WO2018056093A1 - 光ファイバユニットおよび光ファイバケーブル - Google Patents

光ファイバユニットおよび光ファイバケーブル Download PDF

Info

Publication number
WO2018056093A1
WO2018056093A1 PCT/JP2017/032663 JP2017032663W WO2018056093A1 WO 2018056093 A1 WO2018056093 A1 WO 2018056093A1 JP 2017032663 W JP2017032663 W JP 2017032663W WO 2018056093 A1 WO2018056093 A1 WO 2018056093A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
binding
fiber unit
binding materials
bonding
Prior art date
Application number
PCT/JP2017/032663
Other languages
English (en)
French (fr)
Inventor
智晃 梶
総一郎 金子
瑞基 伊佐地
富川 浩二
大里 健
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61689978&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018056093(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to KR1020197006322A priority Critical patent/KR102291386B1/ko
Priority to CA3035164A priority patent/CA3035164C/en
Priority to EP17852870.9A priority patent/EP3518013B1/en
Priority to AU2017330867A priority patent/AU2017330867B2/en
Priority to CN201780056553.0A priority patent/CN109716191B/zh
Priority to BR112019003073-5A priority patent/BR112019003073A2/pt
Priority to KR1020207025802A priority patent/KR102276843B1/ko
Priority to ES17852870T priority patent/ES2946267T3/es
Priority to US16/326,097 priority patent/US10670820B2/en
Publication of WO2018056093A1 publication Critical patent/WO2018056093A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4413Helical structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres

Definitions

  • the present invention relates to an optical fiber unit and an optical fiber cable.
  • This application claims priority on September 20, 2016 based on Japanese Patent Application No. 2016-183490 for which it applied to Japan, and uses the content for it here.
  • Patent Document 1 an optical fiber unit in which a binding material is wound around a plurality of optical fiber core wires or optical fiber strands (hereinafter simply referred to as optical fibers) is known.
  • optical fibers optical fiber core wires or optical fiber strands
  • Patent Document 2 proposes an optical fiber unit in which a plurality of binding materials are wound around a bundle of optical fibers in an SZ shape, and two binding materials are bonded at a reversal point in the winding direction.
  • the present invention has been made in view of such circumstances, and an object thereof is to stabilize the binding state of a binding material wound around a plurality of optical fibers in an SZ shape.
  • an optical fiber unit is an optical fiber unit comprising a plurality of optical fibers and at least two binding materials for binding the plurality of optical fibers.
  • the two binding materials are wound around the plurality of optical fibers in an SZ shape, and form an adhesive portion that is bonded to each other at each reversal portion, and the adhesive portion has a center of the two binding materials. Multiple intersections between lines are included.
  • the optical fiber unit according to the first aspect at the time of manufacturing the optical fiber unit, for example, the position where the reversal part of each binding material is formed and the shape of the reversal part varies, Two binding materials are stacked on each other to a sufficient extent. For this reason, it becomes possible to form an adhesion part reliably, and the binding state of a binding material can be stabilized.
  • the optical fiber unit according to a second aspect of the present invention is the optical fiber unit according to the first aspect, wherein the adhesive portion includes a plurality of adhesive surfaces on which the binding materials overlap, Adhesive surfaces are arranged at intervals in the longitudinal direction in which the optical fiber unit extends.
  • the external force can be received by the entire plurality of bonding surfaces. Therefore, it can suppress that an adhesion part peels unexpectedly.
  • the adhesive surface can be easily peeled by concentrating the force for separating the binding materials on one adhesive surface. Then, by sequentially peeling the bonding surface along the longitudinal direction, the bonding portion can be peeled with a small operating force, and the intermediate post-branching operation and the like can be facilitated.
  • a gap is formed between the plurality of bonding surfaces and between the two binding materials. ing.
  • the gap between the two binding materials is formed between the bonding surfaces, and for example, the position where the reversal portion of the binding material is formed and the shape of the reversal portion vary. Even if it is a case, it is suppressed that the area of an adhesion surface changes greatly. Thereby, the intensity
  • the optical fiber unit according to a fourth aspect of the present invention is the optical fiber unit according to any one of the first to third aspects, wherein the adhesive portion has an intersection of two center lines of the binding material. 4 or more are included.
  • the length of the bonded portion in the longitudinal direction is ensured, and the binding state of the binding material can be further stabilized.
  • An optical fiber unit according to a fifth aspect of the present invention is the optical fiber unit according to any one of the first to fourth aspects, wherein the adhesive length L of the adhesive portion in the longitudinal direction in which the optical fiber extends, The binding pitch P of the binding material in the longitudinal direction satisfies 0.24 ⁇ L / (P / 2) ⁇ 0.8.
  • the fifth aspect by setting the value of L / (P / 2) to 0.24 or more, the length in the longitudinal direction of the bonded portion occupying the entire binding material is secured, and the bonded portion is unexpected. Can be prevented from peeling off. Furthermore, when the value of L / (P / 2) is set to 0.8 or less, when manufacturing an optical fiber unit, the distance or time in the longitudinal direction from when the bonded portion is formed to when the binding material is reversed. Generation
  • the optical fiber unit according to a sixth aspect of the present invention is the optical fiber unit according to any one of the first to fifth aspects, wherein the adhesive strength of the adhesive portion is 11.6 gf or more and 95.2 gf or less. It is.
  • the adhesive strength of the adhesive portion 11.6 gf or more it is possible to prevent the adhesive portion from being unexpectedly separated. Furthermore, the workability
  • operativity at the time of peeling binding materials in an adhesion part can be made favorable by the adhesive strength of an adhesion part being 95.2 gf or less.
  • An optical fiber unit according to a seventh aspect of the present invention is the optical fiber unit according to any one of the first to sixth aspects, wherein the overlap ratio of the two binding materials is greater than 100%, and 125% or less.
  • the bonding surface between the binding materials can be reliably formed and the binding state can be stabilized. Furthermore, by setting the overlap rate to 125% or less, the area of the bonding surface can be secured and the bonding strength can be increased.
  • An optical fiber cable includes the optical fiber unit according to any one of the first to seventh aspects, and a sheath that covers the optical fiber unit.
  • the binding material is wound around the plurality of optical fibers in an SZ shape, and the binding state of the binding material is stable. For this reason, it is suppressed that the bundle of optical fibers is separated, the discrimination between the optical fiber units is ensured, and the workability such as the intermediate post branching operation of the optical fiber cable is improved.
  • optical fiber unit The configuration of the optical fiber unit according to the present embodiment will be described below with reference to FIGS. 1 to 6B.
  • illustration of each component is abbreviate
  • the optical fiber unit 10 includes a plurality of optical fibers 1 and two binding materials 2 and 3 that bind the plurality of optical fibers 1.
  • the plurality of optical fibers 1 are bundled in a cylindrical shape as a whole.
  • the central axis of the cylinder is referred to as a central axis O.
  • the direction in which the optical fiber unit 10 extends that is, the direction along the central axis O is referred to as the longitudinal direction.
  • the Z axis in FIGS. 1, 3A, 5, 6A, and 6B indicates the longitudinal direction.
  • a direction intersecting the central axis O is referred to as a radial direction, and a direction around the central axis O is referred to as a circumferential direction.
  • the plurality of optical fibers 1 may be bundled in a columnar shape having a non-circular (elliptical, rectangular, etc.) cross section, and the cross-sectional shape thereof may change in the longitudinal direction.
  • a virtual line connecting the centroids of the cross section of the optical fiber unit 10 in the longitudinal direction is defined as the central axis O.
  • the binding materials 2 and 3 are formed in a band shape.
  • a combination of a plurality of fibers made of a high melting point material such as polyethylene terephthalate (PET) and a low melting point material such as polypropylene (PP) can be used.
  • the structure and material of the binding materials 2 and 3 are not limited to the above, and can be changed as appropriate.
  • the binding materials 2 and 3 are wound around the plurality of optical fibers 1 in an SZ shape, and are bonded to each other at each reversal portion to form an adhesive portion B.
  • the binding materials 2 and 3 are heat-bonded to each other at a bonding portion B by a binding device 20 described later.
  • a plurality of optical fiber units 10 may be arranged in the optical fiber cable. In order to distinguish between the plurality of optical fiber units 10 in the optical fiber cable, the binding materials 2 and 3 may be colored differently.
  • the optical fiber unit 10 is used by being housed in, for example, an optical fiber cable 100 as shown in FIG.
  • the optical fiber cable 100 includes a plurality of optical fiber units 10, a wrapping tube 54, a cylindrical sheath 55, a pair of strength members 56, and a pair of tear strings 57.
  • the wrapping tube 54 covers the plurality of optical fiber units 10.
  • the sheath 55 covers the optical fiber unit 10 together with the wrapping tube 54.
  • the pair of strength members 56 are embedded in the sheath 55.
  • the pair of tear strings 57 are embedded in the sheath 55.
  • the pair of tear strings 57 are disposed at positions close to the inner peripheral surface of the sheath 55.
  • Marker protrusions 58 project from the outer peripheral surface of the sheath 55 on the radially outer side of the position where the pair of tear strings 57 are disposed.
