WO2018056308A1 - 二次電池の劣化判定装置 - Google Patents

二次電池の劣化判定装置 Download PDF

Info

Publication number
WO2018056308A1
WO2018056308A1 PCT/JP2017/033918 JP2017033918W WO2018056308A1 WO 2018056308 A1 WO2018056308 A1 WO 2018056308A1 JP 2017033918 W JP2017033918 W JP 2017033918W WO 2018056308 A1 WO2018056308 A1 WO 2018056308A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
battery
secondary battery
voltage sensor
deterioration determination
Prior art date
Application number
PCT/JP2017/033918
Other languages
English (en)
French (fr)
Inventor
山田 裕之
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to KR1020197010017A priority Critical patent/KR20190046980A/ko
Priority to DE112017004747.1T priority patent/DE112017004747T5/de
Priority to CN201780057824.4A priority patent/CN109791180A/zh
Publication of WO2018056308A1 publication Critical patent/WO2018056308A1/ja
Priority to US16/354,865 priority patent/US20190212397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a deterioration determination device for determining deterioration of a secondary battery used for an emergency power source or the like in a data center, a mobile phone base station, or other various power supply devices that require stable power supply.
  • the charging method for the emergency power supply includes trickle charging, which uses a charging circuit to charge with a small amount of current in a steady state, and a load and a secondary battery connected in parallel to the rectifier, applying a constant current to the load.
  • trickle charging uses a charging circuit to charge with a small amount of current in a steady state, and a load and a secondary battery connected in parallel to the rectifier, applying a constant current to the load.
  • many types of trickle charging are employed for emergency power supplies.
  • the emergency power supply requires a voltage and current that can drive a load driven by a commercial power supply.
  • the voltage of one secondary battery (battery) is low and the capacity is small, so multiple batteries are connected in series.
  • a plurality of battery groups are connected in parallel.
  • Each battery is a lead acid battery or a lithium ion battery.
  • Patent Document 1 a proposal for measuring the whole battery collectively (for example, Patent Document 1), applying a pulsed voltage to the battery, and determining the battery from the input voltage and the response voltage Proposals for calculating the overall internal impedance (for example, Patent Document 2), methods for determining deterioration by measuring the internal resistance of individual cells connected in series in the battery (for example, Patent Document 3), and the like have been proposed.
  • Patent Document 2 a proposal for measuring the whole battery collectively
  • Patent Document 2 applying a pulsed voltage to the battery, and determining the battery from the input voltage and the response voltage Proposals for calculating the overall internal impedance
  • Patent Document 3 methods for determining deterioration by measuring the internal resistance of individual cells connected in series in the battery
  • AC four-terminal battery tester has been commercialized as a handy checker that measures a very small resistance value such as the internal resistance of the battery (for example, Non-Patent Document 1).
  • Patent Documents 1 and 2 wireless data transmission is also proposed, cable management and manual work reduction, and computer data management are also proposed.
  • JP-A-10-170615 Japanese Patent Laid-Open No. 2005-1000096 JP 2010-164441 A
  • Non-Patent Document 1 The conventional handy checker (Non-Patent Document 1) is not feasible with an emergency power source connected with dozens or hundreds of batteries because there are too many measurement points.
  • the techniques of Patent Literatures 1 and 2 both measure the entire power source including a battery, and do not measure individual batteries, that is, individual cells. For this reason, the accuracy of deterioration determination is low, and individual batteries that have deteriorated cannot be specified.
  • Patent Document 3 leads to a technique of improving the accuracy of deterioration determination and identifying each deteriorated battery by measuring the internal resistance of each cell connected in series.
  • the reference potential (ground level) of each voltage sensor is the minus terminal potential of each cell. Accordingly, the reference potentials of the batteries in the battery group in which several tens to several hundreds of batteries are directly connected are all different as they are. The coping with the difference in the reference potential is not disclosed in the document. In general, in order to acquire the potential of each cell, it is necessary to detect a potential difference by differential calculation or to use an insulating transformer, resulting in a complicated and expensive configuration.
  • a secondary battery deterioration determination device shown in FIG. 11 was previously proposed (Japanese Patent Laid-Open No. 2017-150925). That is, a secondary battery degradation determination device that determines degradation of each battery 2 in a power source 1 in which a plurality of battery groups 3 each having a plurality of secondary batteries 2 connected in series are connected in parallel, A plurality of voltage sensor units 7 individually connected to each battery 2, a measurement current applying device 9 for applying a measurement current including an AC component to each battery group 3, and each voltage sensor unit 7 are provided. 10A for each sensor that wirelessly transmits the measured value of the measured voltage of the AC component, and the measurement value transmitted by each wireless communication means 10A for each voltage sensor is received, and the received measurement value is used. A controller 11 that calculates the internal resistance of each battery 2 and determines the deterioration of the battery 2 from the internal resistance. In addition, in the same figure, the part corresponding to embodiment mentioned later is attached
  • the measured value of the voltage sensor unit 7 is transmitted to the controller 11 wirelessly.
  • the detection units 7 a of the individual voltage sensor units 7 are transmitted.
  • These reference potentials ground levels
  • the measurement values of a plurality of individual voltage sensors are transmitted wirelessly, there is no need for complicated wiring. By these, it can be set as a simple and cheap structure.
  • the deterioration of each battery 2 is determined rather than the entire power source 1 subject to deterioration determination, the deterioration of the battery 2 can be accurately determined.
  • each sensor wireless communication means 10A is provided for each voltage sensor (detection unit 7a) provided for each battery 2, the number of wireless communication means 10A for each sensor is large, the configuration is complicated, and the cost is high. It becomes. Since the sensor-by-sensor wireless communication means 10A is an expensive part that performs wireless communication, the provision of a large number of them makes the entire degradation determination device expensive.
  • the secondary battery degradation determination device is a secondary battery that determines degradation of each battery in a power source 1 in which a plurality of batteries 2 each of which is a secondary battery are connected in series.
  • a battery deterioration determination device A plurality of terminals that individually detect the voltages between the terminals of the plurality of batteries 2 in the battery group 3, individually calculate an AC component from the detected signals, and transmit the calculation result as a measurement value by one wireless unit 10.
  • the AC component referred to in this specification is a component in which the magnitude of the voltage is repeatedly changed, and the direction of the voltage may be always constant, for example, a ripple current or a pulse current.
  • the “battery” may be a plurality of cells connected in series or a single cell.
  • the “controller” is not limited to a single unit, for example, a main controller 11A provided with means for receiving the measured value, and the main controller 11A connected to the main controller 11A via a communication means 12 such as a LAN. It may be divided into an information processing device such as the data server 13 that calculates the internal resistance of
  • the voltage sensor unit 7 transmits the measured value of the voltage of each battery 2 to the controller 11 wirelessly. Even if there are a plurality of batteries 2 constituting the battery group 3 connected in series, for example, several tens to several hundreds, the reference potential of the detection unit 7a including individual voltage sensors or the like is transmitted wirelessly. (Ground level) can be shared, and there is no need to worry about the reference potential. Therefore, there is no need for a differential operation or an isolation transformer for considering the reference potential.
  • the configuration is simplified, and manufacturing can be performed at low cost.
  • the number of radio units 10 can be reduced, the overall configuration of the deterioration determination device is further simplified, and the cost is reduced. Can be manufactured.
  • deterioration of each battery 2 is determined instead of the entire power source 1 subject to deterioration determination.
  • a measurement current including an AC component is applied, and the measured value of the transmitted voltage
  • the internal resistance of each battery 2 is calculated using the measured value of the current sensor 8, and the deterioration of the battery 2 is determined from the internal resistance. For this reason, it is possible to accurately determine the deterioration.
  • the internal resistance of the battery 2 is closely related to the capacity of the battery 2, that is, the degree of deterioration. If the internal resistance is known, the deterioration of the battery 2 can be accurately determined.
  • the voltage sensor unit 7 includes a plurality of detection units 7a that individually detect the voltages between the terminals, and a plurality of calculations that perform individual calculations of the AC component from signals detected by these detection units.
  • the structure which has the part 7b may be sufficient. In the case of this configuration, since the detection unit 7a and the calculation unit 7b are provided for each battery 2, the configuration is clear.
  • the voltage sensor unit 7 includes one detection unit 7a that individually detects the voltage between the terminals, a switching unit 7c that switches the plurality of batteries 2 connected to the detection unit 7a, and the detection unit. It may have a configuration including one calculation unit 7b that performs individual calculation of the AC component from the signal detected in 7a. In this configuration, the switching unit 7c is required, but since only one detection unit 7a and one calculation unit 7b are required, the number of circuit elements that are the detection unit 7a, the calculation unit 7b, or the switching unit 7c is small. Less.
  • the voltage sensor unit 7 includes a plurality of detection units 7a that individually detect the voltages between the terminals, and a data selection unit that selects and outputs the signals detected by the detection units 7a in a switchable manner. 7d and one calculation part 7b which performs the separate calculation of the said alternating current component from the signal selected by this data selection part 7d may be sufficient. In this configuration, the data selection unit 7d is required. However, since only one calculation unit 7b is required, the number of circuit elements that are the detection unit 7a, the calculation unit 7b, or the data selection unit 7d can be reduced.
  • the entire voltage sensor unit 7 may be an integral part in which all the components are assembled in one casing 7g.
  • a form in which all the components are assembled in one housing 7g a form in which elements as the respective components are mounted on a common circuit board, or a form in which the elements are configured as one integrated circuit chip. It may be.
  • this integral part is used, it is excellent in handling and storage.
  • the switching unit 7c shares the lowest potential terminal 7au among the plurality of series-connected batteries 2 to be detected by one voltage sensor unit 7. (The example is FIG. 4). In the case of this configuration, the configuration of the switching unit 7c is simplified.
  • the switching unit 7c is configured to sequentially switch the low potential side and high potential side terminals 7au and 7ah connected to the detection unit 7a for each battery 2. May be. In this configuration, the detection unit 7a only needs to connect the switching unit 7c to the input side, and the wiring is simplified.
  • FIG. 1 is a circuit diagram of a secondary battery deterioration determination device according to a first embodiment of the present invention.
  • FIG. It is a block diagram which shows an example of a conceptual structure of the voltage sensor unit in the degradation determination apparatus. It is a block diagram which shows the other example of a conceptual structure of the voltage sensor unit in the degradation determination apparatus. It is a block diagram which shows the further another example of a conceptual structure of the voltage sensor unit in the degradation determination apparatus. It is a block diagram which shows the further another example of a conceptual structure of the voltage sensor unit in the degradation determination apparatus. It is a block diagram which shows the further another example of a conceptual structure of the voltage sensor unit in the degradation determination apparatus.
  • a power source 1 subject to deterioration determination is an emergency power source in a data center, a mobile phone base station, or other various power sources that require stable power supply.
