WO2017152416A1 - 传输上行控制信息的方法和装置 - Google Patents

传输上行控制信息的方法和装置 Download PDF

Info

Publication number
WO2017152416A1
WO2017152416A1 PCT/CN2016/076122 CN2016076122W WO2017152416A1 WO 2017152416 A1 WO2017152416 A1 WO 2017152416A1 CN 2016076122 W CN2016076122 W CN 2016076122W WO 2017152416 A1 WO2017152416 A1 WO 2017152416A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
resource
network side
uplink control
Prior art date
Application number
PCT/CN2016/076122
Other languages
English (en)
French (fr)
Inventor
朱治雨
李琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/076122 priority Critical patent/WO2017152416A1/zh
Publication of WO2017152416A1 publication Critical patent/WO2017152416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method and an apparatus for transmitting uplink control information.
  • a terminal device needs to send uplink control information to a base station (BS) through a physical uplink control channel (PUCCH), so that the BS schedules transmission resources to transmit downlink data, for example, in long-term evolution.
  • BS base station
  • PUCCH physical uplink control channel
  • the PUCCH is used to carry downlink acknowledgement (ACK) feedback, downlink channel quality indicator (CQI), or uplink scheduling request indicator (SRI).
  • ACK downlink acknowledgement
  • CQI downlink channel quality indicator
  • SRI uplink scheduling request indicator
  • the control information must be extremely reliable.
  • the PUCCH channels in the LTE system are all deployed at the edge of the system frequency domain resources, and are susceptible to interference from signals from other communication systems, thereby affecting the reliability of the PUCCH.
  • the embodiments of the present invention provide a method and an apparatus for transmitting uplink control information, which can improve the reliability of the PUCCH.
  • a first aspect provides a method for transmitting uplink control information, where the method includes: determining, by a network side device, a first frequency domain resource from a system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N a frequency domain resource block, where N is an integer and N ⁇ 0, wherein the extended resource block is a resource block located at two ends of the frequency domain resource of the system, and the network side device is configured in the first communication system, where the frequency domain resource of the system is The frequency domain resource used by the first communication system; the network side device receives the uplink control information sent by the terminal device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the network side device determines the first frequency domain resource from the system frequency domain resource, and the network side device determines the interference signal from the second communication system.
  • the interference value, the frequency domain resource used by the second communication system is different from the frequency domain resource of the system; the network side device determines the first frequency domain resource from the system frequency domain resource according to the interference value, therefore, the network side device can
  • the frequency domain resources of the PUCCH are flexibly configured in actual situations.
  • the method further includes: the network side device sending the indication information to the terminal device, where the indication information is used to indicate the first frequency domain The location of the resource in the system's frequency domain resources. Therefore, the network side device can flexibly configure the frequency domain resource of the PUCCH by using the indication information.
  • the network side device determines the first frequency domain resource from the system frequency domain resource, including: the network side device is configured according to the preset The preset information in the network side device and the terminal device determines the first frequency domain resource from the system frequency domain resource, where the preset information is used to indicate the location of the first frequency domain resource in the system frequency domain resource,
  • the network side device can avoid interference from signals from other communication systems, and improves the reliability of the PUCCH.
  • the method further includes: the network side device according to the code channel number of the PUCCH code channel allocated to the terminal device, and the Determining, by the offset of the first frequency domain resource, the resource block carrying the uplink control information in the system frequency domain; and determining, by the network side device, the resource block carrying the uplink control information in the system frequency domain Position, demodulate.
  • the method further includes: the network side device performing, on the physical uplink shared channel PUSCH based on the extended resource block, with the terminal device Uplink information transmission, thereby improving the utilization of system frequency domain resources.
  • a second aspect provides a method for transmitting uplink control information, where the method includes: determining, by a terminal device, a first frequency domain resource from a system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N frequencies a domain resource block, where N is an integer and N ⁇ 0, wherein the extended resource block is a resource block located at two ends of the frequency domain resource of the system, and the terminal device is configured in the first communication system, where the frequency domain resource is the first The frequency domain resource used by the communication system; the terminal device sends uplink control information to the network side device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the method includes: receiving, by the terminal device, indication information that is sent by the network side device, where the indication information is used to indicate that the first frequency domain resource is in the system frequency domain resource.
  • the location in the network therefore, the communication system can flexibly configure the resource blocks of the PUCCH by indicating the information.
  • the terminal device determines the first frequency domain resource from the system frequency domain resource, including: the terminal device root
  • the first frequency domain resource is determined from the system frequency domain resource according to preset preset information in the terminal device and the network side device, where the preset information is used to indicate that the first frequency domain resource is in the system frequency domain resource.
  • the location therefore, the terminal device can avoid interference from signals from other communication systems, improving the reliability of the PUCCH.
  • the method further includes: the terminal device performing, on the physical uplink shared channel PUSCH based on the extended resource block, with the network side device Uplink information transmission, thereby improving the utilization of system frequency domain resources.
  • a third aspect provides an apparatus for transmitting uplink control information, where the apparatus includes: a determining module, configured to determine a first frequency domain resource from a system frequency domain resource, where the first frequency domain resource and the extended resource block There are N frequency domain resource blocks in the interval, N is an integer and N ⁇ 0, wherein the extended resource block is a resource block located at two ends of the frequency domain resource of the system, and the device is configured in the first communication system, and the frequency domain resource of the system is configured.
  • the frequency domain resource used by the first communication system is configured to receive the uplink control information sent by the terminal device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the determining module includes: a first determining unit, configured to determine an interference value of the interference signal from the second communications system, where the second communications system uses The frequency domain resource is different from the frequency domain resource of the system; the second determining unit is configured to determine the first frequency domain resource from the frequency domain resource of the system according to the interference value, and therefore, the device can be flexibly configured according to actual conditions.
  • the frequency domain resource of PUCCH includes: a first determining unit, configured to determine an interference value of the interference signal from the second communications system, where the second communications system uses The frequency domain resource is different from the frequency domain resource of the system; the second determining unit is configured to determine the first frequency domain resource from the frequency domain resource of the system according to the interference value, and therefore, the device can be flexibly configured according to actual conditions.
  • the frequency domain resource of PUCCH includes: a first determining unit, configured to determine an interference value of the interference signal from the second communications system, where the second communications system uses The frequency domain resource is different from the frequency domain resource of the system; the second determining
  • the device further includes: a sending module, configured to send, to the terminal device, indication information, where the indication information is used to indicate the first The location of the frequency domain resource in the system frequency domain resource. Therefore, the device can flexibly configure the frequency domain resource of the PUCCH by using the indication information.
  • the determining module is configured to: use the preset frequency information preset in the device and the terminal device, the system frequency domain resource Determining a first frequency domain resource, wherein the preset information is used to indicate a location of the first frequency domain resource in the system frequency domain resource, and therefore, the device can avoid interference from signals from other communication systems, and improve PUCCH Reliability.
  • the apparatus includes a demodulation module, configured to: allocate, according to the terminal device a code channel number of the PUCCH code channel, and an offset of the first frequency domain resource with respect to the extended resource block, determining a location of a resource block carrying uplink control information in a system frequency domain; and according to carrying uplink control information The location of the resource block in the system frequency domain is demodulated.
  • the determining module is further configured to: perform uplink information with the terminal device on the physical uplink shared channel PUSCH based on the extended resource block Transmission, thereby increasing the utilization of system frequency domain resources.
  • a fourth aspect provides an apparatus for transmitting uplink control information, where the apparatus includes: a determining module, configured to determine a first frequency domain resource from a system frequency domain resource, where the first frequency domain resource and the extended resource block There are N frequency domain resource blocks in the interval, N is an integer and N ⁇ 0, wherein the extended resource block is a resource block located at two ends of the frequency domain resource of the system, and the device is configured in the first communication system, and the frequency domain resource of the system is configured.
  • the frequency domain resource is used by the first communication system, and the sending module is configured to send uplink control information to the network side device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the device further includes: a receiving module, configured to receive indication information that is sent by the network side device, where the indication information is used to indicate that the first frequency domain resource is The location in the system frequency domain resource, therefore, the communication system can flexibly configure the resource block of the PUCCH through the indication information.
  • the determining module is configured to: according to preset information preset in the device and the network side device, from the system frequency domain The first frequency domain resource is determined in the resource, where the preset information is used to indicate the location of the first frequency domain resource in the system frequency domain resource, and therefore, the device can avoid interference from signals from other communication systems, and the improved The reliability of PUCCH.
