WO2018054259A1 - 一种基带信号的处理方法和装置 - Google Patents

一种基带信号的处理方法和装置 Download PDF

Info

Publication number
WO2018054259A1
WO2018054259A1 PCT/CN2017/101694 CN2017101694W WO2018054259A1 WO 2018054259 A1 WO2018054259 A1 WO 2018054259A1 CN 2017101694 W CN2017101694 W CN 2017101694W WO 2018054259 A1 WO2018054259 A1 WO 2018054259A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
parameter
mse data
data value
distortion coefficient
Prior art date
Application number
PCT/CN2017/101694
Other languages
English (en)
French (fr)
Inventor
史亚龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018054259A1 publication Critical patent/WO2018054259A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems

Definitions

  • the present application relates to the field of microwave communications, for example, to a method and apparatus for processing a baseband signal.
  • microwave equipment mainly uses open-loop DPD (Digital Pre-Distortion) and closed-loop DPD to solve the problems of high transmission power and improved efficiency, and both methods have problems.
  • DPD Digital Pre-Distortion
  • closed-loop DPD closed-loop DPD
  • both the open-loop DPD and the closed-loop DPD correct the distortion of the signal transmitted by the microwave link.
  • the open-loop DPD and the closed-loop DPD are the feedback signals collected after the signal passes through the power amplifying unit, without considering the space and The effect of the receiving part on the signal.
  • the closed-loop DPD needs to add a sampling link to provide feedback information to calculate the DPD coefficients, thereby increasing the cost, and losing the role of DPD if a hardware failure occurs on the sampling link.
  • Open-loop DPD Although there is no dashed link in Figure 1, it is stored at the factory to collect a set of offline parameters stored in the device, the device work is to call the corresponding DPD parameters to work.
  • Open-loop DPD has complex offline parameter acquisition, high cost, poor adaptability, and DPD offline parameters can not improve signal quality and improve device transmit power, which affects network performance.
  • the present disclosure provides a method and apparatus for processing a baseband signal to solve the following problems of the related art. Problem: The process of digital predistortion for open-loop DPD and closed-loop DPD is complicated, and the implementation cost is high, and the processing of signal pre-distortion is not accurate.
  • the present disclosure provides a method for processing a baseband signal, including: receiving an MSE data value fed back by a peer device according to a received baseband signal; determining an MSE of the feedback from a preset relationship table.
  • the value is iteratively adjusted to the pre-distortion coefficient until all the values in the range of values are iterated; a maximum MSE data value is selected from the plurality of MSE data values corresponding to the parameters of the pre-distortion coefficient obtained by the iteration, and the The pre-distortion coefficient corresponding to the largest MSE data value is the optimal pre-distortion coefficient; and the baseband signal to be transmitted is adjusted according to the optimal pre-distortion coefficient.
  • the present disclosure further provides a processing device for a baseband signal, comprising: a receiving module configured to receive an MSE data value fed back by the peer device according to the received baseband signal; and a parameter determining module configured to be preset Determining, in the relationship table, a value range of the parameter in the pre-distortion coefficient corresponding to the feedback MSE data value; wherein the preset relationship table indicates a correspondence between the MSE data value and a parameter in the pre-distortion coefficient; the iterative determination module is And configuring, in the value range, iteratively adjusting the pre-distortion coefficient according to the first preset step value until all the values in the value range are iterated; the plurality of parameters corresponding to the pre-distortion coefficient obtained from the iteration Selecting a maximum MSE data value from the MSE data values, and determining that the pre-distortion coefficient corresponding to the largest MSE data value is an optimal pre-distortion coefficient; and adjusting, configured to adjust
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • An embodiment of the present disclosure further provides an electronic device, including:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being At least one processor executes to cause the at least one processor to perform the method described above.
  • the present disclosure utilizes a full-duplex communication mechanism of a microwave communication system. After transmitting a baseband signal to a peer device, the value of the parameter in the pre-distortion coefficient is determined according to the MSE data value fed back by the peer device, and then In the range of values, the value of the preset step value is iteratively determined to determine a better MSE data value, and then the baseband signal is adjusted by using the pre-distortion coefficient corresponding to the better MSE data value, and the peer device feedback channel is provided.
  • the feedback information calculates the pre-distortion coefficient, which has strong compatibility and reliability, and solves the following problems of the related technology: the process of implementing digital pre-distortion in open-loop DPD and closed-loop DPD is complicated, and the implementation cost is high, and the signal is pre- Distortion processing is also inaccurate.
  • FIG. 2 is a flowchart of a method of processing a baseband signal in the first embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a processing device for a baseband signal in a second embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a processing device for a baseband signal in a second embodiment of the present disclosure
  • FIG. 5 is a flowchart of processing of a baseband signal in a fourth embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a feedback channel in a fourth embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing the internal operation of the ADPD in the fourth embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the construction of a coefficient trainer in a fourth embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the first embodiment of the present disclosure provides a method for processing a baseband signal, and the process of the method is shown in FIG. 2. As shown, steps S202 to S210 are included:
  • MSE mean square error
  • the preset relationship table indicates a correspondence between the MSE data value and the parameter in the pre-distortion coefficient.
  • the process pre-establishes a preset relationship table. Therefore, the correspondence between the MSE data value and the parameters in the pre-distortion coefficient can be queried; for the pre-distortion coefficient, it may include multiple parameters, and generally, considering that the pre-distortion coefficient is The application in microwave communication, therefore, the predistortion coefficient can include three parameters, each of which exists in a plural form.
  • the value range of the coefficients of the predistortion parameter can be determined by searching according to the received MSE data value in the preset relationship table. For example, if the received MSE data value is 46, the value range of each parameter corresponding to the MSE data value of 46 may be found in the preset relationship table.
  • S206 Iteratively adjusts the pre-distortion coefficient according to the first preset step value in the value range until all the values in the value range are iterated. After determining the range of values of each parameter, iteratively uses the first preset step value to determine all values of each parameter in the range of values and corresponding MSE data values. .
  • the embodiment of the present disclosure utilizes a full-duplex communication mechanism of the microwave communication system.
  • the value of the parameter in the pre-distortion coefficient is determined according to the MSE data value fed back by the peer device, and then In the range of values, iterative value is determined by preset step values to determine a better one.
  • the MSE data value is used to adjust the baseband signal by using the pre-distortion coefficient corresponding to the better MSE data value, and the feedback information provided by the feedback channel of the peer device is used to calculate the pre-distortion coefficient, which has strong compatibility and reliability, and solves the correlation.