  • the marker protrusion 58 is formed along the tear string 57 and indicates a position where the tear string 57 is embedded.
  • the optical fiber cable 100 may not include the wrapping tube 54, the tensile body 56, the tear string 57, and the marker protrusion 58.
  • the optical fiber cable 100 may include only one optical fiber unit 10.
  • the optical fiber unit 10 is formed by winding the binding materials 2 and 3 around a plurality of optical fibers 1 using a binding device 20 as shown in FIGS. 3A and 3B.
  • 3A is a side view of the binding device 20 as viewed from a direction orthogonal to the longitudinal direction
  • FIG. 3B is a view in the direction of arrow A in FIG. 3A.
  • the bundling device 20 is composed of a plurality of cylindrical members.
  • the bundling device 20 includes a guide cylinder 21, a first inner cylinder 22, a first outer cylinder 23, a second inner cylinder 24, and a second outer cylinder 25 in order from the inside. These members are arranged in a state where the respective central axes are located on the central axis O. A plurality of optical fibers 1 are inserted into the guide tube 21.
  • the first inner cylinder 22 is fitted in the first outer cylinder 23 so as to be rotatable around the central axis O with respect to the first outer cylinder 23.
  • a groove portion 22a extending over the entire length in the longitudinal direction is formed.
  • the binding material 2 is inserted into the groove 22a.
  • the second inner cylinder 24 is fitted in the second outer cylinder 25 so as to be rotatable around the central axis O with respect to the second outer cylinder 25.
  • On the outer peripheral surface of the second inner cylinder 24, a groove portion 24a extending over the entire length in the longitudinal direction is formed.
  • the binding material 3 is inserted into the groove 24a.
  • the first inner cylinder 22 and the second inner cylinder 24 are connected to a common power source (not shown), and are configured to rotate around the central axis O in conjunction with power supply.
  • the bundling materials 2 and 3 in the groove portions 22a and 24a become the plurality of optical fibers 1 as the plurality of optical fibers 1 pass through the guide tube 21 and are drawn downstream. Wrapped in the SZ shape.
  • the binding materials 2 and 3 are respectively heated and partially melted in the groove portions 22a and 24a, they are heat-bonded to each other at the SZ-shaped reversal portion.
  • the binding materials 2 and 3 may not be heated in the groove portions 22a and 24a, but may be heated in a heating die (not shown) disposed downstream of the binding device 20. In this case, the binding materials 2 and 3 are heat-sealed in a heating die after leaving the binding device 20 while being wound around the plurality of optical fibers 1 in an SZ shape.
  • C ⁇ b> 2 is the center line of the binding material 2
  • C ⁇ b> 3 is the center line of the binding material 3.
  • the center lines C ⁇ b> 2 and C ⁇ b> 3 intersect twice in the binding material 2 and the inverted portion of the binding material 3. That is, the two binding materials 2 and 3 form an adhesive part B that is bonded to each other at each inverted part, and the adhesive part B includes a plurality of intersections between the center lines C2 and C3.
  • the adhesive portion B includes two adhesive surfaces b1 and b2 where the binding materials 2 and 3 overlap each other.
  • the bonding surfaces b1 and b2 are arranged with a gap in the longitudinal direction.
  • the bonding surface b1 is located on the ⁇ Z side, and the bonding surface b2 is located on the + Z side. Further, a gap S between the binding materials 2 and 3 is formed between the bonding surface b1 and the bonding surface b2.
  • the intersection point means a point where the center lines C2 and C3 intersect when the bonding portion B is viewed from the outside in the radial direction of the optical fiber unit 10.
  • the length in the longitudinal direction of the bonding portion B is referred to as a bonding length L.
  • the bonding length L is a distance in the longitudinal direction between the ⁇ Z side end of the bonding surface b1 and the + Z side end of the bonding surface b2. Moreover, as shown in FIG.
  • the binding pitch in the longitudinal direction of the binding materials 2 and 3 wound in the SZ shape is referred to as a binding pitch P.
  • the binding pitch P is a unit in which the shape of the binding materials 2 and 3 in the longitudinal direction is repeated. Further, as shown in FIG. 1, the distance in the longitudinal direction between the intersections A1 and A2 of the center lines C2 and C3 is referred to as a distance X between the intersections.
  • FIG. 5 is a diagram illustrating a modification of the optical fiber unit 10.
  • each of the binding materials 2 and 3 is inverted three times at the inversion portion.
  • the bonding portion B includes four intersections A1 to A4 of the center lines C2 and C3.
  • the bonding portion B includes four bonding surfaces b1 to b4.
  • the four bonding surfaces b1 to b4 are arranged at intervals in the longitudinal direction.
  • gaps S between the binding materials 2 and 3 are formed at three locations.
  • count of reversing the binding materials 2 and 3 in one inversion part is not restricted to the example of FIG. 1, or the example of FIG.
  • the number of intersections of the center lines C2 and C3 is (N + 1).
  • the average value of the distances in the longitudinal direction between the adjacent intersections is set as the distance X between the intersections.
  • the average value of X1 to X3 is It is defined as the distance X between intersections.
  • the bonding length L is the distance in the longitudinal direction between the outer ends of the bonding surfaces located at both ends in the longitudinal direction. .
  • the bonding surface b1 is positioned closest to the ⁇ Z side
  • the bonding surface b4 is positioned closest to the + Z side.
  • the distance in the longitudinal direction between the ⁇ Z side end of the bonding surface b1 and the + Z side end of the bonding surface b4 is defined as the bonding length L.
  • FIG. 4 is a front view of the optical fiber unit 10 as viewed from the longitudinal direction.
  • the optical fiber 1 is not shown.
  • the reversing part of the binding material 2 covers the reversing part of the binding material 3 from the outside in the radial direction. That is, the inversion part of the binding material 2 and the inversion part of the binding material 3 overlap each other.
  • the portion where the binding materials 2 and 3 overlap in the front view extends in the circumferential direction.
  • An angle around the central axis O of the portion where the binding materials 2 and 3 overlap is defined as ⁇ [°].
  • the overlap rate R [%] is defined by the following formula (1).
  • R 100 + ⁇ / 180 (1)
  • a plurality of optical fiber units 10 were created using the distance X between the intersections defined as described above, the bonding length L, the binding pitch P, and the overlap ratio R as parameters, and the results of measuring the strength and the like of the bonded portion are shown in Table 1. Shown in
  • the optical fiber units of the comparative example and Examples 1 to 8 shown in Table 1 use six 12-fiber intermittently bonded optical fiber ribbons as the plurality of optical fibers 1.
  • two binding materials 2 and 3 are wound in an SZ shape around the six intermittently bonded optical fiber ribbons, and the inversion portions of the binding materials 2 and 3 are heat-sealed to form an adhesive portion B. is doing.
  • the binding materials 2 and 3 having a width of 1 [mm] by combining a plurality of fibers made of PET and PP are used.
  • the binding materials 2 and 3 are heat-sealed so that the center lines C2 and C3 of the binding materials 2 and 3 intersect at one point. Since the center lines C of the binding materials 2 and 3 intersect at one point, the distance X between the intersections is 0 [mm], but the binding materials 2 and 3 have a width of 1 [mm].
  • the adhesion length L is 8 [mm].
  • the center lines C2 and C3 of the binding materials 2 and 3 have two intersections as shown in FIG. 1, and the distance X between the intersections is 8 [mm].
  • the length L is 18 [mm] which is 10 [mm] longer than the comparative example.
  • Example 7 the center lines C2 and C3 of the binding materials 2 and 3 have four intersections as shown in FIG. 4, the distance X between the intersections is 17 [mm], and the bonding length L Is 75 [mm].
  • Example 8 is an optical fiber unit in which the binding materials 2 and 3 are each inverted five times at the reversing part so that there are six intersections of the center lines C2 and C3 per adhesive part B.
  • the adhesive strength [gf] shown in Table 1 is the tensile force when the binding materials 2 and 3 are pulled apart at a speed of 200 [mm / min] in the circumferential direction in the bonding portion B, and the bonding portion B is peeled off. Is the peak value.
  • Table 1 shows the number and probability [%] that the bonded portion B is broken (peeled or bonded poorly) per 3 [m] when the optical fiber unit 10 is taken out from the optical fiber cable 100. Yes.