  • the power source 1 includes a plurality of battery groups 3 each including a plurality of batteries 2 as secondary batteries connected in series, and these battery groups 3 are connected in parallel to form a parallel connection body 3B described later. 4 is connected.
  • Each battery 2 may be a single cell or a battery in which a plurality of cells are connected in series.
  • the emergency power source 1 is connected to the positive terminal 5A through the charging circuit 6 and the diode 15 among the positive and negative terminals 5A and 5B of the main power source 5 connected to the positive and negative terminals of the load 4.
  • the negative terminal 5B is directly connected.
  • the diode 15 is connected in parallel with the charging circuit 6 in such a direction that current flows from the emergency power source 1 to the load 4.
  • the main power source 5 is composed of, for example, a DC power source that is connected to an AC commercial power source via a rectifier circuit and a smoothing circuit (both not shown) and converts to DC power.
  • the positive potential of the emergency power source 1 is lower than the positive potential of the main power source 5 and normally does not flow to the load 4. However, when the main power source 5 stops or the function is lowered, the potential on the main power source 5 side decreases. Then, the electric charge stored in the emergency power supply 1 is fed to the load 4 via the diode 15. In addition, the charge form which connected the charging circuit 6 as mentioned above is called a trickle charge form.
  • the deterioration determination device for a secondary battery is a device for determining the deterioration of each battery 2 in such a power source 1.
  • This secondary battery deterioration determination device individually detects the voltage between terminals of a plurality of batteries 2 in the battery group 3, individually calculates an AC component from the detected signal, and uses the calculation result as a measurement value.
  • the current measurement device 9 and the measurement value transmitted by each voltage sensor unit 7 are received, the internal resistance of each battery 2 is calculated using the received measurement value, and the deterioration of the battery 2 is determined from the internal resistance. Controller 11.
  • the voltage sensor unit 7 includes a plurality of detection units 7a that individually detect voltages between the terminals of the battery 2, and signals detected by the detection units 7a. And a plurality of calculation units 7b that perform individual calculation of the AC component.
  • the voltage sensor unit 7 is a sensor module.
  • the detection unit 7a of the voltage sensor unit 7 will be described as a specific example.
  • the detection unit 7a is a voltage sensor that outputs an analog detection value of an AC voltage as the detection value of the voltage, and the calculation unit 7b calculates the detection value of the analog signal. Convert to effective value or average value by digital signal.
  • the detection unit 7a has a function of detecting a DC voltage, and the detection value of the DC component is transmitted by the radio unit 10 via the calculation unit 7b or directly.
  • the plurality of detection units 7a and the plurality of calculation units 7b constitute a detection / calculation unit 7f.
  • the appropriate number of the detectors 7a varies depending on whether the battery 2 is 2V, 6V, 12V or the like, but is preferably 2 or more and less than 10, for example, 2 to 8 or 4 to 6 It may be.
  • the voltage sensor unit 7 is configured such that all the components constituting the voltage sensor unit 7 such as the detection units 7a, the calculation units 7b, and the radio unit 10 are conceptually shown in FIG. It may be an integral part assembled in one casing 7g. As a form in which all the components are assembled in one housing 7g, a form in which elements as the respective components are mounted on a common circuit board, or a form in which the elements are configured as one integrated circuit chip. It may be. When this integral part is used, it is excellent in handling and storage.
  • the wireless unit 10 is determined to have a control function for executing a given command in addition to a function of performing wireless communication, and start of measurement by the detection unit 7a for the command. It may have a delay function or the like for delaying by a predetermined time. In this case, for example, the wireless unit 10 may transmit the measurement values of the detection units 7a sequentially after the transmission delay time in the set order, in which the transmission order is set in advance by the transmission delay time.
  • the radio unit 10 includes an antenna 10a (FIG. 7).
  • the voltage sensor unit 7 may include a temperature sensor (not shown) that measures the ambient temperature of the battery 2 and the temperature of the battery. The temperature detected by the temperature sensor is transmitted to the controller 11 by the wireless unit 10 together with the voltage measurement value by the effective value or the average value calculated by the calculating unit 7b from the detection signal of the detecting unit 7a.
  • the measurement current applying device 9 is connected to the positive and negative terminal ends of the battery group 3 and supplies the power source 1 with a current having an alternating current component that changes in a pulse shape or a sine wave shape, for example, a ripple current.
  • the measurement current application device 9 generates, for example, a measurement current including an AC component from an AC commercial power supply, and applies (charges) it to each battery group 3 or discharges the power supply 1 subject to deterioration determination. It consists of a discharging circuit that performs.
  • the measurement current applying means 9 is a transformer that performs voltage conversion so that the voltage of the AC commercial power supply is suitable for the voltage of the emergency power supply 1.
  • the primary circuit of the transformer is provided with an open / close switch (not shown) for opening and closing the commercial power supply.
  • the opening / closing of the opening / closing switch is controlled by the current application control unit 11e (see FIG. 7) in a main controller 11A (described later) of the controller 11.
  • the measurement current applying device 9 is configured by a discharge circuit including a series circuit of a current limiting resistor 26 and a switching element 27.
  • a discharge circuit is connected in parallel with the battery group 3.
  • the switching element 27 is provided with a bypass diode 28.
  • the switching element 27 is opened and closed by the current application control unit 11e in the main controller 11A (see FIG. 7) of the controller 11 so that the current flowing through the discharge circuit becomes a pulsed or sinusoidal current. Is done.
  • the current application control unit 11e is configured to give a command to drive the switching element 27 so as to obtain a pulsed or sinusoidal current.
  • the remaining configuration in the embodiment of FIG. 10 will be described later.
  • the controller 11 is formed by connecting a data server 13 and a monitor 14 to a main controller 11A via a communication network 12 in this embodiment.
  • the communication network 12 is composed of a LAN and has a hub 12a.
  • the communication network 12 may be a wide area communication network.
  • the data server 13 can communicate with a remote personal computer (not shown) or the like via the communication network 12 or another communication network, and can monitor data from anywhere.
  • the main controller 11 ⁇ / b> A receives the detection value of the voltage sensor unit 7 transmitted from each radio unit 10 and transfers the measurement value received by the reception unit 11 a to the communication network 12. It has a transfer unit 11b, a command transmission unit 11c that wirelessly transmits a command such as transmission start to the radio unit 10 of each voltage sensor unit 7, a standby unit 11d, and a current application control unit 11e.
  • the current application controller 11e controls the measurement current application device 9 (FIG. 1). Wireless transmission / reception of the command transmission unit 11c and the reception unit 11a is performed via the antenna 19.
  • the command transmission unit 11c of the main controller 11A may generate a command by itself, but in this embodiment, in response to the measurement start command transmitted from the data server 13, the wireless unit of each voltage sensor unit 7 The measurement start command is transferred to 10.
  • the main controller 11A or the current sensor 8 is provided with a conversion unit (not shown) that converts the measured value of the current sensor 8 into an effective value or an average value.
  • the data server 13 includes an internal resistance calculation unit 13a and a determination unit 13b.
  • the internal resistance calculation unit 13a receives the AC voltage value (execution value or average value) transmitted from the main controller 11A, the DC voltage value (cell voltage), the detected temperature, and the current value (execution value or average value). And the internal resistance of the battery 2 is calculated according to a predetermined calculation formula.
  • the detected temperature is used for temperature correction.
  • Each current sensor 8 for obtaining the current value is connected to the main controller 11A by a wired wiring, and the measured value of the current is transferred together with the measured voltage value from the transfer unit 11d in FIG.
  • the determination unit 13b determines that the threshold is set and the calculated internal resistance is greater than or equal to the threshold.
  • the threshold value is provided in a plurality of, for example, two to three stages, and a plurality of stages of deterioration determination is performed.
  • the determination unit 13b has a function of displaying the determination result on the monitor 14 via the communication network 12 or via a dedicated wiring.
  • the data server 13 includes a command transmission unit 13c that transmits a measurement start command to the main controller 11A, and a data storage unit 13d that stores data such as a voltage measurement value transmitted from the main controller 11A. Yes.
  • the main controller 11A and the measurement current applying device 9 may be configured as an integrated controller in the same case.
  • the controller 11 is configured by the main controller 11A and the data server 13 in this embodiment, but the main controller 11A and the data server 13 may be configured as one controller 11 in the same case.
  • one information processing apparatus constituted by one substrate or the like may be configured without distinction between the main controller 11A and the data server 13.
  • FIG. 8 is a flowchart of an example of the operation.
  • the data server 13 transmits a measurement start command to the command transmission unit 11c (step S1).
  • the main controller 11A receives a measurement start command from the data server 13 (step S2), and transmits a measurement start command from the command transmission unit 11c to the radio unit 10 and each current sensor 8 of each voltage sensor unit 7 (step S3).
  • the standby unit 11d determines the end of the standby time (step S20) and counts the standby time (step S22).
  • step S21 current is applied by the measurement current applying device 9 (step S21). Application of this current starts discharging when the measuring current applying device 9 is a discharging device, and starts charging when the measuring current applying device 9 is a charging device.
  • the measurement start command transmitted in step S3 is received by all the voltage sensor units 7 (step S4), and each voltage sensor unit 7 waits for the end of the measurement delay time of its own individual detector 7a (step S4).
  • step S5 The DC voltage (inter-terminal voltage) of the battery 2 is measured (step S6).
  • step S7 the voltage sensor unit 7 waits for the end of the standby time (step S7), and measures the AC voltage of the battery 2 (step S8).
  • the direct measurement value is converted into an effective voltage or an average voltage, and the converted value is output as a measurement value.
  • the measured DC voltage and AC voltage for example, wait for the transmission delay time of itself, and wirelessly transmit by the wireless unit 10 (step S9), and the main controller 11A of the controller 11 receives wirelessly (step S10).
  • the main controller 11A transmits the received DC voltage and AC voltage together with the detected values of the current sensor 8 and the temperature sensor (not shown) to the data server 13 via the communication network 12 such as a LAN (step S11).
  • the data server 13 receives the data of the sensors such as the detection unit 7a of each voltage sensor unit 7 transmitted in order and stores the data in the data storage unit 13d (step S12). From the wireless transmission step S9 to the data storage by the data server 13 is performed until the data reception and storage of all the voltage sensor units 7 are completed (NO in step S12).
  • the measurement current applying device 9 is transmitted by transmitting the end signal from the data server 13 to the main controller 11A and outputting the current application control signal of the main controller 11A. Is turned off (step S16), and the data server 13 calculates the internal resistance of each battery 2 by the internal resistance calculator 13a (step S13).