  • the following problems of the technology the open-loop DPD and the closed-loop DPD realize the process of digital pre-distortion, and the implementation cost is high, and the processing of signal pre-distortion is not accurate.
  • the pre-distortion coefficient is iteratively adjusted according to the preset step value in the value range until all the values in the value range are iterated, and the relationship between the MSE data value generated by the iteration and the parameter in the pre-distortion coefficient is compared.
  • the preset relationship table is updated so that the data in the subsequent preset relationship table can be reused to calculate a more accurate pre-distortion coefficient.
  • the pre-distortion coefficient After updating the preset relationship table according to the comparison relationship between the MSE data value generated by the iteration and the parameter in the pre-distortion coefficient, selecting a maximum MSE data value from the plurality of MSE data values in the updated preset relationship table, and determining the selected The value range of the parameter in the pre-distortion coefficient corresponding to the new maximum MSE data value; the pre-distortion coefficient is iteratively adjusted according to the second preset step value in the value range until all values in the value range are iterated. This process is a process of two iterations, and the second iterative process can increase the accuracy of the predistortion coefficient.
  • the first iteration iteratively determines by the first preset step value with a larger step value, and the value range of a parameter in the pre-distortion coefficient is changed from [-1, 1] to [0.2, 0.6. ], then, in the second iteration, since the value range becomes smaller, and the pre-distortion coefficient is to be optimized, the second preset step value whose step value is smaller than the first preset step value is used to perform the second
  • the range of values obtained is more accurate than the range of values obtained in the first iteration. For example, the range of values after the second iteration is changed from [0.2, 0.6] to [0.34, 0.46].
  • the above process is a process in a normal microwave communication process.
  • an initial preset relationship table is needed to determine according to the preset relationship table.
  • the pre-distortion coefficient is the initial pre-distortion coefficient; and the initial baseband signal to be transmitted is adjusted according to the initial pre-distortion coefficient. After the initial baseband signal is adjusted, it is sent to the opposite end, and it can receive the pair. The MSE data value fed back by the end device.
  • the process of constructing the initial preset relationship table is as follows, including:
  • the MSE data value is calculated according to the third preset step value by iterative method, and the first parameter is determined according to the calculated MSE data value.
  • the best value fix the best value of the first parameter, and set the second parameter to be non-zero, except for the first parameter and the second parameter, the other parameters are zero, and the third preset is iteratively
  • the step value calculates the MSE data value, and determines the optimal value of the second parameter according to the calculated MSE data value; fixes the optimal value of the first parameter and the optimal value of the second parameter, and sets the third value
  • the parameter is not zero.
  • the parameters other than the first parameter, the second parameter, and the third parameter are zero.
  • the MSE data value is calculated according to the third preset step value in an iterative manner, and the calculated MSE data is obtained according to the calculation. The value determines the best value for the third parameter.
  • the predistortion coefficient includes three parameters.
  • the parameter has the determined optimal value, and the undetermined one is set.
  • the parameters are not zero and the other parameters are zero for iterative calculations.
  • a second embodiment of the present disclosure provides a processing device for a baseband signal.
  • the structure of the device is as shown in FIG. 3, and includes:
  • the receiving module 10 is configured to receive the MSE data value fed back by the peer device according to the received baseband signal;
  • the parameter determining module 20 is coupled to the receiving module 10, and configured to determine the MSE data value corresponding to the feedback from the preset relationship table.
  • the iterative determination module 30 is coupled with the parameter determining module 20 and configured to be in the range of values The iteratively adjusting the pre-distortion coefficient according to the first preset step value until all the values in the value range are iterated; selecting one of the plurality of MSE data values corresponding to the parameters of the pre-distortion coefficient obtained from the iteration And determining a pre-distortion coefficient corresponding to the largest MSE data value as an optimal pre-distortion coefficient; the adjustment module 40, coupled to the iterative determination module 30, is configured to adjust the
  • the iterative determination module 30 is further configured to iteratively adjust the pre-distortion coefficient according to the preset step value in the value range until all the values in the value range are iterated, and the MSE data value and the pre-generated according to the iteration.
  • the comparison relationship of the parameters in the distortion coefficient updates the preset relationship table; is further configured to select a maximum MSE data value from the plurality of MSE data values in the updated preset relationship table, and determine the selected new maximum MSE data.
  • the value range of the parameter in the pre-distortion coefficient corresponding to the value; the pre-distortion coefficient is iteratively adjusted according to the second preset step value in the value range until all values in the value range are iterated.
  • the processing device may also include a building block 50 coupled to the iterative determining module 30, configured to construct an initial preset relationship table, as shown in FIG. 4; the iterative determining module 30 is further configured to Selecting a maximum MSE data value from the plurality of MSE data values of the initial preset relationship table, and determining that the pre-distortion coefficient corresponding to the selected maximum MSE data value is an initial pre-distortion coefficient; the adjusting module 40 is further configured to The initial baseband signal to be transmitted is adjusted according to the initial predistortion coefficient.
  • the constructing module 50 may be configured to: when the pre-distortion coefficient includes three parameters, set the first parameter to be non-zero, and the other parameters except the first parameter are zero, and the third preset step is performed in an iterative manner.
  • the value of the MSE data is calculated, and the optimal value of the first parameter is determined according to the calculated MSE data value; the optimal value of the first parameter is fixed, and the second parameter is set to be non-zero, except for the first parameter.
  • the MSE data value is calculated according to the third preset step value in an iterative manner, and the optimal value of the second parameter is determined according to the calculated MSE data value;
  • the optimal value of the parameter and the optimal value of the second parameter, and set the third parameter is not zero, except for the first parameter, the second parameter and the third parameter, other parameters are zero, by iterative method
  • the MSE data value is calculated according to the third preset step value, and the optimal value of the third parameter is determined according to the calculated MSE data value.
  • a third embodiment of the present disclosure provides a digital processing chip including the processing device of the baseband signal in the second embodiment, and the processing device of the baseband signal is disposed in a digital processing chip in software for implementing Digital predistortion processing during microwave communication.
  • a fourth embodiment of the present disclosure provides a method for implementing a new microwave ADPD (All Digital Pre-Distortion), which can implement digital pre-distortion for the entire microwave link to baseband signals.
  • the processing is performed, and the method implements ADPD through software, overcomes the problem of the related DPD method, and provides a brand-new idea for the development of microwave DPD.