  • the bonding portion B is included at a rate of one in 75 [mm].
  • ⁇ 75 40 bonding portions B are included.
  • the probability that the bonded portion B was broken per 3 [m] was 100 [%].
  • Example 1 the number of bonded portions B destroyed per 3 [m] is greatly reduced from 40 to 0 in comparison with the comparative example. This is because the adhesive strength is improved from 4.0 [gf] to 20.1 [gf], and the bonded portion B is not easily broken.
  • the reason why the adhesive strength is increased is that the number of intersections of the center lines C2 and C3 per adhesive part B increases from one to two, and the value of L / (P / 2) indicating the ratio of the adhesive part B Is increased from 0.11 to 0.24.
  • L / (P / 2) indicating the ratio of the adhesive part B Is increased from 0.11 to 0.24.
  • the optimum numerical range of L / (P / 2) will be considered. Focusing on the numerical value of L / (P / 2) for the comparative example and examples 1 to 8, the minimum value is 0.11 of the comparative example, and the next smaller value is 0.24 of the example 1. Yes. The probability that the bonded portion B is broken around 3 [m] is 100% in the comparative example and 0% in the example 1. From this result, the optimum value of L / (P / 2) for preventing the fracture of the bonded portion B is in the range shown in the following mathematical formula (2). 0.24 ⁇ L / (P / 2) (2)
  • the optimum numerical range of the adhesive strength will be considered. Focusing on the numerical values of the adhesive strengths for the comparative example and examples 1 to 8, the minimum value is 4.0 [gf] of the comparative example, and the next smaller value is 11.6 [gf] of the example 5. . In addition, the probability that the bonded portion B was broken around 3 [m] was 10% in Example 5 with respect to 100% in the comparative example, which is greatly improved. From this, by setting the adhesive strength to 11.6 [gf] or more, it is possible to prevent the bonding portion B from being broken to some extent. In addition, the adhesive strength next to that of Example 5 is 19.5 [gf] of Example 4, and the probability that the adhesive part B is broken around 3 [m] in Example 4 is 0%. It has become. From this, by making the adhesive strength 19.5 [gf] or more, it is possible to more reliably prevent the bonded portion B from being broken.
  • the optical fiber unit 10 was taken out from the optical fiber cables 100 of Examples 1 to 8, and workability when the binding materials 2 and 3 were peeled off at the bonding portion B was confirmed.
  • Example 8 having the largest adhesive strength of 95.2 [gf]
  • the workability of the work of separating the binding materials 2 and 3 was not deteriorated. From this result, it is preferable to set the adhesive strength to 95.2 gf or less in order not to deteriorate the workability when peeling the bonded portion B.
  • a preferable condition for maintaining the separation work of the binding materials 2 and 3 easily in the adhesive portion B while preventing the adhesive portion B from being unexpectedly broken is that the adhesive strength is 11.6 gf or more and 95.2 gf. It is the following. In addition, when the adhesive strength is 19.5 [gf] or more, the breakage of the bonded portion B can be prevented more reliably.
  • the condition for the center lines C2 and C3 of the binding materials 2 and 3 to have a plurality of intersections at the bonding portion B is that ⁇ in FIG. 4 is greater than 0 [°]. Further, from the definition of the overlap rate R shown in Equation (1), when ⁇ is greater than 0 [°], the overlap rate R is greater than 100 [%]. That is, the optical fiber unit 10 can be configured so that the center lines C2 and C3 of the binding materials 2 and 3 have a plurality of intersections at the bonding portion B by making the overlap rate R larger than 100 [%]. it can.
  • the center lines C2 and C3 each have a sine curve.
  • ⁇ in FIG. 4 exceeds 45 [°]
  • the overlap rate R exceeds 125%
  • the center lines C2 and C3 intersect at an angle close to a right angle at the intersections A1 and A2.
  • the areas of the bonding surfaces b1 and b2 become relatively small. Therefore, by setting the overlap rate R to 125% or less, it is possible to secure the areas of the adhesive surfaces b1 and b2 and improve the adhesive strength.
  • the optimal numerical range of the inter-intersection distance X is considered.
  • the distance X between the intersections is too small, the formation of the intersections A1 and A2 of the center lines C2 and C3 is likely to be unstable, and the shapes of the bonding surfaces b1 and b2 are likely to be unstable. As a result, the adhesive strength also becomes unstable.
  • the distance X between the intersections is, for example, 33 mm or more.
  • the distance X between intersections is, for example, 59 mm or less.
  • the plurality of binding materials 2 and 3 are wound around the plurality of optical fibers 1 in an SZ shape.
  • a plurality of intersections A1 and A2 between the center lines C2 and C3 of the binding materials 2 and 3 are included in the bonding portion B where the inverted portions of the binding materials 2 and 3 are bonded to each other.
  • the external force can be received by the entire bonding surfaces b1 and b2 formed at intervals in the longitudinal direction. For this reason, it can suppress that the adhesion parts b1 and b2 peel off unexpectedly.
  • the adhesive surface b1 can be easily peeled off by concentrating the force that separates the binding materials 2 and 3 on the single adhesive surface b1, for example. Can be made. Then, by sequentially peeling the bonding surfaces b1 and b2 along the longitudinal direction, it is possible to peel the bonding portion B with a small operation force, and the intermediate post-branching operation can be facilitated.
  • the gap S between the binding materials 2 and 3 is formed between the bonding surfaces b1 and b2, for example, the positions where the inverted portions of the binding materials 2 and 3 are formed and the shapes of the inverted portions vary. Even if it is a case, it is suppressed that the area of the bonding surfaces b1 and b2 varies greatly. Thereby, at the time of manufacture of optical fiber unit 10, the adhesive strength of adhesion part B can be stabilized easily.
  • the bonding portion B includes four or more intersections between the center lines C2 and C3 of the binding materials 2 and 3, the length in the longitudinal direction of the bonding portion B is ensured. Thus, the binding state of the binding materials 2 and 3 can be further stabilized.
  • the value of L / (P / 2) is 0.24 or more, the length in the longitudinal direction of the bonding portion B occupying the entire binding materials 2 and 3 is secured, and the bonding portion B is unexpectedly moved. Peeling can be prevented. Furthermore, when the value of L / (P / 2) is 0.8 or less, when the optical fiber unit 10 is manufactured, the length from when the bonding portion B is formed to when the binding materials 2 and 3 are reversed Occurrence of poor adhesion due to a short distance or time in the direction can be suppressed.
  • the adhesive strength of the adhesive part B is 11.6 gf or more, it is possible to prevent the adhesive part B from being unexpectedly peeled off. Furthermore, when the bonding part B is set to 95.2 gf or less, workability when the binding materials 2 and 3 are peeled from each other in the bonding part B can be improved.
  • the bonding surfaces b1 and b2 between the binding materials 2 and 3 can be surely formed and the binding state can be stabilized. Furthermore, by setting the overlap ratio to 125% or less, it is possible to secure the areas of the bonding surfaces b1 and b2 and increase the bonding strength.
  • the binding materials 2 and 3 are wound around the plurality of optical fibers 1 in an SZ shape, and the binding state of the binding materials 2 and 3 is stable. With this configuration, it is possible to secure the discriminability of the optical fiber unit 10 while suppressing the bundle of optical fibers 1 from being separated, and to improve the workability of the optical fiber cable 100 such as an intermediate post branching operation.
  • the binding materials 2 and 3 are heat-sealed to form the bonding surfaces b1 to b4, but the present invention is not limited to this.
  • the bonding surfaces b1 to b4 may be formed by bonding the binding materials 2 and 3 with an adhesive.
  • FIG. 6A shows a case where four binding materials 4, 5, 6, and 7 are wound around a plurality of optical fibers 1 in an SZ shape.
  • the binding materials 4, 5, 6, and 7 in FIG. 6A are developed on a plane, the result is as shown in FIG. 6B.
  • the bonding length L and the binding pitch P are defined as in the case of two binding materials.
  • the optical fiber unit 10 is configured so as to satisfy 0.24 ⁇ L / (P / 2) ⁇ 0.8. It is possible to prevent B from peeling off unexpectedly, and to suppress the occurrence of poor adhesion of the binding materials 2 and 3 during manufacturing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Cable Accessories (AREA)
  • Pens And Brushes (AREA)

