第一数据流用于传输该第一数据信号,该第二数据流用于传输该第二数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、采用第二频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、采用该第二频率传输该第四数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、在第二时刻采用该第一频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、在该第二时刻采用该第一频率传输该第四数据信号。
可选地,该第一传输块集合包括第一传输块,该第一数据流和该第二数据流均映射在该第一传输块上,该第二传输块集合包括第二传输块,该第三数据流和该第四数据流均映射在该第二传输块上。
可选地,该第一传输块集合包括第一传输块和第二传输块,该第一数据流映射在该第一传输块上,该第二数据流映射在该第二传输块上,该第二传输块集合包括第三传输块和第四传输块,该第三数据流映射在该第三传输块上,该第四数据流映射在该第四传输块上。
可选地,该发送端设备为基站,该至少一个接收端设备包括第一终端设 备和第二终端设备,该第一发送模块910具体用于:向该第一终端设备发送该第一传输块,且向该第二终端设备发送该第二传输块;该第二发送模块920具体用于:向该第一终端设备发送该第三传输块,且向该第二终端设备发送该第四传输块,该第一传输块和该第三传输块用于该第一终端设备确定该第一数据信号,该第二传输块和该第四传输块用于该第二终端设备确定该第二数据信号。
可选地,该发送端设备为终端设备,该至少一个接收端设备为基站;或,该发送端设备为基站,该至少一个接收端设备为终端设备。
可选地,该基站用于向该终端设备发送指示信息,该指示信息用于指示该终端设备在传输块传输发生错误时采用的重传方式。
应理解,根据本发明实施例的发送端设备900可对应于执行本发明实施例中的方法500,并且发送端设备900中的各个模块的上述和其它操作和/或功能分别为了实现图6中的各个方法中发送端设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的发送端设备,通过第一TB集合传输第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
图11示出了根据本发明另一实施例的接收端设备1000的示意性框图,该接收端设备1000位于通信系统中,该通信系统包括发送端设备和至少一个接收端设备,该接收端设备1000为该至少一个接收端设备中任意一个接收端设备,如图11所示,该接收端设备1000包括:
第一接收模块1010,用于接收该发送端设备向该至少一个接收端设备发送的第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信号,该数据信号包括第一数据信号和第二数据信号;
第二接收模块1020,用于当该第一传输块集合中的传输块传输错误时,接收该发送端设备向该至少一个接收端设备发送的第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于 传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
因此,本发明实施例的接收端设备,通过接收发送端设备通过第一TB集合传输的第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,再通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,使得在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
可选地,该第一数据流用于传输该第一数据信号,该第二数据流用于传输该第二数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、采用第二频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、采用该第二频率传输该第四数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、在第二时刻采用该第一频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、在该第二时刻采用该第一频率传输该第四数据信号。
可选地,该第一传输块集合包括第一传输块,该第一数据流和该第二数据流均映射在该第一传输块上,该第二传输块集合包括第二传输块,该第三数据流和该第四数据流均映射在该第二传输块上。
可选地,该第一传输块集合包括第一传输块和第二传输块,该第一数据流映射在该第一传输块上,该第二数据流映射在该第二传输块上,该第二传输块集合包括第三传输块和第四传输块,该第三数据流映射在该第三传输块上,该第四数据流映射在该第四传输块上。
可选地,该至少一个接收端设备包括该第一终端设备和第二终端设备,该发送端设备为基站,该第一接收模块1010具体用于:接收该基站发送的该第一传输块,该第二传输块由该基站备向该第二终端设备发送;该第二接收模块1020具体用于:接收该基站发送的该第三传输块,该第四传输块由 该基站向该第二终端设备发送,该第一传输块和该第三传输块用于该第一终端设备确定该第一数据信号,该第二传输块和该第四传输块用于该第二终端设备确定该第二数据信号。
可选地,该接收端设备为基站,该发送端设备为终端设备;或,该接收端设备为终端设备,该发送端设备为基站。
可选地,该终端设备用于接收该基站发送的指示信息,该指示信息用于指示该终端设备在传输块传输发生错误时采用的重传方式。
应理解,根据本发明实施例的接收端设备1000可对应于执行本发明实施例中的方法600,并且接收端设备1000中的各个模块的上述和其它操作和/或功能分别为了实现图7中的各个方法中接收端设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的接收端设备,通过接收发送端设备通过第一TB集合传输的第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,再通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,使得在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
图12示出了根据本发明再一实施例的发送端设备1100的示意性框图,如图10所示,该发送端设备1100包括:处理器1110和收发器1120,处理器1110和收发器1120相连,可选地,该发送端设备1100还包括存储器1130,存储器1130与处理器1110相连,进一步可选地,该发送端设备1100包括总线系统1140。其中,处理器1110、存储器1130和收发器1120可以通过总线系统1140相连,该存储器1130可以用于存储指令,该处理器1110用于执行该存储器1130存储的指令,以控制收发器1120发送信息或信号,
该收发器1120,用于在第一时刻,采用第一频率通过第一数据流向接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号,