  • the microwave one-hop device is a full-duplex communication system, and mutual feedback forms a feedback channel, and the feedback channel can be used to provide feedback information to calculate ADPD, and has strong compatibility and reliability, and can satisfy microwave communication. Develop new needs.
  • MSE Mel Squared Error
  • the method to find the ADPD coefficient is to fix g 3 , g 5 is zero, find the best g 1 ; then, fix g 1 to find the best value, g 5 is zero, find the best g 3 ; Finally, g 1 and g 3 are fixed to find the best value, and the best g 5 is found ; in the first round of iteration, the step of the coefficient is 0.1 for each iteration; after the first iteration, the trend of MSE can be changed. A smaller range of ADPD coefficients (g 1 , g 3 , g 5 ) is determined; the step of changing the iteration is 0.02, and the best ADPD coefficient is finally found by the second iteration.
  • the microwave one-hop device is a full-duplex communication system, and mutual feedback forms a feedback channel. Therefore, the MSE of the received signal can be fed back to the transmitting end through the reverse channel in time by using the communication feature; the transmitting end adjusts the ADPD coefficient improving signal MSE. .
  • the method implements the ADPD function through software, and the calculation method of the MSE and the search method of the ADPD coefficient are defined by the software, and the implementation process is relatively simple.
  • each device can serve as both a transmitting end and a receiving end.
  • the transmitting end of the present embodiment records the transmitting function, and the receiving end only The receiving function is described. Therefore, the technical solution of this embodiment is as shown in FIG. Including: the MSE calculation module (implemented by FPGA) set at the receiving end and the ADPD module set at the transmitting end, the transmitting end and the receiving end interact through the feedback channel.
  • the MSE calculation module implemented by FPGA
  • ADPD module set at the transmitting end
  • the transmitting end and the receiving end interact through the feedback channel.
  • the transmitting end of the embodiment is provided with the MSE computing module
  • the receiving end of the embodiment is also provided with the ADPD module.
  • the embodiment only describes the single-sided function.
  • the MSE calculation module at the receiving end exists in the form of an FPGA when implemented.
  • the root mean square error MSE reflects the average error between the actual signal and the ideal signal, according to the formula
  • the demodulated and decoded signal is sent to the FPGA; the FPGA calculates the MSE value of each symbol according to one frame or one window, and then obtains the average MSE value of one frame or one window; Indicates the MSE value, and y represents the value of the actual signal in the coordinate system. Represents the value of the ideal signal in the coordinate system.
  • the feedback channel can be as shown in Figure 6.
  • the microwave one-hop device is a full-duplex communication system, and the mutual transmission and mutual reception form a feedback channel; when the 1st and 2nd receive are as shown by the solid line; the 2nd and 1st receive will be its feedback channel. As indicated by the dotted line, the MSE value of the 2 received signal is sent back to the ADPD module in 1 through the feedback.
  • the ADPD module at the transmitting end will adjust the predistortion coefficient (g 1 , g 3 , g 5 ) according to the received MSE value.
  • the adjustment strategy is to find the best predistortion coefficient (g 1 , g 3 , g 5 ) through two iterations.
  • MSE is also optimal; the method is to fix g 3 , g 5 is zero, find the best g 1 ; then, fix g 1 is the best value found, g 5 is zero, find the best g 3 ; Fix g 1 and g 3 as the best value found, find the best g 5 ; the step of the coefficient is 0.1 in each iteration in the first iteration; after the first iteration, we can determine according to the trend of MSE A smaller range of ADPD coefficients (g 1 , g 3 , g 5 ) is obtained; the step of changing the iteration is 0.02, and the best ADPD coefficient is finally found by the second iteration.
  • the internal working process of 302 is as shown in Fig. 7.
  • the receiver (404) transmits the received MSE data to the CPU; the CPU writes the correspondence between the MSE and the pre-distortion coefficient (g 1 , g 3 , g 5 ) as a table and stores it in the coefficient table (403); completes a pre-distortion coefficient ( g 1 , g 3 , g 5 ) Iteration.
  • FIG. 8 it is a schematic diagram of the construction of the coefficient trainer, wherein: the input user data x enters the coefficient trainer will be divided into four paths; wherein the first path modulates the signal; the modulo signal is divided into two paths; One way takes the fourth power; the second signal is multiplied by g 1 as the first output; the third signal is first multiplied by the squared signal, and then multiplied by g 3 as the second output; The four-way signal will be multiplied by the signal of the fourth power, and then multiplied by g 5 to be the third output; the three-way signal of the output is synthesized as the pre-distorted signal Y output.
  • the Y signal outputted by 302 is combined with other data at 304 (Signal Multiplexer) after 303, and after 305 code modulation, it is transmitted to 202 up-conversion and then transmitted. To the opposite end.
  • 204 receives the microwave signal and down-converts it to the intermediate frequency, 205 processes the intermediate frequency signal; 306 demodulates and decodes the received signal; divides the data into service data and MSE data through 307, and calculates the MSE through the service data through 309, according to the formula
  • the MSE value of each symbol is calculated according to one frame or one window, and then the average MSE value of one frame or one window is obtained; 309 the calculated MSE value is transmitted to 310; the MSE data of 310 is combined by 311, and then After 312 code modulation, it is sent to 204 through 205 intermediate frequency port; 204 upconverts the intermediate frequency signal to the microwave frequency band, and sends the information to the opposite end; 202 converts the received microwave signal down to 201; 201 processes the signal After demodulation and decoding by 313, the data is divided into service data and MSE data by 314; the MSE data is sent to 302.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the computer readable storage medium may be a transitory computer readable storage medium or a non-transitory computer readable storage medium.
  • the embodiment of the present disclosure further provides a schematic structural diagram of an electronic device.
  • the electronic device includes:
  • At least one processor 90 which is exemplified by a processor 90 in FIG. 9; and a memory 91, may further include a communication interface 92 and a bus 93.
  • the processor 90, the communication interface 92, and the memory 91 can complete communication with each other through the bus 93.
  • Communication interface 92 can be used for information transfer.
  • Processor 90 can invoke logic instructions in memory 91 to perform the methods of the above-described embodiments.
  • logic instructions in the memory 91 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 91 is a computer readable storage medium and can be used to store a software program, a computer executable program, a program instruction/module corresponding to the method in the embodiment of the present disclosure.
  • the processor 90 executes the function application and the data processing by executing software programs, instructions, and modules stored in the memory 91, that is, implementing the baseband signal processing method in the above method embodiments.
  • the memory 91 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 91 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • the method can improve the power generation 3-5dBm; realize pre-distortion of the microwave full link through software, reduce the cost, and overcome the shortcomings of the related DPD method; at the same time realize the ADPD function by software, and define by software
  • the calculation method of MSE and the search method of ADPD coefficient are convenient for algorithm upgrade and optimization, which is an advantage that cannot be realized by the traditional method; the cost is reduced, and the system is easy to maintain.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种基带信号的处理方法和装置,其中,该方法包括:接收对端设备根据接收到的基带信号反馈的MSE数据值;从预设关系表中确定反馈的MSE数据值对应的预失真系数中参数的取值范围;其中,预设关系表指示MSE数据值与预失真系数中参数的对应关系;在取值范围中按照第一预设步进值迭代调整预失真系数,直至取值范围内的值全部被迭代完;从迭代得到的预失真系数的参数对应的多个MSE数据值中选择一个最大的MSE数据值,并确定最大的MSE数据值对应的预失真系数为最佳预失真系数;根据最佳预失真系数调整待发送的基带信号。本申请利用了微波通信系统的全双工通信机制,解决了相关技术的问题。