  • the determining module is further configured to: perform uplink with the network side device on the physical uplink shared channel PUSCH based on the extended resource block Information transmission, thereby increasing the utilization of system frequency domain resources.
  • an apparatus for transmitting uplink control information comprising: a processor, a memory, a bus system, and a transceiver.
  • the processor, the memory and the transceiver are connected by the bus system, the memory is for storing instructions, the processor is configured to execute instructions stored by the memory to control the transceiver to receive signals or send signals, and when When the processor executes the instructions stored by the memory, the executing causes the processor to perform any of the first aspect or the first aspect The method in the possible implementation.
  • an apparatus for transmitting uplink control information comprising: a processor, a memory, a bus system, and a transceiver.
  • the processor, the memory and the transceiver are connected by the bus system, the memory is for storing instructions, the processor is configured to execute instructions stored by the memory to control the transceiver to receive signals or send signals, and when When the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or the second aspect, or any of the above two possible aspects .
  • the method, the device, the device, and the computer readable medium for transmitting the uplink control information in the embodiment of the present invention can prevent the PUCCH from being affected by the edge frequency band by configuring the frequency domain resource corresponding to the PUCCH in the non-edge frequency band.
  • the interference improves the reliability of the PUCCH, thereby improving the performance of the wireless communication.
  • FIG. 1 is a schematic architectural diagram of a communication system for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 2 is a schematic demodulation principle diagram of transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a resource block allocation manner for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for transmitting uplink control information according to another embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting uplink control information according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an apparatus for transmitting uplink control information according to another embodiment of the present invention.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device may communicate with one or more core networks via a radio access network (Radio Access Network, hereinafter referred to as "RAN"), and the terminal device may be referred to as an access terminal.
  • RAN Radio Access Network
  • UE User Equipment
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal Digital) Assistant, referred to as "PDA” for short, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and terminal devices in future 5G networks.
  • SSIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • the network side device may be used to communicate with the terminal device, and the network side device may be code division multiple access (Code Division Multiple Access, referred to as A base station (Base Transceiver Station, abbreviated as "BTS”) in “CDMA”) may also be a base station (Node B in the Wideband Code Division Multiple Access (WCDMA) system). “NB”) may also be an evolved base station (Evolutional Node B, "eNB” or “eNode B”) in the LTE system, or the network side device may be a relay station, an access point, an in-vehicle device, or wearable Equipment and base station equipment in future 5G networks.
  • a base station Base Transceiver Station, abbreviated as "BTS” in “CDMA”
  • BTS Base Transceiver Station
  • NB Wideband Code Division Multiple Access
  • eNB evolved base station
  • eNode B evolved Node B
  • the network side device may be a relay station, an access point, an in-vehicle device, or wear
  • FIG. 1 shows a schematic architectural diagram of a communication system 100 for transmitting uplink control information in accordance with an embodiment of the present invention.
  • the communication system 100 can include a network side device 102, which can include one or more antenna groups, and each antenna group can include one or more antennas.
  • a network side device 102 can include one or more antenna groups, and each antenna group can include one or more antennas.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • an additional group may include antennas 112 and 114.
  • two antennas are shown for each antenna group in Figure 1, it should be understood that each antenna group may have more or fewer antennas.
  • Network side device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer, Demodulator, demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer, Demodulator, demultiplexer or antenna, etc.).
  • the network side device 102 can communicate with a plurality of terminal devices (e.g., the terminal device 116 and the terminal device 122). However, it will be appreciated that the network side device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • Terminal devices 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than the reverse link 120, and the forward link 124 can utilize a different frequency band than the reverse link 126; for example, in time-division double In the full system and full duplex systems, the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can also use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network side device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network side device 102 coverage area.
  • the transmit antenna of the network side device 102 can utilize beamforming to improve the signal to noise ratio of the forward links 118 and 124.
  • the neighboring cell is compared with the manner in which the network side device transmits a signal to all of its terminal devices through a single antenna. Mobile devices in the middle are subject to less interference.
  • the network side device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system is a cellular network system, for example, the system is an LTE system, and the network device is, for example, a base station, and the terminal device is, for example, a user equipment UE.
  • LTE Long Term Evolution
  • the embodiment of the present invention is only described by using an LTE system, a base station, and a user equipment as an example, but the embodiment of the present invention is not limited thereto.
  • the communication system is, for example, an LTE system.
  • the demodulation principle of transmitting uplink control information such as the LTE system will be briefly described below with reference to FIG.
  • the base station antenna after receiving the information carried in the PUCCH, the base station antenna performs PUCCH demodulation after Fast Fourier Transformation (FFT), and then reports the demodulation result to the upper layer.
  • FFT Fast Fourier Transformation
  • the code of the PUCCH code channel allocated to the UE The track number is determined according to the first frequency domain resource, and does not consider the frequency domain resource occupied by the extended RB. Therefore, the base station needs to actually map the RB according to the PUCCH code channel allocated to the UE (for convenience of description, the following is collectively referred to as "the intrinsic RB".
  • the demodulation is performed, and the base station can determine the location of the intrinsic RB according to the offset of the first frequency domain resource with respect to the extended RB and the code channel number of the PUCCH code channel, and perform demodulation.
  • the current LTE system bandwidth is 20 MHz, occupying 100 RBs, and three PUCCH extended RBs, two PUCCH CQI resource blocks, and two PUCCHs are respectively configured on both ends of the system frequency domain resource.
  • the SRI/ACK resource block, the remaining frequency domain resources are configurable to the physical uplink shared channel PUSCH, wherein the CQI resource block is always located in the SRI/ACK resource block
  • each RB can carry 8 code channels
  • the code channel number of the PUCCH code channel allocated to the UE is 13
  • the uplink control information is ACK feedback information
  • the base station can determine the uplink control information according to the type of the uplink control information.
  • the first frequency domain resource used is an SRI/ACK resource block, and is determined according to the number of extended RBs and the number of CQI resource blocks (ie, the offset of the first frequency domain resource with respect to the extended RB), and the code channel number 13
  • the RB used by the UE to transmit the uplink control information is the RB located at the location #7, and the corresponding data can be extracted and demodulated.
  • the uplink control information is CQI type information
  • the base station may determine that the first frequency domain resource used by the uplink control information is a CQI resource block, and according to the number of extended RBs (that is, the first frequency domain resource is compared to the extended RB.
  • the offset number, and the code track number 13 determine that the RB used by the UE to transmit the uplink control information is the RB located at the location #5, and the corresponding data can be extracted and demodulated.
  • the eigen RBs in the embodiments of the present invention are located in the non-edge frequency band, and the extended RBs are located in the edge frequency bands.
  • the non-edge frequency bands and the edge frequency bands are idioms in the prior art, and the edge frequency bands are used. Refers to a frequency band that is susceptible to interference at both ends of the frequency band.
  • the non-edge frequency band is a frequency band other than the edge frequency band in the system frequency band.
  • the specific range of the edge frequency band is also different according to actual interference conditions, for example, in LTE with 20 MHz bandwidth.
  • the edge band can be a band of 3 RBs at each end of the system band, or a band of 13 RBs at both ends of the system band, correspondingly, the non-edge band is a system.
  • FIG. 4 illustrates a method 400 of transmitting uplink control information, which may be performed, for example, by a network side device, such as a base station, in accordance with an embodiment of the present invention. As shown in FIG. 4, the method 400 includes:
  • the network side device determines a first frequency domain resource from the system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N frequency domain resource blocks, where N is an integer and N ⁇ 0, where the extension
  • the resource block is a resource block located at two ends of the frequency domain resource of the system, and the network side device is configured in the first communication system, where the frequency domain resource is a frequency domain resource used by the first communication system;
  • the network side device receives the uplink control information sent by the terminal device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the system may pre-configure the PUCCH in the non-edge band.
  • the location may be sent by the base station to the UE to notify the UE of the RB corresponding to the PUCCH.
  • the system may also configure the extended RB in the edge band for transmission on the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) information.
  • Physical Uplink Shared Channel Physical Uplink Shared Channel
  • three RBs at both ends of the system band may be allocated to the PUSCH for transmitting uplink data information, and 12 RBs of the non-edge band are allocated to the PUCCH for transmission.
  • Uplink control information wherein 6 of the 12 RBs may be allocated to a code channel for transmitting CQI, and another 6 RBs of the 12 RBs are allocated to a code channel for transmitting SRI or ACK, and a frequency band remaining in the system band It can be allocated to the PUSCH for transmitting uplink service data information or uplink reference signals.
  • the method for transmitting the uplink control information in the embodiment of the present invention can prevent the PUCCH from being interfered by the edge band, improve the reliability of the PUCCH, and improve the wireless communication by configuring the RBs corresponding to the PUCCH in the non-edge band. Performance.
  • the network side device determines the first frequency domain resource from the system frequency domain resource, including:
  • the network side device determines an interference value of the interference signal from the second communication system, where the frequency domain resource used by the second communication system is different from the frequency domain resource of the system.
  • the network side device determines, according to the interference value, the first frequency domain resource from the system frequency domain resource.
  • both ends of a frequency band used by the LTE system may be interfered by GSM (Global System for Mobile Communication), and if the interference value of the interference signal is large, the base station may configure the intrinsic RB.
  • GSM Global System for Mobile Communication
  • the base station may configure the intrinsic RB.
  • the eigen RB may be disposed at a position closer to the edge of the band, that is, the smaller the value of N;
  • the actual situation pre-sets a threshold (or algorithm switch) to achieve flexible configuration of the intrinsic RB. Therefore, the network side device according to the embodiment of the present invention can flexibly configure the frequency domain resource of the PUCCH according to actual conditions.
  • the method 400 further includes:
  • the network side device sends indication information to the terminal device, where the indication information is used to indicate a location of the first frequency domain resource in the system frequency domain resource.
  • the base station may send indication information to the UE indicating the frequency allocated to the UE.
  • the location of the domain resource in the system frequency domain resource specifically, the number of SRI/ACK resource blocks, the number of CQI resource blocks, and the number of extended RBs, so that the frequency domain resources of the PUCCH can be flexibly configured according to actual conditions.
  • the network side device determines the first frequency domain resource from the system frequency domain resource, including:
  • the network side device determines, according to preset preset information in the network side device and the terminal device, the first frequency domain resource from the system frequency domain resource, where the preset information is used to indicate that the first frequency domain resource is The location in the system's frequency domain resources.
  • the method 400 further includes:
  • the network side device determines, according to a code channel number of a PUCCH code channel allocated to the terminal device, and an offset of the first frequency domain resource with respect to the extended resource block, determining a resource block carrying uplink control information in a system frequency. The location in the domain; the network side device demodulates according to the location of the resource block carrying the uplink control information in the system frequency domain.
  • the method 400 further includes:
  • the network side device performs uplink information transmission with the terminal device on the physical uplink shared channel PUSCH based on the extended resource block.
  • the uplink service data information can be transmitted through the RB located in the edge band. Specifically, for example, the base station can allocate the extended RB to the PUSCH, thereby improving the system frequency domain. Utilization of resources.
  • the method for transmitting the uplink control information in the embodiment of the present invention can prevent the PUCCH from being interfered by the edge band, improve the reliability of the PUCCH, and improve the reliability of the PUCCH by configuring the RBs corresponding to the PUCCH in the non-edge band.
  • the RB of the edge band transmits data information, thereby improving the performance of the wireless communication.
  • a method for transmitting uplink control information according to an embodiment of the present invention is described from the perspective of a network side device.
  • the method for transmitting uplink control information according to an embodiment of the present invention is described in detail below with reference to FIG. .
  • FIG. 5 illustrates a method 500 of transmitting uplink control information, which may be performed, for example, by a terminal device, such as a UE, in accordance with another embodiment of the present invention. As shown in FIG. 5, the method 500 includes:
  • the terminal device determines a first frequency domain resource from the system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N frequency domain resource blocks, where N is an integer and N ⁇ 0, where the extended resource
  • the block is a resource block located at two ends of the frequency domain resource of the system, and the terminal device is configured in the first communication system, where the frequency domain resource is a frequency domain resource used by the first communication system;
  • the terminal device sends uplink control information to the network side device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the system may configure the PUCCH in any position of the non-edge band in advance, and the UE may receive the indication information sent by the base station, where the indication information is used to notify the UE, the RB corresponding to the PUCCH, and further, the system may also The extended RB is configured in an edge band for transmitting information carried on the PUSCH.
  • three RBs at both ends of the system band may be allocated to the PUSCH for transmitting uplink data information, and 12 RBs of the non-edge band are allocated to the PUCCH for transmitting uplink control information, where the 12 Six RBs of the RBs are allocated to the channel for transmitting the CQI, and the other six RBs of the 12 RBs are allocated to the channel for transmitting the SRI or ACK, and the remaining frequency band of the system band can be allocated to the PUSCH for transmitting the uplink service data information. Or uplink reference signal.
  • the method for transmitting the uplink control information in the embodiment of the present invention can prevent the PUCCH from being interfered by the edge band, improve the reliability of the PUCCH, and improve the wireless communication by configuring the RBs corresponding to the PUCCH in the non-edge band. Performance.
  • the method 500 further includes:
  • the terminal device receives the indication information sent by the network side device, where the indication information is used to indicate the location of the first frequency domain resource in the system frequency domain resource.
  • the communication system can flexibly configure the resource blocks of the PUCCH by the indication information.
  • the terminal device determines the first frequency domain resource from the system frequency domain resource, including:
  • the terminal device determines the first frequency domain resource from the system frequency domain resource according to preset preset information in the terminal device and the network side device, where the preset information is used to indicate that the first frequency domain resource is in the system. The location in the frequency domain resource.
  • the terminal device can avoid interference from signals from other communication systems, improving the reliability of the PUCCH.
  • the method 500 further includes:
  • the terminal device performs uplink information transmission with the network side device on the physical uplink shared channel PUSCH based on the extended resource block.
  • the data information can be transmitted through the RBs located in the edge frequency band. Specifically, for example, the system can allocate the extended RBs to the PUSCH, thereby improving the utilization rate of the system frequency domain resources. .
  • the method for transmitting uplink control information according to the embodiment of the present invention may also adopt other structures. And can include other content.
  • the method for transmitting the uplink control information in the embodiment of the present invention by transmitting the uplink control information in the PUCCH frequency domain resource configured in the non-edge band, can prevent the PUCCH from being interfered by the edge band, improve the reliability of the PUCCH, and The data information is transmitted by the RB located in the edge band, thereby improving the performance of the wireless communication.
  • a method for transmitting uplink control information according to an embodiment of the present invention is described in detail above with reference to FIG. 4 and FIG. 5.
  • a device for transmitting uplink control information according to an embodiment of the present invention will be described in detail with reference to FIG. 6 and FIG. .
  • FIG. 6 illustrates an apparatus 600 for transmitting uplink control information in accordance with an embodiment of the present invention. As shown in FIG. 6, the apparatus 600 includes:
  • the determining module 610 is configured to determine a first frequency domain resource from the system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N frequency domain resource blocks, where N is an integer and N ⁇ 0, where The extended resource block is a resource block located at two ends of the frequency domain resource of the system, and the device is configured in the first communication system, where the frequency domain resource is a frequency domain resource used by the first communication system;
  • the receiving module 620 is configured to receive uplink control information sent by the terminal device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the apparatus for transmitting the uplink control information in the embodiment of the present invention can prevent the PUCCH from being interfered by the edge band and improve the reliability of the PUCCH by configuring the RB of the PUCCH in the non-edge band.
  • the determining module 610 includes:
  • a first determining unit 611 configured to determine an interference value of an interference signal from the second communication system, where the frequency domain resource used by the second communication system is different from the system frequency domain resource;
  • the second determining unit 612 is configured to determine, according to the interference value, the first frequency domain resource from the system frequency domain resource.
  • the device 600 can flexibly configure the frequency domain resource of the PUCCH according to actual conditions.
  • the device 600 further includes:
  • the sending module 630 is configured to send, to the terminal device, indication information, where the indication information is used to indicate a location of the first frequency domain resource in the system frequency domain resource.
  • the apparatus 600 can flexibly configure the frequency domain resources of the PUCCH by using the indication information.
  • the determining module 610 is configured to:
  • the preset information in the device and the terminal device Determining, by the preset information in the device and the terminal device, the first frequency domain resource from the system frequency domain resource, where the preset information is used to indicate the location of the first frequency domain resource in the system frequency domain resource .
  • the device 600 can avoid interference from signals from other communication systems, improving the reliability of the PUCCH.
  • the apparatus 600 includes a demodulation module 640, and the demodulation module 640 is configured to:
  • the determining module 610 is further configured to: perform uplink information transmission with the terminal device on the physical uplink shared channel PUSCH based on the extended resource block.
  • the device 600 can increase the utilization of system frequency domain resources.
  • apparatus 600 in accordance with embodiments of the present invention may correspond to network side devices in embodiments of the present invention, and that the above and other operations and/or functions of various modules in apparatus 600 are respectively implemented to implement method 400 of FIG. The corresponding process, for the sake of brevity, will not be described here.
  • the apparatus for transmitting uplink control information in the embodiment of the present invention can transmit the uplink control information by the intrinsic RB, so that the PUCCH can be prevented from being interfered by the edge band, improve the reliability of the PUCCH, and can utilize the RB transmission located in the edge band. Data information to improve the performance of wireless communications.
  • FIG. 6 an apparatus for transmitting uplink control information according to an embodiment of the present invention is described from the perspective of a network side device.
  • FIG. 7 a device for transmitting uplink control information according to an embodiment of the present invention is described in detail from the perspective of a terminal device. .
  • FIG. 7 illustrates an apparatus 700 for transmitting uplink control information in accordance with an embodiment of the present invention. As shown in FIG. 7, the apparatus 700 includes:
  • the determining module 710 is configured to determine a first frequency domain resource from the system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N frequency domain resource blocks, where N is an integer and N ⁇ 0, where The extended resource block is a resource block located at two ends of the frequency domain resource of the system, and the device is configured in the first communication system, where the frequency domain resource is a frequency domain resource used by the first communication system;
  • a sending module 720 configured to: a physical uplink control channel based on the first frequency domain resource On the PUCCH, uplink control information is sent to the network side device.
  • the apparatus for transmitting the uplink control information in the embodiment of the present invention can prevent the PUCCH from being interfered by the edge band and improve the reliability of the PUCCH by configuring the RB of the PUCCH in the non-edge band.
  • the apparatus 700 further includes:
  • the receiving module 730 is configured to receive indication information sent by the network side device, where the indication information is used to indicate a location of the first frequency domain resource in the system frequency domain resource.
  • the determining module 710 is configured to: determine, according to preset preset information in the device and the network side device, a first frequency domain resource from a system frequency domain resource, where the preset information is used to indicate The location of a frequency domain resource in the system's frequency domain resources.
  • the terminal device can avoid interference from signals from other communication systems, improving the reliability of the PUCCH.
  • the determining module 710 is further configured to: perform uplink information transmission with the network side device on the physical uplink shared channel PUSCH based on the extended resource block.
  • the utilization rate of the system frequency domain resources can be improved.
  • apparatus 700 in accordance with an embodiment of the present invention may correspond to a terminal device in an embodiment of the method of the present invention, and that the above and other operations and/or functions of various modules in apparatus 700 are respectively implemented to implement method 500 of FIG. The corresponding process, for the sake of brevity, will not be described here.
  • the apparatus for transmitting the uplink control information in the embodiment of the present invention can transmit the uplink control information by using the PUCCH frequency domain resource configured in the non-edge frequency band, so that the PUCCH can avoid the interference that may be received by the edge frequency band, improve the reliability of the PUCCH, and
  • the data information is transmitted by the RB located in the edge band, thereby improving the performance of the wireless communication.
  • an embodiment of the present invention further provides an apparatus 800 for transmitting uplink control information, where the apparatus 800 includes: a processor 810, a memory 820, a bus system 830, and a transceiver 840, where the processor 810, the memory 820 and the transceiver 840 are connected by the bus system 830, the memory 820 is used to store instructions, and the processor 810 is configured to execute instructions stored in the memory 820 to control the transceiver 840 to receive or transmit signals;
  • the processor 810 is configured to determine a first frequency domain resource from a system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N frequency domain resource blocks, where N is an integer and N ⁇ 0, where The extended resource block is a resource block located at two ends of the frequency domain resource of the system, where the device is configured in a first communication system, where the frequency domain resource is a frequency domain resource used by the first communication system; the transceiver 840 And receiving uplink control information sent by the terminal device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the device that transmits the uplink control information in the embodiment of the present invention can transmit the uplink control information in the PUCCH resource block configured in the non-edge band, so that the PUCCH can be prevented from being interfered by the edge band and the reliability of the PUCCH can be improved.
  • the processor 810 may be a central processing unit (“CPU"), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs).
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of the memory 820 may also include a non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 810 is further configured to: determine an interference value of the interference signal from the second communication system, where the frequency domain resource used by the second communication system is different from the frequency domain resource of the system; The interference value is used to determine the first frequency domain resource from the system frequency domain resource. Therefore, the resource block of the PUCCH can be flexibly configured according to actual conditions.
  • the transceiver 840 is configured to: send, to the terminal device, indication information, where the indication information is used to indicate a location of the first frequency domain resource in the system frequency domain resource, and therefore, the indication information may be flexible. Configure the frequency domain resource of the PUCCH.
  • the processor 810 is further configured to: preset according to the device and The preset information in the terminal device determines the first frequency domain resource from the system frequency domain resource, where the preset information is used to indicate the location of the first frequency domain resource in the system frequency domain resource, and therefore, the device 800 can Avoid interference from signals from other communication systems, improving the reliability of the PUCCH.
  • the processor 810 is further configured to: according to a code channel number of a PUCCH code channel allocated to the terminal device, and an offset of the first frequency domain resource relative to the extended resource block Determining a location of a resource block carrying uplink control information in a frequency domain of the system; demodulating according to a location of a resource block carrying uplink control information in a frequency domain of the system.
  • the transceiver 840 is further configured to: perform uplink information transmission with the terminal device on the physical uplink shared channel PUSCH based on the extended resource block, so that the utilization of the system frequency domain resource may be improved.
  • the apparatus 800 for transmitting uplink control information may correspond to the network side device and the apparatus 600 in the embodiment of the present invention, and may correspond to a corresponding body in performing the method according to the embodiment of the present invention, and The above and other operations and/or functions of the respective modules in the device 800 are respectively omitted in order to implement the corresponding processes of the method in FIG. 4 for brevity.
  • the apparatus for transmitting uplink control information in the embodiment of the present invention can transmit the uplink control information by using the resource block configured in the non-edge frequency band, so that the PUCCH can be prevented from being interfered by the edge frequency band, improve the reliability of the PUCCH, and can be utilized.
  • the RB of the edge band transmits data information, thereby improving the performance of the wireless communication.
  • an embodiment of the present invention further provides an apparatus 900 for transmitting uplink control information
  • the apparatus 900 includes: a processor 910, a memory 920, a bus system 930, and a transceiver 940, where the processor 910, the memory 920 and the transceiver 940 are connected by the bus system 930, the memory 920 is used to store instructions, and the processor 910 is configured to execute instructions stored in the memory 920 to control the transceiver 940 to receive or transmit signals;
  • the processor 910 is configured to determine a first frequency domain resource from the system frequency domain resource, where the first frequency domain resource and the extended resource block are separated by N frequency domain resource blocks, where N is an integer and N ⁇ 0, where The extended resource block is a resource block located at two ends of the frequency domain resource of the system, where the terminal device is configured in a first communication system, where the frequency domain resource is a frequency domain resource used by the first communication system; And transmitting uplink control information to the network side device on the physical uplink control channel PUCCH based on the first frequency domain resource.
  • the device for transmitting the uplink control information in the embodiment of the present invention can prevent the PUCCH from being affected by the edge band by transmitting the uplink control information in the resource block configured in the non-edge band.
  • the interference improves the reliability of the PUCCH.
  • the processor 910 may be a central processing unit (“CPU"), and the processor 910 may also be other general-purpose processors, digital signal processors (DSPs).
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 920 can include read only memory and random access memory and provides instructions and data to the processor 910. A portion of the memory 920 may also include a non-volatile random access memory. For example, the memory 920 can also store information of the device type.
  • the bus system 930 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 930 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 910 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 920, and the processor 910 reads the information in the memory 920 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the transceiver 940 is configured to: receive indication information sent by the network side device, where the indication information is used to indicate a location of the first frequency domain resource in the system frequency domain resource. Therefore, the communication system can flexibly configure the resource blocks of the PUCCH by the indication information.
  • the processor 910 is further configured to: determine, according to preset preset information in the device and the network side device, a first frequency domain resource from a system frequency domain resource, where the The information is used to indicate the location of the first frequency domain resource in the system frequency domain resource. Therefore, the device can avoid interference from signals from other communication systems, improving the reliability of the PUCCH.
  • the transceiver 940 is further configured to perform uplink information transmission with the network side device on the physical uplink shared channel PUSCH based on the extended resource block.
  • the utilization rate of the system frequency domain resources can be improved.
  • the apparatus 900 for transmitting uplink control information may correspond to the network side device and the apparatus 700 in the embodiment of the present invention, and may correspond to performing according to the present invention.
  • the above-described and other operations and/or functions of the respective modules in the device 900 are respectively for the purpose of implementing the corresponding processes of the method in FIG. 5, and are not described herein again for brevity.
  • the apparatus for transmitting uplink control information in the embodiment of the present invention can transmit the uplink control information by using the resource block configured in the non-edge frequency band, so that the PUCCH can be prevented from being interfered by the edge frequency band, improve the reliability of the PUCCH, and can be utilized.
  • the RB of the edge band transmits data information, thereby improving the performance of the wireless communication.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种传输上行控制信息的方法和装置。该方法包括:网络侧设备从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于系统频域资源两端的资源块,该网络侧设备配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;该网络侧设备在基于第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。本发明实施例的传输上行控制信息的方法和装置,通过将PUCCH对应的频域资源配置于非边缘频带,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,进而提高无线通信的性能。

Description

传输上行控制信息的方法和装置 技术领域
本发明实施例涉及通信领域,尤其涉及一种传输上行控制信息的方法和装置。
背景技术
在无线通信系统中,终端设备需要通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)向基站(Base Station,BS)发送上行控制信息,以便于BS调度传输资源传输下行数据,例如,在长期演进(Long Term Evolution,LTE)系统中,PUCCH用于承载下行确认(Acknowledgement,ACK)反馈、下行信道质量指示符(Channel Quality Indicator,CQI)或上行调度请求指示符(Scheduling Request Indicator,SRI)等重要的控制信息,必须具有极强的可靠性。
当前,LTE系统中PUCCH信道全部部署在系统频域资源的边缘,容易受到来自其它通信系统的信号的干扰,从而影响了PUCCH的可靠性。
发明内容
有鉴于此,本发明实施例提供了一种传输上行控制信息的方法和装置,可以提高PUCCH的可靠性。
第一方面,提供了一种传输上行控制信息的方法,该方法包括:网络侧设备从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该网络侧设备配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;该网络侧设备在基于该第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。
结合第一方面,在第一方面的第一种可能的实现方式中,网络侧设备从系统频域资源中确定第一频域资源,包括:网络侧设备确定来自第二通信系统的干扰信号的干扰值,该第二通信系统使用的频域资源与该系统频域资源相异;网络侧设备根据该干扰值,从系统频域资源中确定第一频域资源,因此,网络侧设备可以根据实际情况灵活配置PUCCH的频域资源。
结合第一方面或上述可能的实现方式,在第一方面的第二种可能的实现方式中,该方法还包括:网络侧设备向终端设备发送指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置,因此,网络侧设备可以通过指示信息灵活配置PUCCH的频域资源。
结合第一方面或上述可能的实现方式,在第一方面的第三种可能的实现方式中,网络侧设备从系统频域资源中确定第一频域资源,包括:网络侧设备根据预设在该网络侧设备和终端设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置,因此,网络侧设备可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
结合第一方面或上述可能的实现方式,在第一方面的第四种可能的实现方式中,该方法还包括:网络侧设备根据分配给终端设备的PUCCH码道的码道号,以及所述第一频域资源相对于所述扩展资源块的偏移量,确定承载上行控制信息的资源块在系统频域中的位置;网络侧设备根据承载上行控制信息的资源块在系统频域中的位置,进行解调。
结合第一方面或上述可能的实现方式,在第一方面的第五种可能的实现方式中,该方法还包括:网络侧设备在基于扩展资源块的物理上行共享信道PUSCH上,与终端设备进行上行信息传输,从而,可以提高系统频域资源的利用率。
第二方面,提供了一种传输上行控制信息的方法,该方法包括:终端设备从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该终端设备配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;该终端设备在基于该第一频域资源的物理上行控制信道PUCCH上,向网络侧设备发送上行控制信息。
结合第二方面,在第二方面的第一种可能的实现方式中,该方法包括:终端设备接收网络侧设备发送的指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置,因此,通信系统可以通过指示信息灵活配置PUCCH的资源块。
结合第二方面或上述可能的实现方式,在第二方面的第二种可能的实现方式中,终端设备从系统频域资源中确定第一频域资源,包括:终端设备根 据预设在该终端设备和网络侧设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置,因此,终端设备可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
结合第二方面或上述可能的实现方式,在第二方面的第三种可能的实现方式中,该方法还包括:终端设备在基于扩展资源块的物理上行共享信道PUSCH上,与网络侧设备进行上行信息传输,从而,可以提高系统频域资源的利用率。
第三方面,提供了一种用于传输上行控制信息的装置,该装置包括:确定模块,用于从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该装置配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;接收模块,用于在基于该第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。
结合第三方面,在第三方面的第一种可能的实现方式中,确定模块包括:第一确定单元,用于确定来自第二通信系统的干扰信号的干扰值,该第二通信系统使用的频域资源与所述系统频域资源相异;第二确定单元,用于根据该干扰值,从所述系统频域资源中确定第一频域资源,因此,该装置可以根据实际情况灵活配置PUCCH的频域资源。
结合第三方面或上述可能的实现方式,在第三方面的第二种可能的实现方式中,该装置还包括:发送模块,用于向终端设备发送指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置,因此,该装置可以通过指示信息灵活配置PUCCH的频域资源。
结合第三方面或上述可能的实现方式,在第三方面的第三种可能的实现方式中,确定模块用于:根据预设在该装置和终端设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置,因此,该装置可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
结合第三方面或上述可能的实现方式,在第三方面的第四种可能的实现方式中,该装置包括解调模块,该解调模块用于:根据分配给终端设备的 PUCCH码道的码道号,以及所述第一频域资源相对于所述扩展资源块的偏移量,确定承载上行控制信息的资源块在系统频域中的位置;根据承载上行控制信息的资源块在系统频域中的位置,进行解调。
结合第三方面或上述可能的实现方式,在第三方面的第五种可能的实现方式中,确定模块还用于:在基于扩展资源块的物理上行共享信道PUSCH上,与终端设备进行上行信息传输,从而,可以提高系统频域资源的利用率。
第四方面,提供了一种用于传输上行控制信息的装置,该装置包括:确定模块,用于从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该装置配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;发送模块,用于在基于所述第一频域资源的物理上行控制信道PUCCH上,向网络侧设备发送上行控制信息。
结合第四方面,在第四方面的第一种可能的实现方式中,该装置还包括:接收模块,用于接收网络侧设备发送的指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置,因此,通信系统可以通过指示信息灵活配置PUCCH的资源块。
结合第四方面或上述可能的实现方式,在第四方面的第二种可能的实现方式中,确定模块用于:根据预设在该装置和网络侧设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置,因此,该装置可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
结合第四方面或上述可能的实现方式,在第四方面的第三种可能的实现方式中,确定模块还用于:在基于扩展资源块的物理上行共享信道PUSCH上,与网络侧设备进行上行信息传输,从而,可以提高系统频域资源的利用率。
第五方面,提供了一种用于传输上行控制信息的设备,该设备包括:处理器、存储器、总线系统和收发器。其中,该处理器、该存储器和该收发器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该收发器接收信号或发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意 可能的实现方式中的方法。
第六方面,提供了一种用于传输上行控制信息的设备,该设备包括:处理器、存储器、总线系统和收发器。其中,该处理器、该存储器和该收发器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该收发器接收信号或发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第二方面,或上述两个方面的任意可能的实现方式中的方法的指令。
基于以上的技术方案,本发明实施例的传输上行控制信息的方法、装置、设备以及计算机可读介质,通过将PUCCH对应的频域资源配置于非边缘频带,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,进而提高无线通信的性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是适用本发明实施例的传输上行控制信息的通信系统的示意性构架图。
图2是适用本发明实施例的传输上行控制信息的示意性解调原理图。
图3是适用本发明实施例的传输上行控制信息的资源块分配方式的示意图。
图4是根据本发明一实施例的传输上行控制信息的方法的示意性流程图。
图5是根据本发明另一实施例的传输上行控制信息的方法的示意性流程图。
图6是根据本发明一实施例的传输上行控制信息的装置的示意性框图。
图7是根据本发明另一实施例的传输上行控制信息的装置的示意性框 图。
图8是根据本发明一实施例的传输上行控制信息的设备的示意性框图。
图9是根据本发明另一实施例的传输上行控制信息的设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、LTE系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)或全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统等。
还应理解,在本发明实施例中,终端设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,该终端设备可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
还应理解,在本发明实施例中,网络侧设备可用于与终端设备通信,该网络侧设备可以是码分多址(Code Division Multiple Access,简称为 “CDMA”)中的基站(Base Transceiver Station,简称为“BTS”),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统中的基站(Node B,简称为“NB”),还可以是LTE系统中的演进型基站(Evolutional Node B,简称为“eNB”或“eNode B”),或者该网络侧设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站设备等。
图1示出了适用本发明实施例的传输上行控制信息的通信系统100的示意性构架图。如图1所示,该通信系统100可以包括网络侧设备102,该网络侧设备102可以包括一个或多个天线组,每个天线组可以包括一个或多个天线。例如,一个天线组可以包括天线104和106,另一个天线组可以包括天线108和110,附加组可以包括天线112和114。虽然图1中对于每个天线组示出了2个天线,但应理解每个天线组可以具有更多的或更少的天线。网络侧设备102可以附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络侧设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络侧设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上进行通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工系统中,前向链路118可利用与反向链路120不同的频带,前向链路124可利用与反向链路126不同的频带;再例如,在时分双工系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可以使用共同的频带,前向链路124和反向链路126也可以使用共同的频带。
被设计用于通信的每组天线和/或区域称为网络侧设备102的扇区。例 如,可将天线组设计为与网络侧设备102覆盖区域的扇区中的终端设备通信。在网络侧设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络侧设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络侧设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络侧设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络侧设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
应理解,该通信系统为蜂窝网络系统,例如该系统为LTE系统,该网络设备例如为基站,该终端设备例如为用户设备UE。本发明实施例仅以LTE系统、基站和用户设备为例进行说明,但本发明实施例并不限于此。
图1示出了适用本发明实施例的一种通信系统,该通信系统例如为LTE系统,下面将结合图2,简述诸如LTE系统的传输上行控制信息的解调原理。
如图2所示,基站天线收到承载于PUCCH的信息后,经过快速傅立叶变换(Fast Fourier Transformation,FFT)后进行PUCCH解调,进而将解调结果上报高层。在PUCCH解调过程中,由于系统在边缘频带配置了扩展资源块(Resource Block,简称为“RB”,该资源块也可称为“资源单元”),而分配给UE的PUCCH码道的码道号是根据第一频域资源确定的,没有考虑扩展RB所占用的频域资源,因此基站需要根据分配给UE的PUCCH码道实际映射的RB(为了描述方便,以下统称为“本征RB”)进行解调,基站可以根据第一频域资源相对于扩展RB的偏移量,以及PUCCH码道的码道号,确定本征RB的位置,并进行解调。
例如,如图3所示,假设当前LTE系统带宽为20MHz,占用100个RB,在系统频域资源的两端分别配置了3个PUCCH扩展RB,2个PUCCH的CQI资源块,以及2个PUCCH的SRI/ACK资源块,剩余频域资源可配置给物理上行共享信道PUSCH,其中,CQI资源块总是位于SRI/ACK资源块的 外侧,假设每个RB可以承载8个码道,配置给UE的PUCCH码道的码道号为13,上行控制信息为ACK反馈信息,则基站可以根据上行控制信息的类型确定该上行控制信息所使用的第一频域资源为SRI/ACK资源块,并根据扩展RB的数量和CQI资源块的数量(即,第一频域资源相对于扩展RB的偏移量),以及码道号13确定该UE传输上行控制信息所使用的RB为位于位置#7的RB,进而可以取出对应的数据,进行解调。如果上行控制信息为CQI类型的信息,则基站可以确定该上行控制信息所使用的第一频域资源为CQI资源块,并根据扩展RB的数量(即,第一频域资源相对于扩展RB的偏移量),以及码道号13确定该UE传输上行控制信息所使用的RB为位于位置#5的RB,进而可以取出对应的数据,进行解调。
此外,本发明实施例中所述的本征RB位于非边缘频带,所述的扩展RB位于边缘频带,应理解,该非边缘频带和该边缘频带为现有技术中的惯用名词,该边缘频带指频带两端容易受到干扰的频带,该非边缘频带为系统频带中除边缘频带之外的频带,根据实际干扰情况的不同,边缘频带的具体范围也有所不同,例如,在20MHz带宽的LTE中,一共有100个RB,其中,边缘频带可以为系统频带两端各占3个RB大小的频带,也可以是系统频带两端各占13个RB大小的频带,相应的,非边缘频带为系统频带中除上述边缘频带之外的频带。
上文中结合图1至图3描述了本发明实施例的应用场景以及解调原理,下面将结合图4和图5,详细描述根据本发明实施例的传输上行控制信息的方法。
图4示出了根据本发明一实施例的传输上行控制信息的方法400,该方法400例如可以由网络侧设备执行,该网络侧设备例如为基站。如图4所示,该方法400包括:
S410,网络侧设备从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该网络侧设备配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;
S420,该网络侧设备在基于该第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。
在本发明实施例中,系统可以预先将PUCCH配置于非边缘频带的任意 位置,也可以通过基站向UE发送指示信息,通知UE,该PUCCH所对应的RB,此外,系统还可以将扩展RB配置在边缘频带,用于传输承载于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的信息。
具体而言,例如,可以将系统频带(即,系统频域资源)两端各3个RB分配给PUSCH,用于传输上行数据信息,将非边缘频带的12个RB分配给PUCCH,用于传输上行控制信息,其中,可以将该12个RB中的6个RB分配给传输CQI的码道,将该12个RB中另外6个RB分配给传输SRI或者ACK的码道,系统频带剩余的频带可以分配给PUSCH,用于传输上行业务数据信息或上行参考信号。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以将PUCCH配置于非边缘频带的方法都属于本发明保护的范围。
因此,本发明实施例的传输上行控制信息的方法,通过将PUCCH对应的本征RB配置于非边缘频带,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,进而提高无线通信的性能。
可选地,网络侧设备从系统频域资源中确定第一频域资源,包括:
S411,网络侧设备确定来自第二通信系统的干扰信号的干扰值,该第二通信系统使用的频域资源与该系统频域资源相异;
S412,网络侧设备根据该干扰值,从系统频域资源中确定第一频域资源。
具体而言,例如,LTE系统所使用的频带的两端可能受到来自GSM(Global System for Mobile Communication,全球移动通信系统)的干扰,如果干扰信号的干扰值较大,基站可以将本征RB配置在离频带边缘较远的位置,即,N值越大;如果干扰信号的干扰值较小,则可以将本征RB配置在离频带边缘较近的位置,即,N值越小;可以根据实际情况预先设定一个阈值(或算法开关)来实现对本征RB的灵活配置。因此,根据本发明实施例的网络侧设备可以根据实际情况灵活配置PUCCH的频域资源。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以根据干扰情况确定第一频域资源的方法都属于本发明保护的范围。
在本发明实施例中,可选地,该方法400还包括:
S430,网络侧设备向终端设备发送指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置。
在S430中,例如,基站可以向UE发送指示信息,指示分配给UE的频 域资源在系统频域资源中的位置,具体地,可以指示SRI/ACK资源块的数量、CQI资源块的数量和扩展RB的数量,从而可以根据实际情况灵活配置PUCCH的频域资源。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以将第一频域资源在系统频域资源中的位置通知给UE的方法都属于本发明保护的范围。
可选地,网络侧设备从系统频域资源中确定第一频域资源,包括:
S413,网络侧设备根据预设在该网络侧设备和终端设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以预先配置第一频域资源的方法都属于本发明保护的范围。
可选地,该方法400还包括:
S440,网络侧设备根据分配给终端设备的PUCCH码道的码道号,以及所述第一频域资源相对于所述扩展资源块的偏移量,确定承载上行控制信息的资源块在系统频域中的位置;网络侧设备根据承载上行控制信息的资源块在系统频域中的位置,进行解调。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以确定承载上行控制信息的资源块在系统频域中的位置的方法都属于本发明保护的范围。
可选地,该方法400还包括:
S450,网络侧设备在基于扩展资源块的物理上行共享信道PUSCH上,与终端设备进行上行信息传输。
由于数据信息对信道传输的可靠性的要求较低,因此,可以通过位于边缘频带的RB传输上行业务数据信息,具体而言,例如,基站可以将扩展RB分配给PUSCH,从而可以提高系统频域资源的利用率。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以通过位于边缘频带的RB传输数据信息的方法都属于本发明保护的范围。
还应理解,上文中仅描述本发明实施例在LTE系统中的一种可能的具体应用,但本发明并不限于此,根据本发明实施例的传输上行控制信息的方法 还可以采用其它结构,并可以包括其它内容。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的传输上行控制信息的方法,通过将PUCCH对应的本征RB配置于非边缘频带,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,并且可以利用位于边缘频带的RB传输数据信息,从而提高无线通信的性能。
上文结合图4,从网络侧设备的角度描述了本发明实施例的传输上行控制信息的方法,下面结合图5,从终端设备的角度详细描述根据本发明实施例的传输上行控制信息的方法。
图5示出了根据本发明另一实施例的传输上行控制信息的方法500,该方法500例如可以由终端设备执行,该终端设备例如可以为UE。如图5所示,该方法500包括:
S510,终端设备从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该终端设备配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;
S520,该终端设备在基于该第一频域资源的物理上行控制信道PUCCH上,向网络侧设备发送上行控制信息。
在本发明实施例中,系统可以预先将PUCCH配置于非边缘频带的任意位置,UE可以接收基站发送的指示信息,该指示信息用于通知UE,该PUCCH所对应的RB,此外,系统还可以将扩展RB配置在边缘频带,用于传输承载于PUSCH的信息。
具体而言,可以将系统频带两端各3个RB分配给PUSCH,用于传输上行数据信息,将非边缘频带的12个RB分配给PUCCH,用于传输上行控制信息,其中,可以将该12个RB中的6个RB分配给传输CQI的信道,将该12个RB中另外6个RB分配给传输SRI或者ACK的信道,系统频带剩余的频带可以分配给PUSCH,用于传输上行业务数据信息或上行参考信号。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此, 任何可以将PUCCH配置于非边缘频带的方法都属于本发明保护的范围。
因此,本发明实施例的传输上行控制信息的方法,通过将PUCCH对应的本征RB配置于非边缘频带,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,进而提高无线通信的性能。
可选地,该方法500还包括:
S530,终端设备接收网络侧设备发送的指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置。
因此,通信系统可以通过指示信息灵活配置PUCCH的资源块。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以将第一频域资源在系统频域资源中的位置通知给UE的方法都属于本发明保护的范围。
可选地,终端设备从系统频域资源中确定第一频域资源,包括:
S511,终端设备根据预设在该终端设备和网络侧设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置。
因此,终端设备可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以预先配置第一频域资源的方法都属于本发明保护的范围。
可选地,该方法500还包括:
S540,终端设备在基于扩展资源块的物理上行共享信道PUSCH上,与网络侧设备进行上行信息传输。
由于数据信息对信道可靠性的要求较低,因此,可以通过位于边缘频带的RB传输数据信息,具体而言,例如,系统可以将扩展RB分配给PUSCH,从而可以提高系统频域资源的利用率。
应理解,上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何可以通过位于边缘频带的RB传输数据信息的方法都属于本发明保护的范围。
还应理解,上文中仅描述本发明实施例在LTE系统中的一种可能的具体应用,但本发明并不限于此,根据本发明实施例的传输上行控制信息的方法还可以采用其它结构,并可以包括其它内容。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的传输上行控制信息的方法,通过配置于非边缘频带的PUCCH频域资源传输上行控制信息,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,并且可以利用位于边缘频带的RB传输数据信息,从而提高无线通信的性能。
上文结合图4和图5,详细描述根据本发明实施例的传输上行控制信息的方法,下面,将结合图6和图7,详细描述根据本发明实施例的用于传输上行控制信息的装置。
图6示出了根据本发明实施例的传输上行控制信息的装置600。如图6所示,该装置600包括:
确定模块610,用于从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该装置配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;
接收模块620,用于在基于该第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。
因此,本发明实施例的传输上行控制信息的装置,通过将PUCCH对应的本征RB配置于非边缘频带,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性。
可选地,该确定模块610包括:
第一确定单元611,用于确定来自第二通信系统的干扰信号的干扰值,该第二通信系统使用的频域资源与所述系统频域资源相异;
第二确定单元612,用于根据该干扰值,从所述系统频域资源中确定第一频域资源。
因此,该装置600可以根据实际情况灵活配置PUCCH的频域资源。
可选地,该装置600还包括:
发送模块630,用于向终端设备发送指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置。
因此,该装置600可以通过指示信息灵活配置PUCCH的频域资源。
可选地,确定模块610用于:
根据预设在该装置和终端设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置。
因此,该装置600可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
可选地,该装置600包括解调模块640,该解调模块640用于:
根据分配给终端设备的PUCCH码道的码道号,以及所述第一频域资源相对于所述扩展资源块的偏移量,确定承载上行控制信息的资源块在系统频域中的位置;根据承载上行控制信息的资源块在系统频域中的位置,进行解调。
可选地,该确定模块610还用于:在基于扩展资源块的物理上行共享信道PUSCH上,与终端设备进行上行信息传输。
因此,该装置600可以提高系统频域资源的利用率。
应理解,根据本发明实施例的装置600可对应于本发明方法实施例中的网络侧设备,并且装置600中的各个模块的上述和其它操作和/或功能分别为了实现图4中的方法400的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输上行控制信息的装置,通过本征RB传输上行控制信息,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,并且可以利用位于边缘频带的RB传输数据信息,从而提高无线通信的性能。
上文结合图6,从网络侧设备的角度描述了本发明实施例的传输上行控制信息的装置,下面结合图7,从终端设备的角度详细描述根据本发明实施例的传输上行控制信息的装置。
图7示出了根据本发明实施例的传输上行控制信息的装置700。如图7所示,该装置700包括:
确定模块710,用于从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该装置配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;
发送模块720,用于在基于所述第一频域资源的物理上行控制信道 PUCCH上,向网络侧设备发送上行控制信息。
因此,本发明实施例的传输上行控制信息的装置,通过将PUCCH对应的本征RB配置于非边缘频带,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性。
可选地,该装置700还包括:
接收模块730,用于接收网络侧设备发送的指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置。
可选地,该确定模块710用于:根据预设在该装置和网络侧设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置。
因此,终端设备可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
可选地,该确定模块710还用于:在基于扩展资源块的物理上行共享信道PUSCH上,与网络侧设备进行上行信息传输。从而,可以提高系统频域资源的利用率。
应理解,根据本发明实施例的装置700可对应于本发明方法实施例中的终端设备,并且装置700中的各个模块的上述和其它操作和/或功能分别为了实现图5中的方法500的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输上行控制信息的装置,通过配置于非边缘频带的PUCCH频域资源传输上行控制信息,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,并且可以利用位于边缘频带的RB传输数据信息,从而提高无线通信的性能。
如图8所示,本发明实施例还提供了一种用于传输上行控制信息的设备800,该设备800包括:处理器810、存储器820、总线系统830和收发器840,其中,该处理器810、该存储器820和该收发器840通过该总线系统830相连,该存储器820用于存储指令,该处理器810用于执行该存储器820存储的指令,以控制该收发器840接收或发送信号;
其中,该处理器810用于从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该装置配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;该收发器840 用于在基于该第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。
因此,本发明实施例的传输上行控制信息的设备,通过配置于非边缘频带的PUCCH资源块传输上行控制信息,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性。
应理解,在本发明实施例中,该处理器810可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器820可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器820的一部分还可以包括非易失性随机存取存储器。例如,存储器820还可以存储设备类型的信息。
该总线系统830除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统830。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该处理器810还用于:确定来自第二通信系统的干扰信号的干扰值,该第二通信系统使用的频域资源与该系统频域资源相异;根据该干扰值,从系统频域资源中确定第一频域资源,因此,可以根据实际情况灵活配置PUCCH的资源块。
可选地,作为一个实施例,该收发器840用于:向终端设备发送指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置,因此,可以通过指示信息灵活配置PUCCH的频域资源。
可选地,作为一个实施例,该处理器810还用于:根据预设在该设备和 终端设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置,因此,该设备800可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
可选地,作为一个实施例,该处理器810还用于:根据分配给终端设备的PUCCH码道的码道号,以及所述第一频域资源相对于所述扩展资源块的偏移量,确定承载上行控制信息的资源块在系统频域中的位置;根据承载上行控制信息的资源块在系统频域中的位置,进行解调。
可选地,作为一个实施例,该收发器840还用于:在基于扩展资源块的物理上行共享信道PUSCH上,与终端设备进行上行信息传输,从而,可以提高系统频域资源的利用率。
应理解,根据本发明实施例的传输上行控制信息的装置800可对应于本发明实施例中的网络侧设备以及装置600,并可以对应于执行根据本发明实施例的方法中的相应主体,并且装置800中的各个模块的上述和其它操作和/或功能分别为了实现图4中的方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输上行控制信息的装置,通过配置于非边缘频带的资源块传输上行控制信息,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,并且可以利用位于边缘频带的RB传输数据信息,从而提高无线通信的性能。
如图9所示,本发明实施例还提供了一种用于传输上行控制信息的装置900,该设备900包括:处理器910、存储器920、总线系统930和收发器940,其中,该处理器910、该存储器920和该收发器940通过该总线系统930相连,该存储器920用于存储指令,该处理器910用于执行该存储器920存储的指令,以控制该收发器940接收或发送信号;
其中,该处理器910用于从系统频域资源中确定第一频域资源,该第一频域资源与扩展资源块之间隔有N个频域资源块,N为整数且N≥0,其中,该扩展资源块是位于该系统频域资源两端的资源块,该终端设备配置在第一通信系统中,该系统频域资源是该第一通信系统使用的频域资源;该收发器940用于在基于该第一频域资源的物理上行控制信道PUCCH上,向网络侧设备发送上行控制信息。
因此,本发明实施例的传输上行控制信息的设备,通过配置于非边缘频带的资源块传输上行控制信息,可以使PUCCH避免受到边缘频带可能受到 的干扰,提高PUCCH的可靠性。
应理解,在本发明实施例中,该处理器910可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器910还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器920可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据。存储器920的一部分还可以包括非易失性随机存取存储器。例如,存储器920还可以存储设备类型的信息。
该总线系统930除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统930。
在实现过程中,上述方法的各步骤可以通过处理器910中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器920,处理器910读取存储器920中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该收发器940用于:接收网络侧设备发送的指示信息,该指示信息用于指示第一频域资源在系统频域资源中的位置。因此,通信系统可以通过指示信息灵活配置PUCCH的资源块。
可选地,作为一个实施例,该处理器910还用于:根据预设在该设备和网络侧设备中的预设信息,从系统频域资源中确定第一频域资源,其中,该预设信息用于指示第一频域资源在系统频域资源中的位置。因此,该设备可以避免受到来自其它通信系统的信号的干扰,提高了PUCCH的可靠性。
可选地,作为一个实施例,该收发器940还用于:在基于扩展资源块的物理上行共享信道PUSCH上,与网络侧设备进行上行信息传输。从而,可以提高系统频域资源的利用率。
应理解,根据本发明实施例的传输上行控制信息的装置900可对应于本发明实施例中的网络侧设备以及装置700,并可以对应于执行根据本发明实 施例的方法中的相应主体,并且装置900中的各个模块的上述和其它操作和/或功能分别为了实现图5中的方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输上行控制信息的装置,通过配置于非边缘频带的资源块传输上行控制信息,可以使PUCCH避免受到边缘频带可能受到的干扰,提高PUCCH的可靠性,并且可以利用位于边缘频带的RB传输数据信息,从而提高无线通信的性能。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种传输上行控制信息的方法,其特征在于,所述方法包括:
    网络侧设备从系统频域资源中确定第一频域资源,所述第一频域资源与扩展资源块之间隔有N个频域资源块,所述N为整数且N≥0,其中,所述扩展资源块是位于所述系统频域资源两端的资源块,所述网络侧设备配置在第一通信系统中,所述系统频域资源是所述第一通信系统使用的频域资源;
    所述网络侧设备在基于所述第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述网络侧设备从系统频域资源中确定第一频域资源,包括:
    所述网络侧设备确定来自第二通信系统的干扰信号的干扰值,所述第二通信系统使用的频域资源与所述系统频域资源相异;
    所述网络侧设备根据所述干扰值,从所述系统频域资源中确定所述第一频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备向所述终端设备发送指示信息,所述指示信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  4. 根据权利要求1所述的方法,其特征在于,所述网络侧设备从系统频域资源中确定第一频域资源,包括:
    所述网络侧设备根据预设在所述网络侧设备和所述终端设备中的预设信息,从所述系统频域资源中确定所述第一频域资源,其中,所述预设信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备根据分配给所述终端设备的PUCCH码道的码道号,以及所述第一频域资源相对于所述扩展资源块的偏移量,确定承载所述上行控制信息的资源块在所述系统频域资源中的位置;
    所述网络侧设备根据所述承载所述上行控制信息的资源块在所述系统频域资源中的位置,进行解调。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备在基于所述扩展资源块的物理上行共享信道PUSCH上,与所述终端设备进行上行信息传输。
  7. 一种传输上行控制信息的方法,其特征在于,所述方法包括:
    终端设备从系统频域资源中确定第一频域资源,所述第一频域资源与扩展资源块之间隔有N个频域资源块,所述N为整数且N≥0,其中,所述扩展资源块是位于所述系统频域资源两端的资源块,所述终端设备配置在第一通信系统中,所述系统频域资源是所述第一通信系统使用的频域资源;
    所述终端设备在基于所述第一频域资源的物理上行控制信道PUCCH上,向网络侧设备发送上行控制信息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络侧设备发送的指示信息,所述指示信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  9. 根据权利要求7所述的方法,其特征在于,所述终端设备从系统频域资源中确定第一频域资源,包括:
    所述终端设备根据预设在所述终端设备和所述网络侧设备中的预设信息,从所述系统频域资源中确定所述第一频域资源,其中,所述预设信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在基于所述扩展资源块的物理上行共享信道PUSCH上,与所述网络侧设备进行上行信息传输。
  11. 一种用于传输上行控制信息的装置,其特征在于,所述装置包括:
    确定模块,用于从系统频域资源中确定第一频域资源,所述第一频域资源与扩展资源块之间隔有N个频域资源块,所述N为整数且N≥0,其中,所述扩展资源块是位于所述系统频域资源两端的资源块,所述装置配置在第一通信系统中,所述系统频域资源是所述第一通信系统使用的频域资源;
    接收模块,用于在基于所述第一频域资源的物理上行控制信道PUCCH上,接收终端设备发送的上行控制信息。
  12. 根据权利要求11所述的装置,其特征在于,所述确定模块包括:
    第一确定单元,用于确定来自第二通信系统的干扰信号的干扰值,所述第二通信系统使用的频域资源与所述系统频域资源相异;
    第二确定单元,用于根据所述干扰值,从所述系统频域资源中确定所述第一频域资源。
  13. 根据权利要求11或12所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述终端设备发送指示信息,所述指示信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  14. 根据权利要求11所述的装置,其特征在于,所述确定模块用于:
    根据预设在所述装置和所述终端设备中的预设信息,从所述系统频域资源中确定所述第一频域资源,其中,所述预设信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  15. 根据权利要求11至14中任一项所述的装置,其特征在于,所述装置包括解调模块,所述解调模块用于:
    根据分配给所述终端设备的PUCCH码道的码道号,以及所述第一频域资源相对于所述扩展资源块的偏移量,确定承载所述上行控制信息的资源块在所述系统频域中的位置;
    根据所述承载所述上行控制信息的资源块在所述系统频域中的位置,进行解调。
  16. 根据权利要求11至15中任一项所述的装置,其特征在于,所述确定模块还用于:
    在基于所述扩展资源块的物理上行共享信道PUSCH上,与所述终端设备进行上行信息传输。
  17. 一种用于传输上行控制信息的装置,其特征在于,所述装置包括:
    确定模块,用于从系统频域资源中确定第一频域资源,所述第一频域资源与扩展资源块之间隔有N个频域资源块,所述N为整数且N≥0,其中,所述扩展资源块是位于所述系统频域资源两端的资源块,所述装置配置在第一通信系统中,所述系统频域资源是所述第一通信系统使用的频域资源;
    发送模块,用于在基于所述第一频域资源的物理上行控制信道PUCCH上,向网络侧设备发送上行控制信息。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述网络侧设备发送的指示信息,所述指示信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  19. 根据权利要求17所述的装置,其特征在于,所述确定模块用于:
    根据预设在所述装置和所述网络侧设备中的预设信息,从所述系统频域资源中确定所述第一频域资源,其中,所述预设信息用于指示所述第一频域资源在所述系统频域资源中的位置。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述确定模块还用于:
    在基于所述扩展资源块的物理上行共享信道PUSCH上,与所述网络侧设备进行上行信息传输。
PCT/CN2016/076122 2016-03-11 2016-03-11 传输上行控制信息的方法和装置 WO2017152416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076122 WO2017152416A1 (zh) 2016-03-11 2016-03-11 传输上行控制信息的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076122 WO2017152416A1 (zh) 2016-03-11 2016-03-11 传输上行控制信息的方法和装置