  • the determination unit 13b of the data server 13 compares the calculated internal resistance with an appropriately determined first threshold value (step S14), and if smaller than the first threshold value (YES in step S14), It is determined that the battery 2 is normal (step S15). If the calculated internal resistance is not smaller than the first threshold value (NO in step S14), the calculated internal resistance is further compared with the second threshold value (step S17), and the calculated internal resistance is smaller than the second threshold value. If it is smaller (YES in step S17), a warning to call attention is output (step S18). If the calculated internal resistance is not smaller than the second threshold value (NO in step S17), an alarm that is stronger than a warning is output (step S19). The alarm and warning are displayed on the monitor 14 (FIG. 1).
  • the monitor 14 may indicate that it is normal, or may not particularly display it.
  • the alarm and warning display by the monitor 14 may be performed by, for example, a mark such as a predetermined icon or by lighting a predetermined part. In this way, deterioration determination of all the batteries 2 of the emergency power supply 1 is performed (in this example, two-stage deterioration determination using two threshold values).
  • each voltage sensor unit 7 is provided for each battery 2 and receives and transfers data with digital signals by wireless communication. Even if the emergency power source 1 includes the batteries 2, there is no need to worry about the reference potential (ground level) electrically for each battery 2. Therefore, there is no need for differential operation or an isolation transformer. Further, since the measurement values of the plurality of individual detection units 7a are transmitted wirelessly, there is no need for complicated wiring. By these, it can be set as a simple and cheap structure.
  • the number of radio units 10 can be reduced, the overall configuration of the deterioration determination device is further simplified, and the cost is reduced. Can be manufactured.
  • deterioration of each battery 2 is determined instead of the entire power source 1 to be subjected to deterioration determination, and for the determination, a measurement current including an AC component is applied and the wireless unit 10 transmits Since the internal resistance of each battery 2 is calculated using the measured value and the deterioration of the battery 2 is determined from the internal resistance, it is possible to accurately determine the deterioration.
  • the internal resistance of the battery 2 is closely related to the capacity of the battery 2, that is, the degree of deterioration. If the internal resistance 2 is known, the deterioration of the battery 2 can be accurately determined.
  • the measured value measured by each detection unit 7a is converted into an effective value or an average value represented by a digital signal and transmitted, the amount of transmission data is dramatically larger than when a voltage waveform signal is transmitted. Less is enough.
  • Calculation of the internal resistance of the battery 2 can be performed with high accuracy using an effective value or an average value. Although the calculation of the internal resistance of the battery 2 is possible only by measuring the voltage, it is possible to assume that the current is a constant value. However, the current actually flowing through the battery 2 is measured and the voltage and current are calculated. By obtaining both, the internal resistance can be calculated with higher accuracy. Since the currents flowing through the batteries 2 arranged in series are the same, it is sufficient to provide one current sensor 8 for each battery group 3.
  • the controller 11 transmits a measurement start command to the radio unit 10 of the voltage sensor unit 7 and starts measurement of each detection unit 7a by this command, so that the measurement start timing of each of the many detection units 7a is arranged. Can do. In this case, the controller 11 simultaneously transmits a measurement start command of each detection unit 7a to each voltage sensor unit 7 by serial transmission or parallel transmission, and each detection unit 7a performs measurement simultaneously after the measurement start delay time elapses. I do. After the measurement is completed, the controller 11 sequentially transmits a data transmission request command to each of the voltage sensor units 7, and the voltage sensor unit 7 that has received the command performs a calculation after the calculation by the calculation unit 7 b of the detection unit 7 a corresponding to the command. Data communication may be performed by transmitting data and repeating the above. In this embodiment, the controller 11 may make a re-transmission request to the voltage sensor unit 7 that has not been able to receive data after a predetermined time from the transmission of the data transmission request command.
  • a measurement start command may be simultaneously transmitted to each radio unit 10.
  • the measurement by each detection unit 7a of each of the voltage sensor units 7 can be performed in order so as not to hinder wireless transmission and reception and can be transmitted.
  • the transmission start command is a global command, and the voltage sensor unit 7 acquires it simultaneously.
  • the controller 11 makes a re-transmission request to the voltage sensor unit 7 that has not been able to receive data after a predetermined time from the transmission of the measurement start command.
  • the wireless unit 10 of some voltage sensor units 7 cannot receive the measurement start command due to some temporary transmission failure or the like. Even in such a case, by performing the re-transmission request, the voltage can be measured and transmitted, and the voltage measurement values of all the batteries 2 of the power source can be obtained. Whether or not the measurement start command has been received may be determined by determining whether or not the voltage measurement value has been received on the controller 11 side.
  • the controller 11 may transmit the data request command individually to the radio unit 10 of each voltage sensor unit 7 instead of transmitting the measurement start command simultaneously as described above, and receive the data in order.
  • the delay function is unnecessary on the voltage sensor unit 7 side, and the configuration on the voltage sensor unit 7 side is simplified. Since the controller 11 outputs a multi-stage alarm according to the calculated magnitude of the internal resistance, the urgency of the need for battery replacement can be known, and maintenance planning and preparation can be performed without performing unnecessary battery replacement. Can be done smoothly and quickly.
  • the voltage sensor unit 7 has the effective configuration of the detection unit 7a and the calculation unit 7b each including a voltage sensor for each battery 2 to be detected for deterioration.
  • the voltage sensor unit 7 may be configured as shown in FIG.
  • one detection unit 7a that individually detects the voltage between the terminals
  • a switching unit 7c that switches the plurality of batteries 2 connected to the detection unit 7a
  • the detection unit 7c detect It is also possible to have a single calculation unit 7b that performs individual calculation of the AC component from the generated signal.
  • the AC component that is the calculation result of the calculation unit 7b and the DC component obtained by the detection unit 7a are temporarily stored in the storage unit 7e, and the stored calculation result is transmitted from the radio unit 10. It is configured.
  • the storage unit 7e does not necessarily have to be provided, and in that case, every time the calculation unit 7b performs calculation, the calculation result is transmitted by the radio unit 10.
  • the detection unit 7a only needs to be connected to the switching unit 7c on the input side, and the wiring is simplified.
  • the switching unit 7 c has a configuration in which the terminal 7 au having the lowest potential is shared among the plurality of batteries 2 connected in series to be detected by one voltage sensor unit 7. In the case of this configuration, the configuration of the switching unit 7c is simplified.
  • the switching unit 7 c is configured to sequentially switch the low-potential side and high-potential side terminals 7 au and 7 ah connected to the detection unit 7 a for each battery 2. In the case of this configuration, the switching unit 7c is required, but since only one detection unit 7a and one calculation unit 7b are required, the number of circuit elements that are the detection unit 7a, the calculation unit 7b, or the switching unit 7c is small. Less.
  • FIG. 6 shows a modification of the voltage sensor unit 7.
  • the voltage sensor unit 7 selects and outputs a plurality of detection units 7a that individually detect the voltage between the terminals of the battery 2 and the signals detected by the detection units 7a so as to be switchable. It is configured to include a selection unit 7d and one calculation unit 7b that performs individual calculation of the AC component from the signal selected by the data selection unit 7d.
  • each battery 2 has a storage unit 7e that stores the result calculated by the calculation unit 7b, is detected by each detection unit 7a, is selected by the data selection unit 7d, and is converted into an execution value or the like by the calculation unit 7b.
  • the measured voltage values are temporarily stored in the storage unit 7e and sequentially output from the wireless unit 10.
  • the detection unit 7a includes a differential arithmetic circuit, and a plurality of detection units 7a including the differential arithmetic circuit constitute a differential arithmetic unit 7aA including a sensor array or a sensor module.
  • the data selection unit 7d When the data selection unit 7d is provided as in this example, only one calculation unit 7b is required. For this reason, the number of circuit elements constituting the detection unit 7a, the calculation unit 7b, or the data selection unit 7d can be reduced.
  • FIG. 9 shows a second embodiment of the present invention.
  • the configuration in which the current sensor 8 is provided for each battery group 3 in the first embodiment shown in FIG. For the measurement of the current of the battery group 3, as shown in the example of FIG.
  • the configuration can be simplified and the cost can be reduced by reducing the number of current sensors 8 while maintaining the accuracy of deterioration detection.
  • the current applying device 9 for measurement when configured by a discharge circuit and uses the current limiting resistor 26, the current limiting resistor 26 is sufficient compared to the internal resistance of the battery 2. Therefore, even if the battery internal resistance changes due to deterioration, there is almost no influence on the current value. Therefore, even when a plurality of battery groups 3 are connected in parallel, the current value is measured at the position of the discharge circuit (measurement current applying device 9), and the value obtained by dividing the number of the battery groups 3 in parallel by each battery 2 is measured. It can be a current for measurement.
  • the current limiting resistor 26 when the current limiting resistor 26 is set to 20 to 30 ⁇ , the internal resistance of the battery is about several m to 10 m ⁇ , so that 150 m as 10 m ⁇ is 1.5 ⁇ in series connection. If three are in parallel, the value is 0.5, which is smaller than the current limiting resistor 26.
  • the resistance of 10% is doubled due to deterioration, it is 0.55 ⁇ , the total impedance is about 20.5 ⁇ to 20.55 ⁇ , and the influence on the measurement current is small. . Therefore, the current sensor 8 may be shared.
  • Other matters in the embodiment of FIG. 9 are the same as those of the embodiment shown in FIG.
  • FIG. 10 shows a third embodiment of the present invention.
  • the matters other than those specifically described are the same as those of the first embodiment described with reference to FIG.
  • One radio unit 10 (and an antenna connected thereto) is provided for each battery 2 in FIG. 10, but is provided for each voltage sensor unit 7 as in the first and second embodiments. It may be.
  • the power source 1 includes a plurality of battery groups 3 connected in series to form a series connection body 3 ⁇ / b> A, and a plurality of series connection bodies 3 ⁇ / b> A of the battery group 3 are connected in parallel.
  • the series connection bodies 3A of the battery groups 3 Between the series connection bodies 3A of the battery groups 3, the parts a between the individual battery groups 3 corresponding to each other are connected to each other, and the battery groups 3 are connected in parallel to form a parallel connection body 3B. Make it.
  • the measurement current applying device 9 and the current sensor 8 are provided for each parallel connection body 3B of the one battery group 3.
  • the measurement current applying device 9 is composed of the discharge circuit described above.
  • the series connection body 3A in the power source 1 is one battery group 3
  • the one battery group 3 is divided into a plurality of (two) battery group division bodies 3a arranged in series.
  • the battery group divided body 3 a is divided and connected in parallel with the battery group divided body 3 a constituting the other battery group 3.
  • the measurement current applying device (discharge circuit) 9 is provided in parallel for each connection body (that is, the parallel connection body 3B) in which the battery group division bodies 3a are connected in parallel.
  • each battery group divided body 3a includes a plurality of the batteries 2 connected in series.
  • the voltage of the battery 2 connected in series in the entire power source 1 is a high voltage exceeding 300V, for example.
  • the switching element 27, which is a power element for applying the measurement current needs to have a high withstand voltage.
  • the measurement current application power element in the measurement current application device (discharge circuit) 9 A certain switching element 27 having a low withstand voltage can be used.

