WO2014166285A1 - 保证预编码后rb组间信道相位连续性的方法、基站和计算机可读存储介质 - Google Patents

保证预编码后rb组间信道相位连续性的方法、基站和计算机可读存储介质 Download PDF

Info

Publication number
WO2014166285A1
WO2014166285A1 PCT/CN2013/090476 CN2013090476W WO2014166285A1 WO 2014166285 A1 WO2014166285 A1 WO 2014166285A1 CN 2013090476 W CN2013090476 W CN 2013090476W WO 2014166285 A1 WO2014166285 A1 WO 2014166285A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
correction factor
base station
weight
precoding
Prior art date
Application number
PCT/CN2013/090476
Other languages
English (en)
French (fr)
Inventor
孙宝玉
赵亚军
李玉洁
张新
莫林梅
徐汉青
陈国峰
黄琛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/776,617 priority Critical patent/US9912390B2/en
Priority to EP13881811.7A priority patent/EP2963964B1/en
Publication of WO2014166285A1 publication Critical patent/WO2014166285A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0222Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end

Definitions

  • the present invention relates to a precoding technique in the field of wireless communications, and in particular, to a method for guaranteeing precoding
  • the beamforming (BF, Beamforming) technology is a key multi-input multiple-output (MIMO) technology supported by the Time Division Dulpexing Long Term Evolution (TDD-LTE) system.
  • TDD-LTE Time Division Dulpexing Long Term Evolution
  • the BF weights are all RB group granularity, so different
  • the RB group adopts independent BF weight vector, so that the channel phase between the RB groups is no longer continuous, and there is a split.
  • the channel estimation for the downlink Demodulation Reference Signal is not suitable for the following operations: Least squares based on consecutive RBs (RB groups) (LS, Least) Square) Time domain/frequency domain noise reduction processing after channel estimation, which will increase the channel estimation error and affect the performance of the BF system.
  • the embodiments of the present invention provide a method, a base station, and a computer readable storage medium for ensuring channel phase continuity between pre-coded RB groups.
  • the embodiment of the invention provides a method for guaranteeing channel phase continuity between pre-coded RB groups, the method comprising:
  • the base station performs channel estimation through sounding signal measurement (SRS) to obtain an uplink channel, and obtains a corresponding downlink channel based on reciprocity of the uplink and downlink channels;
  • the base station calculates a weight phase correction factor based on the obtained downlink channel, and corrects the precoding weight by using the weight phase correction factor;
  • SRS sounding signal measurement
  • the base station performs precoding and transmission of data according to the modified precoding weight.
  • the base station calculates a weight phase correction factor based on the obtained downlink channel, including: the base station calculates a channel mean value by using an RB or a resource block group (RBG) for the obtained downlink channel; and the base station performs scheduling RB according to the following manner.
  • the base station calculates a weight phase correction factor according to the result of the singular value decomposition: wherein angle(U n ) represents the phase of U n
  • Q n represents the weight phase correction factor
  • the base station calculates a weight phase correction factor based on the obtained downlink channel, including: the base station calculates a channel mean value by using an RB or an RBG for the obtained downlink channel;
  • the base station performs eigenvalue decomposition on the channel mean of the scheduling RB according to the following manner:
  • H H
  • U n a unitary matrix
  • a transposed matrix
  • a diagonal matrix composed of characteristic values
  • the base station calculates a weight phase correction factor according to the result of the eigenvalue decomposition: ( ⁇ : ⁇ ⁇ » , where angle(Un) represents the phase of ! ⁇ , and Q n represents the weight phase Correction factor.
  • the base station calculates a channel mean value according to the RBG for the obtained downlink channel, and adopts the following manner:
  • n is the RBG sequence number, indicating the starting subcarrier number of the RBG
  • indicates the subcarrier number of the RBG
  • N indicates the number of RBs in the RBG
  • H fe indicates the downlink channel
  • indicates the channel mean.
  • the weighting phase correction factor is used to correct the precoding weight, and the following method is used:
  • W n represents the corrected precoding weight
  • U n is a unitary matrix
  • Q n represents a weight phase correction factor
  • (U n Q n ) H represents a transposed matrix of U n Q n .