Abstract

複数の光ファイバと、複数の前記光ファイバを結束する少なくとも2つの結束材と、を備える光ファイバユニットであって、2つの前記結束材は、SZ状に複数の前記光ファイバに巻き付けられるとともに、それぞれの反転部において互いに接着される接着部を形成し、前記接着部には、2つの前記結束材の中心線同士の交点が複数含まれている、光ファイバユニット。

Description

光ファイバユニットおよび光ファイバケーブル
 本発明は、光ファイバユニットおよび光ファイバケーブルに関する。
 本願は、2016年9月20日に、日本に出願された特願2016-183490号に基づき優先権を主張し、その内容をここに援用する。
 従来から、特許文献1に示されるように、複数の光ファイバ心線若しくは光ファイバ素線(以降、単に光ファイバという)に結束材を巻き付けた光ファイバユニットが知られている。この光ファイバユニットでは、結束材を巻き付けることで光ファイバ心線の束がばらばらになるのを抑制しつつ、結束材の色によって複数の光ファイバユニット間の識別性を向上させることができる。
 また、下記特許文献2には、光ファイバの束に複数の結束材をSZ状に巻きつけて、巻きつけ方向の反転箇所で2本の結束材を接着した光ファイバユニットが提案されている。この構成によれば、2本の結束材が接着された部分を剥離すると、その剥離した部分の周辺の結束が解除されるとともに、他の部分における結束は維持される。これにより、光ファイバユニットの中間後分岐作業などの作業性を良好にすることができる。
日本国特開2010-26196号公報 日本国特開2012-88454号公報
 ところで、上記特許文献2に記載された光ファイバユニットでは、結束材の反転箇所同士を接着するため、この接着部が不意に剥離することで結束状態が不安定になりやすい。
 本発明はこのような事情を考慮してなされたもので、複数の光ファイバにSZ状に巻き付けられた結束材の結束状態を安定させることを目的とする。
 上記課題を解決するために、本発明の第1の態様に係る光ファイバユニットは、複数の光ファイバと、複数の前記光ファイバを結束する少なくとも2つの結束材と、を備える光ファイバユニットであって、2つの前記結束材は、SZ状に複数の前記光ファイバに巻き付けられるとともに、それぞれの反転部において互いに接着される接着部を形成し、前記接着部には、2つの前記結束材の中心線同士の交点が複数含まれている。
 上記第1の態様に係る光ファイバユニットによれば、光ファイバユニットの製造時に、例えば各結束材の反転部が形成される位置や、反転部の形状にばらつきが生じた場合であっても、2つの結束材が充分な範囲で互いに重ねられる。このため、確実に接着部を形成することが可能となり、結束材の結束状態を安定させることができる。
 本発明の第2の態様に係る光ファイバユニットは、上記第1の態様に係る光ファイバユニットにおいて、前記接着部には、前記結束材同士が重なる接着面が複数含まれており、複数の前記接着面が前記光ファイバユニットの延びる長手方向に間隔を空けて配置されている。
 上記第2の態様によれば、例えば結束材同士を引き離す力が接着部の全体に作用すると、複数の接着面の全体でこの外力を受けることができる。従って、接着部が不意に剥離されるのを抑止することができる。一方、接着部を剥離して光ファイバを取り出す際には、例えば結束材同士を引き離す力を1つの接着面に集中させることで、容易にこの接着面を剥離させることができる。そして、長手方向に沿って順次接着面を剥離させていくことで、小さい操作力で接着部を剥離させることが可能となり、中間後分岐作業などを容易にすることができる。
 本発明の第3の態様に係る光ファイバユニットは、上記第2の態様に係る光ファイバユニットにおいて、複数の前記接着面同士の間かつ、2つの前記結束材同士の間に、隙間が形成されている。
 上記第3の態様によれば、接着面同士の間に2つの結束材の隙間が形成されていることで、例えば結束材の反転部が形成される位置や反転部の形状にばらつきが生じた場合であっても、接着面の面積が大きく変動することが抑えられる。これにより、光ファイバユニットの製造時に、接着部の強度を容易に安定させることができる。
 本発明の第4の態様に係る光ファイバユニットは、上記第1から第3のいずれか1つの態様に係る光ファイバユニットにおいて、前記接着部には、2つの前記結束材の中心線同士の交点が4つ以上含まれている。
 上記第4の態様によれば、接着部の長手方向における長さが確保され、結束材の結束状態をより安定させることができる。
 本発明の第5の態様に係る光ファイバユニットは、上記第1から第4のいずれか1つの態様に係る光ファイバユニットにおいて、前記光ファイバの延びる長手方向における前記接着部の接着長Lと、前記長手方向における前記結束材の結束ピッチPが、0.24≦L/(P/2)≦0.8を満足している。
 上記第5の態様によれば、L/(P/2)の値を0.24以上とすることにより、結束材全体に占める接着部の長手方向における長さを確保して、接着部が不意に剥離するのを防止することができる。さらに、L/(P/2)の値を0.8以下とすることにより、光ファイバユニットを製造する際、接着部が形成されてから結束材を反転させるまでの長手方向の距離若しくは時間が短いことに起因する接着不良の発生を抑止することができる。
 本発明の第6の態様に係る光ファイバユニットは、上記第1から第5のいずれか1つの態様に係る光ファイバユニットにおいて、前記接着部の接着強度は、11.6gf以上かつ95.2gf以下である。
 上記第6の態様によれば、接着部の接着強度を11.6gf以上とすることにより、接着部が不意に剥離するのを防止することができる。さらに、接着部の接着強度を95.2gf以下とすることにより、接着部において結束材同士を剥離させる際の作業性を良好にすることができる。
 本発明の第7の態様に係る光ファイバユニットは、上記第1から第6のいずれか1つの態様に係る光ファイバユニットにおいて、2つの前記結束材のオーバーラップ率が、100%より大きく、かつ125%以下である。
 上記第7の態様によれば、結束材のオーバーラップ率を100%より大きくすることにより、結束材同士の接着面が確実に形成されて結束状態を安定させることができる。さらに、オーバーラップ率を125%以下とすることにより、接着面の面積を確保し、接着強度を大きくすることができる。
 本発明の第8の態様に係る光ファイバケーブルは、上記第1から第7のいずれか1つの態様に係る光ファイバユニットと、前記光ファイバユニットを被覆するシースと、を備えている。
 上記第8の態様に係る光ファイバケーブルによれば、結束材が複数の光ファイバにSZ状に巻きつけられており、さらに結束材の結束状態が安定している。このため、光ファイバの束がばらばらになることが抑制され、光ファイバユニット間の識別性が確保され、光ファイバケーブルの中間後分岐作業などの作業性が良好になる。
 本発明の上記態様によれば、複数の光ファイバにSZ状に巻き付けられた結束材の結束状態を安定させることができる。
本実施形態に係る光ファイバユニットの構成を説明する概略図である。 図1の光ファイバユニットを備えた光ファイバケーブルの構成を説明する断面図である。 結束装置を径方向から見た側面図である。 図3AのA方向矢視図である。 オーバーラップ率を説明するための図である。 変形例に係る光ファイバユニットの構成を説明する概略図である。 他の変形例に係る光ファイバユニットの構成を説明する概略図である。 図6Aの結束材の展開図である。
 本実施形態に係る光ファイバユニットの構成を、図1から図6Bを参照しながら以下に説明する。
 なお、以下の説明に用いる図については、発明を理解し易くするために、各構成部品の図示の省略、縮尺の変更、形状の簡略化等をしている場合がある。
 図1に示すように、光ファイバユニット10は、複数の光ファイバ1と、複数の光ファイバ1を結束する2つの結束材2、3と、を備えている。
(方向定義)
 図1に示すように、複数の光ファイバ1は、全体として円柱状に束ねられている。本実施形態では、この円柱の中心軸を中心軸線Oという。また、光ファイバユニット10の延びる方向、すなわち中心軸線Oに沿う方向を長手方向という。図1、図3A、図5、図6A、および図6BのZ軸は長手方向を示している。また、長手方向から見た正面視において、中心軸線Oに交差する方向を径方向といい、中心軸線O周りに周回する方向を周方向という。