Abstract

データセンタの非常電源等の電源における各バッテリの劣化を精度良く判定することができ、かつ無線部の個数が少なくて済む劣化判定装置を提供する。バッテリ(2)の直列接続体であるバッテリ群(3)が複数並列に接続された電源(1)における前記各バッテリの劣化を判定する。バッテリ群(3)の複数のバッテリ(2)の端子間電圧を個別に検出しその検出された信号から交流成分を個別に演算し、演算結果を計測値として一つの無線部(10)で送信する複数の電圧センサユニット(7)を備える。交流成分を含む計測用電流を前記バッテリ群(3)に印加する計測用電流印加装置(9)を備える。各電圧センサユニット(7)の送信した計測値を受信し、この受信した計測値を用いて各バッテリの内部抵抗を算出し、内部抵抗からバッテリ(2)の劣化を判定するコントローラ(11)を備える。

Description

二次電池の劣化判定装置 関連出願
 本出願は、2016年9月21日出願の特願2016-184024の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、データセンタ、携帯電話基地局、またはその他各種の電力安定供給が求められる電源装置における非常用電源等に用いられる二次電池の劣化を判定する劣化判定装置に関する。
 データセンタおよび携帯電話基地局等では、電力の安定供給が重要であり、定常時には交流商用電源が用いられるが、交流商用電源が停止した場合の無停電電源装置として、二次電池を用いた非常用電源が装備される。非常用電源の充電方式としては、充電回路を用いて定常時に微小電流で充電するトリクル充電の形式と、整流器に対して負荷と二次電池を並列に接続し、一定電流を印加して負荷を運転させつつ充電するフロート充電の形式とがある。一般的に非常用電源にはトリクル充電の形式が多く採用されている。
 前記非常用電源は、商用電源で駆動される負荷の駆動が可能な電圧と電流が要求され、一つの二次電池(バッテリ)の電圧は低く、また容量も小さいため、複数のバッテリが直列接続されたバッテリ群を複数並列に接続した構成とされる。個々のバッテリは、鉛蓄電池やリチウムイオン電池である。
 このような非常用電源において、バッテリは劣化によって電圧が低下するため、信頼性確保のために、バッテリの劣化判定を行い、劣化したバッテリを交換しておくことが望まれる。しかし、データセンタ、携帯電話基地局等の大規模な非常用電源における多数のバッテリを精度良く劣化判定できる装置は、提案されるに至っていない。
 従来のバッテリの劣化判定の提案例としては、車載バッテリチェッカーとして、バッテリ全体を纏めて計測する提案(例えば、特許文献1)、バッテリにパルス状電圧を印加し、入力電圧と応答電圧とからバッテリ全体の内部インピーダンスを算出する提案(例えば、特許文献2)、バッテリにおける直列接続された個々のセルの内部抵抗を計測し、劣化判定する方法(例えば、特許文献3)等が提案されている。また、バッテリの内部抵抗等の非常に小さな抵抗値を計測するハンディチェッカーとして、交流4端子法バッテリーテスタが商品化されている(例えば、非特許文献1)。
 前記特許文献1,2では、無線によるデータ送信も提案され、ケーブルの取り回しや手作業の削減、コンピュータによるデータ管理も提案されている。
特開平10-170615号公報 特開2005-100969号公報 特開2010-164441号公報
交流4端子法 バッテリーテスタ 内部抵抗計測器 IW7807-BP(Rev.1.7.1、2015年2月16日、東京デバイセズ)(https://tokyodevices.jp/system/attachments/files/000/000/298/original/IW7807-BP-F_MANUAL.pdf)
 従来の前記ハンディチェッカー(非特許文献1)は、バッテリが何十、何百と接続された非常用電源では、計測箇所が多くなり過ぎ、実現性がない。特許文献1,2の技術は、いずれも、バッテリからなる電源の全体を計測するものであり、個々のバッテリ、つまり個々のセルの計測を行うものではない。そのため、劣化判定の精度が低く、また劣化した個々のバッテリを特定することができない。
 特許文献3の技術は、直列接続された個々のセルの内部抵抗を計測することでは、劣化判定の精度向上、および劣化した個々のバッテリを特定する技術に繋がる。しかし、各電圧センサの基準電位(グランドレベル)は、各セルのマイナス端子電位となる。よって、そのままでは数十~数百個のバッテリが直接接続されたバッテリ群の各バッテリの基準電位が全て異なる。この基準電位の相違への対処は、同文献には開示されていない。一般的には、個々のセルの電位を取得するためには、差動演算で電位差を検出するか、絶縁トランスを使用する必要があり、複雑で高価な構成となる。
 これらの課題を解消するものとして、図11に示す二次電池の劣化判定装置を先に提案した(特開2017-150925号)。すなわち、それぞれ二次電池であるバッテリ2の複数が直列接続されたバッテリ群3が複数並列に接続された電源1における前記各バッテリ2の劣化を判定する二次電池の劣化判定装置であって、前記各バッテリ2に個別に接続された複数の電圧センサユニット7と、交流成分を含む計測用電流を前記バッテリ群3毎に印加する計測用電流印加装置9と、前記各電圧センサユニット7に設けられ計測された交流成分の電圧の計測値を無線で送信するセンサ毎無線通信手段10Aと、前記各電圧センサ毎無線通信手段10Aの送信した前記計測値を受信し、この受信した計測値を用いて各バッテリ2の内部抵抗を算出し、内部抵抗から前記バッテリ2の劣化を判定するコントローラ11とを備える。なお、同図において、後述の実施形態と対応する部分は、同一の符号を付してある。
 この構成によると、電圧センサユニット7の計測値を無線でコントローラ11に送信する。このように無線で送信するため、バッテリ群3を構成する直列に接続されたバッテリ2が複数であっても、例えば数十~数百であっても、個々の電圧センサユニット7の検出部7aの基準電位(グランドレベル)がいずれも共通化でき、基準電位を気にする必要がない。そのため、差動演算や絶縁トランスの必要がない。また、複数ある個々の電圧センサの計測値を無線で送信するため、複雑な配線の必要がない。これらにより、簡単で安価な構成とできる。また、劣化判定対象の電源1の全体ではなく、個々のバッテリ2の劣化を判定するため、バッテリ2の劣化を精度良く判定することができる。
 しかし、個々のバッテリ2毎に設けられる電圧センサ(検出部7a)毎にセンサ毎無線通信手段10Aを設けているため、センサ毎無線通信手段10Aの個数が多くて、構成が複雑であり、高価となる。センサ毎無線通信手段10Aは無線通信を行う高価な部品であるため、これを多数設けると、劣化判定装置の全体が高価となる。
 この発明の目的は、それぞれ二次電池であるバッテリの複数が直列接続されたバッテリ群が複数並列に接続された電源における前記各バッテリの劣化を精度良く判定することができ、かつより簡素で安価に製造可能な二次電池の劣化判定装置を提供することである。
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。
 この発明の二次電池の劣化判定装置は、それぞれ二次電池であるバッテリ2の複数が直列接続されたバッテリ群3が複数並列に接続された電源1における前記各バッテリの劣化を判定する二次電池の劣化判定装置であって、
 前記バッテリ群3の内の複数のバッテリ2の端子間電圧を個別に検出しその検出された信号から交流成分を個別に演算し、演算結果を計測値として一つの無線部10で送信する複数の電圧センサユニット7と、
 前記バッテリ群3の電流を検出する電流センサ8と、
 交流成分を含む計測用電流を前記バッテリ群3に印加する計測用電流印加装置9と、
 前記各電圧センサユニット7の送信した前記計測値を受信し、この受信した計測値を用いて各バッテリ2の内部抵抗を算出し、内部抵抗から前記バッテリ2の劣化を判定するコントローラ11とを備える。
 なお、この明細書で言う交流成分は、電圧の大きさが繰り返し変化する成分であり、電圧の向きが常に一定であってもよく、例えばリップル電流やパルス電流であってもよい。前記「バッテリ」は、複数のセルが直列接続されたものであっても、セル単独であってもよい。また、前記「コントローラ」は、単体に限らず、例えば前記計測値を受信する手段を備えた主コントローラ11Aと、この主コントローラ11AにLAN等の通信手段12を介して接続されて前記各バッテリ2の内部抵抗を算出するデータサーバ13等の情報処理装置とに分かれていてもよい。
 この構成によると、電圧センサユニット7により個々のバッテリ2の電圧の計測値を無線でコントローラ11に送信する。バッテリ群3を構成する直列に接続されたバッテリ2が複数であっても、例えば数十~数百であっても、無線で送信するため、個々の電圧センサ等からなる検出部7aの基準電位(グランドレベル)がいずれも共通化でき、基準電位を気にする必要がない。そのため、基準電位を考慮するための差動演算や絶縁トランスの必要がない。
 また、多数のバッテリ2についての計測値を無線で送信するため、複雑な配線の必要がなくて構成が簡素化され、安価に製造できる。この場合に、複数のバッテリ2についての個々の計測値を一つの無線部10で送信するため、無線部10の個数が少なくできて、劣化判定装置の全体の構成がより簡素化され、安価に製造できる。