  • the embodiment of the invention further provides a base station, including:
  • a channel estimator configured to perform channel estimation by using the SRS to obtain an uplink channel, and obtain a corresponding downlink channel based on reciprocity of the uplink and downlink channels;
  • a correction factor calculator configured to calculate a weight phase correction factor based on the obtained downlink channel, and correct the precoding weight by using the weight phase correction factor
  • the precoder is configured to precode and transmit the data according to the corrected precoding weight.
  • the correction factor calculator is further configured to
  • correction factor calculator is further configured to
  • H Trem3 ⁇ 4 U n ⁇ n U ⁇
  • denotes the channel mean
  • U n is the unitary matrix
  • ! ⁇ is the transpose matrix of ! ⁇ , ⁇ command a diagonal matrix composed of characteristic values
  • the weight phase correction factor is calculated as follows:
  • the correction factor calculator calculates the channel mean value by RB for the obtained downlink channel, and adopts the following manner:
  • represents the RB sequence number
  • k 0 represents the starting subcarrier number of the RB
  • k represents the subcarrier number of the RB
  • ! ⁇ indicates the downlink channel
  • indicates the channel mean.
  • the correction factor calculator calculates the channel mean value by using the RBG for the obtained downlink channel, and adopts the following manner:
  • n is the RBG sequence number, indicating the starting subcarrier number of the RBG
  • indicates the subcarrier number of the RBG
  • N indicates the number of RBs in the RBG
  • H fe indicates the downlink channel
  • indicates the channel mean.
  • the correction factor calculator is further configured to use a weight phase correction factor and adopt The precoding weights are corrected in the following ways:
  • W n represents the corrected precoding weight
  • U n is a unitary matrix
  • Q n represents a weight phase correction factor
  • (U n Q n ) H represents a transposed matrix of U n Q n .
  • the embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of instructions for performing the method for guaranteeing channel phase continuity between pre-coded RB groups according to the foregoing embodiments.
  • a method, a base station, and a computer readable storage medium for guaranteeing channel phase continuity between pre-coded RB groups according to embodiments of the present invention, wherein a base station calculates a weight phase correction factor for making a channel phase continuity between pre-coded RB groups And correcting the precoding weight by using the weight phase correction factor, and precoding and transmitting the data according to the modified precoding weight.
  • a base station calculates a weight phase correction factor for making a channel phase continuity between pre-coded RB groups And correcting the precoding weight by using the weight phase correction factor, and precoding and transmitting the data according to the modified precoding weight.
  • FIG. 1 is a flowchart of a method for ensuring channel phase continuity between pre-coded RB groups according to an embodiment of the present invention
  • FIG. 2 is a flowchart of calculating a weight phase correction factor according to an embodiment of the present invention
  • FIG. 3 is a flowchart of calculating a weight phase correction factor according to an embodiment of the present invention
  • FIG. 4 is a flowchart of an embodiment of the present invention
  • a method for ensuring channel phase continuity between pre-coded RB groups according to an embodiment of the present invention, as shown in FIG. 1, mainly includes:
  • Step 101 The base station performs channel estimation by using a Sounding Reference Signal (SRS) to obtain an uplink channel ⁇ ⁇ , and obtains a corresponding phase based on reciprocity of the uplink and downlink channels.
  • SRS Sounding Reference Signal
  • H DI ⁇ is simply referred to as H, and the dimension of H is ⁇ * 1 ⁇ where ⁇ represents the number of antennas configured at the transmitting end, ! ⁇ indicates the number of antennas configured at the receiving end.
  • Step 102 The base station calculates a weight phase correction factor based on the obtained downlink channel, and corrects the precoding weight by using the weight phase correction factor.
  • a method for calculating a weight phase correction factor based on a obtained downlink channel by a base station mainly includes the following steps:
  • Step 201 The base station calculates a channel mean value by using an RB or a resource block group (RBG) for the obtained downlink channel.
  • RBG resource block group