该收发器1120还用于:在该第一时刻之后的第二时刻,采用该第一频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第一频率通过该第二数据流向该接收端设备发送第四数据信号,其中,该第三数据信 号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号;
该收发器1120用于:在第一时刻,采用第一频率通过第一数据流向该接收端设备发送第一数据信号,且采用该第一频率通过第二数据流向该接收端设备发送第二数据信号,
该收发器1120还用于:在该第一时刻,采用第二频率通过该第一数据流向该接收端设备发送第三数据信号,且采用该第二频率通过该第二数据流向该接收端设备发送第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,该第一数据流和该第二数据流用于该接收端设备确定该第一数据信号和该第二数据信号。
因此,本发明实施例的发送端设备,通过在不同时刻、采用相同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
可选地,该第一数据流和该第二数据流映射到相同传输块上。
可选地,该发送端设备为终端设备,该接收端设备为基站;或,该发送端设备为基站,该接收端设备为终端设备。
可选地,该基站用于向该终端设备发送指示信息,该指示信息用于指示该终端设备与该基站之间传输数据信号的方式。
可选地,该发送端设备为该基站时,该基站包括第一基站和第二基站,该第一基站包括第一发送单元,该第二基站包括第二发送单元,该收发器1120包括该第一发送单元和该第二发送单元,该第一发送单元用于发送该第一数据流中的数据信号,该第二发送单元用于发送该第二数据流中的数据信号。
应理解,根据本发明实施例的发送端设备1100可对应于本发明实施例中的发送端设备700,并可以对应于执行根据本发明实施例的方法100和方法200中的相应主体,并且发送端设备1100中的各个模块的上述和其它操 作和/或功能分别为了实现图1至图3中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的发送端设备,通过在不同时刻、采用相同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率向接收端设备发送承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
图13示出了根据本发明再一实施例的接收端设备1200的示意性框图,如图10所示,该接收端设备1200包括:处理器1210和收发器1220,处理器1210和收发器1220相连,可选地,该接收端设备1200还包括存储器1230,存储器1230与处理器1210相连,进一步可选地,该接收端设备1200包括总线系统1240。其中,处理器1210、存储器1230和收发器1220可以通过总线系统1240相连,该存储器1230可以用于存储指令,该处理器1210用于执行该存储器1230存储的指令,以控制收发器1220发送信息或信号,
该收发器1220,用于在第一时刻,接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发送的第二数据信号,
该收发器1220还用于:在该第一时刻之后的第二时刻,接收该发送端设备采用该第一频率通过该第一数据流发送的第三数据信号,以及采用该第一频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据信号等于该第一数据信号的共轭,
该处理器1210,用于根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号;
该收发器1220用于:在第一时刻,接收该发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用该第一频率通过第二数据流发送的第二数据信号,
该收发器1220还用于:在该第一时刻,接收该发送端设备采用第二频率通过该第一数据流发送的第三数据信号,以及采用该第二频率通过该第二数据流发送的第四数据信号,其中,该第三数据信号等于该第二数据信号的 共轭的相反数,该第四数据信号等于该第一数据信号的共轭,
该处理器1210用于:根据该第一数据流和该第二数据流,确定该第一数据信号和该第二数据信号。
因此,本发明实施例的接收端设备,通过接收发送端设备在不同时刻、采用相同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
可选地,该第一数据流和该第二数据流映射到相同传输块上。
可选地,该接收端设备为基站,该发送端设备为终端设备;或,该接收端设备为终端设备,该发送端设备为基站。
可选地,该终端设备用于接收该基站发送指示信息,该指示信息用于指示该终端设备与该基站之间传输数据信号的方式。
可选地,该发送端设备为该基站时,该基站包括第一基站和第二基站,该第一基站用于发送该第一数据流中的数据信号,该第二基站用于发送该第二数据流中的数据信号。
应理解,根据本发明实施例的接收端设备1200可对应于本发明实施例中的接收端设备800,并可以对应于执行根据本发明实施例的方法300和方法400中的相应主体,并且接收端设备1200中的各个模块的上述和其它操作和/或功能分别为了实现图4至图5中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的接收端设备,通过接收发送端设备在不同时刻、采用相同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,或者在相同时刻、采用不同频率发送的承载了第一数据信号和第二数据信号的第一数据流和第二数据流,能够提高数据传输的效率。
图14示出了根据本发明再一实施例的发送端设备1300的示意性框图,如图10所示,该发送端设备1300包括:处理器1310和收发器1320,处理器1310和收发器1320相连,可选地,该发送端设备1300还包括存储器1330,存储器1330与处理器1310相连,进一步可选地,该发送端设备1300包括总线系统1340。其中,处理器1310、存储器1330和收发器1320可以通过总线系统1340相连,该存储器1330可以用于存储指令,该处理器1310用于执行该存储器1330存储的指令,以控制收发器1320发送信息或信号,
该收发器1320,用于向至少一个接收端设备发送第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信号,该数据信号包括第一数据信号和第二数据信号;当该第一传输块集合中的传输块传输错误时,向该至少一个接收端设备发送第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
因此,本发明实施例的发送端设备,通过第一TB集合传输第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