 また、劣化判定対象の電源1の全体ではなく、個々のバッテリ2の劣化を判定するようにし、その判定については、交流成分を含む計測用電流を印加し、送信した前記電圧の計測値と前記電流センサ8の計測値とを用いて各バッテリ2の内部抵抗を算出し、内部抵抗から前記バッテリ2の劣化を判定する。そのため、精度良く劣化を判定することができる。バッテリ2の内部抵抗は、バッテリ2の容量、つまり劣化の程度と密接な関係があり、内部抵抗が分かれば、バッテリ2の劣化を精度良く判定できる。
 この発明において、前記電圧センサユニット7は、前記端子間電圧の個別の検出を行う複数の検出部7aと、これら各検出部で検出された信号から前記交流成分の個別の演算を行う複数の演算部7bとを有する構成であってもよい。この構成の場合、バッテリ2毎に検出部7aおよび演算部7bが設けられるため、構成が明確である。
 この発明において、前記電圧センサユニット7は、前記端子間電圧の個別の検出を行う一つの検出部7aと、この検出部7aに接続する前記複数のバッテリ2を切替える切替部7cと、前記検出部7aで検出された信号から前記交流成分の個別の演算を行う一つの演算部7bとを有する構成であってもよい。この構成の場合、切替部7cが必要となるが、検出部7aおよび演算部7bがいずれも一つで済むため、前記検出部7aや演算部7b、または切替部7cである回路要素の個数が少なく済む。
 この発明において、前記電圧センサユニット7は、前記端子間電圧の個別の検出を行う複数の検出部7aと、これら各検出部7aで検出された信号を切り替え可能に選択にして出力するデータ選択部7dと、このデータ選択部7dにより選択された信号から前記交流成分の個別の演算を行う一つの演算部7bとを有する構成であってもよい。この構成の場合、データ選択部7dが必要となるが、演算部7bが一つで済むため、前記検出部7a、演算部7b、またはデータ選択部7dである回路要素の個数が少なく済む。
 この発明において、前記電圧センサユニット7の全体が、一つの筐体7gに全ての構成要素が組まれた一体の部品であってもよい。一つの筐体7gに全ての構成要素が組まれる形態としては、共通の回路基板に前記各構成要素となる素子が実装された形態であっても、また一つの集積回路チップとして構成された形態であってもよい。この一体の部品とした場合、取扱性や保管性に優れる。
 前記切替部7cが設けられた構成である場合に、前記切替部7cは、一つの前記電圧センサユニット7の検出対象となる直列接続された複数のバッテリ2の内で最低電位の端子7auを共通とする構成であってもよい(図4はその一例)。この構成の場合、切替部7cの構成が簡素となる。
 前記切替部7cが設けられた構成である場合に、前記切替部7cは、前記検出部7aに接続する低電位側および高電位側の両端子7au,7ahをバッテリ2毎に順次切り替える構成であってもよい。この構成の場合、検出部7aは入力側には切替部7cを接続するだけでよく、配線が簡素化される。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る二次電池の劣化判定装置の回路図である。 同劣化判定装置における電圧センサユニットの概念構成の一例を示すブロック図である。 同劣化判定装置における電圧センサユニットの概念構成の他の例を示すブロック図である。 同劣化判定装置における電圧センサユニットの概念構成のさらに他の例を示すブロック図である。 同劣化判定装置における電圧センサユニットの概念構成のさらに他の例を示すブロック図である。 同劣化判定装置における電圧センサユニットの概念構成のさらに他の例を示すブロック図である。 同二次電池の劣化判定装置における電圧センサユニットとコントローラの概念構成を示すブロック図である。 同二次電池の劣化判定装置の動作例を示す流れ図である。 この発明の第2の実施形態に係る二次電池の劣化判定装置の回路図である。 この発明の第3の実施形態に係る二次電池の劣化判定装置の回路図である。 参考提案例に係る二次電池の劣化判定装置の回路図である。
 この発明の第1の実施形態に係る二次電池の劣化判定装置を、図1~図3、および図7~図8と共に説明する。図1において、劣化判定対象の電源1は、データセンタ、携帯電話基地局、またはその他各種の電力安定供給が求められる電源装置における非常用電源である。この電源1は、それぞれ二次電池であるバッテリ2の複数が直列接続されたバッテリ群3を複数有し、これらバッテリ群3が並列に接続されて後述の並列接続体3Bを構成して、負荷4に接続される。各バッテリ2は、一つのセルであってもよく、また複数のセルが直列接続されたバッテリであってもよい。
 この非常用の電源1は、負荷4の正負の端子に接続された主電源5の正負の端子5A,5Bのうち、正の端子5Aには充電回路6とダイオード15とを介して接続され、負の端子5Bには直接に接続されている。ダイオード15は非常用の電源1から負荷4に電流を流す向きで、充電回路6と並列に接続されている。主電源5は、例えば交流商用電源に整流回路および平滑回路(いずれも図示せず)介して接続されて直流電力に変換する直流電源等からなる。
 非常用の電源1の正電位は、主電源5の正電位よりも低く、通常は負荷4には流れないが、主電源5が停止または機能低下すると、主電源5側の電位が低下することから、非常用の電源1に蓄電した電荷により、ダイオード15を介して負荷4に給電される。なお、上記のように充電回路6を接続した充電形式は、トリクル充電形式と呼ばれる。
 本実施形態の二次電池の劣化判定装置は、このような電源1における各バッテリ2の劣化を判定する装置である。この二次電池の劣化判定装置は、前記バッテリ群3の内の複数のバッテリ2の端子間電圧を個別に検出しその検出された信号から交流成分を個別に演算し、演算結果を計測値として一つの無線部10から送信する複数の電圧センサユニット7と、個々のバッテリ群3の電流を検出する電流センサ8の各々と、交流成分を含む計測用電流を前記バッテリ群3に印加する計測用電流印加装置9と、前記各電圧センサユニット7の送信した前記計測値を受信し、この受信した計測値を用いて各バッテリ2の内部抵抗を算出し、内部抵抗から前記バッテリ2の劣化を判定するコントローラ11とを備える。
 前記電圧センサユニット7は、この実施形態では、図2に示すように、前記バッテリ2の端子間電圧の個別の検出を行う複数の検出部7aと、これら各検出部7aで検出された信号から前記交流成分の個別の演算を行う複数の演算部7bとを有する。電圧センサユニット7は、換言すればセンサモジュールである。電圧センサユニット7の前記検出部7aは、具体例を説明すると、前記電圧の検出値として交流電圧のアナログの検出値を出力する電圧センサであり、前記演算部7bはアナログ信号の検出値を、ディジタル信号による実効値または平均値に変換する。検出部7aは、この他に直流電圧を検出する機能を有し、直流成分の検出値は、前記演算部7bを介してまたは直接で前記無線部10が送信する。前記複数の検出部7aと前記複数の演算部7bとで、検出・演算部7fが構成される。前記検出部7aの適切な個数は、バッテリ2が2V,6V,12V等のいずれの電圧かによっても異なるが、例えば2個以上で10個未満が好ましく、2~8個、または4~6個であってもよい。
 前記電圧センサユニット7は、前記各検出部7a、各演算部7b、および無線部10等の、この電圧センサユニット7を構成する全ての構成要素が、図3に概念的に示すように、一つの筐体7gに組まれた一体の部品であってもよい。一つの筐体7gに全ての構成要素が組まれる形態としては、共通の回路基板に前記各構成要素となる素子が実装された形態であっても、また一つの集積回路チップとして構成された形態であってもよい。この一体の部品とした場合、取扱性や保管性に優れる。
 これら各例のセンサユニット7において、前記無線部10は、無線通信を行う機能の他に、与えられたコマンドを実行する制御機能や、コマンドに対して検出部7aによる計測の開始を、定められた時間だけ遅延させる遅延機能等を有していてもよい。この場合に、前記無線部10は、例えば予め送信順が送信遅延時間で設定されていて、各検出部7aの計測値を、設定された順に送信遅延時間後に順次送信するようにしてもよい。前記無線部10はアンテナ10a(図7)を備える。
 なお、電圧センサユニット7は、この他に、バッテリ2の周囲の温度やバッテリの温度を計測する温度センサ(図示せず)を有していてもよい。この温度センサの検出温度は、前記検出部7aの検出信号から演算部7bで演算される前記実効値または平均値による電圧計測値と共に、前記無線部10で前記コントローラ11へ送信される。
 図1において前記計測用電流印加装置9は、バッテリ群3の正負の端子端に接続され、パルス状ないし正弦波状に変化する交流成分を有する電流、例えばリップル電流を電源1に与える。この計測用電流印加装置9は、例えば、交流の商用電源から、交流成分を含む計測用電流を生成し前記各バッテリ群3に印加(充電)する構成、または劣化判定対象の電源1の放電を行う放電回路で構成される。前記交流の商用電源を用いる構成では、前記計測用電流印加手段9は、より具体的には、前記交流の商用電源の電圧が前記非常用の電源1の電圧に適するように電圧変換するトランス(図示せず)と、このトランスで変換された電流から交流成分のみを分離して前記各バッテリ群3に印加するコンデンサ(図示せず)と、前記各バッテリ群3に印加する電流を制限する抵抗等の電流制限部(図示せず)とで構成される。前記トランスの一次回路には、商用電源を開閉する開閉スイッチ(図示せず)が設けられる。前記開閉スイッチは、コントローラ11の後述の主コントローラ11Aにおける前記電流印加制御部11e(図7参照)により開閉が制御される。