Description

一种基带信号的处理方法和装置 技术领域
本申请涉及微波通讯领域,例如涉及一种基带信号的处理方法和装置。
背景技术
随着移动通信网络的发展,例如5G(第五代移动通信技术)发展需求,对微波传输设备提出了更高的要求,高发射功率、高效率、兼容相关设备,满足移动通信发展要求。
目前微波设备主要采用开环DPD(数字预失真,Digital Pre-Distortion)和闭环DPD来解决高发射功率和提高效率的问题,这两种方法均存在问题。
开环DPD和闭环DPD都是对微波链路发射部分信号的失真进行校正,如图1所示,开环DPD和闭环DPD都是在信号经过功率放大单元后采集的反馈信号,没有考虑空间和接收部分对信号的影响。
对于闭环DPD,如图1中虚线链路,闭环DPD由于需要增加一条采样链路来提供反馈信息计算以DPD系数,进而增加成本、同时如果采样链路出现硬件故障就失去了DPD的作用。
对于开环DPD,虽然没有图1中的虚线链路,但其是在出厂时采集一组离线参数存储在设备中,设备工作是调用相应的DPD参数进行工作。开环DPD存在离线参数采集复杂、成本高、适应能力差、随着设备的使用器件特性变化,DPD离线参数不能改善信号质量,提高设备的发射功率,进而影响网络性能。
因此,相关技术中的开环DPD和闭环DPD实现数字预失真的过程都较为复杂,且实现成本较高,对信号预失真的处理也不准确。
发明内容
本公开提供一种基带信号的处理方法和装置,用以解决相关技术的如下问 题:开环DPD和闭环DPD实现数字预失真的过程都较为复杂,且实现成本较高,对信号预失真的处理也不准确。
为解决上述技术问题,一方面,本公开提供一种基带信号的处理方法,包括:接收对端设备根据接收到的基带信号反馈的MSE数据值;从预设关系表中确定所述反馈的MSE数据值对应的预失真系数中参数的取值范围;其中,所述预设关系表指示MSE数据值与预失真系数中参数的对应关系;在所述取值范围中按照第一预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完;从迭代得到的预失真系数的参数对应的多个MSE数据值中选择一个最大的MSE数据值,并确定所述最大的MSE数据值对应的预失真系数为最佳预失真系数;根据所述最佳预失真系数调整待发送的基带信号。
另一方面,本公开还提供一种基带信号的处理装置,包括:接收模块,被配置为接收对端设备根据接收到的基带信号反馈的MSE数据值;参数确定模块,被配置为从预设关系表中确定所述反馈的MSE数据值对应的预失真系数中参数的取值范围;其中,所述预设关系表指示MSE数据值与预失真系数中参数的对应关系;迭代确定模块,被配置为在所述取值范围中按照第一预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完;从迭代得到的预失真系数的参数对应的多个MSE数据值中选择一个最大的MSE数据值,并确定所述最大的MSE数据值对应的预失真系数为最佳预失真系数;调整模块,被配置为根据所述最佳预失真系数调整待发送的基带信号。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
本公开实施例还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述 至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
本公开利用了微波通信系统的全双工通信机制,在将基带信号发送至对端设备后,根据对端设备反馈的MSE数据值来判断预失真系数中参数的取值范围,再在该取值范围内通过预设步进值迭代取值的方式,确定一个更优的MSE数据值,再利用该更优的MSE数据值对应的预失真系数调整基带信号,利用了对端设备反馈通道提供反馈信息计算预失真系数,具有很强的兼容性和可靠性,解决了相关技术的如下问题:开环DPD和闭环DPD实现数字预失真的过程都较为复杂,且实现成本较高,对信号预失真的处理也不准确。
附图概述
图1是相关技术中传统DPD模型;
图2是本公开第一实施例中基带信号的处理方法的流程图;
图3是本公开第二实施例中基带信号的处理装置的结构示意图;
图4是本公开第二实施例中基带信号的处理装置的结构示意图;
图5是本公开第四实施例中基带信号的处理流程图;
图6是本公开第四实施例中反馈通道示意图;
图7是本公开第四实施例中ADPD内部工作流程图;
图8是本公开第四实施例中系数训练器的搭建示意图;以及
图9是本公开实施例的电子设备的结构示意图。
具体实施方式
为了解决相关技术的如下问题:开环DPD和闭环DPD实现数字预失真的过程都较为复杂,且实现成本较高,对信号预失真的处理也不准确;本公开提供了一种基带信号的处理方法和装置,以下结合附图以及实施例,对本公开进行详细说明。应当理解,此处所描述的实施例仅仅用以解释本公开,并不限定本公开。
本公开第一实施例提供了一种基带信号的处理方法,该方法的流程如图2 所示,包括步骤S202至S210:
S202,接收对端设备根据接收到的基带信号反馈的均方差(MSE)数据值。
S204,从预设关系表中确定反馈的MSE数据值对应的预失真系数中参数的取值范围;其中,预设关系表指示MSE数据值与预失真系数中参数的对应关系。该过程预先建立了预设关系表,因此,可以查询MSE数据值和预失真系数中参数的对应关系;对于预失真系数,其可能包含多个参数,通常情况下,考虑到预失真系数是在微波通信中的应用,因此,预失真系数可以包括三个参数,每个参数都是以复数形式存在的。
实现时,由于存在预设关系表,因此,就可以根据收到的MSE数据值在预设关系表中查找,来确定预失真参数的系数的取值范围。例如,接收到的MSE数据值为46,则可以在预设关系表中查找MSE数据值为46时对应的每个参数的取值范围。
S206,在取值范围中按照第一预设步进值迭代调整预失真系数,直至取值范围内的值全部被迭代完。在确定的每个参数的取值范围后,在这个取值范围内,用第一预设步进值来进行迭代,以确定取值范围内每个参数的所有取值以及对应的MSE数据值。
S208,从迭代得到的预失真系数的参数对应的多个MSE数据值中选择一个最大的MSE数据值,并确定最大的MSE数据值对应的预失真系数为最佳预失真系数。在确定了一个最大的MSE数据值后,根据该MSE数据值来确定预失真系数中各个参数的取值范围,当然,如果预失真系数只考虑一个一级参数,则只需要确定该参数的取值范围即可,如果是两个以上的参数,则需要确定各个参数的取值范围。
S210,根据最佳预失真系数调整待发送的基带信号。
本公开实施例利用了微波通信系统的全双工通信机制,在将基带信号发送至对端设备后,根据对端设备反馈的MSE数据值来判断预失真系数中参数的取值范围,再在该取值范围内通过预设步进值迭代取值的方式,确定一个更优的 MSE数据值,再利用该更优的MSE数据值对应的预失真系数调整基带信号,利用了对端设备反馈通道提供反馈信息计算预失真系数,具有很强的兼容性和可靠性,解决了相关技术的如下问题:开环DPD和闭环DPD实现数字预失真的过程都较为复杂,且实现成本较高,对信号预失真的处理也不准确。
实现过程中,在取值范围中按照预设步进值迭代调整预失真系数,直至取值范围内的值全部被迭代完之后,根据迭代产生的MSE数据值与预失真系数中参数的对照关系更新预设关系表,以便后续预设关系表中的数据可以重新使用,计算更精确的预失真系数。
根据迭代产生的MSE数据值与预失真系数中参数的对照关系更新预设关系表之后,从更新的预设关系表中的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的新的最大的MSE数据值对应的预失真系数中参数的取值范围;在取值范围中按照第二预设步进值迭代调整预失真系数,直至取值范围内的值全部被迭代完。此过程就是一个二次迭代的过程,二次迭代过程可以增加预失真系数的准确性。
例如,第一次迭代时,通过步进值较大的第一预设步进值进行迭代,确定预失真系数中某个参数的取值范围由[-1,1]变为[0.2,0.6],则在二次迭代时,由于取值范围变小,且想优化预失真系数,因此,要采用步进值小于第一预设步进值的第二预设步进值来进行第二次迭代,得到的取值范围会相对第一次迭代得到的取值范围更精确,比如第二次迭代后的取值范围由[0.2,0.6]变为[0.34,0.46]。
上述过程是在正常微波通信过程中的过程,然而,在系统初始化阶段,还没有收到对端MSE数据值的情况下,需要有个初始的预设关系表,以便根据该预设关系表确定一个模拟最优的MSE数据值,并根据该值来确定预失真系数。因此,实现过程中,需要最初就构建一个初始的预设关系表;从初始的预设关系表的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的最大的MSE数据值对应的预失真系数为初始预失真系数;再根据初始预失真系数调整待发送的初始基带信号。初始基带信号调整后,发送到对端,就能够接收到对 端设备反馈的MSE数据值了。
本实施例按照通常情况下预失真系数包括三个参数的情况为说明,构建初始的预设关系表的过程如下,包括:
设置第一个参数不为零,除第一个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定第一个参数的最佳值;固定第一个参数的最佳值、并设置第二个参数不为零,除第一个参数和第二个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定第二个参数的最佳值;固定第一个参数的最佳值和第二个参数的最佳值、并设置第三个参数不为零,除第一个参数、第二个参数和第三个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定第三个参数的最佳值。
上述过程是以预失真系数包括三个参数为例,当然,如果预失真系数包括四个或五个或者更多的参数时,都是固定已经确定的参数最佳值,设置未确定的某一个参数不为零,其他参数为零,来进行迭代计算。
本公开第二实施例提供了一种基带信号的处理装置,该装置的结构示意如图3所示,包括:
接收模块10,被配置为接收对端设备根据接收到的基带信号反馈的MSE数据值;参数确定模块20,与接收模块10耦合,被配置为从预设关系表中确定反馈的MSE数据值对应的预失真系数中参数的取值范围;其中,预设关系表指示MSE数据值与预失真系数中参数的对应关系;迭代确定模块30,与参数确定模块20耦合,被配置为在取值范围中按照第一预设步进值迭代调整预失真系数,直至取值范围内的值全部被迭代完;从迭代得到的预失真系数的参数对应的多个MSE数据值中选择一个最大的MSE数据值,并确定最大的MSE数据值对应的预失真系数为最佳预失真系数;调整模块40,与迭代确定模块30耦合,被配置为根据最佳预失真系数调整待发送的基带信号。
其中,迭代确定模块30,还被配置为在取值范围中按照预设步进值迭代调整预失真系数,直至取值范围内的值全部被迭代完之后,根据迭代产生的MSE数据值与预失真系数中参数的对照关系更新预设关系表;还被配置为从更新的预设关系表中的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的新的最大的MSE数据值对应的预失真系数中参数的取值范围;在取值范围中按照第二预设步进值迭代调整预失真系数,直至取值范围内的值全部被迭代完。
在一个实施例中,上述处理装置还可以如图4所示,包括构建模块50,与迭代确定模块30耦合,被配置为构建初始的预设关系表;则迭代确定模块30,还被配置为从初始的预设关系表的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的最大的MSE数据值对应的预失真系数为初始预失真系数;调整模块40,还被配置为根据初始预失真系数调整待发送的初始基带信号。
其中,构建模块50可以被配置为:在预失真系数包括三个参数时,设置第一个参数不为零,除第一个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定第一个参数的最佳值;固定第一个参数的最佳值、并设置第二个参数不为零,除第一个参数和第二个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定第二个参数的最佳值;固定第一个参数的最佳值和第二个参数的最佳值、并设置第三个参数不为零,除第一个参数、第二个参数和第三个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定第三个参数的最佳值。
本公开第三实施例提供了一种数字处理芯片,该数字芯片包括上述第二实施例中的基带信号的处理装置,该基带信号的处理装置以软件形式设置在数字处理芯片中,用来实现微波通信过程中的数字预失真处理过程。本领域技术人员根据上述第二实施例的记载,可以知晓如何设置基带信号的处理装置,此处不再赘述。
本公开第四实施例提供了一种新的微波ADPD(全链路数字预失真,All Digital Pre-Distortion)的实现方法,该方法可以实现对整个微波链路的数字预失真,以对基带信号进行处理,并且该方法通过软件实现ADPD、克服了相关DPD方法的问题,为微波DPD发展提供了一种全新的思路。该实施例利用了微波一跳设备是全双工通信系统,互发互收形成反馈通道,可以利用反馈通道提供反馈信息计算ADPD,同时具有很强的兼容性和可靠性,可以满足微波通讯的发展新需求。
本实施例提供的方法是让基带信号通过数字预失真器ADPD;数字预失真器满足Y=x(g1+g3|x|2+g5|x|4)传输特性,该方法是通过接收端反馈回来的信号MSE(质量指标均方根误差,Mean Squared Error)的值控制数字预失真器寻找最佳ADPD系数(g1,g3,g5),通过两轮迭代的方式找到最佳ADPD系数,寻找ADPD系数的方法是固定g3,g5为零,寻找最佳g1;然后,再固定g1为寻找到的最佳值,g5为零,寻找最佳g3;最后固定g1、g3为寻找到的最佳值,寻找最佳g5;在首轮迭代的过程中系数每次迭代的步进为0.1;通首轮迭代后,可以根据MSE的变化趋势确定出ADPD系数(g1,g3,g5)更小的范围;改变迭代的步进为0.02,通过第二次迭代最终寻找到最佳的ADPD系数。微波一跳设备是全双工通信系统,互发互收形成反馈通道,因此可以利用这样的通信特点将接收信号的MSE及时通过反向的通道反馈给发射端;发射端调整ADPD系数改善信号MSE。该方法是通过软件实现ADPD功能,通过软件定义MSE的计算方法和ADPD系数的寻找方法,实现过程较为简单。