 なお、複数の光ファイバ1は非円形(楕円形、角形等)の断面を有する柱状に束ねられていてもよく、長手方向にその断面形状が変化していてもよい。この場合、光ファイバユニット10の断面の図心を長手方向につないでなる仮想線が、中心軸線Oとして定義される。
 複数の光ファイバ1としては、例えば12心の間欠接着型光ファイバテープ心線を複数個束にしたものを用いることができる。
 結束材2、3は、帯状に形成されている。結束材2、3としては、例えばポリエチレンテレフタラート(PET)等の高融点材料およびポリプレピレン(PP)等の低融点材料からなる繊維を複数本組み合わせたものを用いることができる。なお、結束材2、3の構成や材質は上記に限定されず、適宜変更可能である。
 結束材2、3は、SZ状に複数の光ファイバ1に巻き付けられ、それぞれの反転部において互いに接着されて接着部Bを形成している。結束材2、3は接着部Bにおいて、後述する結束装置20によって互いに熱融着されている。光ファイバユニット10は、光ファイバケーブル内に複数配設される場合がある。この光ファイバケーブル内における複数の光ファイバユニット10間の識別のために、結束材2、3には異なる着色がなされていてもよい。
 光ファイバユニット10は、例えば図2に示すような光ファイバケーブル100内に収容して用いられる。
 この光ファイバケーブル100は、複数の光ファイバユニット10と、ラッピングチューブ54と、筒状のシース55と、一対の抗張力体56と、一対の引き裂き紐57と、を備えている。
 ラッピングチューブ54は、複数の光ファイバユニット10を覆っている。シース55は、光ファイバユニット10をラッピングチューブ54ごと被覆している。一対の抗張力体56は、シース55内に埋設されている。一対の引き裂き紐57は、シース55内に埋設されている。一対の引き裂き紐57は、シース55の内周面に近接する位置に配置されている。シース55の外周面のうち、一対の引き裂き紐57が配置された位置の径方向外側にはそれぞれ、マーカ突起58が突設されている。マーカ突起58は、引き裂き紐57に沿って形成されており、引き裂き紐57の埋設位置を示している。なお、光ファイバケーブル100は、ラッピングチューブ54、抗張力体56、引き裂き紐57、およびマーカ突起58を備えていなくてもよい。また、光ファイバケーブル100は、光ファイバユニット10を1つだけ備えていてもよい。
 次に、図1に示す光ファイバユニット10の製造方法について説明する。
 光ファイバユニット10は、図3A、図3Bに示すような結束装置20を用いて、複数の光ファイバ1に結束材2、3を巻き付けることにより形成される。
 図3Aは、結束装置20を長手方向に直交する方向から見た側面図であり、図3Bは図3AにおけるA方向矢視図である。
 図3A、図3Bに示すように、結束装置20は複数の円筒状の部材により構成されている。結束装置20は、内側から順にガイド筒21、第1内側筒22、第1外側筒23、第2内側筒24、および第2外側筒25を備えている。これらの部材は、それぞれの中心軸が中心軸線O上に位置する状態で配設されている。ガイド筒21内には、複数の光ファイバ1が挿通される。
 第1内側筒22は、第1外側筒23に対して中心軸線O周りに回動可能な状態で、第1外側筒23内に嵌合されている。第1内側筒22の外周面には、その長手方向の全長にわたって延びる溝部22aが形成されている。溝部22a内には、結束材2が挿通される。
 第2内側筒24は、第2外側筒25に対して中心軸線O周りに回動可能な状態で、第2外側筒25内に嵌合されている。第2内側筒24の外周面には、その長手方向の全長にわたって延びる溝部24aが形成されている。溝部24a内には、結束材3が挿通される。
 第1内側筒22および第2内側筒24は、共通する不図示の動力源に接続されており、動力の供給に伴って連動して中心軸線O周りに回動するように構成されている。光ファイバユニット10を形成する際は、複数の光ファイバ1がガイド筒21内を通過して下流側に繰り出されるのに伴い、溝部22a、24a内の結束材2、3が複数の光ファイバ1にSZ状に巻きつけられる。なお、結束材2、3は溝部22a、24a内でそれぞれ加熱されて部分的に溶融するため、SZ形状の反転部において互いに熱融着される。
 なお、結束材2、3は溝部22a、24a内で加熱されず、結束装置20の下流に配設された加熱ダイス(不図示)内で加熱されてもよい。この場合、結束材2、3は複数の光ファイバ1にSZ状に巻きつけられた状態で結束装置20を出た後、加熱ダイス内で熱融着される。
 次に、本実施形態の光ファイバユニット10の具体的な実施例について説明する。
 図1において、C2は結束材2の中心線であり、C3は結束材3の中心線である。図1に示すように、中心線C2、C3は、結束材2および結束材3の反転部において2回交差している。すなわち、2つの結束材2、3は、それぞれの反転部において互いに接着される接着部Bを形成し、接着部Bには中心線C2、C3同士の交点が複数含まれている。これにより接着部Bには、結束材2、3が互いに重なる2つの接着面b1、b2が含まれている。接着面b1、b2は、長手方向に間隔を空けて配置されている。接着面b1は-Z側に位置しており、接着面b2は+Z側に位置している。また、接着面b1および接着面b2の間には、結束材2、3同士の隙間Sが形成されている。なお、交点とは、接着部Bを光ファイバユニット10の径方向外側から見たときに、中心線C2、C3が交差している点をいう。
 ここで、接着部Bの長手方向における長さを接着長Lという。接着長Lは、接着面b1の-Z側の端部と、接着面b2の+Z側の端部と、の間の長手方向における距離である。また、図1に示すように、SZ状に巻きつけられた結束材2、3の、長手方向における結束のピッチを結束ピッチPという。結束ピッチPは、長手方向における、結束材2、3の形状が繰り返される単位である。
 また、図1に示すように、中心線C2、C3の交点A1および交点A2の間の長手方向における距離を、交点間距離Xという。
 図5は、光ファイバユニット10の変形例を示す図である。図5に示す例では、結束材2、3がそれぞれ、反転部で3回反転している。これにより、接着部Bには、中心線C2,C3の交点がA1~A4の4つ含まれている。また、接着部Bには、4つの接着面b1~b4が含まれている。4つの接着面b1~b4は、長手方向に間隔を空けて配置されている。これにより、接着部Bには、結束材2、3同士の隙間Sが3箇所に形成されている。
 なお、1つの反転部において結束材2、3を反転させる回数は図1の例や図5の例に限られない。例えば結束材2、3を反転部でそれぞれN回反転させた場合、中心線C2、C3の交点の数は(N+1)個となる。
 図5に示すように、1つの接着部Bにおいて、中心線C2、C3の交点が3つ以上存在する場合には、隣り合う交点間の長手方向における距離の平均値を交点間距離Xとする。図5に示す例では、交点A1と交点A2、交点A2と交点A3、および交点A3と交点A4の間の長手方向における距離をそれぞれX1、X2、およびX3とすると、X1~X3の平均値が交点間距離Xとして定義される。
 また、1つの接着部Bにおいて、接着面が3つ以上存在する場合には、長手方向における両端に位置する接着面の、外側の端部同士の間の長手方向における距離を接着長Lとする。図5に示す例では、接着面b1が最も-Z側に位置しており、接着面b4が最も+Z側に位置している。この場合、接着面b1の-Z側の端部と、接着面b4の+Z側の端部と、の間の長手方向における距離が接着長Lとして定義される。
 図4は、光ファイバユニット10を長手方向から見た正面図である。図4では光ファイバ1の図示を省略している。図1、図4、および図5に示すように、結束材2の反転部は結束材3の反転部を径方向の外側から覆っている。すなわち、結束材2の反転部と、結束材3の反転部と、は互いにオーバーラップしている。
 図4に示すように、正面視において、結束材2、3がオーバーラップしている部分は周方向に延在している。結束材2、3がオーバーラップする部分の中心軸線Oを中心とした角度をθ[°]とする。このとき、オーバーラップ率R[%]は以下の数式(1)により定義される。
R=100+θ/180 ・・・(1)
 以上のように定義された交点間距離X、接着長L、結束ピッチP、およびオーバーラップ率Rをパラメータとして複数の光ファイバユニット10を作成し、接着部の強度等を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
                  
 表1に示す比較例および実施例1~8の光ファイバユニットは、複数の光ファイバ1として、12心の間欠接着型光ファイバテープ心線を6個用いている。また、6個の間欠接着型光ファイバテープ心線の周囲に2本の結束材2、3をSZ状に巻き付け、結束材2、3の反転部同士を熱融着させて接着部Bを形成している。なお、比較例および実施例1~8では、PETおよびPPからなる繊維を複数本組み合わせて幅を1[mm]とした結束材2、3を用いている。
 表1に示す比較例では、各結束材2、3の中心線C2、C3同士が1点で交わるように、結束材2、3同士を熱融着している。結束材2、3の中心線C同士は1点で交わっているため、交点間距離Xは0[mm]となっているが、結束材2、3には1[mm]の幅があるため、接着長Lは8[mm]となっている。
 これに対して、例えば実施例1では結束材2、3の中心線C2、C3が図1に示すような2つの交点を有しており、交点間距離Xが8[mm]であり、接着長Lが比較例よりも10[mm]長い18[mm]となっている。
 また、例えば実施例7では、結束材2、3の中心線C2、C3が図4に示すような4つの交点を有しており、交点間距離Xが17[mm]であり、接着長Lが75[mm]となっている。
 なお、実施例8は結束材2、3を反転部においてそれぞれ5回反転させ、1つの接着部Bにつき、中心線C2、C3の交点が6個となるように構成した光ファイバユニットである。
 表1に示すL/Pは、接着長L[mm]を結束ピッチP[mm]で除した値である。例えば実施例1では、接着長L=18[mm]、結束ピッチP=150[mm]であるため、L/P=18/150=0.12となる。
 表1に示すL/(P/2)は、長手方向における光ファイバユニット10の長さに対する接着部Bの長さの割合を示している。より詳しく説明すると、図1に示すように、結束材が2本の場合には結束ピッチPあたりに2つの接着部Bが存在する。このため、接着長LをP/2で除して得られた数値が、長手方向における光ファイバユニット10の長さに対する接着部Bの長さの割合となる。例えば実施例1では、L/(P/2)=18/(150/2)=0.24となる。
 表1に示す接着強度[gf]は、結束材2、3を接着部Bにおいて周方向に200[mm/分]の速度で引き離すように引っ張り、接着部Bを剥離させた際の、引っ張り力のピーク値である。
 表1に示すケーブル化後ロス[dB/km]は、比較例および実施例1~8の光ファイバユニット10を用いて、図2に示すような光ファイバケーブル100を作成し、測定波長1.55[μm]における光ファイバ1の伝送損失の最大値を測定した結果である。
 また、この光ファイバケーブル100から光ファイバユニット10を取り出した際に、3[m]あたりに接着部Bが破壊(剥離若しくは接着不良)された個数およびその確率[%]を表1に示している。例えば結束材が2本で結束ピッチPが150[mm]の場合には、75[mm]に1個の割合で接着部Bが含まれるため、3[m]の光ファイバユニットには、3000÷75=40個の接着部Bが含まれる。比較例については、この40個の接着部Bの全てについて破壊が確認されたため、3[m]あたりに接着部Bが破壊された確率が100[%]となっている。
 実施例1は比較例に対して、3[m]あたりに接着部Bが破壊された個数が40個から0個へと大きく低減している。これは、接着強度が4.0[gf]から20.1[gf]に向上し、接着部Bが破壊されにくくなったためである。接着強度が増加した理由は、1つの接着部Bあたりの中心線C2、C3の交点の個数が1個から2個に増えるとともに、接着部Bの割合を示すL/(P/2)の値が0.11から0.24に増加したためである。
 このように、中心線C2、C3の交点の個数を増やし、L/(P/2)の値や接着強度を増加させることで、接着部Bが破壊される確率を低減することが可能となる。
 次に、L/(P/2)の最適な数値範囲について考察する。
 比較例および実施例1~8についてのL/(P/2)の数値に着目すると、最小値が比較例の0.11で、その次に小さいのが実施例1の0.24となっている。そして、3[m]あたりに接着部Bが破壊された確率は、比較例が100%で、実施例1が0%となっている。この結果から、接着部Bの破壊を防止するために最適なL/(P/2)の値は、以下の数式(2)に示す範囲である。
0.24≦L/(P/2) …(2)
 一方、L/(P/2)の値が大きい場合には、結束材2、3を複数の光ファイバ1にSZ状に巻き付ける際に、接着部Bが形成されてから結束材2、3を反転させるまでの長手方向の距離若しくは時間が短くなる。このため、結束材2、3の接着部Bにおける接着不良が発生しやすくなる。そこで、L/(P/2)として、ある程度小さい値を設定するのが望ましい。
 例えば表1に示す例では、L/(P/2)の値が0.93である実施例5では、L/(P/2)の値が大きいために結束材2、3の接着不良が発生した結果、10%の確率で接着部Bが破壊されたと考えられる。また、実施例5の次にL/(P/2)の値が大きいのは実施例4の0.80であるが、実施例4については接着部Bの破壊が確認されなかった。この結果から、L/(P/2)の値は、以下の数式(3)に示す範囲とすることがより好ましい。
L/(P/2)≦0.8 …(3)
 上記の考察および数式(2)、(3)から、L/(P/2)の値は、以下の数式(4)に示す範囲とすることが最適であるといえる。
0.24≦L/(P/2)≦0.8 …(4)
 次に、接着強度の最適な数値範囲について考察する。
 比較例および実施例1~8についての接着強度の数値に着目すると、最小値が比較例の4.0[gf]で、その次に小さいのが実施例5の11.6[gf]である。また、3[m]あたりに接着部Bが破壊された確率は、比較例の100%に対して実施例5は10%であり、大きく改善されている。このことから、接着強度を11.6[gf]以上とすることにより、接着部Bの破壊をある程度抑止することができる。
 また、実施例5の次に接着強度が小さいのは、実施例4の19.5[gf]であり、実施例4についての3[m]あたりに接着部Bが破壊された確率は0%となっている。このことから、接着強度を19.5[gf]以上とすることで、より確実に接着部Bの破壊を防止することができる。
 一方、接着強度の値が大きすぎる場合には、接着部Bにおいて結束材2、3を剥離しにくいため、中間後分岐作業時がしにくくなると考えられる。実施例1~8の光ファイバケーブル100から光ファイバユニット10を取り出し、接着部Bにおいて結束材2、3を剥離させる際の作業性を確認した。その結果、接着強度が95.2[gf]で最も大きい実施例8については結束材2、3の引き離し作業の作業性の低下がみられなかった。この結果から、接着部Bを剥離させる際の作業性を低下させないために、接着強度を95.2gf以下にすることが好ましい。
 従って、接着部Bが不意に破壊されるのを防止しつつ、接着部Bにおいて結束材2、3の引き離し作業を容易に保つために好ましい条件は、接着強度が11.6gf以上かつ95.2gf以下であることである。なお、接着強度を19.5[gf]以上とした場合には、より確実に接着部Bの破壊を防止することができる。
 次に、オーバーラップ率Rの最適な数値範囲について考察する。
 結束材2、3の中心線C2、C3が接着部Bにおいて複数の交点を有するための条件は、図4におけるθが0[°]より大きいことである。また、数式(1)に示したオーバーラップ率Rの定義から、θが0[°]より大きい場合には、オーバーラップ率Rが100[%]より大きくなる。つまり、オーバーラップ率Rを100[%]より大きくすることで、結束材2、3の中心線C2、C3が接着部Bにおいて複数の交点を有するように、光ファイバユニット10を構成することができる。
 また、結束材2、3をSZ状に巻きつける場合、中心線C2、C3がそれぞれサインカーブを描くように結束材2、3の巻きつけ形状を定義することが一般的である。ここで、図4におけるθが45[°]を超える場合、すなわちオーバーラップ率Rが125%を超える場合には、中心線C2、C3が交点A1、A2において直角に近い角度で交わる。そして、中心線C2、C3が直角に近い角度で交わると、接着面b1、b2の面積が比較的小さくなる。
 従って、オーバーラップ率Rを125%以下とすることにより、接着面b1、b2の面積を確保して、接着強度を向上させることができる。
 次に、交点間距離Xの最適な数値範囲について考察する。
 交点間距離Xが小さすぎる場合には、中心線C2、C3の交点A1、A2の形成が不安定になりやすくなるとともに、接着面b1、b2の形状が不安定になりやすくなる。この結果、接着強度も不安定になる。このため、交点間距離Xは例えば33mm以上であることが望ましい。
 また、交点間距離Xが大きすぎる場合には、結束材2、3による複数の光ファイバユニット10間の識別しやすさが低下する。このため、交点間距離Xは例えば59mm以下であることが望ましい。
 なお、上記したL/(P/2)、接着強度、オーバーラップ率R、および交点間距離Xの最適値は、本発明の好ましい実施形態の一例を示しているに過ぎず、本発明の技術的範囲をこの数値の範囲内に限定するものではない。
 以上説明したように、本実施形態の光ファイバユニット10によれば、複数の結束材2、3が複数の光ファイバ1にSZ状に巻きつけられている。そして、結束材2、3の反転部同士が互いに接着される接着部Bに、結束材2、3の中心線C2、C3同士の交点A1、A2が複数含まれている。この構成により、光ファイバユニット10の製造時に、例えば各結束材2、3の反転部が形成される位置や、反転部の形状にばらつきが生じた場合であっても、確実に接着部Bを形成することが可能となる。従って、結束材2、3の結束状態を安定させることができる。
 また、例えば結束材2、3同士を引き離す力が接着部Bの全体に作用すると、長手方向に間隔を空けて複数形成された接着面b1、b2の全体でこの外力を受けることができる。このため、接着部b1、b2が不意に剥離されるのを抑止することができる。一方、接着部b1、b2を剥離して光ファイバ1を取り出す際には、例えば結束材2、3同士を引き離す力を1つの接着面b1に集中させることで、容易にこの接着面b1を剥離させることができる。そして、長手方向に沿って順次接着面b1、b2を剥離させていくことで、小さい操作力で接着部Bを剥離させることが可能となり、中間後分岐作業などを容易にすることができる。
 また、接着面b1、b2の間に結束材2、3の隙間Sが形成されていることで、例えば結束材2、3の反転部が形成される位置や反転部の形状にばらつきが生じた場合であっても、接着面b1、b2の面積が大きく変動することが抑えられる。これにより、光ファイバユニット10の製造時に、接着部Bの接着強度を容易に安定させることができる。
 また、図5に示すように、接着部Bに結束材2、3の中心線C2、C3同士の交点が4つ以上含まれている場合には、接着部Bの長手方向における長さが確保され、結束材2、3の結束状態をより安定させることができる。
 また、L/(P/2)の値を0.24以上とした場合には、結束材2、3全体に占める接着部Bの長手方向における長さを確保して、接着部Bが不意に剥離するのを防止することができる。さらに、L/(P/2)の値を0.8以下とした場合には、光ファイバユニット10を製造する際、接着部Bが形成されてから結束材2、3を反転させるまでの長手方向の距離若しくは時間が短いことに起因する接着不良の発生を抑止することができる。
 また、接着部Bの接着強度を11.6gf以上とした場合には、接着部Bが不意に剥離するのを防止することができる。さらに、接着部Bを95.2gf以下とした場合には、接着部Bにおいて結束材2、3同士を剥離させる際の作業性を良好にすることができる。
 また、結束材2、3のオーバーラップ率を100%より大きくすることにより、結束材2、3同士の接着面b1、b2が確実に形成されて結束状態を安定させることができる。さらに、オーバーラップ率を125%以下とすることにより、接着面b1、b2の面積を確保し、接着強度を大きくすることができる。
 また、本実施形態の光ファイバケーブル100によれば、結束材2、3が複数の光ファイバ1にSZ状に巻きつけられており、さらに結束材2、3の結束状態が安定している。この構成により、光ファイバ1の束がばらばらになるのを抑制しつつ光ファイバユニット10の識別性が確保され、光ファイバケーブル100の中間後分岐作業などの作業性を良好にすることができる。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記実施形態では結束材2、3同士を熱融着させて接着面b1~b4を形成していたが、本発明はこれに限られない。例えば、結束材2、3同士を接着剤により接着させて接着面b1~b4を形成してもよい。
 また、前記実施形態では、光ファイバユニット10は2つの結束材2、3を備えていたが、本発明はこれに限られず、例えば3つ以上の結束材を備える光ファイバユニット10を採用してもよい。例えば、図6(a)は、4つの結束材4、5、6、7を複数の光ファイバ1にSZ状に巻きつけた場合を示している。図6(a)の結束材4、5、6、7を平面に展開すると、図6(b)のようになる。
 図6(a)に示すように、SZ状に巻き付ける結束材が2本より多い場合であっても、結束材が2本の場合と同様に接着長Lおよび結束ピッチPが定義される。従って、3つ以上の結束材をSZ状に巻き付ける場合であっても、0.24≦L/(P/2)≦0.8を満たすように光ファイバユニット10を構成することで、接着部Bが不意に剥離するのを防止することができるとともに、製造時に結束材2、3の接着不良が発生するのを抑止することができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 1…光ファイバ 10…光ファイバユニット 2、3…結束材 100…光ファイバケーブル C2、C3…中心線 A1、A2、A3、A4…交点 B…接着部 b1、b2、b3、b4…接着面 L…接着長 O…中心軸線 P…結束ピッチ S…隙間

Claims (8)

  1.  複数の光ファイバと、
     複数の前記光ファイバを結束する少なくとも2つの結束材と、を備える光ファイバユニットであって、
     2つの前記結束材は、SZ状に複数の前記光ファイバに巻き付けられるとともに、それぞれの反転部において互いに接着される接着部を形成し、
     前記接着部には、2つの前記結束材の中心線同士の交点が複数含まれている、光ファイバユニット。
  2.  前記接着部には、前記結束材同士が重なる接着面が複数含まれており、複数の前記接着面が前記光ファイバユニットの延びる長手方向に間隔を空けて配置されている、請求項1に記載の光ファイバユニット。
  3.  複数の前記接着面同士の間かつ、2つの前記結束材同士の間に、隙間が形成されている、請求項2に記載の光ファイバユニット。
  4.  前記接着部には、2つの前記結束材の中心線同士の交点が4つ以上含まれている、請求項1から3のいずれか1項に記載の光ファイバユニット。
  5.  前記光ファイバの延びる長手方向における前記接着部の接着長Lと、
     前記長手方向における前記結束材の結束ピッチPが、
     0.24≦L/(P/2)≦0.8を満足する、請求項1から4のいずれか1項に記載の光ファイバユニット。
  6.  前記接着部の接着強度が11.6gf以上かつ95.2gf以下である、請求項1から5のいずれか1項に記載の光ファイバユニット。
  7.  2つの前記結束材のオーバーラップ率が、100%より大きく、かつ125%以下である、請求項1から6のいずれか1項に記載の光ファイバユニット。
  8.  請求項1から請求項7のいずれか1項に記載の光ファイバユニットと、
     前記光ファイバユニットを被覆するシースと、
     を備える、光ファイバケーブル。
PCT/JP2017/032663 2016-09-20 2017-09-11 光ファイバユニットおよび光ファイバケーブル WO2018056093A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020197006322A KR102291386B1 (ko) 2016-09-20 2017-09-11 광섬유 유닛 및 광섬유 케이블
CA3035164A CA3035164C (en) 2016-09-20 2017-09-11 Optical fiber unit and optical fiber cable
EP17852870.9A EP3518013B1 (en) 2016-09-20 2017-09-11 Optical fiber unit and optical fiber cable
AU2017330867A AU2017330867B2 (en) 2016-09-20 2017-09-11 Optical fiber unit and optical fiber cable
CN201780056553.0A CN109716191B (zh) 2016-09-20 2017-09-11 光纤单元以及光缆
BR112019003073-5A BR112019003073A2 (pt) 2016-09-20 2017-09-11 unidade de fibra óptica e cabo de fibra óptica
KR1020207025802A KR102276843B1 (ko) 2016-09-20 2017-09-11 광섬유 유닛 및 광섬유 케이블
ES17852870T ES2946267T3 (es) 2016-09-20 2017-09-11 Unidad de fibra óptica y cable de fibra óptica
US16/326,097 US10670820B2 (en) 2016-09-20 2017-09-11 Optical fiber unit and optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016183490A JP6310522B2 (ja) 2016-09-20 2016-09-20 光ファイバユニットおよび光ファイバケーブル
JP2016-183490 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056093A1 true WO2018056093A1 (ja) 2018-03-29

Family

ID=61689978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032663 WO2018056093A1 (ja) 2016-09-20 2017-09-11 光ファイバユニットおよび光ファイバケーブル

Country Status (11)

Country Link
US (1) US10670820B2 (ja)
EP (1) EP3518013B1 (ja)
JP (1) JP6310522B2 (ja)
KR (2) KR102291386B1 (ja)
CN (1) CN109716191B (ja)
AU (1) AU2017330867B2 (ja)
BR (1) BR112019003073A2 (ja)
CA (1) CA3035164C (ja)
ES (1) ES2946267T3 (ja)
TW (1) TWI663440B (ja)
WO (1) WO2018056093A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165003A (en) * 1991-06-28 1992-11-17 Sumitomo Electric Fiber Optics Corp. Optical fiber cable including interlocking stitch binder
US20030091307A1 (en) * 2001-11-12 2003-05-15 Hurley William C. High density fiber optic cable
JP2012088454A (ja) * 2010-10-18 2012-05-10 Sumitomo Electric Ind Ltd 光ファイバユニット及びそれを備えた光ファイバケーブル
WO2015052951A1 (ja) * 2013-10-07 2015-04-16 株式会社フジクラ 光ファイバユニット、光ファイバ分岐方法、及び、光ファイバケーブル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178989A (ja) 1995-12-25 1997-07-11 Mitsubishi Cable Ind Ltd 光ファイバユニット
US8548294B2 (en) 2008-06-30 2013-10-01 Nippon Telegraph And Telephone Corporation Optical fiber cable and optical fiber ribbon
JP2010026196A (ja) 2008-07-18 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 光ファイバユニット
JP5200094B2 (ja) * 2010-12-17 2013-05-15 株式会社フジクラ 光ファイバユニット、光ファイバユニットの製造方法、光ファイバユニットを用いた光ファイバーケーブル
JP5777998B2 (ja) 2011-10-17 2015-09-16 古河電気工業株式会社 光ファイバユニット、光ファイバケーブル
JP5852511B2 (ja) * 2012-06-05 2016-02-03 住友電気工業株式会社 光ファイババンドルおよび光ファイバケーブル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165003A (en) * 1991-06-28 1992-11-17 Sumitomo Electric Fiber Optics Corp. Optical fiber cable including interlocking stitch binder
US20030091307A1 (en) * 2001-11-12 2003-05-15 Hurley William C. High density fiber optic cable
JP2012088454A (ja) * 2010-10-18 2012-05-10 Sumitomo Electric Ind Ltd 光ファイバユニット及びそれを備えた光ファイバケーブル
WO2015052951A1 (ja) * 2013-10-07 2015-04-16 株式会社フジクラ 光ファイバユニット、光ファイバ分岐方法、及び、光ファイバケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3518013A4 *

Also Published As

Publication number Publication date
CA3035164C (en) 2021-07-20
ES2946267T3 (es) 2023-07-14
CN109716191B (zh) 2020-09-01
EP3518013A1 (en) 2019-07-31
TW201814344A (zh) 2018-04-16
JP6310522B2 (ja) 2018-04-11
US20190212512A1 (en) 2019-07-11
KR102291386B1 (ko) 2021-08-18
AU2017330867B2 (en) 2020-02-20
KR20200106570A (ko) 2020-09-14
BR112019003073A2 (pt) 2019-04-02
JP2018049085A (ja) 2018-03-29
EP3518013B1 (en) 2023-04-26
AU2017330867A1 (en) 2019-04-11
EP3518013A4 (en) 2020-05-20
TWI663440B (zh) 2019-06-21
KR20190027936A (ko) 2019-03-15
US10670820B2 (en) 2020-06-02
CN109716191A (zh) 2019-05-03
KR102276843B1 (ko) 2021-07-12
CA3035164A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
KR102026037B1 (ko) 광 케이블
WO2017022531A1 (ja) 光ファイバケーブル
WO2017131117A1 (ja) 光ファイバケーブル
JP2019113619A (ja) 光ファイバケーブル
TWI617855B (zh) 光纖帶芯線的製造方法及其製造裝置
WO2018056078A1 (ja) 光ファイバユニットおよび光ファイバケーブル
JP4907909B2 (ja) 光ファイバケーブルの外被除去方法
WO2018056093A1 (ja) 光ファイバユニットおよび光ファイバケーブル
WO2023079932A1 (ja) 光ファイバケーブルおよび光ファイバケーブルの敷設方法
JP4729391B2 (ja) 通信ケーブル
WO2018116420A1 (ja) 光ファイバユニット、光ファイバケーブル、および光ファイバユニットの製造方法
JP2009145796A (ja) 光ケーブル
JP2009145794A (ja) 光ケーブル
JP2017026846A (ja) 光ファイバユニットおよび光ファイバケーブル
JP2011164465A (ja) 光ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3035164

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019003073

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197006322

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019003073

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190214

ENP Entry into the national phase

Ref document number: 2017330867

Country of ref document: AU

Date of ref document: 20170911

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017852870

Country of ref document: EP

Effective date: 20190423