 前記放電回路とされる場合、例えば後述の実施形態の図10で示すように、計測用電流印加装置9は、電流制限用抵抗26とスイッチング素子27の直列回路からなる放電回路で構成され、この放電回路が前記バッテリ群3と並列に接続される。スイッチング素子27にはバイパス用のダイオード28が設けられている。スイッチング素子27は、コントローラ11の前記主コントローラ11A(図7参照)における前記電流印加制御部11eによって、放電回路を流れる電流がパルス状ないし正弦波状の電流となるように前記スイッチング素子27が開閉駆動される。なおこの場合、電流印加制御部11eは、パルス状ないし正弦波状の電流となるようにスイッチング素子27を駆動する指令を与える構成とされる。なお、図10の実施形態における残りの構成については後に説明する。
 図1において、前記コントローラ11は、この実施形態では主コントローラ11Aに、通信網12を介してデータサーバ13およびモニタ14を接続してなる。通信網12は、この実施形態ではLANからなり、ハブ12aを有している。通信網12は広域通信網であってもよい。データサーバ13は、前記通信網12や他の通信網により、遠隔地のパーソナルコンピュータ(図示せず)等と通信可能であり、どこからでもデータ監視できる。
 図7に示すように、主コントローラ11Aは、各無線部10から送信された電圧センサユニット7の検出値を受信する受信部11aと、受信部11aで受信した計測値を通信網12へ転送する転送部11bと、各電圧センサユニット7の無線部10に無線で送信開始等のコマンドを送信するコマンド送信部11cと、待機部11dと、電流印加制御部11eとを有している。電流印加制御部11eは、計測用電流印加装置9(図1)を制御する。コマンド送信部11cおよび受信部11aの無線送受は、アンテナ19を介して行われる。
 前記主コントローラ11Aの前記コマンド送信部11cは、自己でコマンドを生成してもよいが、この実施形態では、データサーバ13から送信された計測開始コマンドに応答して各電圧センサユニット7の無線部10へ前記計測開始コマンドを転送する。なお、主コントローラ11Aまたは電流センサ8に、この電流センサ8の計測値を実効値または平均値に換算する換算部(図示せず)が設けられている。
 データサーバ13は、内部抵抗計算部13aと判定部13bとを有する。内部抵抗計算部13aは、主コントローラ11Aから送信されて受信した交流電圧値(実行値または平均値)と、直流電圧値(セル電圧)と、検出温度と、電流値(実行値または平均値)とを用い、定められた計算式に従ってバッテリ2の内部抵抗を算出する。検出温度は、温度補正に用いられる。前記電流値を得る各電流センサ8は、主コントローラ11Aに有線の配線で接続され、その電流の計測値は図7の前記転送部11dから電圧計測値と共に転送される。
 判定部13bは、閾値が設定され、算出された内部抵抗が閾値以上であると劣化と判定する。前記閾値は、複数、例えば2~3段階に設けられ、複数段階の劣化判定を行う。判定部13bは、判定結果を、前記通信網12を介して、または専用の配線を介してモニタ14に表示させる機能を有する。データサーバ13は、この他に、主コントローラ11Aへ計測開始コマンドを送信するコマンド送信部13cと、主コントローラ11Aから送信された電圧計測値などのデータを格納するデータ格納部13dとを有している。
 なお、上記構成において、主コントローラ11Aと計測用電流印加装置9とは、同一ケースに入れた一体のコントローラとして構成してもよい。また、コントローラ11は、この実施形態では主コントローラ11Aとデータサーバ13とで構成したが、これら主コントローラ11Aとデータサーバ13とは、同一ケースに入った一つのコントローラ11として構成してもよく、また一つの基板等で構成される一つの情報処理装置に、主コントローラ11Aとデータサーバ13との区別なく構成されていてもよい。
 上記構成の劣化判定装置の動作を説明する。図8は、その動作の一例の流れ図である。データサーバ13は、コマンド送信部11cへ計測開始コマンドを送信する(ステップS1)。主コントローラ11Aは、データサーバ13から計測開始コマンド受信し(ステップS2)、各電圧センサユニット7の無線部10、および各電流センサ8へコマンド送信部11cから計測開始コマンドを送信する(ステップS3)。この送信以降の処理と並行して、待機部11dにより待機時間の終了判定(ステップS20)および待機時間のカウント(ステップS22)を行う。設定された待機時間が終了すると(ステップS20でYES)、計測用電流印加装置9により電流の印加を行う(ステップS21)。この電流の印加は、計測用電流印加装置9が放電装置であれば放電の開始、充電装置であれば充電の開始を行う。
 ステップS3で送信された計測開始コマンドは、全数の電圧センサユニット7が受信し(ステップS4)、各電圧センサユニット7は、自己の個々の検出部7aの計測遅延時間の終了を待って(ステップS5)、バッテリ2のDC電圧(端子間電圧)を計測する(ステップS6)。この後、電圧センサユニット7は、待機時間の終了を待って(ステップS7)、バッテリ2のAC電圧を計測する(ステップS8)。AC電圧の計測については、直接の計測値を実効電圧または平均電圧に換算し、その換算値を計測値として出力する。
 計測したDC電圧およびAC電圧は、例えば自己の前記送信遅延時間だけ待って、無線部10により無線で送信し(ステップS9)、コントローラ11の主コントローラ11Aが無線で受信する(ステップS10)。主コントローラ11Aは、受信したDC電圧およびAC電圧を、電流センサ8および温度センサ(図示せず)の検出値と共に、データサーバ13へLAN等の通信網12で送信する(ステップS11)。データサーバ13は、順に送信される各電圧センサユニット7の検出部7a等のセンサのデータを受信してデータ格納部13dに格納する(ステップS12)。前記無線送信のステップS9からデータサーバ13によるデータ格納までは、全電圧センサユニット7のデータの受信および格納が終了するまで行う(ステップS12でNO)。
 この受信および格納の終了(ステップS12でYES)の後、その終了信号のデータサーバ13から主コントローラ11Aへの送信、および主コントローラ11Aの電流印加制御信号の出力によって、前記計測用電流印加装置9の電流印加をオフにし(ステップS16)、データサーバ13では内部抵抗演算部13aで各バッテリ2の内部抵抗を演算する(ステップS13)。
 データサーバ13の判定部13bは、演算された内部抵抗を、適宜定められた第1しきい値と比較し(ステップS14)、第1しきい値よりも小さい場合は(ステップS14でYES)、バッテリ2が正常であると判定する(ステップS15)。演算された内部抵抗が第1しきい値よりも小さくない場合は(ステップS14でNO)、さらに第2しきい値と比較し(ステップS17)、演算された内部抵抗が第2しきい値より小さい場合(ステップS17でYES)、注意を喚起する警告を出力する(ステップS18)。演算された内部抵抗が第2しきい値よりも小さくない場合は(ステップS17でNO)、警告よりも強い知らせである警報を出力する(ステップS19)。前記警報および警告は、モニタ14(図1)で表示する。演算された内部抵抗が正常な場合は、モニタ14に正常である旨を表示しても、また特に表示しなくてもよい。前記モニタ14による警報および警告の表示は、例えば定められたアイコン等のマークにより行っても、所定部位の点灯等で行ってもよい。このようにして、非常用の電源1の全てのバッテリ2の劣化判定を行う(この例では2つの閾値を使用した2段階劣化判定)。
 この二次電池の劣化判定装置によると、このように、各電圧センサユニット7は、バッテリ2毎に設けられ、無線通信によりディジタル信号でデータの受け取り、受け渡しをするため、数十から数百個のバッテリ2を備える非常用の電源1であっても、各バッテリ2につき、電気的に基準電位(グランドレベル)を気にする必要がない。そのため、差動演算や絶縁トランスの必要がない。また、こうした複数ある個々の検出部7aの計測値を無線で送信するため、複雑な配線の必要がない。これらにより、簡単で安価な構成とできる。
 この場合に、複数のバッテリ2についての個々の計測値を一つの無線部10で送信するため、無線部10の個数が少なくできて、劣化判定装置の全体の構成がより簡素化され、安価に製造できる。
 また、劣化判定対象の電源1の全体ではなく、個々のバッテリ2の劣化を判定するようにし、またその判定については、交流成分を含む計測用電流を印加し、各無線部10の送信した前記計測値を用いて各バッテリ2の内部抵抗を演算し、内部抵抗から前記バッテリ2の劣化を判定するため、精度良く劣化判定をすることができる。バッテリ2の内部抵抗は、バッテリ2の容量、つまり劣化の程度と密接な関係があり、内部抵抗2が分かれば、バッテリ2の劣化を精度良く判定できる。
 また、各検出部7aの計測した前記計測値を、ディジタル信号で表される実効値または平均値に変換し、送信するため、電圧波形の信号を送る場合に比べて飛躍的に送信データ量が少なくて済む。バッテリ2の内部抵抗の算出は、実効値または平均値で精度良く行える。バッテリ2の内部抵抗の算出については、電圧の計測だけであっても、電流を一定値に仮定することなどで可能ではあるが、バッテリ2に実際に流れる電流を計測し、電圧と電流との両方を求めることで、内部抵抗をより一層精度良く算出することができる。直列に並んだ各バッテリ2に流れる電流は同じであるため、電流センサ8はバッテリ群3毎に1つ設ければ足りる。