可选地,该第一数据流用于传输该第一数据信号,该第二数据流用于传输该第二数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、采用第二频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、采用该第二频率传输该第四数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、在第二时刻采用该第一频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、在该第二时刻采用该第一频率传输该第四数据信号。
可选地,该第一传输块集合包括第一传输块,该第一数据流和该第二数据流均映射在该第一传输块上,该第二传输块集合包括第二传输块,该第三数据流和该第四数据流均映射在该第二传输块上。
可选地,该第一传输块集合包括第一传输块和第二传输块,该第一数据流映射在该第一传输块上,该第二数据流映射在该第二传输块上,该第二传输块集合包括第三传输块和第四传输块,该第三数据流映射在该第三传输块上,该第四数据流映射在该第四传输块上。
可选地,该发送端设备为基站,该至少一个接收端设备包括第一终端设备和第二终端设备,该收发器1320具体用于:向该第一终端设备发送该第一传输块,且向该第二终端设备发送该第二传输块;向该第一终端设备发送该第三传输块,且向该第二终端设备发送该第四传输块,该第一传输块和该第三传输块用于该第一终端设备确定该第一数据信号,该第二传输块和该第四传输块用于该第二终端设备确定该第二数据信号。
可选地,该发送端设备为终端设备,该至少一个接收端设备为基站;或,该发送端设备为基站,该至少一个接收端设备为终端设备。
可选地,该基站用于向该终端设备发送指示信息,该指示信息用于指示该终端设备在传输块传输发生错误时采用的重传方式。
应理解,根据本发明实施例的发送端设备1300可对应于本发明实施例中的发送端设备900,并可以对应于执行根据本发明实施例的方法500中的相应主体,并且发送端设备1300中的各个模块的上述和其它操作和/或功能分别为了实现图6中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的发送端设备,通过第一TB集合传输第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
图15示出了根据本发明再一实施例的接收端设备1400的示意性框图,该接收端设备1400位于通信系统中,该通信系统包括发送端设备和至少一个接收端设备,该接收端设备1400为该至少一个接收端设备中任意一个接收端设备,如图10所示,该接收端设备1400包括:处理器1410和收发器1420,处理器1410和收发器1420相连,可选地,该接收端设备1400还包括存储器1430,存储器1430与处理器1410相连,进一步可选地,该接收端设备1400包括总线系统1440。其中,处理器1410、存储器1430和收发器1420可以通过总线系统1440相连,该存储器1430可以用于存储指令,该处理器1410用于执行该存储器1430存储的指令,以控制收发器1420发送信息或信号,
该收发器1420,用于接收该发送端设备向该至少一个接收端设备发送的 第一传输块集合,该第一传输块集合中的传输块映射有第一数据流和第二数据流,该第一数据流和该第二数据流用于传输数据信号,该数据信号包括第一数据信号和第二数据信号;当该第一传输块集合中的传输块传输错误时,接收该发送端设备向该至少一个接收端设备发送的第二传输块集合,该第二传输块集合中的传输块映射有第三数据流和第四数据流,该第三数据流用于传输第三数据信号,该第三数据信号等于该第二数据信号的共轭的相反数,该第四数据流用于传输第四数据信号,该第四数据信号等于该第一数据信号的共轭,该第二传输块集合和该第一传输块集合用于该至少一个接收端设备确定该第一数据信号和该第二数据信号。
因此,本发明实施例的接收端设备,通过接收发送端设备通过第一TB集合传输的第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,再通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,使得在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
可选地,该第一数据流用于传输该第一数据信号,该第二数据流用于传输该第二数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、采用第二频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、采用该第二频率传输该第四数据信号。
可选地,该第一数据流用于在第一时刻采用第一频率传输该第一数据信号、在第二时刻采用该第一频率传输该第三数据信号;该第二数据流用于在该第一时刻采用该第一频率传输该第二数据信号、在该第二时刻采用该第一频率传输该第四数据信号。
可选地,该第一传输块集合包括第一传输块,该第一数据流和该第二数据流均映射在该第一传输块上,该第二传输块集合包括第二传输块,该第三数据流和该第四数据流均映射在该第二传输块上。
可选地,该第一传输块集合包括第一传输块和第二传输块,该第一数据流映射在该第一传输块上,该第二数据流映射在该第二传输块上,该第二传输块集合包括第三传输块和第四传输块,该第三数据流映射在该第三传输块 上,该第四数据流映射在该第四传输块上。
可选地,该至少一个接收端设备包括该第一终端设备和第二终端设备,该发送端设备为基站,该收发器1420具体用于:接收该基站发送的该第一传输块,该第二传输块由该基站备向该第二终端设备发送;接收该基站发送的该第三传输块,该第四传输块由该基站向该第二终端设备发送,该第一传输块和该第三传输块用于该第一终端设备确定该第一数据信号,该第二传输块和该第四传输块用于该第二终端设备确定该第二数据信号。
可选地,该接收端设备为基站,该发送端设备为终端设备;或,该接收端设备为终端设备,该发送端设备为基站。
可选地,该终端设备用于接收该基站发送的指示信息,该指示信息用于指示该终端设备在传输块传输发生错误时采用的重传方式。
应理解,根据本发明实施例的接收端设备1400可对应于本发明实施例中的接收端设备1000,并可以对应于执行根据本发明实施例的方法600中的相应主体,并且接收端设备1400中的各个模块的上述和其它操作和/或功能分别为了实现图7中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的接收端设备,通过接收发送端设备通过第一TB集合传输的第一数据信号和第二数据信号,当第一TB集合中TB出现错误时,再通过第二TB集合中的TB传输第三数据流和第四数据流,其中,第三数据流传输第二数据信号的共轭的相反数,第四数据流传输第一数据信号的共轭,以便于接收端设备根据第一TB集合和第二TB集合,获取第一数据信号和第二数据信号,使得在数据传输发生错误时,通过上述重传方式进一步提高数据传输的效率。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结 合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (56)

  1. 一种传输数据的方法,其特征在于,包括:
    在第一时刻,发送端设备采用第一频率通过第一数据流向接收端设备发送第一数据信号,且采用所述第一频率通过第二数据流向所述接收端设备发送第二数据信号,
    在所述第一时刻之后的第二时刻,所述发送端设备采用所述第一频率通过所述第一数据流向所述接收端设备发送第三数据信号,且采用所述第一频率通过所述第二数据流向所述接收端设备发送第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,所述第一数据流和所述第二数据流用于所述接收端设备确定所述第一数据信号和所述第二数据信号;
    在第一时刻,所述发送端设备采用第一频率通过第一数据流向所述接收端设备发送第一数据信号,且采用所述第一频率通过第二数据流向所述接收端设备发送第二数据信号,
    在所述第一时刻,所述发送端设备采用第二频率通过所述第一数据流向所述接收端设备发送第三数据信号,且采用所述第二频率通过所述第二数据流向所述接收端设备发送第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,所述第一数据流和所述第二数据流用于所述接收端设备确定所述第一数据信号和所述第二数据信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一数据流和所述第二数据流映射到相同传输块上。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述发送端设备为终端设备,所述接收端设备为基站;或
    所述发送端设备为基站,所述接收端设备为终端设备。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述基站向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备与所述基站之间传输数据信号的方式。
  5. 根据权利要求3或4所述的方法,其特征在于,所述发送端设备为所述基站时,所述基站包括第一基站和第二基站,
    所述第一基站用于发送所述第一数据流中的数据信号,所述第二基站用于发送所述第二数据流中的数据信号。
  6. 一种传输数据的方法,其特征在于,包括:
    在第一时刻,接收端设备接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用所述第一频率通过第二数据流发送的第二数据信号,
    在所述第一时刻之后的第二时刻,所述接收端设备接收所述发送端设备采用所述第一频率通过所述第一数据流发送的第三数据信号,以及采用所述第一频率通过所述第二数据流发送的第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,
    所述接收端设备根据所述第一数据流和所述第二数据流,确定所述第一数据信号和所述第二数据信号;
    在第一时刻,所述接收端设备接收所述发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用所述第一频率通过第二数据流发送的第二数据信号,
    在所述第一时刻,所述接收端设备接收所述发送端设备采用第二频率通过所述第一数据流发送的第三数据信号,以及采用所述第二频率通过所述第二数据流发送的第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,
    所述接收端设备根据所述第一数据流和所述第二数据流,确定所述第一数据信号和所述第二数据信号。
  7. 根据权利要求6所述的方法,其特征在于,所述第一数据流和所述第二数据流映射到相同传输块上。
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述接收端设备为基站,所述发送端设备为终端设备;或
    所述接收端设备为终端设备,所述发送端设备为基站。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述基站发送指示信息,所述指示信息用于指示所述终端设备与所述基站之间传输数据信号的方式。
  10. 根据权利要求8或9所述的方法,其特征在于,所述发送端设备为所述基站时,所述基站包括第一基站和第二基站,
    所述第一基站用于发送所述第一数据流中的数据信号,所述第二基站用于发送所述第二数据流中的数据信号。
  11. 一种传输数据的方法,其特征在于,包括:
    发送端设备向至少一个接收端设备发送第一传输块集合,所述第一传输块集合中的传输块映射有第一数据流和第二数据流,所述第一数据流和所述第二数据流用于传输数据信号,所述数据信号包括第一数据信号和第二数据信号;
    当所述第一传输块集合中的传输块传输错误时,所述发送端设备向所述至少一个接收端设备发送第二传输块集合,所述第二传输块集合中的传输块映射有第三数据流和第四数据流,所述第三数据流用于传输第三数据信号,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据流用于传输第四数据信号,所述第四数据信号等于所述第一数据信号的共轭,所述第二传输块集合和所述第一传输块集合用于所述至少一个接收端设备确定所述第一数据信号和所述第二数据信号。
  12. 根据权利要求11所述的方法,其特征在于,所述第一数据流用于传输所述第一数据信号,所述第二数据流用于传输所述第二数据信号。
  13. 根据权利要求11所述的方法,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、采用第二频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、采用所述第二频率传输所述第四数据信号。
  14. 根据权利要求11所述的方法,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、在第二时刻采用所述第一频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、在所述第二时刻采用所述第一频率传输所述第四数据信号。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,
    所述第一传输块集合包括第一传输块,所述第一数据流和所述第二数据流均映射在所述第一传输块上,
    所述第二传输块集合包括第二传输块,所述第三数据流和所述第四数据流均映射在所述第二传输块上。
  16. 根据权利要求11至14中任一项所述的方法,其特征在于,
    所述第一传输块集合包括第一传输块和第二传输块,所述第一数据流映射在所述第一传输块上,所述第二数据流映射在所述第二传输块上,
    所述第二传输块集合包括第三传输块和第四传输块,所述第三数据流映射在所述第三传输块上,所述第四数据流映射在所述第四传输块上。
  17. 根据权利要求16所述的方法,其特征在于,所述发送端设备为基站,所述至少一个接收端设备包括第一终端设备和第二终端设备,
    发送端设备向至少一个接收端设备发送第一传输块集合,包括:
    所述基站向所述第一终端设备发送所述第一传输块,且向所述第二终端设备发送所述第二传输块;
    所述发送端设备向所述至少一个接收端设备发送第二传输块集合,包括:
    所述基站向所述第一终端设备发送所述第三传输块,且向所述第二终端设备发送所述第四传输块,所述第一传输块和所述第三传输块用于所述第一终端设备确定所述第一数据信号,所述第二传输块和所述第四传输块用于所述第二终端设备确定所述第二数据信号。
  18. 根据权利要求11至16中任一项所述的方法,其特征在于,
    所述发送端设备为终端设备,所述至少一个接收端设备为基站;或
    所述发送端设备为基站,所述至少一个接收端设备为终端设备。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述基站向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在传输块传输发生错误时采用的重传方式。
  20. 一种传输数据的方法,其特征在于,所述方法应用于通信系统中,所述通信系统包括发送端设备和至少一个接收端设备,所述方法包括:
    第一接收端设备接收所述发送端设备向所述至少一个接收端设备发送的第一传输块集合,所述第一传输块集合中的传输块映射有第一数据流和第二数据流,所述第一数据流和所述第二数据流用于传输数据信号,所述数据信号包括第一数据信号和第二数据信号,所述第一接收端设备为所述至少一个接收端设备中任意一个接收端设备;
    当所述第一传输块集合中的传输块传输错误时,所述第一接收端设备接收所述发送端设备向所述至少一个接收端设备发送的第二传输块集合,所述第二传输块集合中的传输块映射有第三数据流和第四数据流,所述第三数据流用于传输第三数据信号,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据流用于传输第四数据信号,所述第四数据信号等于所述第一数据信号的共轭,所述第二传输块集合和所述第一传输块集合用于所述至少一个接收端设备确定所述第一数据信号和所述第二数据信号。
  21. 根据权利要求20所述的方法,其特征在于,所述第一数据流用于传输所述第一数据信号,所述第二数据流用于传输所述第二数据信号。
  22. 根据权利要求20所述的方法,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、采用第二频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、采用所述第二频率传输所述第四数据信号。
  23. 根据权利要求20所述的方法,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、在第二时刻采用所述第一频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、在所述第二时刻采用所述第一频率传输所述第四数据信号。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,
    所述第一传输块集合包括第一传输块,所述第一数据流和所述第二数据流均映射在所述第一传输块上,
    所述第二传输块集合包括第二传输块,所述第三数据流和所述第四数据流均映射在所述第二传输块上。
  25. 根据权利要求20至23中任一项所述的方法,其特征在于,
    所述第一传输块集合包括第一传输块和第二传输块,所述第一数据流映射在所述第一传输块上,所述第二数据流映射在所述第二传输块上,
    所述第二传输块集合包括第三传输块和第四传输块,所述第三数据流映射在所述第三传输块上,所述第四数据流映射在所述第四传输块上。
  26. 根据权利要求25所述的方法,其特征在于,所述至少一个接收端设备包括所述第一终端设备和第二终端设备,所述发送端设备为基站,
    所述第一接收端设备接收所述发送端设备向所述至少一个接收端设备发送的第一传输块集合,包括:
    所述第一终端设备接收所述基站发送的所述第一传输块,所述第二传输块由所述基站备向所述第二终端设备发送;
    所述第一接收端设备接收所述发送端设备向所述至少一个接收端设备发送的第二传输块集合,包括:
    所述第一终端设备接收所述基站发送的所述第三传输块,所述第四传输块由所述基站向所述第二终端设备发送,所述第一传输块和所述第三传输块用于所述第一终端设备确定所述第一数据信号,所述第二传输块和所述第四传输块用于所述第二终端设备确定所述第二数据信号。
  27. 根据权利要求20至25中任一项所述的方法,其特征在于,
    所述第一接收端设备为基站,所述发送端设备为终端设备;或
    所述第一接收端设备为终端设备,所述发送端设备为基站。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述基站发送的指示信息,所述指示信息用于指示所述终端设备在传输块传输发生错误时采用的重传方式。
  29. 一种发送端设备,其特征在于,包括:
    发送模块,用于在第一时刻,采用第一频率通过第一数据流向接收端设备发送第一数据信号,且采用所述第一频率通过第二数据流向所述接收端设备发送第二数据信号,
    所述发送模块还用于:在所述第一时刻之后的第二时刻,采用所述第一频率通过所述第一数据流向所述接收端设备发送第三数据信号,且采用所述第一频率通过所述第二数据流向所述接收端设备发送第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,所述第一数据流和所述第二数据流用于所述接收端设备确定所述第一数据信号和所述第二数据信号;
    所述发送模块用于:在第一时刻,采用第一频率通过第一数据流向所述接收端设备发送第一数据信号,且采用所述第一频率通过第二数据流向所述接收端设备发送第二数据信号,
    所述发送模块还用于:在所述第一时刻,采用第二频率通过所述第一数 据流向所述接收端设备发送第三数据信号,且采用所述第二频率通过所述第二数据流向所述接收端设备发送第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,所述第一数据流和所述第二数据流用于所述接收端设备确定所述第一数据信号和所述第二数据信号。
  30. 根据权利要求29所述的发送端设备,其特征在于,所述第一数据流和所述第二数据流映射到相同传输块上。
  31. 根据权利要求29或30所述的发送端设备,其特征在于,
    所述发送端设备为终端设备,所述接收端设备为基站;或
    所述发送端设备为基站,所述接收端设备为终端设备。
  32. 根据权利要求31所述的发送端设备,其特征在于,所述基站用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备与所述基站之间传输数据信号的方式。
  33. 根据权利要求31或32所述的发送端设备,其特征在于,所述发送端设备为所述基站时,所述基站包括第一基站和第二基站,所述第一基站包括第一发送单元,所述第二基站包括第二发送单元,所述发送模块包括所述第一发送单元和所述第二发送单元,
    所述第一发送单元用于发送所述第一数据流中的数据信号,所述第二发送单元用于发送所述第二数据流中的数据信号。
  34. 一种接收端设备,其特征在于,包括:
    接收模块,用于在第一时刻,接收发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用所述第一频率通过第二数据流发送的第二数据信号,
    所述接收模块还用于:在所述第一时刻之后的第二时刻,接收所述发送端设备采用所述第一频率通过所述第一数据流发送的第三数据信号,以及采用所述第一频率通过所述第二数据流发送的第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,
    确定模块,用于根据所述第一数据流和所述第二数据流,确定所述第一数据信号和所述第二数据信号;
    所述接收模块用于:在第一时刻,接收所述发送端设备采用第一频率通过第一数据流发送的第一数据信号,以及采用所述第一频率通过第二数据流发送的第二数据信号,
    所述接收模块还用于:在所述第一时刻,接收所述发送端设备采用第二频率通过所述第一数据流发送的第三数据信号,以及采用所述第二频率通过所述第二数据流发送的第四数据信号,其中,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据信号等于所述第一数据信号的共轭,
    所述确定模块用于:根据所述第一数据流和所述第二数据流,确定所述第一数据信号和所述第二数据信号。
  35. 根据权利要求34所述的接收端设备,其特征在于,所述第一数据流和所述第二数据流映射到相同传输块上。
  36. 根据权利要求34或35所述的接收端设备,其特征在于,
    所述接收端设备为基站,所述发送端设备为终端设备;或
    所述接收端设备为终端设备,所述发送端设备为基站。
  37. 根据权利要求36所述的接收端设备,其特征在于,所述终端设备用于接收所述基站发送指示信息,所述指示信息用于指示所述终端设备与所述基站之间传输数据信号的方式。
  38. 根据权利要求36或37所述的接收端设备,其特征在于,所述发送端设备为所述基站时,所述基站包括第一基站和第二基站,
    所述第一基站用于发送所述第一数据流中的数据信号,所述第二基站用于发送所述第二数据流中的数据信号。
  39. 一种发送端设备,其特征在于,包括:
    第一发送模块,用于向至少一个接收端设备发送第一传输块集合,所述第一传输块集合中的传输块映射有第一数据流和第二数据流,所述第一数据流和所述第二数据流用于传输数据信号,所述数据信号包括第一数据信号和第二数据信号;
    第二发送模块,用于当所述第一传输块集合中的传输块传输错误时,向所述至少一个接收端设备发送第二传输块集合,所述第二传输块集合中的传输块映射有第三数据流和第四数据流,所述第三数据流用于传输第三数据信号,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数 据流用于传输第四数据信号,所述第四数据信号等于所述第一数据信号的共轭,所述第二传输块集合和所述第一传输块集合用于所述至少一个接收端设备确定所述第一数据信号和所述第二数据信号。
  40. 根据权利要求39所述的发送端设备,其特征在于,所述第一数据流用于传输所述第一数据信号,所述第二数据流用于传输所述第二数据信号。
  41. 根据权利要求39所述的发送端设备,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、采用第二频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、采用所述第二频率传输所述第四数据信号。
  42. 根据权利要求39所述的发送端设备,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、在第二时刻采用所述第一频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、在所述第二时刻采用所述第一频率传输所述第四数据信号。
  43. 根据权利要求39至42中任一项所述的发送端设备,其特征在于,
    所述第一传输块集合包括第一传输块,所述第一数据流和所述第二数据流均映射在所述第一传输块上,
    所述第二传输块集合包括第二传输块,所述第三数据流和所述第四数据流均映射在所述第二传输块上。
  44. 根据权利要求39至42中任一项所述的发送端设备,其特征在于,
    所述第一传输块集合包括第一传输块和第二传输块,所述第一数据流映射在所述第一传输块上,所述第二数据流映射在所述第二传输块上,
    所述第二传输块集合包括第三传输块和第四传输块,所述第三数据流映射在所述第三传输块上,所述第四数据流映射在所述第四传输块上。
  45. 根据权利要求44所述的发送端设备,其特征在于,所述发送端设备为基站,所述至少一个接收端设备包括第一终端设备和第二终端设备,
    所述第一发送模块具体用于:
    向所述第一终端设备发送所述第一传输块,且向所述第二终端设备发送所述第二传输块;
    所述第二发送模块具体用于:
    向所述第一终端设备发送所述第三传输块,且向所述第二终端设备发送所述第四传输块,所述第一传输块和所述第三传输块用于所述第一终端设备确定所述第一数据信号,所述第二传输块和所述第四传输块用于所述第二终端设备确定所述第二数据信号。
  46. 根据权利要求39至44中任一项所述的发送端设备,其特征在于,
    所述发送端设备为终端设备,所述至少一个接收端设备为基站;或
    所述发送端设备为基站,所述至少一个接收端设备为终端设备。
  47. 根据权利要求46所述的发送端设备,其特征在于,所述基站用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在传输块传输发生错误时采用的重传方式。
  48. 一种接收端设备,其特征在于,所述接收端设备位于通信系统中,所述通信系统包括发送端设备和至少一个接收端设备,所述接收端设备为所述至少一个接收端设备中任意一个接收端设备,所述接收端设备包括:
    第一接收模块,用于接收所述发送端设备向所述至少一个接收端设备发送的第一传输块集合,所述第一传输块集合中的传输块映射有第一数据流和第二数据流,所述第一数据流和所述第二数据流用于传输数据信号,所述数据信号包括第一数据信号和第二数据信号;
    第二接收模块,用于当所述第一传输块集合中的传输块传输错误时,接收所述发送端设备向所述至少一个接收端设备发送的第二传输块集合,所述第二传输块集合中的传输块映射有第三数据流和第四数据流,所述第三数据流用于传输第三数据信号,所述第三数据信号等于所述第二数据信号的共轭的相反数,所述第四数据流用于传输第四数据信号,所述第四数据信号等于所述第一数据信号的共轭,所述第二传输块集合和所述第一传输块集合用于所述至少一个接收端设备确定所述第一数据信号和所述第二数据信号。
  49. 根据权利要求48所述的接收端设备,其特征在于,所述第一数据流用于传输所述第一数据信号,所述第二数据流用于传输所述第二数据信号。
  50. 根据权利要求48所述的接收端设备,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、采用第二频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、采用所述第二频率传输所述第四数据信号。
  51. 根据权利要求48所述的接收端设备,其特征在于,
    所述第一数据流用于在第一时刻采用第一频率传输所述第一数据信号、在第二时刻采用所述第一频率传输所述第三数据信号;
    所述第二数据流用于在所述第一时刻采用所述第一频率传输所述第二数据信号、在所述第二时刻采用所述第一频率传输所述第四数据信号。
  52. 根据权利要求48至51中任一项所述的接收端设备,其特征在于,
    所述第一传输块集合包括第一传输块,所述第一数据流和所述第二数据流均映射在所述第一传输块上,
    所述第二传输块集合包括第二传输块,所述第三数据流和所述第四数据流均映射在所述第二传输块上。
  53. 根据权利要求48至51中任一项所述的接收端设备,其特征在于,
    所述第一传输块集合包括第一传输块和第二传输块,所述第一数据流映射在所述第一传输块上,所述第二数据流映射在所述第二传输块上,
    所述第二传输块集合包括第三传输块和第四传输块,所述第三数据流映射在所述第三传输块上,所述第四数据流映射在所述第四传输块上。
  54. 根据权利要求53所述的接收端设备,其特征在于,所述至少一个接收端设备包括所述第一终端设备和第二终端设备,所述发送端设备为基站,
    所述第一接收模块具体用于:
    接收所述基站发送的所述第一传输块,所述第二传输块由所述基站备向所述第二终端设备发送;
    所述第二接收模块具体用于:
    接收所述基站发送的所述第三传输块,所述第四传输块由所述基站向所述第二终端设备发送,所述第一传输块和所述第三传输块用于所述第一终端设备确定所述第一数据信号,所述第二传输块和所述第四传输块用于所述第二终端设备确定所述第二数据信号。
  55. 根据权利要求48至53中任一项所述的接收端设备,其特征在于,
    所述接收端设备为基站,所述发送端设备为终端设备;或
    所述接收端设备为终端设备,所述发送端设备为基站。
  56. 根据权利要求55所述的接收端设备,其特征在于,所述终端设备用于接收所述基站发送的指示信息,所述指示信息用于指示所述终端设备在传输块传输发生错误时采用的重传方式。
PCT/CN2016/100566 2016-09-28 2016-09-28 传输数据的方法、接收端设备和发送端设备 WO2018058369A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019500585A JP6965335B2 (ja) 2016-09-28 2016-09-28 データ伝送方法、受信側装置及び送信側装置
EP16917124.6A EP3457648A4 (en) 2016-09-28 2016-09-28 DATA TRANSMISSION PROCEDURE, RECEIVER DEVICE AND TRANSMISSION DEVICE
KR1020197011524A KR20190061021A (ko) 2016-09-28 2016-09-28 데이터를 전송하는 방법, 수신단 설비 및 발송단 설비
CN201680087366.4A CN109417522B (zh) 2016-09-28 2016-09-28 传输数据的方法、接收端设备和发送端设备
PCT/CN2016/100566 WO2018058369A1 (zh) 2016-09-28 2016-09-28 传输数据的方法、接收端设备和发送端设备
TW106129662A TWI734828B (zh) 2016-09-28 2017-08-31 傳輸資料的方法、接收端裝置和發送端裝置
US16/223,476 US10644830B2 (en) 2016-09-28 2018-12-18 Data transmission method, receiving device, and transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100566 WO2018058369A1 (zh) 2016-09-28 2016-09-28 传输数据的方法、接收端设备和发送端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/223,476 Continuation US10644830B2 (en) 2016-09-28 2018-12-18 Data transmission method, receiving device, and transmitting device