对于全双工通信系统,每个设备都是既可以作为发射端,又可以作为接收端,为了清楚的说明发射端和接收端的工作过程,本实施例的发射端至记载发射功能,接收端只记载接收功能,因此,本实施例的技术方案如图5所示,包 括:设置在接收端的MSE计算模块(通过FPGA实现)和设置在发射端的ADPD模块,发射端和接收端通过反馈通道交互。本领域技术人员应当理解,本实施例的发射端是具备MSE计算模块的,本实施例的接收端也是具备ADPD模块的,只是为了清楚的说明,本实施例仅针对单侧功能进行了说明。
其中,接收端的MSE计算模块在实现时以FPGA的形式存在。均方根误差MSE是反映实际信号与理想信号平均误差,根据公式
Figure PCTCN2017101694-appb-000001
将解调解编码的信号送到FPGA;FPGA会按照一帧或者一窗的方式计算每个符号的MSE值,然后会求出一帧或者一窗平均MSE值;其中,
Figure PCTCN2017101694-appb-000002
表示MSE值,y表示实际信号在坐标系中的值,
Figure PCTCN2017101694-appb-000003
表示理想信号在坐标系中的值。
反馈通道可以如图6所示,微波一跳设备是全双工通信系统,互发互收形成反馈通道;1发2收的时候如实线所示;2发1收将是其的反馈通道,如虚线所示,将2收信号的MSE值通反馈通2发1收送到1中ADPD模块。
发射端的ADPD模块将根据接收的MSE值调节预失真系数(g1,g3,g5),调整的策略是通过两轮迭代找到最佳的预失真系数(g1,g3,g5),同时MSE也是最优的;方法为固定g3,g5为零,寻找最佳g1;然后,固定g1为寻找到的最佳值,g5为零,寻找最佳g3;最后固定g1和g3为寻找到的最佳值,寻找最佳g5;在首轮迭代的过程中系数每次迭代的步进为0.1;通首轮迭代后我们可以根据MSE的变化趋势确定出ADPD系数(g1,g3,g5)更小的范围;改变迭代的步进为0.02,通过第二次迭代最终寻找到最佳的ADPD系数。
现结合附图和实施方式对本实施例作出详细描述。
如图5所示,302为APDPD模块,接收来自315的MSE值并传给304,数字预失真系数(g1,g3,g5)为复数形式g=a+bi,a和b的范围[-1,1];开始时 设置g1系数为(a=1,b=0),g3系数为(a=0,b=0),g5系数为(a=0,b=0)。302内部工作过程如图7所示,实现的过程中,通过CPU给系数训练器(401)的寄存器设置g1(a=1,b=0),g3(a=0,b=0),g5(a=0,b=0)的值。接收器(404)将接收到的MSE数据传递给CPU;CPU将MSE和预失真系数(g1,g3,g5)对应关系写成表存储在系数表(403);完成一次预失真系数(g1,g3,g5)迭代。
如图8所示,为系数训练器的搭建示意图,其中:输入的用户数据x进入系数训练器将分成四路;其中第一路对信号取模;将取模信号分成两路;一路取平方;一路取四次方;第二路信号和g1相乘作为第一路输出;第三路信号将先和取平方的信号相乘,再和g3相乘后作为第二路输出;第四路信号将先和取四次方的信号相乘,再和g5相乘后作为第三路输出;将输出的三路信号合成作为经过预失真的信号Y输出。
实现时,如图5所示,302输出的Y信号,经过303后,在304(信号复用器,General Purpose Multiplexer)与其他数据合路,经过305编码调制后,传递到202上变频后发送到对端。204接收到微波信号将其下变频到中频,205对中频信号进行处理;306对接收信号进行解调解码;通过307将数据分为业务数据和MSE数据,业务数据通过309计算MSE,根据公式
Figure PCTCN2017101694-appb-000004
按照一帧或者一窗的方式计算每个符号的MSE值,然后会求出一帧或者一窗平均MSE值;309计算出的MSE值传递到310;将310的MSE数据通过311合路,再经过312编码调制后,通过205中频口发送给204;204将中频信号上变频到微波频段,将信息送到对端;202将接收的微波信号下变频后送到201;201对信号进行处理后经过313将解调解码后,通过314将数据分为业务数据和MSE数据;MSE数据送到302。
根据仿真和实际测试验证,可以总结出g1系数a=1,b=0;同时通过仿真知道信号的5阶失真对信号影响可以忽略;因此g5系数a=0,b=0;所以,可以寻找最佳的g3系数;g3=a+bi,a和b的范围[-1,1],在首轮迭代中设定a和b迭代的步进为0.1,完成首轮迭代后从系数表中选择出MSE值好的范围;选择的方法为最好MSE±2dB对应g3的系数(a,b);然后在新的系数范围内开始第二轮迭代,迭代的步进为0.02,完成第二轮迭代后,我们在系数表中选出最好MSE对应的(g1,g3,g5)系数应用在ADPD模块实现对微波系统的数字预失真。
在实际的应用由于无线信道的变化和器件的老化引起特性的变化都会影响预失真的效果;因此我们可以设定实时MSE和最佳系数(g1,g3,g5)对应MSE做比较,如果误差超过1dBm;系统将重新迭代新的ADPD系数;实现对系统实时优化。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
所述计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例还提供了一种电子设备的结构示意图。参见图9,该电子设备包括:
至少一个处理器(processor)90,图9中以一个处理器90为例;和存储器(memory)91,还可以包括通信接口(Communications Interface)92和总线93。其中,处理器90、通信接口92、存储器91可以通过总线93完成相互间的通信。通信接口92可以用于信息传输。处理器90可以调用存储器91中的逻辑指令,以执行上述实施例的方法。
此外,上述的存储器91中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器91作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器90通过运行存储在存储器91中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的基带信号处理方法。
存储器91可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器91可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
通过实际的应用,该方法可以提高发功3-5dBm;通过软件实现对微波全链路的预失真,降低成本,同时克服相关DPD方法的缺点;同时采用软件的方式实现ADPD功能,通过软件定义MSE的计算方法和ADPD系数的寻找方法,方便算法升级及优化,是传统方法无法实现的优点;降低了成本、使系统易维护。

Claims (11)

  1. 一种基带信号的处理方法,包括:
    接收对端设备根据接收到的基带信号反馈的均方差MSE数据值;
    从预设关系表中确定所述反馈的MSE数据值对应的预失真系数中参数的取值范围;其中,所述预设关系表指示MSE数据值与预失真系数中参数的对应关系;
    在所述取值范围中按照第一预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完;
    从迭代得到的预失真系数的参数对应的多个MSE数据值中选择一个最大的MSE数据值,并确定所述最大的MSE数据值对应的预失真系数为最佳预失真系数;
    根据所述最佳预失真系数调整待发送的基带信号。
  2. 如权利要求1所述的处理方法,其中,在所述取值范围中按照预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完之后,还包括:
    根据迭代产生的MSE数据值与预失真系数中参数的对照关系更新所述预设关系表。
  3. 如权利要求2所述的处理方法,其中,根据迭代产生的MSE数据值与预失真系数中参数的对照关系更新所述预设关系表之后,还包括:
    从更新的预设关系表中的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的所述新的最大的MSE数据值对应的预失真系数中参数的取值范围;
    在所述取值范围中按照第二预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完。
  4. 如权利要求1至3中任一项所述的处理方法,其中,接收对端设备根据接收到的基带信号反馈的MSE数据值之前,还包括:
    构建初始的预设关系表;
    从初始的所述预设关系表的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的所述最大的MSE数据值对应的预失真系数为初始预失真系数;
    根据所述初始预失真系数调整待发送的初始基带信号。
  5. 如权利要求4所述的处理方法,其中,构建初始的所述预设关系表,包括:
    在预失真系数包括三个参数时,设置第一个参数不为零,除所述第一个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定所述第一个参数的最佳值;
    固定所述第一个参数的最佳值、并设置第二个参数不为零,除所述第一个参数和所述第二个参数外的其他参数为零,通过迭代方式按照所述第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定所述第二个参数的最佳值;
    固定所述第一个参数的最佳值和所述第二个参数的最佳值、并设置第三个参数不为零,除所述第一个参数、所述第二个参数和所述第三个参数外的其他参数为零,通过迭代方式按照所述第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定所述第三个参数的最佳值。
  6. 一种基带信号的处理装置,包括:
    接收模块,被配置为接收对端设备根据接收到的基带信号反馈的MSE数据值;
    参数确定模块,被配置为从预设关系表中确定所述反馈的MSE数据值对应的预失真系数中参数的取值范围;其中,所述预设关系表指示MSE数据值与预失真系数中参数的对应关系;
    迭代确定模块,被配置为在所述取值范围中按照第一预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完;从迭代得到的预失真系数的参数对应的多个MSE数据值中选择一个最大的MSE数据值,并确定所述最大的MSE数据值对应的预失真系数为最佳预失真系数;
    调整模块,被配置为根据所述最佳预失真系数调整待发送的基带信号。
  7. 如权利要求6所述的处理装置,其中,
    所述迭代确定模块,还被配置为在所述取值范围中按照预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完之后,根据迭代产生的MSE数据值与预失真系数中参数的对照关系更新所述预设关系表。
  8. 如权利要求7所述的处理装置,其中,
    所述迭代确定模块,还被配置为从更新的所述预设关系表中的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的所述新的最大的MSE数据值对应的预失真系数中参数的取值范围;在所述取值范围中按照第二预设步进值迭代调整预失真系数,直至所述取值范围内的值全部被迭代完。
  9. 如权利要求6至8中任一项所述的处理装置,还包括:
    构建模块,被配置为构建初始的所述预设关系表;
    所述迭代确定模块,还被配置为从初始的所述预设关系表的多个MSE数据值中选择一个最大的MSE数据值,并确定选择的所述最大的MSE数据值对应的预失真系数为初始预失真系数;
    所述调整模块,还被配置为根据所述初始预失真系数调整待发送的初始基带信号。
  10. 如权利要求9所述的处理装置,其中,所述构建模块被配置为:
    在预失真系数包括三个参数时,设置第一个参数不为零,除所述第一个参数外的其他参数为零,通过迭代方式按照第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定所述第一个参数的最佳值;
    固定所述第一个参数的最佳值、并设置第二个参数不为零,除所述第一个参数和所述第二个参数外的其他参数为零,通过迭代方式按照所述第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定所述第二个参数的最佳值;
    固定所述第一个参数的最佳值和所述第二个参数的最佳值、并设置第三个参数不为零,除所述第一个参数、所述第二个参数和所述第三个参数外的其他参数为零,通过迭代方式按照所述第三预设步进值计算MSE数据值,并根据计算得到的MSE数据值确定所述第三个参数的最佳值。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-5中任一项的方法。
PCT/CN2017/101694 2016-09-26 2017-09-14 一种基带信号的处理方法和装置 WO2018054259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610850727.8A CN107872410B (zh) 2016-09-26 2016-09-26 一种基带信号的处理方法和装置
CN201610850727.8 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018054259A1 true WO2018054259A1 (zh) 2018-03-29

Family

ID=61689361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101694 WO2018054259A1 (zh) 2016-09-26 2017-09-14 一种基带信号的处理方法和装置

Country Status (2)

Country Link
CN (1) CN107872410B (zh)
WO (1) WO2018054259A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098569A (zh) * 2019-12-23 2021-07-09 中兴通讯股份有限公司 数据传输方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090168856A1 (en) * 2007-12-28 2009-07-02 Khurram Muhammad System and Method for Adaptive Equalization of In-Package Signals
CN102204200A (zh) * 2011-04-18 2011-09-28 华为技术有限公司 数字模拟预失真处理装置和信号发射系统及信号发射方法
CN102510765A (zh) * 2011-11-28 2012-06-20 华为技术有限公司 预失真系数的调整方法及装置
CN103888396A (zh) * 2014-03-26 2014-06-25 西安电子科技大学 基于自适应可变步长迭代的预失真方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856429A (zh) * 2014-03-26 2014-06-11 西安电子科技大学 基于混合间接学习算法的自适应预失真系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090168856A1 (en) * 2007-12-28 2009-07-02 Khurram Muhammad System and Method for Adaptive Equalization of In-Package Signals
CN102204200A (zh) * 2011-04-18 2011-09-28 华为技术有限公司 数字模拟预失真处理装置和信号发射系统及信号发射方法
CN102510765A (zh) * 2011-11-28 2012-06-20 华为技术有限公司 预失真系数的调整方法及装置
CN103888396A (zh) * 2014-03-26 2014-06-25 西安电子科技大学 基于自适应可变步长迭代的预失真方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI, S.H. ET AL.: "Digital Predistortion Based on Combined Feedback in MIMO Transmitters", IEEE COMMUNICATION LETTERS, vol. 16, no. 10, 31 October 2012 (2012-10-31), XP011469233 *
LI, HAO ET AL.: "AFast Digital Predistortion Algorithm for Radio-Frequency Power Amplifier Linearization with Loop Delay Compensation", IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, vol. 3, no. 3, 30 June 2009 (2009-06-30), pages 374 - 383, XP011257788 *

Also Published As

Publication number Publication date
CN107872410A (zh) 2018-04-03
CN107872410B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN104521203B (zh) 用于高频谱效率的通信的自适应非线性模型
WO2014110961A1 (zh) 数字预失真处理方法及系统
WO2019140665A1 (zh) 功率控制的方法、终端设备和网络设备
CN103973248A (zh) 有源发射期间的包络跟踪传递函数的再校准
US9853846B2 (en) Configuration dependent compensation rotation of symbols
CN102195912A (zh) 数字预失真处理设备和方法
US20130294767A1 (en) Method and device for optimizing performance of an optical module
CN102412855A (zh) 阻抗匹配情况确定方法和设备
WO2014166285A1 (zh) 保证预编码后rb组间信道相位连续性的方法、基站和计算机可读存储介质
CN104486272A (zh) 一种反馈信号的修正方法及装置
CN114726702B (zh) 信道频偏的估计和补偿方法及装置
CN112640316A (zh) 利用贝叶斯观察分析的阵列天线自适应数字预失真
WO2018054259A1 (zh) 一种基带信号的处理方法和装置
CN105682195A (zh) 一种基于c-ran架构的无线网络节能的功率控制方法
WO2021129171A1 (zh) 数据传输方法及装置、存储介质
CN102611661B (zh) 基于精确反解记忆多项式模型方程的预失真装置及方法
TW200913597A (en) Quadrature imbalance estimation using unbiased training sequences
WO2021135541A1 (zh) 一种预失真处理方法、装置、设备和存储介质
WO2020239043A1 (zh) 信号处理方法、装置和存储介质
US9853767B2 (en) Method and apparatus for determining nonlinear characteristic and system
WO2018120896A1 (zh) 一种信号解调的方法及装置
CN104469921B (zh) 无线逐包功率控制方法及装置
WO2019129013A1 (zh) 一种校正装置及方法
CN102255834A (zh) 一种快速收敛的半盲均衡方法
US9692556B1 (en) Communication system with I/Q imbalance adjustment mechanism and method of operation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852327

Country of ref document: EP

Kind code of ref document: A1