  • denotes the RBG sequence number, denotes the starting subcarrier number of the RBG, ⁇ : denotes the subcarrier number of the RBG, N denotes the RBG size, that is, the number of RBs in the RBG, H fe denotes the downlink channel, ⁇ denotes the channel Mean.
  • Step 202 The base station performs singular value decomposition on the channel mean of the scheduled RB.
  • the base station may perform singular value decomposition on the channel mean of the scheduled RBs in the following manner:
  • Another method for calculating a weight phase correction factor based on the obtained downlink channel by another base station mainly includes the following steps:
  • Step 301 The base station calculates a channel mean value by using the RB or the RBG for the obtained downlink channel.
  • the method for calculating the channel mean is the same as that of the embodiment shown in FIG. 2, and details are not described herein again.
  • Step 302 The base station performs eigenvalue decomposition on the channel mean of the scheduled RB.
  • the base station may perform eigenvalue decomposition on the channel mean of the scheduled RBs in the following manner:
  • H H
  • denotes the channel mean and U n is the unitary matrix, ! ⁇ is the transposed matrix, ⁇ cron is a diagonal matrix composed of characteristic values.
  • Step 303 The base station calculates a weight phase correction factor according to the result of the feature value decomposition.
  • the base station may calculate the weight phase correction factor in the following manner:
  • the correction factor, (U n Q n ) H represents the transposed matrix of U n Q n .
  • Step 103 The base station performs precoding and transmission of the data according to the corrected precoding weight value.
  • the embodiment of the present invention further provides a base station, as shown in FIG. 4, which mainly includes:
  • the channel estimator 10 is configured to perform channel estimation by using the SRS to obtain an uplink channel, and obtain a corresponding downlink channel based on reciprocity of the uplink and downlink channels;
  • the correction factor calculator 20 is configured to calculate a weight phase correction factor based on the obtained downlink channel, and correct the precoding weight by using the weight phase correction factor;
  • the precoder 30 is configured to precode and transmit data based on the corrected precoding weights.
  • the correction factor calculator 20 is further configured to
  • the weight phase correction factor is calculated as follows:
  • correction factor calculator 20 is further configured to:
  • the transposed matrix of ⁇ is a diagonal matrix composed of characteristic values;
  • the correction factor calculator 20 calculates the channel mean value by RB for the obtained downlink channel, and adopts the following manner:
  • represents the RB sequence number, indicating the starting subcarrier number of the RB
  • k represents the subcarrier number of the RB
  • indicates the channel mean
  • the correction factor calculator 20 calculates the channel mean by RBG for the obtained downlink channel, in the following manner:
  • denotes the RBG sequence number, denotes the starting subcarrier number of the RBG, ⁇ : denotes the subcarrier number of the RBG, N denotes the RBG size, that is, the number of RBs in the RBG, H fe denotes the downlink channel, ⁇ denotes the channel Mean.
  • the correction factor calculator 20 is further configured to use a weight phase correction factor and modify the precoding weights in the following manner:
  • W n represents the corrected precoding weight
  • U n is a unitary matrix
  • Q n represents a weight phase correction factor
  • (U n Q n ) H represents a transposed matrix of U n Q n .
  • the base station calculates a weight phase correction factor that makes the channel phase between the pre-coded RB groups continuous, and corrects the pre-coding weight by using the weight phase correction factor, and then according to the corrected The precoding weights precode the data and send it.
  • a weight phase correction factor that makes the channel phase between the pre-coded RB groups continuous
  • the precoding weights precode the data and send it.
  • the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects.
  • the invention can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • an embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of instructions for performing the method for guaranteeing channel phase continuity between pre-coded RB groups according to the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种保证预编码后资源块(RB)组间信道相位连续性的方法、基站和计算机可读存储介质,方法包括:基站通过探测信号测量(SRS)进行信道估计,得到上行信道,并基于上下行信道的互易性获得相应的下行信道;所述基站基于获得的下行信道计算权值相位修正因子,并用所述权值相位修正因子对预编码权值进行修正;所述基站根据修正后的预编码权值进行数据的预编码并发送。