Publications (1)

Publication Number Publication Date
WO2018058369A1 true WO2018058369A1 (zh) 2018-04-05

Family

ID=61763577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100566 WO2018058369A1 (zh) 2016-09-28 2016-09-28 传输数据的方法、接收端设备和发送端设备

Country Status (7)

Country Link
US (1) US10644830B2 (zh)
EP (1) EP3457648A4 (zh)
JP (1) JP6965335B2 (zh)
KR (1) KR20190061021A (zh)
CN (1) CN109417522B (zh)
TW (1) TWI734828B (zh)
WO (1) WO2018058369A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117097375A (zh) * 2022-05-12 2023-11-21 华为技术有限公司 一种信号传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005339A (zh) * 2006-01-18 2007-07-25 华为技术有限公司 一种多载波系统的数据多信道传送方法及装置
US20070297528A1 (en) * 2006-06-27 2007-12-27 Meir Feder A High Diversity Time-Space Coding and Decoding for MIMO Systems
CN101669315A (zh) * 2007-02-15 2010-03-10 三菱电机信息技术中心欧洲有限公司 无线电数据发射方法以及利用所述方法的发射器和接收器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852630A (en) * 1997-07-17 1998-12-22 Globespan Semiconductor, Inc. Method and apparatus for a RADSL transceiver warm start activation procedure with precoding
JP2002344415A (ja) * 2001-05-14 2002-11-29 Matsushita Electric Ind Co Ltd マルチキャリア通信方法及びマルチキャリア通信装置
US7397864B2 (en) * 2002-09-20 2008-07-08 Nortel Networks Limited Incremental redundancy with space-time codes
US7684506B2 (en) * 2004-02-13 2010-03-23 Panasonic Corporation Transmitter apparatus, receiver apparatus, and wireless communication method
US7787573B2 (en) * 2004-11-19 2010-08-31 Broadcom Corporation Wireless system having channel fading compensation using minimum mean square error
US7428268B2 (en) * 2004-12-07 2008-09-23 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
KR20060091578A (ko) * 2005-02-16 2006-08-21 삼성전자주식회사 통신 시스템에서 데이터 재전송 장치 및 방법
JP2006238143A (ja) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> 時空間又は周波数空間で符号化又は復号化する送受信装置及び方法
JP4884722B2 (ja) * 2005-03-31 2012-02-29 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
US20080080434A1 (en) * 2006-09-28 2008-04-03 Guy Wolf Method and apparatus of system scheduler
US8179990B2 (en) * 2008-01-16 2012-05-15 Mitsubishi Electric Research Laboratories, Inc. Coding for large antenna arrays in MIMO networks
ES2335634B1 (es) * 2008-01-24 2011-02-10 Vicente Diaz Fuente Metodo y aparato de codificacion y decodificacion para la reduccion de las interferencias en sistemas de transmision de señales simultaneasy usuarios multiples.
KR101399783B1 (ko) * 2008-03-20 2014-05-27 삼성전자주식회사 다중 입출력 통신 시스템에서 재전송 모드 선택 방법 및장치
US8190207B2 (en) * 2008-04-22 2012-05-29 Motorola Mobility, Inc. Communication system and method of operation therefor
KR101507170B1 (ko) * 2008-06-26 2015-03-31 엘지전자 주식회사 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
JP5147135B2 (ja) * 2009-02-27 2013-02-20 シャープ株式会社 通信装置、端末装置、送信方法、受信方法および通信システム
CN102823156B (zh) * 2009-09-02 2015-11-25 苹果公司 使用基于alamouti的码在mimo环境中的符号的传输
JP5630898B2 (ja) * 2010-04-15 2014-11-26 シャープ株式会社 基地局装置、端末装置、および無線通信システム
JP5671328B2 (ja) * 2010-12-21 2015-02-18 株式会社日立国際電気 受信装置、通信システム及び通信方法
US8824501B2 (en) * 2011-09-16 2014-09-02 Alcatel Lucent Performance enhancement through optical variants
CN102347926B (zh) * 2011-09-26 2013-12-18 豪威科技(上海)有限公司 载波频率捕获方法及装置
US9866307B2 (en) * 2013-07-14 2018-01-09 Lg Electronics Inc. Method for transceiving data symbol using antenna correlation in wireless access system which supports massive antenna
US20150078303A1 (en) * 2013-09-19 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) System and Method for Providing Interference Characteristics for Interference Mitigation
CN105637788B (zh) * 2013-10-31 2018-06-12 松下电器(美国)知识产权公司 发送方法、发送装置、接收方法及接收装置
US10361823B2 (en) * 2015-05-15 2019-07-23 Huawei Technologies Co., Ltd. Method and apparatus for transmitting uplink data in licensed-assisted access system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005339A (zh) * 2006-01-18 2007-07-25 华为技术有限公司 一种多载波系统的数据多信道传送方法及装置
US20070297528A1 (en) * 2006-06-27 2007-12-27 Meir Feder A High Diversity Time-Space Coding and Decoding for MIMO Systems
CN101669315A (zh) * 2007-02-15 2010-03-10 三菱电机信息技术中心欧洲有限公司 无线电数据发射方法以及利用所述方法的发射器和接收器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG SOO CHO ET AL.: "MIMO-OFDM Wireless Communication With MATLAB", MIMO-OFDM MATLAB, 30 June 2013 (2013-06-30), XP9512799 *

Also Published As

Publication number Publication date
TWI734828B (zh) 2021-08-01
JP6965335B2 (ja) 2021-11-10
KR20190061021A (ko) 2019-06-04
CN109417522A (zh) 2019-03-01
CN109417522B (zh) 2020-12-04
JP2019537286A (ja) 2019-12-19
TW201815113A (zh) 2018-04-16
US20190123852A1 (en) 2019-04-25
US10644830B2 (en) 2020-05-05
EP3457648A4 (en) 2019-07-24
EP3457648A1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
US20180375621A1 (en) Data retransmission
TWI829760B (zh) 用於側行鏈路的通信方法和設備
WO2017132998A1 (zh) 用于传输业务的方法、移动台和网络设备
CN109863731A (zh) 数据传输方法、相关设备及通信系统
US11844010B2 (en) Relay transmission method and relay node
US12058707B2 (en) Communication method in D2D system, terminal device, and network device
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2019072170A1 (zh) 通信方法和通信装置
US20230199799A1 (en) Wireless communication method, terminal device and network device
JP2020532888A (ja) データ伝送方法、端末機器及びネットワーク機器
CN111918335A (zh) 处理数据包的方法和装置
WO2019076347A1 (zh) 通信方法和通信装置
JP7390399B2 (ja) サイドリンクデータの伝送方法及び端末デバイス
TW202034714A (zh) 一種回饋資訊長度的確定方法及裝置、通訊設備
JP7453959B2 (ja) 無線通信方法及び通信デバイス
CN112514454B (zh) 切换网络的方法、网络节点、芯片和通信系统
WO2018058369A1 (zh) 传输数据的方法、接收端设备和发送端设备
WO2020103316A1 (zh) 一种传输数据的方法和终端设备
WO2017152416A1 (zh) 传输上行控制信息的方法和装置
WO2020118520A1 (zh) 数据传输的方法和设备
WO2020056556A1 (zh) 用于非授权频谱的通信方法、终端设备和网络设备
WO2019174054A1 (zh) 确定第一多天线发送模式的方法、终端设备和网络设备
WO2016015339A1 (zh) 数据传输的方法和用户设备
WO2023056844A1 (zh) 传输数据的方法和装置
WO2022109881A1 (zh) 重复传输控制信道的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016917124

Country of ref document: EP

Effective date: 20181212

ENP Entry into the national phase

Ref document number: 2019500585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011524

Country of ref document: KR

Kind code of ref document: A