 前記コントローラ11は、前記電圧センサユニット7の無線部10に計測開始コマンドを送信し、このコマンドによって各検出部7aの計測を開始させるため、多数存在する各検出部7aの計測開始タイミングを整えることができる。この場合に、前記コントローラ11は、前記各電圧センサユニット7に個々の検出部7aの計測開始コマンドを同時にシリアル伝送またはパラレル伝送で送信し、各検出部7aは、計測開始遅延時間経過後に同時に計測を行う。計測終了後、前記コントローラ11は、順に前記各電圧センサユニット7にデータ送信の要求コマンドを送信し、コマンドを受けた電圧センサユニット7がコマンドに対応する検出部7aの演算部7bによる演算後のデータを送信し、以上を繰り返すことで、データ通信を行ってもよい。この実施形態において、前記コントローラ11は、データ送信要求コマンドの送信から一定時間後に、データ受信できなかった前記電圧センサユニット7に対し再送信要求を行うようにしてよい。
 別の例として、各電圧センサユニット7の各検出部7a毎に定められた計測開始遅延時間だけ経過後に計測を行うようにする場合は、各無線部10へ同時に計測開始コマンドを送信しても、多数ある各電圧センサユニット7の各検出部7aによる計測を、無線送受に支障がないように順に行い、送信することかできる。例えば、送信開始コマンドはグローバルコマンドであり、電圧センサユニット7は同時に取得する。
 前記コントローラ11は、前記計測開始コマンドの送信から一定時間後に、データ受信できなかった前記電圧センサユニット7に対し再送信要求を行う。何らかの一時的な送信の障害等により、一部の電圧センサユニット7の無線部10で計測開始コマンドを受信できない場合がある。そのような場合でも、前記再送信要求を行うことで、電圧を計測して送信でき、電源の全てのバッテリ2の電圧計測値を得ることができる。計測開始コマンドを受信できたか否かは、コントローラ11側で、電圧の計測値が受信されたか否かを判断することで行えばよい。
 コントローラ11は、前記のように計測開始コマンドを同時に送信するのではなく前記各電圧センサユニット7の無線部10に個別にデータ要求コマンドを送信し、順にデータを受信するようにしてもよい。この構成の場合、電圧センサユニット7側に前記遅延機能が不要となり、電圧センサユニット7側の構成が簡素化される。前記コントローラ11は、算出した前記内部抵抗の大きさに応じて複数段階の警報を出力するため、バッテリ交換の必要性の緊急度がわかり、無駄なバッテリ交換を行うことなく、保守の計画や準備が円滑かつ迅速に行える。
 なお、上記実施形態では、電圧センサユニット7は、劣化検出対象のバッテリ2毎に電圧センサからなる検出部7aおよび演算部7bを有効構成としたが、電圧センサユニット7は、図4または図5に示す変形例のように、前記端子間電圧の個別に検出を行う一つの検出部7aと、この検出部7aに接続する前記複数のバッテリ2を切替える切替部7cと、前記検出部7cで検出された信号から前記交流成分の個別の演算を行う一つの演算部7bとを有する構成であってもよい。演算部7bの演算結果である前記交流成分や、検出部7aで得られた前記直流成分は、記憶部7eに一時的に記憶しておき、その記憶した演算結果を無線部10から送信するように構成されている。なお、記憶部7eは必ずしも設けなくてもよく、その場合、演算部7bで演算する都度、演算結果を無線部10で送信する。
 これら図4,図5の構成の場合、検出部7aは入力側には切替部7cを接続するだけでよく、配線が簡素化される。図4の例では、前記切替部7cは、一つの前記電圧センサユニット7の検出対象となる直列接続された複数のバッテリ2の内で最低電位の端子7auを共通とする構成とされている。この構成の場合、切替部7cの構成が簡素となる。図5の例では、前記切替部7cは、前記検出部7aに接続する低電位側および高電位側の両端子7au,7ahをバッテリ2毎に順次切り替える構成とされている。この構成の場合、切替部7cが必要となるが、検出部7aおよび演算部7bがいずれも一つで済むため、前記検出部7a、演算部7b、または切替部7cである回路要素の個数が少なく済む。
 図6は、前記電圧センサユニット7の変形例を示す。この例では、前記電圧センサユニット7は、バッテリ2の端子間電圧の個別の検出を行う複数の検出部7aと、これら各検出部7aで検出された信号を切り替え可能に選択にして出力するデータ選択部7dと、このデータ選択部7dにより選択された信号から前記交流成分の個別の演算を行う一つの演算部7bとを有する構成とされている。この他に演算部7bにより演算された結果を記憶する記憶部7eを有し、各検出部7aで検出されデータ選択部7dで選択されて演算部7bにより実行値等に変換された各バッテリ2の電圧計測値は、一旦、記憶部7eに記憶され、無線部10から順次出力される。前記検出部7aは差動演算回路からなり、これら差動演算回路からなる複数の検出部7aにより、センサアレイあるいはセンサモジュール等からなる差動演算部7aAを構成している。
 この例のようにデータ選択部7dを設けた場合、演算部7bが一つで済む。そのため、前記検出部7a、演算部7b、またはデータ選択部7dを構成する回路要素の個数が少なく済む。
 図9は、この発明の第2の実施形態を示す。この実施形態は、図1に示す第1の実施形態において電流センサ8を個々のバッテリ群3毎に設けた構成に代えて、劣化検出対象の電源1につき電流センサ8を一つとしている。バッテリ群3の電流の計測につき、同図の例のように、電源1の全体で電流センサ8を一つとし、バッテリ群3に流れる電流を検出するようにしても、個々のバッテリ群3毎に電流センサ8を設けた場合と、各バッテリ2の内部抵抗を求めるにつき、実用上で殆ど差が生じない可能性がある。そのため、電流センサ8は、バッテリ群3毎に1 個とすることで、劣化検出の精度を維持しながら、電流センサ8の削減による構成の簡素化および低コスト化が図れる。
 具体的に説明すると、例えば図10のように、前記計測用電流印加装置9が放電回路で構成されて電流制限抵抗26を用いる場合、電流制限抵抗26は、バッテリ2の内部抵抗に比べて十分大きいため、バッテリ内部抵抗が劣化により変化しても電流値への影響はほとんどない。そのため、複数のバッテリ群3が並列接続されていても、電流値を放電回路(計測用電流印加装置9)の位置で測定し、バッテリ群3の並列個数で割った値を個々のバッテリ2の測定用電流とすることが出来る。
 例えば、電流制限抵抗26を20~30Ωとした場合、バッテリ内部抵抗は数m~10mΩ程度であるため、10mΩとして150個直列接続で1.5Ωである。3並列であれば0.5となり、電流制限抵抗26に比べ小さい。ここで10%の抵抗が劣化により内部抵抗が2倍になったとしても、0.55Ωであり、総インピーダンスは20.5Ωが20.55Ωとなる程度であり、測定用電流への影響は小さい。そのため、電流センサ8を共通としてもよい。図9の実施形態におけるその他の事項は、図1に示す実施形態と同様である。
 図10は、この発明の第3の実施形態を示す。この実施形態において、特に説明した事項の他は、図1等と共に説明した第1の実施形態と同様である。なお、一つの無線部10(およびこれに接続されたアンテナ)が、図10ではバッテリ2毎に設けられているが、第1、第2の実施形態のように電圧センサユニット7毎に設けられていてもよい。
 図10において、電源1は、複数のバッテリ群3が直列に接続されて直列接続体3Aをなし、このバッテリ群3の直列接続体3Aが複数並列に接続されている。各バッテリ群3の直列接続体3Aの間で、互いに対応する個々の前記バッテリ群3の間の部位aは相互に接続されていて、前記バッテリ群3が並列に接続されて並列接続体3Bを成す。この一つのバッテリ群3の並列接続体3B毎に前記計測用電流印加装置9および電流センサ8が設けられている。計測用電流印加装置9は、この例では前述の放電回路からなる。
 換言すれば、前記電源1における直列接続体3Aが一つのバッテリ群3であると見做すと、この一つのバッテリ群3が、直列方向に並ぶ複数(二つ)のバッテリ群分割体3aに分割され、このバッテリ群分割体3aが他のバッテリ群3を構成するバッテリ群分割体3aと並列に接続されている。これらのバッテリ群分割体3aが並列接続された接続体(すなわち並列接続体3B)毎に並列に前記計測用電流印加装置(放電回路)9が設けられた構成である。分割数は問わないが、個々のバッテリ群分割体3aは、前記バッテリ2が複数直列に接続されている。
 前記電源1がデータセンタの非常用電源等である場合、電源1の全体におけるバッテリ2の直列接続体の電圧は、例えば300Vを超える高い電圧となる。このため、前記電源1の全体に対して計測用電流印加装置(放電回路)9を設けると、測定電流を印加するためのパワー素子である前記スイッチング素子27に耐圧が高いものが必要である。しかし、この実施形態のようにバッテリ2の直列接続体を直列方向に二つに分割された構成とすることで、前記計測用電流印加装置(放電回路)9における測定電流印加用のパワー素子である前記スイッチング素子27に、耐圧の低いものが使用できる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1…電源
2…バッテリ
3…バッテリ群
4…負荷
5…主電源
5A,5B…端子
6…充電回路
7…電圧センサユニット
7a…検出部
7b…演算部
7c…切替部
7d…データ選択部
7e…記憶部
7g…筐体
8…電流センサ
9…計測用電流印加装置
10…無線部
11…コントローラ
11A…主コントローラ
11e…電流印加制御部
12…通信網
13…データサーバ
13a…内部抵抗計算部
13b…判定部
14…モニタ
15…ダイオード

Claims (7)

  1.  それぞれ二次電池であるバッテリの複数が直列接続されたバッテリ群が複数並列に接続された電源における前記各バッテリの劣化を判定する二次電池の劣化判定装置であって、
     前記バッテリ群の内の複数のバッテリの端子間電圧を個別に検出しその検出された信号から交流成分を個別に演算し、演算結果を計測値として一つの無線部で送信する複数の電圧センサユニットと、
     前記バッテリ群の電流を検出する電流センサと、
     交流成分を含む計測用電流を前記バッテリ群に印加する計測用電流印加装置と、
     前記各電圧センサユニットの送信した前記計測値を受信し、この受信した計測値を用いて各バッテリの内部抵抗を算出し、内部抵抗から前記バッテリの劣化を判定するコントローラとを備える、
     二次電池の劣化判定装置。
  2.  請求項1に記載の二次電池の劣化判定装置において、前記電圧センサユニットは、前記端子間電圧の個別の検出を行う複数の検出部と、これら各検出部で検出された信号から前記交流成分の個別の演算を行う複数の演算部とを有する二次電池の劣化判定装置。
  3.  請求項1に記載の二次電池の劣化判定装置において、前記電圧センサユニットは、前記端子間電圧の個別の検出を行う一つの検出部と、この検出部に接続する前記複数のバッテリを切替える切替部と、前記検出部で検出された信号から前記交流成分の個別の演算を行う一つの演算部とを有する二次電池の劣化判定装置。
  4.  請求項1に記載の二次電池の劣化判定装置において、前記電圧センサユニットは、前記端子間電圧の個別の検出を行う複数の検出部と、これら各検出部で検出された信号を切り替え可能に選択にして出力するデータ選択部と、このデータ選択部により選択された信号から前記交流成分の個別の演算を行う一つの演算部とを有する二次電池の劣化判定装置。
  5.  請求項1ないし請求項4のいずれか1項に記載の二次電池の劣化判定装置において、前記電圧センサユニットの全体が、一つの筐体に全ての構成要素が組まれた一体の部品である二次電池の劣化判定装置。
  6.  請求項3に記載の二次電池の劣化判定装置において、前記切替部は、一つの前記電圧センサユニットの検出対象となる直列接続された複数のバッテリの内で最低電位の端子を共通とする二次電池の劣化判定装置。
  7.  請求項3に記載の二次電池の劣化判定装置において、前記切替部は、前記検出部に接続する低電位側および高電位側の両端子を共にバッテリ毎に順次切り替える二次電池の劣化判定装置。
PCT/JP2017/033918 2016-09-21 2017-09-20 二次電池の劣化判定装置 WO2018056308A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197010017A KR20190046980A (ko) 2016-09-21 2017-09-20 2차 전지의 열화 판정 장치
DE112017004747.1T DE112017004747T5 (de) 2016-09-21 2017-09-20 Vorrichtung zur Bestimmung der Akkumulatorleistungsabnahme
CN201780057824.4A CN109791180A (zh) 2016-09-21 2017-09-20 二次电池的劣化判断装置
US16/354,865 US20190212397A1 (en) 2016-09-21 2019-03-15 Deterioration determination device for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016184024A JP2018048884A (ja) 2016-09-21 2016-09-21 二次電池の劣化判定装置
JP2016-184024 2016-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/354,865 Continuation US20190212397A1 (en) 2016-09-21 2019-03-15 Deterioration determination device for secondary battery

Publications (1)

Publication Number Publication Date
WO2018056308A1 true WO2018056308A1 (ja) 2018-03-29

Family

ID=61689556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033918 WO2018056308A1 (ja) 2016-09-21 2017-09-20 二次電池の劣化判定装置

Country Status (6)

Country Link
US (1) US20190212397A1 (ja)
JP (1) JP2018048884A (ja)
KR (1) KR20190046980A (ja)
CN (1) CN109791180A (ja)
DE (1) DE112017004747T5 (ja)
WO (1) WO2018056308A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487794A (zh) 2017-01-09 2023-07-25 米沃奇电动工具公司 用于向电气设备提供输出电力的设备
JP7251390B2 (ja) * 2019-07-30 2023-04-04 株式会社デンソー 電子制御装置
KR20220090915A (ko) 2020-12-23 2022-06-30 박정훈 전투기 비상탈출 항법유도 시스템
US11791503B2 (en) * 2021-07-20 2023-10-17 Flowserve Pte. Ltd. Method of characterizing and monitoring energy usage of battery powered wirelessly linked devices
KR20230061046A (ko) * 2021-10-28 2023-05-08 주식회사 엘지에너지솔루션 배터리 진단 방법 및 이를 적용한 배터리 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299122A (ja) * 1998-02-10 1999-10-29 Denso Corp 充電状態制御方法及び装置
JP2005322617A (ja) * 2004-04-09 2005-11-17 Sanyo Electric Co Ltd 電源装置
JP2012034535A (ja) * 2010-08-02 2012-02-16 Hitachi Vehicle Energy Ltd 電池制御装置を備えた蓄電装置
JP2012052831A (ja) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The 電池劣化診断装置
JP2013064697A (ja) * 2011-09-20 2013-04-11 Nec Corp 二次電池システム
US20140266222A1 (en) * 2013-03-14 2014-09-18 GM Global Technology Operations LLC Method and system for estimating voltage of a battery element
JP2016096623A (ja) * 2014-11-13 2016-05-26 株式会社日立製作所 無線電池システム並びにこれに用いるセルコントローラ及びバッテリコントローラ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068050A (ja) * 1992-06-26 1994-01-18 Fanuc Ltd 放電加工装置
JPH10170615A (ja) 1996-12-10 1998-06-26 Sanko Denki:Kk 車載バッテリ−チェッカ−
JP4494904B2 (ja) 2003-08-22 2010-06-30 古河電気工業株式会社 二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置及び電源システム
JP2007333494A (ja) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc 蓄電池の劣化診断方法および劣化診断装置
JP5089619B2 (ja) 2009-01-16 2012-12-05 古河電池株式会社 二次電池の劣化診断装置
CN102959418B (zh) * 2010-06-24 2016-04-27 松下知识产权经营株式会社 获取电池的劣化度的方法和系统
EP2778699A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery BATTERY CONDITION MONITORING SYSTEM
JP6470003B2 (ja) * 2014-09-26 2019-02-13 株式会社日立情報通信エンジニアリング 無停電電源装置及び無停電電源装置システム
JP6187520B2 (ja) 2015-03-25 2017-08-30 ヤマハ株式会社 サポートアセンブリおよび鍵盤装置
JP6260606B2 (ja) 2015-11-27 2018-01-17 カシオ計算機株式会社 書画カメラシステム及び画像読み取り方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299122A (ja) * 1998-02-10 1999-10-29 Denso Corp 充電状態制御方法及び装置
JP2005322617A (ja) * 2004-04-09 2005-11-17 Sanyo Electric Co Ltd 電源装置
JP2012034535A (ja) * 2010-08-02 2012-02-16 Hitachi Vehicle Energy Ltd 電池制御装置を備えた蓄電装置
JP2012052831A (ja) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The 電池劣化診断装置
JP2013064697A (ja) * 2011-09-20 2013-04-11 Nec Corp 二次電池システム
US20140266222A1 (en) * 2013-03-14 2014-09-18 GM Global Technology Operations LLC Method and system for estimating voltage of a battery element
JP2016096623A (ja) * 2014-11-13 2016-05-26 株式会社日立製作所 無線電池システム並びにこれに用いるセルコントローラ及びバッテリコントローラ

Also Published As

Publication number Publication date
CN109791180A (zh) 2019-05-21
KR20190046980A (ko) 2019-05-07
DE112017004747T5 (de) 2019-07-11
US20190212397A1 (en) 2019-07-11
JP2018048884A (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2018056309A1 (ja) 二次電池の劣化判定装置
JP6632918B2 (ja) 二次電池の劣化判定装置
WO2018056308A1 (ja) 二次電池の劣化判定装置
WO2017209214A1 (ja) 二次電池の劣化判定装置
JP6679342B2 (ja) 二次電池の劣化判定装置
WO2017164073A1 (ja) 二次電池の劣化抑制装置および個別劣化抑制装置
JP7471337B2 (ja) 直列接続電池セルのための監視システム
CN102162834A (zh) 串联电池组中的电池电压检测装置及其方法
US8305084B2 (en) Voltage measuring apparatus for assembled battery
US8664919B2 (en) Remaining battery power calculation circuit
JP6639976B2 (ja) 二次電池の劣化判定装置
KR20130061019A (ko) 배터리 팩
WO2017145949A1 (ja) 二次電池の劣化判定装置
EP3893010B1 (en) Battery monitoring device
KR200479499Y1 (ko) 축전지의 개별셀 단자전압 검출장치
CN201965177U (zh) 串联电池组中的电池电压检测装置
KR101878949B1 (ko) 부하 연결 상태에서의 배터리 저항 측정 방법
JP2022054682A (ja) 二次電池の劣化判定装置
KR20190023815A (ko) 양방향 배터리 모듈의 전압 센싱 회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197010017

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17853078

Country of ref document: EP

Kind code of ref document: A1