Description

保证预编码后 RB组间信道相位连续性的方法、 基站和计算机可 读存储介质 技术领域
本发明涉及无线通信领域的预编码技术, 尤其涉及一种保证预编码后
RB组间信道相位连续性的方法、 基站和计算机可读存储介质。 背景技术
波束赋型( BF, Beamforming )技术是时分双工长期演进 ( TDD-LTE, Time Division Dulpexing Long Term Evolution ) 系统支持的一种关键多输入 多输出 ( MIMO , Multiple Input Multiple Output )技术。 然而, 由于信道相 位的频域资源块(RB, Resource Blocks ) 间原本是连续的, 而考虑到实际 系统和设备的复杂性和可实现性, BF权值都是以 RB组为粒度, 所以不同 RB组采用了各自独立的 BF权值矢量, 使得 RB组彼此之间信道相位不再 连续, 有了割裂。 由于相位不连续的现象存在, 对于下行的解调参考信号 / 导频(DMRS, Demodulation Reference Signal )的信道估计不适合进行如下 操作: 基于连续 RB ( RB组) 的最小二乘方(LS, Least Square )信道估计 后的时域 /频域降噪处理,这会使信道估计误差变大,影响 BF系统的性能。 发明内容
为解决现有存在的技术问题, 本发明实施例提供一种保证预编码后 RB 组间信道相位连续性的方法、 基站和计算机可读存储介质。
本发明实施例提供了一种保证预编码后 RB 组间信道相位连续性的方 法, 该方法包括:
基站通过探测信号测量(SRS )进行信道估计, 得到上行信道, 并基于 上下行信道的互易性获得相应的下行信道; 所述基站基于获得的下行信道计算权值相位修正因子, 并用所述权值 相位修正因子对预编码权值进行修正;
所述基站根据修正后的预编码权值进行数据的预编码并发送。
其中, 所述基站基于获得的下行信道计算权值相位修正因子, 包括: 所述基站对获得的下行信道按 RB或资源块组(RBG )计算信道均值; 所述基站按照以下方式对调度 RB 的信道均值进行奇异值分解: ίζ = UnDnVn H , 其中, ϊζ表示信道均值, U Vn为酉矩阵, ¥^为 的转 置矩阵, 0„为 奇异值组成的对角矩阵;
所述基站根据所述奇异值分解的结果, 并按照以下方式计算权值相位 修正因子: 其中, angle(Un)表示 Un的相
Figure imgf000004_0001
位, Qn表示权值相位修正因子。
其中, 所述基站基于获得的下行信道计算权值相位修正因子, 包括: 所述基站对获得的下行信道按 RB或 RBG计算信道均值;
所述基站按照以下方式对调度 RB 的信道均值进行特征值分解:
H„H„H = UnnUn H , 其中, ϊζ表示信道均值, Un为酉矩阵, 为 的转置 矩阵, ∑„为 特征数值组成的对角矩阵;
所述基站根据所述特征值分解的结果, 并按照以下方式计算权值相位 修正因子: (^ : ^^ ^^» , 其中, angle(Un)表示!^的相位, Qn表示权 值相位修正因子。
其中 ,所述基站对获得的下行信道按 RB计算信道均值,采用以下方式: W = -Yko+6 Rk , 其中, η表示 RB序号, k0表示 RB的起始子载波序号, k表示 RB的 子载波序号, !^表示下行信道, ϊζ表示信道均值。 其中, 所述基站对获得的下行信道按 RBG计算信道均值, 采用以下方 式:
― 1 y^。+6 H 其中, n表示 RBG序号, 表示 RBG的起始子载波序号, ^:表示 RBG 的子载波序号, N表示 RBG中 RB个数, Hfe表示下行信道, ϊζ表示信道 均值。
其中, 所述用权值相位修正因子对预编码权值进行修正, 采用以下方 式:
Wn = (UnQJH ,
其中, Wn表示修正后的预编码权值, Un为酉矩阵, Qn表示权值相位 修正因子, (UnQn)H表示 UnQn的转置矩阵。
本发明实施例还提供了一种基站, 包括:
信道估计器, 配置为通过 SRS进行信道估计, 得到上行信道, 并基于 上下行信道的互易性获得相应的下行信道;
修正因子计算器, 配置为基于获得的下行信道计算权值相位修正因子, 并用所述权值相位修正因子对预编码权值进行修正;
预编码器, 配置为根据修正后的预编码权值进行数据的预编码并发送。 其中, 所述修正因子计算器还配置为,
对获得的下行信道按 RB或 RBG计算信道均值;
按照以下方式对调度 RB的信道均值进行奇异值分解: = UnDnVn H , 其中, ϊζ表示信道均值, U Vn为酉矩阵, ¥^为 的转置矩阵, 0„为 奇异值组成的对角矩阵; -j*angle(Un (U))
Qn = 或 Qn = e 其中, angle(Un)表示 的相位, Qn表示
|vn(U)|
权值相位修正因子。
其中, 所述修正因子计算器还配置为,
对获得的下行信道按 RB或 RBG计算信道均值;
H
按照以下方式对调度 RB的信道均值进行特征值分解: H„¾ = UnnU^ 其中, ϊζ表示信道均值, Un为酉矩阵, !^为!^的转置矩阵, ∑„为 特 征数值组成的对角矩阵;
根据所述特征值分解的结果, 并按照以下方式计算权值相位修正因子:
Qn = e-J*angle(Un (U)) ? 其中, angle(Un )表示 的相位, Qn表示权值相位修正 因子。