Publications (1)

Publication Number Publication Date
WO2017152416A1 true WO2017152416A1 (zh) 2017-09-14

Family

ID=59790015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076122 WO2017152416A1 (zh) 2016-03-11 2016-03-11 传输上行控制信息的方法和装置

Country Status (1)

Country Link
WO (1) WO2017152416A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110679187A (zh) * 2017-11-09 2020-01-10 Oppo广东移动通信有限公司 上行控制信道资源确定方法、终端和网络侧设备
CN110831192A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 侧行通信方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207797A1 (en) * 2008-02-19 2009-08-20 Zukang Shen Mapping between Logical and Physical Uplink Control Resource Blocks in Wireless Networks
CN102082641A (zh) * 2010-02-11 2011-06-01 大唐移动通信设备有限公司 一种传输多比特ack/nack信息的方法及装置
CN102307082A (zh) * 2011-09-28 2012-01-04 电信科学技术研究院 一种上行控制信令的传输方法及装置
WO2014171869A1 (en) * 2013-04-16 2014-10-23 Telefonaktiebolaget L M Ericsson (Publ) Wireless device and method for selecting uplink transmission parameters by the network and signalling explicitly with a chosen physical downlink control channel region

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207797A1 (en) * 2008-02-19 2009-08-20 Zukang Shen Mapping between Logical and Physical Uplink Control Resource Blocks in Wireless Networks
CN102082641A (zh) * 2010-02-11 2011-06-01 大唐移动通信设备有限公司 一种传输多比特ack/nack信息的方法及装置
CN102307082A (zh) * 2011-09-28 2012-01-04 电信科学技术研究院 一种上行控制信令的传输方法及装置
WO2014171869A1 (en) * 2013-04-16 2014-10-23 Telefonaktiebolaget L M Ericsson (Publ) Wireless device and method for selecting uplink transmission parameters by the network and signalling explicitly with a chosen physical downlink control channel region

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110679187A (zh) * 2017-11-09 2020-01-10 Oppo广东移动通信有限公司 上行控制信道资源确定方法、终端和网络侧设备
CN111132343A (zh) * 2017-11-09 2020-05-08 Oppo广东移动通信有限公司 上行控制信道资源确定方法、终端和网络侧设备
US11627559B2 (en) 2017-11-09 2023-04-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink control channel resource determination method, terminal, and network side device
CN110831192A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 侧行通信方法、终端设备和网络设备
US11943744B2 (en) 2018-08-10 2024-03-26 Huawei Technologies Co., Ltd. Sidelink communication method, terminal device, and network device

Similar Documents

Publication Publication Date Title
CN107889222B (zh) 信号传输方法、终端设备、网络设备和通信系统
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
JP6125044B2 (ja) ランク指示(ri)ビット数を決定する方法、基地局、及び端末
JP2022517904A (ja) データ伝送方法、端末機器およびネットワーク機器
CN112039643A (zh) 传输反馈信息的方法和装置
US20190110309A1 (en) Data transmission method and apparatus
US20220046563A1 (en) Wireless Communication Method and Device
CN111602445B (zh) 通信的方法、网络设备和终端设备
WO2018099328A1 (zh) 通信方法、基站和终端设备
KR20200044963A (ko) 업링크 제어 채널을 전송하기 위한 방법 및 장치
WO2020164323A1 (zh) 传输探测参考信号的方法、装置和系统
WO2019006702A1 (zh) 无线通信方法和设备
WO2019023876A1 (zh) 数据传输的方法和终端设备
EP3531764B1 (en) Scheduling method and apparatus
AU2018417481A1 (en) Data transmission method, terminal device and network device
CN111867038A (zh) 一种通信方法及装置
WO2018058469A1 (zh) 信号发送的方法、终端设备和网络设备
CN112703699A (zh) 传输数据信道的方法和终端设备
WO2019076347A1 (zh) 通信方法和通信装置
US11082960B2 (en) Method and device for transmitting or receiving channel state information
EP3544345B1 (en) Method and apparatus for wireless communication
CN109691213B (zh) 信息传输方法和装置
WO2017152416A1 (zh) 传输上行控制信息的方法和装置
WO2018120099A1 (zh) 传输信息的方法、网络设备和终端设备
US11671985B2 (en) Downlink control information transmission method and apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893067

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893067

Country of ref document: EP

Kind code of ref document: A1