其中,所述修正因子计算器对获得的下行信道按 RB计算信道均值,采 用以下方式:
Figure imgf000006_0001
其中, η表示 RB序号, k0表示 RB的起始子载波序号, k表示 RB的 子载波序号, !^表示下行信道, ϊζ表示信道均值。
其中, 所述修正因子计算器对获得的下行信道按 RBG计算信道均值, 采用以下方式:
― 1 y^。+6 H 其中, n表示 RBG序号, 表示 RBG的起始子载波序号, ^:表示 RBG 的子载波序号, N表示 RBG中 RB个数, Hfe表示下行信道, ϊζ表示信道 均值。
其中, 所述修正因子计算器还配置为, 用权值相位修正因子, 并采用 以下方式对预编码权值进行修正:
Wn = (UnQJH ,
其中, Wn表示修正后的预编码权值, Un为酉矩阵, Qn表示权值相位 修正因子, (UnQn)H表示 UnQn的转置矩阵。
本发明实施例还提供了一种计算机可读存储介质, 该存储介质包括一 组指令,所述指令用于执行前述实施例的保证预编码后 RB组间信道相位连 续性的方法。
本发明实施例所提供的一种保证预编码后 RB 组间信道相位连续性的 方法、基站和计算机可读存储介质, 由基站计算使预编码后 RB组间信道相 位连续的权值相位修正因子, 并用所述权值相位修正因子对预编码权值进 行修正, 再根据修正后的预编码权值进行数据的预编码并发送。 通过本发 明,能够保证预编码后 RB组间信道相位连续性,提高系统性能和频谱效率。 附图说明
图 1为本发明实施例的一种保证预编码后 RB组间信道相位连续性的方 法流程图;
图 2为本发明实施例的一种权值相位修正因子的计算流程图; 图 3为本发明实施例的另一种权值相位修正因子的计算流程图; 图 4为本发明实施例的一种基站的结构示意图。 具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 本发明实施例提供的一种保证预编码后 RB 组间信道相位连续性的方 法, 如图 1所示, 主要包括:
步驟 101 , 基站通过探测信号测量(SRS, Sounding Reference Signal ) 进行信道估计,得到上行信道 Ητπ ,并基于上下行信道的互易性获得相应的 下行信道 HDI^。
为描述方便,本发明后续实施例中将 HDI^简称为 H , H的维数为^ * 1^ 其中, ^表示发射端配置的天线个数, !^表示接收端配置的天线个数。
步驟 102,基站基于获得的下行信道计算权值相位修正因子, 并用所述 权值相位修正因子对预编码权值进行修正。
如图 2所示, 本发明实施例的一种基站基于获得的下行信道计算权值 相位修正因子的方法, 主要包括以下步驟:
步驟 201, 基站对获得的下行信道按 RB或资源块组( RBG )计算信道 均值。
在一种实施方式中, 按 RB计算信道均值, 可以采用以下方式: = -Yko+6 H, 其中, η表示 RB序号, 表示 RB的起始子载波序号, k表示 RB的 子载波序号, !^表示下行信道, ϊζ表示信道均值。
按 RBG计算信道均值, 可以采用以下方式:
― 1 y^。+6 H 其中, η表示 RBG序号, 表示 RBG的起始子载波序号, ^:表示 RBG 的子载波序号, N表示 RBG大小, 也就是 RBG中 RB个数, Hfe表示下行 信道, ϊζ表示信道均值。
步驟 202, 基站对调度 RB的信道均值进行奇异值分解。
在一种实施方式中 ,基站可以按照以下方式对调度 RB的信道均值进行 奇异值分解:
¾ = UnDnVn H
其中, 表示信道均值, 1^和 为酉矩阵, ^^为 的转置矩阵, Dn 为 ϊζ奇异值组成的对角矩阵。
Figure imgf000009_0001
其中, angle(Un)表示 1^的相位, Qn表示权值相位修正因子, Vn(l,l)表 示 Vn的第一行第一列的元素, I Vn (1, 1)|表示 Vn (1, 1)的绝对值。 如图 3 所示, 本发明实施例的另一种基站基于获得的下行信道计算权 值相位修正因子的方法, 主要包括以下步驟:
步驟 301, 基站对获得的下行信道按 RB或 RBG计算信道均值。
计算信道均值的方法与图 2所示实施例相同, 此处不再赘述。
步驟 302, 基站对调度 RB的信道均值进行特征值分解。
在一种实施方式中 ,基站可以按照以下方式对调度 RB的信道均值进行 特征值分解:
H„H„H = UnnUn H , 其中, ϊζ表示信道均值, Un为酉矩阵, !^为 的转置矩阵, ∑„为 特征数值组成的对角矩阵。
步驟 303 , 基站根据特征值分解的结果计算权值相位修正因子。
在一种实施方式中, 基站可以按照以下方式计算权值相位修正因子:
Q _ e-j*angle(Un(l,l)) , 其中, angle(Un)表示 1^的相位, Qn表示权值相位修正因子。 在一种实施方式中, 基站可以用图 2或图 3的方法所获得的权值相位 修正因子, 并采用以下方式对预编码权值进行修正: Wn = (UnQJH , 其中, Wn表示修正后的预编码权值, Un为酉矩阵, Qn表示权值相位 修正因子, (UnQn)H表示 UnQn的转置矩阵。
步驟 103 , 基站根据修正后的预编码权值进行数据的预编码并发送。 对应上述保证预编码后 RB组间信道相位连续性的方法,本发明实施例 还提供一种基站, 如图 4所示, 主要包括:
信道估计器 10, 配置为通过 SRS进行信道估计, 得到上行信道, 并基 于上下行信道的互易性获得相应的下行信道;
修正因子计算器 20, 配置为基于获得的下行信道计算权值相位修正因 子, 并用所述权值相位修正因子对预编码权值进行修正;
预编码器 30, 配置为根据修正后的预编码权值进行数据的预编码并发 送。
在一种实施方式中, 修正因子计算器 20还配置为,
对获得的下行信道按资源块 RB或 RBG计算信道均值;
按照以下方式对调度 RB的信道均值进行奇异值分解: = UnDnVn H , 其中, ϊζ表示信道均值, U Vn为酉矩阵, ¥^为 的转置矩阵, 0„为 奇异值组成的对角矩阵;
根据所述奇异值分解的结果, 并按照以下方式计算权值相位修正因子:
Qn =^j^i或 Qn = e- angle(u"u)) , 其中, angle(Un)表示 的相位, Qn表示 权值相位修正因子。
在一种实施方式中, 所述修正因子计算器 20还配置为,
对获得的下行信道按资源块 RB或 RBG计算信道均值;
按照以下方式对调度 RB的信道均值进行特征值分解: RnRn = UnnU^ , 其中, ϊζ表示信道均值, Un为酉矩阵, !^为!^的转置矩阵, ∑„为 特 征数值组成的对角矩阵;
根据所述特征值分解的结果, 并按照以下方式计算权值相位修正因子: Qn = e-J*angle(Un (U)) ? 其中, angle(Un )表示 的相位, Qn表示权值相位修正 因子。
在一种实施方式中, 所述修正因子计算器 20对获得的下行信道按 RB 计算信道均值, 采用以下方式:
Figure imgf000011_0001
其中, η表示 RB序号, 表示 RB的起始子载波序号, k表示 RB的 子载波序号, !^表示下行信道, ϊζ表示信道均值。
在一种实施方式中,所述修正因子计算器 20对获得的下行信道按 RBG 计算信道均值, 采用以下方式:
― 1 y^。+6 H 其中, η表示 RBG序号, 表示 RBG的起始子载波序号, ^:表示 RBG 的子载波序号, N表示 RBG大小, 也就是 RBG中 RB个数, Hfe表示下行 信道, ϊζ表示信道均值。
在一种实施方式中, 所述修正因子计算器 20还配置为, 用权值相位修 正因子, 并采用以下方式对预编码权值进行修正:
Wn = (UnQn)H ,
其中, Wn表示修正后的预编码权值, Un为酉矩阵, Qn表示权值相位 修正因子, (UnQn)H表示 UnQn的转置矩阵。
综上所述,本发明实施例由基站计算使预编码后 RB组间信道相位连续 的权值相位修正因子, 并用所述权值相位修正因子对预编码权值进行修正, 再根据修正后的预编码权值进行数据的预编码并发送。 如此, 能够保证预 编码后 RB组间信道相位连续性, 提高系统性能和频谱效率。 本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产品。 因此, 本发明可采用硬件实施例、 软件实施例、 或结 合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步驟以产生计算机实现 的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 步驟。
为此, 本发明实施例还提供了一种计算机可读存储介质, 该存储介质 包括一组指令,所述指令用于执行前述实施例的保证预编码后 RB组间信道 相位连续性的方法。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种保证预编码后 RB组间信道相位连续性的方法, 该方法包括: 基站通过探测信号测量 SRS进行信道估计, 得到上行信道, 并基于上 下行信道的互易性获得相应的下行信道;
所述基站基于获得的下行信道计算权值相位修正因子, 并用所述权值 相位修正因子对预编码权值进行修正;
所述基站根据修正后的预编码权值进行数据的预编码并发送。
2、根据权利要求 1所述保证预编码后 RB组间信道相位连续性的方法, 其中, 所述基站基于获得的下行信道计算权值相位修正因子, 包括:
所述基站对获得的下行信道按资源块 RB或资源块组 RBG计算信道均 值;
所述基站按照以下方式对调度 RB 的信道均值进行奇异值分解: ίζ = UnDnVn H , 其中, ϊζ表示信道均值, U Vn为酉矩阵, ^为 的转 置矩阵, 0„为 奇异值组成的对角矩阵;
所述基站根据所述奇异值分解的结果, 并按照以下方式计算权值相位 修正因子: Qn e-J*angle(u"( )) , 其中, angle(Un)表示 Un的相
Figure imgf000013_0001
位, Qn表示权值相位修正因子。
3、根据权利要求 1所述保证预编码后 RB组间信道相位连续性的方法, 其中, 所述基站基于获得的下行信道计算权值相位修正因子, 包括:
所述基站对获得的下行信道按 RB或 RBG计算信道均值;
所述基站按照以下方式对调度 RB 的信道均值进行特征值分解:
H„H„H = UnnUn H , 其中, ϊζ表示信道均值, Un为酉矩阵, 为 的转置 矩阵, ∑„为^特征数值组成的对角矩阵; 所述基站根据所述特征值分解的结果, 并按照以下方式计算权值相位 修正因子: Qn = e-^ (un(U)) , 其中, angle(Un)表示!^的相位, Qn表示权 值相位修正因子。
4、 根据权利要求 2或 3所述保证预编码后 RB组间信道相位连续性的 方法, 其中, 所述基站对获得的下行信道按 RB计算信道均值, 采用以下方 式:
Figure imgf000014_0001
其中, η表示 RB序号, k0表示 RB的起始子载波序号, k表示 RB的 子载波序号, !^表示下行信道, ϊζ表示信道均值。
5、 根据权利要求 2或 3所述保证预编码后 RB组间信道相位连续性的 方法, 其中, 所述基站对获得的下行信道按 RBG计算信道均值, 采用以下 方式:
― 1 γ^。+6 Η 其中, η表示 RBG序号, 表示 RBG的起始子载波序号, ^:表示 RBG 的子载波序号, N表示 RBG中 RB个数, Hfe表示下行信道, ϊζ表示信道 均值。
6、 根据权利要求 2或 3所述保证预编码后 RB组间信道相位连续性的 方法, 其中, 所述用权值相位修正因子对预编码权值进行修正, 采用以下 方式:
Wn = (UnQJH ,
其中, Wn表示修正后的预编码权值, Un为酉矩阵, Qn表示权值相位 修正因子, (UnQJH表示 UnQn的转置矩阵。
7、 一种基站, 包括: 信道估计器, 配置为通过探测信号测量 SRS进行信道估计, 得到上行 信道, 并基于上下行信道的互易性获得相应的下行信道;
修正因子计算器, 配置为基于获得的下行信道计算权值相位修正因子, 并用所述权值相位修正因子对预编码权值进行修正;
预编码器, 配置为根据修正后的预编码权值进行数据的预编码并发送。
8、 根据权利要求 7所述基站, 其中, 所述修正因子计算器还配置为, 对获得的下行信道按资源块 RB或资源块组 RBG计算信道均值; 按照以下方式对调度 RB的信道均值进行奇异值分解: = UnDnVn H , 其中, ϊζ表示信道均值, U Vn为酉矩阵, ¥^为 的转置矩阵, 0„为 奇异值组成的对角矩阵;
根据所述奇异值分解的结果, 并按照以下方式计算权值相位修正因子:
Qn = |Vn (1, 1)| ^ Qn = e"J*angle(Un(U)) ^ 其中, angle(Un)表示 Un的相位, Qn表示
(U)|
权值相位修正因子。
9、 根据权利要求 7所述基站, 其中, 所述修正因子计算器还配置为, 对获得的下行信道按 RB或 RBG计算信道均值; 按照以下方式对调度 RB的信道均值进行特征值分解: H„¾ = UnnU^ 其中, ϊζ表示信道均值, Un为酉矩阵, !^为!^的转置矩阵, ∑„为 特 征数值组成的对角矩阵;
根据所述特征值分解的结果, 并按照以下方式计算权值相位修正因子:
Qn = e-J*angle(Un (U)) ? 其中, angle(Un )表示 的相位, Qn表示权值相位修正 因子。
10、 根据权利要求 8或 9所述基站, 其中, 所述修正因子计算器对获 得的下行信道按 RB计算信道均值, 采用以下方式:
Figure imgf000016_0001
其中, n表示 RB序号, k0表示 RB的起始子载波序号, k表示 RB的 子载波序号, !^表示下行信道, ϊζ表示信道均值。
11、 根据权利要求 8或 9所述基站, 其中, 所述修正因子计算器对获 得的下行信道按 RBG计算信道均值, 采用以下方式:
― 1 γ^。+6 Η 其中, n表示 RBG序号, 表示 RBG的起始子载波序号, ^:表示 RBG 的子载波序号, N表示 RBG中 RB个数, Hfe表示下行信道, ϊζ表示信道 均值。
12、 根据权利要求 8或 9所述基站, 其中, 所述修正因子计算器还配 置为, 用权值相位修正因子, 并采用以下方式对预编码权值进行修正:
Wn = (UnQn)H ,
其中, Wn表示修正后的预编码权值, Un为酉矩阵, Qn表示权值相 位修正因子, (UnQn)H表示 UnQn的转置矩阵。
13、 一种计算机可读存储介质, 其特征在于, 所述存储介质包括一 组指令, 所述指令用于执行权利要求 1-6任一项所述的保证预编码后 RB 组间信道相位连续性的方法。
PCT/CN2013/090476 2013-04-10 2013-12-25 保证预编码后rb组间信道相位连续性的方法、基站和计算机可读存储介质 WO2014166285A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/776,617 US9912390B2 (en) 2013-04-10 2013-12-25 Method for guaranteeing channel phase continuity of pre-coded RB groups, base station and computer-readable storage medium
EP13881811.7A EP2963964B1 (en) 2013-04-10 2013-12-25 Method for ensuring channel phase continuity between rb groups after precoding, base station, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310123230.2 2013-04-10
CN201310123230.2A CN104104625B (zh) 2013-04-10 2013-04-10 保证预编码后rb组间信道相位连续性的方法和基站

Publications (1)

Publication Number Publication Date
WO2014166285A1 true WO2014166285A1 (zh) 2014-10-16

Family

ID=51672432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090476 WO2014166285A1 (zh) 2013-04-10 2013-12-25 保证预编码后rb组间信道相位连续性的方法、基站和计算机可读存储介质

Country Status (4)

Country Link
US (1) US9912390B2 (zh)
EP (1) EP2963964B1 (zh)
CN (1) CN104104625B (zh)
WO (1) WO2014166285A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160820B (zh) * 2015-03-30 2019-04-05 北京信威通信技术股份有限公司 一种基于信道互易性获取下行信道信息的方法
WO2017049486A1 (zh) * 2015-09-23 2017-03-30 华为技术有限公司 终端设备、网络设备、上行参考信号发送方法和接收方法
JP6885120B2 (ja) * 2017-03-14 2021-06-09 富士通株式会社 通信装置、通信システム及び通信方法
US11165547B2 (en) 2017-08-18 2021-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Transmission to moving receivers
CN109474321B (zh) * 2017-09-08 2021-01-22 电信科学技术研究院有限公司 信道状态信息的反馈、资源分配方法、终端、基站及装置
CN111385008B (zh) * 2018-12-29 2022-09-30 中兴通讯股份有限公司 一种波束赋形的方法、基站和计算机可读存储介质
CN115529066A (zh) * 2021-06-25 2022-12-27 华为技术有限公司 一种预编码权值计算方法以及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442388A (zh) * 2008-12-29 2009-05-27 北京邮电大学 一种多输入多输出系统中的预编码方法和装置
CN102065557A (zh) * 2010-12-31 2011-05-18 中兴通讯股份有限公司 用于协作多点传输系统的测量参考信号发送方法及系统
US20120062421A1 (en) * 2010-09-09 2012-03-15 Atheros Communications, Inc. Phase rotation techniques in a multi-user wireless communication environment
CN102790637A (zh) * 2011-05-16 2012-11-21 株式会社Ntt都科摩 信道重构方法、预编码方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747271B2 (en) * 2005-03-02 2010-06-29 Qualcomm Incorporated Radiated power control for a multi-antenna transmission
US8085873B2 (en) 2007-01-02 2011-12-27 Qualcomm, Incorporated Systems and methods for enhanced channel estimation in wireless communication systems
BR112012003477A2 (pt) * 2009-08-17 2017-05-23 Alcatel Lucent "método para manter coerência de um canal de pré-codificação em uma rede de comunicação e aparelho associado."
KR101585422B1 (ko) * 2011-01-31 2016-01-25 삼성전자주식회사 무선통신 시스템에서 셀 간 제한적 협력을 통한 프리코딩 장치 및 방법
US9407343B2 (en) * 2012-08-31 2016-08-02 Google Technology Holdings LLC Method and apparatus for mitigating downlink interference

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442388A (zh) * 2008-12-29 2009-05-27 北京邮电大学 一种多输入多输出系统中的预编码方法和装置
US20120062421A1 (en) * 2010-09-09 2012-03-15 Atheros Communications, Inc. Phase rotation techniques in a multi-user wireless communication environment
CN102065557A (zh) * 2010-12-31 2011-05-18 中兴通讯股份有限公司 用于协作多点传输系统的测量参考信号发送方法及系统
CN102790637A (zh) * 2011-05-16 2012-11-21 株式会社Ntt都科摩 信道重构方法、预编码方法及装置

Also Published As

Publication number Publication date
EP2963964B1 (en) 2019-10-02
EP2963964A1 (en) 2016-01-06
US9912390B2 (en) 2018-03-06
EP2963964A4 (en) 2016-01-06
CN104104625A (zh) 2014-10-15
US20160028456A1 (en) 2016-01-28
CN104104625B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
US10951454B2 (en) Precoding in wireless systems using orthogonal time frequency space multiplexing
WO2014166285A1 (zh) 保证预编码后rb组间信道相位连续性的方法、基站和计算机可读存储介质
US9226302B2 (en) Systems and methods for interference alignment in Wi-Fi
JP5406987B2 (ja) マルチユーザーマルチ入力マルチ出力無線送信システムにおける付加的受信機処理によるトムリンソン−原島プリコーディング
CN107046435B (zh) 无线通信方法和无线通信装置
US9344160B2 (en) Data transmission method and system, transmitter, and receiver
EP3497808A2 (en) Multi-beam codebooks with further optimized overhead
WO2015192777A1 (zh) 一种数据传输的方法和装置
WO2009030102A1 (fr) Procédé de codage à l'avance et de planification pour utilisateurs multiples et station de base pour mettre en œuvre le procédé
TWI656760B (zh) Data transmission method and device
WO2017118382A1 (zh) 信道状态信息csi上报的方法及装置
WO2015157985A1 (zh) 一种自适应多天线数据传输方法、装置及系统
JP2010529808A (ja) 無線通信ネットワークにおける複数アンテナ送信を制御する方法及び装置
CN111630802A (zh) 用于非线性预编码的装置和方法
WO2017124827A1 (zh) 多天线数据传输的方法、网络设备、终端设备及系统
WO2018028536A1 (zh) 参考信号的配置、确定方法及装置、基站、终端
WO2014056308A1 (zh) 码字反馈方法及接收机
WO2015135489A1 (zh) 预编码矩阵索引测量装置和方法
JP6112257B2 (ja) ユーザ固有の参照信号送信方法および装置
CN114600384B (zh) 一种信道测量方法和通信装置
CN107094038B (zh) 一种天线系统功率调整的方法、装置及系统
CN102725991A (zh) 针对天线阵列的相关矩阵反馈方法和系统
WO2017005086A1 (zh) 一种预编码方法及装置
WO2017127987A1 (zh) 下行信道状态信息的获取方法和装置
CN108667490B (zh) 一种信道状态信息反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14776617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013881811

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE