WO2017127987A1 - 下行信道状态信息的获取方法和装置 - Google Patents

下行信道状态信息的获取方法和装置 Download PDF

Info

Publication number
WO2017127987A1
WO2017127987A1 PCT/CN2016/072009 CN2016072009W WO2017127987A1 WO 2017127987 A1 WO2017127987 A1 WO 2017127987A1 CN 2016072009 W CN2016072009 W CN 2016072009W WO 2017127987 A1 WO2017127987 A1 WO 2017127987A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
pmi
cqi
downlink channel
crs
Prior art date
Application number
PCT/CN2016/072009
Other languages
English (en)
French (fr)
Inventor
杨敬
吴和兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680023996.5A priority Critical patent/CN107534883B/zh
Priority to PCT/CN2016/072009 priority patent/WO2017127987A1/zh
Publication of WO2017127987A1 publication Critical patent/WO2017127987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method and an apparatus for acquiring downlink channel state information.
  • MU-MIMO Multiple-Input Multiple-Output
  • MU-MIMO Multiple-Input Multiple-Output
  • MU-MIMO Multiple-Input Multiple-Output
  • BF beamforming
  • the vector is weighted so that when the base station transmits the data of the user, the main lobe of the antenna pattern is aligned with the user direction, and the zero point is aligned with the interference direction, thereby improving the signal-to-noise ratio of the terminal device in the wave direction, thereby achieving the purpose of suppressing interference.
  • the status information of the downlink channel is generally obtained in the following manner: the base station first determines whether the Precoding Matrix Indication (PMI) is orthogonal or accurate based on the precoding matrix indication (PMI) fed back by the terminal device.
  • the scheduling process of the MU-MIMO pairing user is performed, and after the processing is completed, the MU-MIMO paired user downlink data physical downlink shared channel (Physical Downlink Shared Channel; PDSCH) or demodulated reference signal (De Modulation Reference Signal; Abbreviation: DMRS) BF performs weighting and measurement pilot mapping.
  • PMI Precoding Matrix Indication
  • PDSCH Physical Downlink Shared Channel
  • DMRS De Modulation Reference Signal
  • the base station will transmit downlink data to the paired user according to the obtained weighted value, and the terminal equipment will perform PMI or channel quality indication after receiving the downlink data transmitted by the base station ( The measurement of the Channel Quality Indicator (CQI) is performed, and the measurement result is reported to the base station, so that the base station acquires the status information of the downlink channel.
  • CQI Channel Quality Indicator
  • the PMI that the terminal device feeds back to the base station is a quantized fixed codebook, that is, a fixed codebook is usually used to match the changed downlink channel in the system, because the fixed codebook will There is a certain quantization error, so that the accuracy of the downlink channel state information acquired by the base station is not high.
  • the embodiment of the invention provides a method and a device for acquiring downlink channel state information, so as to improve the accuracy of obtaining downlink channel state information, thereby effectively suppressing interference between paired users.
  • the method for obtaining the downlink channel state information in the first aspect of the embodiment of the present invention is applied to a multi-user multiple-input multiple-output MU-MIMO system, including:
  • the first CRS is obtained by weighting a cell-specific reference signal (CRS) of the first cell where the terminal device is located by using a weighting matrix;
  • CRS cell-specific reference signal
  • a precoding matrix indicating PMI and a channel quality indicator CQI where the PMI is obtained by the terminal device to the first CRS, and the CQI is that the terminal device is configured to measure the first CRS get;
  • the PMI and the CQI acquire state information of a downlink channel of the terminal device, where state information of the downlink channel includes a channel covariance matrix of the downlink channel or a feature vector of the downlink channel ;
  • the number of logical antennas of the first cell is 4, and the precoding matrix is a matrix that continuously changes in the time domain.
  • the weighting matrix W(t) may include the following forms:
  • W(t) satisfies the following feature: W(t) is a matrix of N T ⁇ N CRS_Port_Num , where N T is the number of physical transmit antennas, for example, may be 4, etc., N CRS_Port_Num is the number of logical transmit antennas, W ( The phase of the element value of t) will continue to phase rotate according to t.
  • f 0 , f 1 , f 2 and f 3 are the phase change amounts at different positions, and the specific values thereof can be set according to actual conditions, for example, can be set to [15 20 -15 -20]*0.001/14, etc.
  • 0.001/14 represents the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents relative phase change on every additional OFDM symbol in the time domain
  • the value is the index value of the OFDM symbol, and the specific value can be counted from the 0th symbol of the first subframe of the radio frame 0.
  • U(t) is also a 4 ⁇ 4 diagonal matrix, which is as follows:
  • f 0 , f 1 , f 2 and f 3 are phase change amounts at different positions, and the specific values thereof may be set according to actual conditions, for example, may be set to [1520-15-20]*0.001/14, etc.
  • 0.001/14 represents the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents the relative phase change amount per 1 OFDM symbol added in the time domain.
  • t is the index value accumulated by the OFDM symbol, and the specific value may be counted from the 0th symbol of the first subframe of the radio frame 0.
  • Q is a 4 ⁇ 4 unitary matrix, which satisfies the following relationship:
  • U(t) is a 4 ⁇ 4 diagonal matrix, which is as follows:
  • f 0 , f 1 , f 2 and f 3 are the phase change amounts at different positions, and the specific values thereof can be set according to actual conditions, for example, can be set to [15 20 -15 -20]*0.001/14, etc.
  • 0.001/14 represents the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents relative phase change on every additional OFDM symbol in the time domain.
  • the value is the index value of the OFDM symbol, and the specific value can be counted from the 0th symbol of the first subframe of the radio frame 0.
  • Q is a 4 ⁇ 4 unitary matrix, which satisfies the following relationship:
  • the weighting matrix W(t) may also include the following forms:
  • U(t) is a diagonal matrix of 8 ⁇ 8, which is as follows:
  • f 0 to f 7 are phase change amounts at different positions, and the specific values thereof may be set according to actual conditions, for example, may be set to [15 20 -15 -20]*0.001/14, etc., wherein 0.001/14 Indicates the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents the relative phase change amount per 1 OFDM symbol added in the time domain; t is the OFDM symbol The accumulated index value may be counted from the 0th symbol of the 0th subframe of the radio frame 0.
  • U(t) is a 4 ⁇ 4 diagonal matrix, which is as follows:
  • f 0 to f 4 are phase change amounts at different positions, and the specific values thereof may be set according to actual conditions, for example, may be set to [15 20 -15 -20]*0.001/14, etc., wherein 0.001/14 Indicates the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents the relative phase change amount per 1 OFDM symbol added in the time domain; t is the OFDM symbol The accumulated index value may be counted from the 0th symbol of the 0th subframe of the radio frame 0.
  • the method for obtaining the downlink channel state information provided by the solution the weighting matrix is used to weight the common CRS of the first cell where the terminal device is located, and the state information of the downlink channel of the terminal device is obtained according to the weighting matrix, the PMI, and the CQI, thereby avoiding the present situation.
  • a fixed codebook obtained by quantization is used to match a channel changing system, thereby improving the accuracy of state information acquisition.
  • the acquiring the status information of the downlink channel of the terminal device according to the weighting matrix, the PMI, and the CQI includes:
  • the base station obtains a channel covariance matrix according to the calculated equivalent codebook and CQI corresponding to the PMI, wherein the PMI is Multiple-Input Multiple-Out-put (abbreviation: MIMO).
  • MIMO Multiple-Input Multiple-Out-put
  • the PMI corresponding to the format.
  • the cell number is assumed that the first logical antenna 4, the base station 16 will receives the CQI, wherein any one CQI called CQI I, then the inverse quantization process CQI I get I CQI Corresponding signal to noise ratio ⁇ i .
  • the base station After obtaining the signal to noise ratio of the downlink channel, the base station calculates an equivalent codebook corresponding to the PMI according to the weighting matrix. Specifically, if the number of logical antennas of the first cell is 4, the base station receives 16 PMIs, and any one of the PMIs is called PMI i , and multiplies the matrix codebook corresponding to the received PMI i by PMI i .
  • the corresponding weighting matrix is the equivalent codebook
  • the base station may further calculate an equivalent codebook matrix according to the previously accumulated N PMIs, and sequentially improve the accuracy of the calculation of the equivalent codebook matrix.
  • the channel covariance matrix of the downlink channel can be obtained.
  • the base station can calculate the feature vector of the downlink channel according to the channel covariance matrix, and the specific calculation manner is not described herein again.
  • the base station can calculate the state information of the downlink channel according to the CQI and the equivalent codebook corresponding to the PMI calculated according to the weighting matrix, so that the accuracy of the acquired state information can be improved.
  • the method further includes:
  • the CQI of the feedback format of the CQI is matched.
  • the determining the delay extension information, and configuring the feedback format of the PMI and the feedback format of the CQI for the terminal device according to the delay extension information including:
  • the base station Before the base station receives the PMI and CQI formats fed back by the terminal device, the base station also needs to configure the MIMO feedback format of the terminal device and the feedback format of the PMI and the feedback format of the CQI through signaling.
  • the base station can configure the feedback format of the MIMO of the terminal device to the TM8 mode, and the feedback format of the PMI and the CQI will be configured according to the provisions of the existing Long Term Evolution (LTE) protocol, such as being based on physical
  • the physical uplink control channel Physical Uplink Shared Channel; PUSCH
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the physical uplink control channel Physical Uplink Control Channel
  • Mode feedback 1-1 or Mode 2-1 for periodic feedback and so on.
  • the base station may obtain the delay extension information according to the uplink signal of the terminal device, and configure the downlink for the terminal device according to the obtained delay extension information and preset signaling feedback overhead information.
  • the uplink signal may include, for example, an uplink measurement pilot signal, an uplink demodulation pilot signal, or a random access sequence signal, and the like.
  • a terminal device with a large delay extension information may be configured as Mode 1-2
  • a terminal device with a medium delay extension information may be configured as Mode 2-2
  • a PMI feedback format of a terminal device with a small delay extension information may be based on Configurations such as Mode 1-1 or Mode 2-1 of PUCCH feedback.
  • the base station may further configure a feedback format of the downlink PMI and a feedback format of the CQI for the terminal device according to the environment state of the terminal device. For example, in an open environment such as an airport or a gymnasium, the delay spread is small.
  • the base station can configure the feedback format of the MIMO of the terminal device to the TM8 mode, and the feedback format of the PMI and the feedback format of the CQI can be Configuration is performed based on Mode 1-1 or Mode 2-1 of PUCCH channel feedback.
  • the base station After the PMI feedback format and the CQI feedback format are configured for the terminal device, the base station sends the feedback format of the PMI and the feedback format of the CQI to the terminal device, so that the terminal device measures the first CRS, and obtains a feedback format with the PMI.
  • the base station adopts the foregoing configuration manner, and configures a downlink PMI feedback format and a downlink CQI feedback format for the terminal device, so that the capacity performance and the feedback overhead of the base station are optimized.
  • the physical transmit antenna of the sector is shaped by the beam weight to obtain at least two different azimuth angles.
  • the number of logical antennas pointed to is 4, and the first cell is one of the beams of the logical antenna number of 4 pointed by the at least two different azimuth angles.
  • the base station When the number of physical transmit antennas of the sector in which the first cell is located is greater than 8, or when the base station is in the TDD system, or when the single-shot terminal device or the Sounding Reference Signal (SRS) resource is insufficient, the base station It is necessary to perform digital beam splitting on the physical transmitting antenna, and split it into beams of not less than two logical antennas with different azimuth directions.
  • the beam obtained after the splitting can be configured as a different physical cell or a physical cell.
  • the specific configuration of the split beam is not limited in this embodiment.
  • the base station After the base station performs beam weight shaping on the physical transmit antenna, the obtained beam with at least two different azimuth-pointed logical antenna numbers is processed in the manner of the above embodiment to obtain the state of the downlink channel. information.
  • the base station when the number of physical transmit antennas is greater than 8 or the base station is a time division duplex TDD system, the base station performs beam weight shaping on the physical transmit antenna to obtain at least two logical antennas pointing at different azimuth angles.
  • the beam of 4 makes the way of obtaining state information more widely used.
  • the method further includes:
  • the base station performs downlink multi-user beamforming (Multi-User Beamforming; MU-BF) weighting of the paired terminal equipment and downlink of the unpaired terminal equipment according to the obtained channel covariance matrix of the downlink channel or the eigenvector of the downlink channel.
  • MU-BF downlink multi-user beamforming
  • the weight of single-user beamforming (SU-BF) is calculated.
  • algorithms such as ZF-BF and BD-BF can be used for calculation.
  • the base station performs scheduling on the paired terminal device according to the calculated MU-BF weight, and performs scheduling on the unpaired terminal device according to the SU-BF weight. After the scheduling process is completed, the base station needs to perform channel Correction, so that the time for transmitting or receiving data of each channel is consistent. After channel correction is completed, antenna data air interface transmission will be performed on the coordinated paired terminal device and unpaired terminal device according to MU-BF weight and SU-BF weight. .
  • the downlink data is transmitted according to the obtained status information, thereby improving the network capacity.
  • a second aspect of the embodiments of the present invention provides a device for acquiring downlink channel state information, including:
  • a weighting module configured to weight the common reference signal CRS of the first cell where the terminal device is located by using the weighting matrix to obtain the first CRS;
  • a sending module configured to send the first CRS to the terminal device
  • a receiving module configured to receive a precoding matrix indication PMI and a channel quality indicator CQI sent by the terminal device, where the PMI is obtained by the terminal device to measure the first CRS, where the CQI is the terminal device The first CRS measurement is obtained;
  • an acquiring module configured to acquire, according to the weighting matrix, the PMI and the CQI, status information of a downlink channel of the terminal device, where status information of the downlink channel includes a channel covariance matrix of the downlink channel, or a feature vector of the downlink channel;
  • the number of logical antennas of the first cell is 4, and the precoding matrix is a matrix that continuously changes in the time domain.
  • the acquiring module is specifically configured to:
  • the device further includes: a determining module and a configuration module; wherein
  • the determining module is configured to determine delay extension information
  • the configuration module is configured to configure a feedback format of the PMI and a feedback format of the CQI for the terminal device according to the delay extension information;
  • the sending module is configured to send the feedback format of the PMI and the feedback format of the CQI to the terminal device, where the terminal device performs measurement on the first CRS, and obtains feedback with the PMI.
  • configuration module is specifically configured to:
  • the device further includes: a processing module; wherein:
  • the processing module is configured to: when the number of physical transmit antennas of the sector where the first cell is located is greater than 8 or when the base station is a time division duplex TDD system, the physical transmit antenna of the sector is shaped by a beam weight Two different azimuth angles point to a beam of 4 logical beams, and the first cell is one of the beams of the logical antenna number of 4 pointed by the at least two different azimuth angles.
  • the device further includes: a selection module, a calculation module, and a scheduling module; wherein
  • the selecting module is configured to perform pairing selection on a plurality of the terminal devices according to status information of the downlink channel, to obtain a paired terminal device and an unpaired terminal device;
  • the calculating module is further configured to calculate, according to the status information of the downlink channel, a downlink multi-user beamforming MU-BF weight of the paired terminal device and a downlink single user of the unpaired terminal device. Beamforming SU-BF weight;
  • the scheduling module is configured to schedule the paired terminal device according to the MU-BF weight, and schedule the unpaired terminal device according to the SU-BF weight.
  • a third aspect of the embodiments of the present invention provides a base station, including:
  • a processor configured to weight a common reference signal CRS of the first cell where the terminal device is located by using a weighting matrix to obtain a first CRS;
  • a transmitter configured to send the first CRS to the terminal device
  • a receiver configured to receive a precoding matrix indication PMI and a channel quality indicator CQI sent by the terminal device, where the PMI is obtained by the terminal device to measure the first CRS, where the CQI is a terminal device The first CRS measurement is obtained;
  • the processor is further configured to acquire, according to the weighting matrix, the PMI and the CQI, status information of a downlink channel of the terminal device, where status information of the downlink channel includes a channel covariance matrix of the downlink channel Or a feature vector of the downlink channel;
  • the number of logical antennas of the first cell is 4, and the precoding matrix is a matrix that continuously changes in the time domain.
  • processor is specifically configured to:
  • processor is further configured to determine delay extension information
  • the processor is further configured to configure, according to the delay extension information, a feedback format of the PMI and a feedback format of the CQI for the terminal device;
  • the transmitter is further configured to send the feedback format of the PMI and the feedback format of the CQI to the terminal device, where the terminal device performs measurement on the first CRS, and acquires the PMI.
  • the feedback format matches the PMI and the CQI that matches the feedback format of the CQI.
  • the processor is further configured to acquire delay extension information according to an uplink signal of the terminal device
  • the processor is further configured to perform physical transmission in a sector where the first cell is located
  • the physical transmit antenna of the sector is shaped by the beam weight to obtain at least two beams with a logical antenna number of 4 different azimuth angles, the first cell One of the beams of the number of logical antennas directed to the at least two different azimuths. .
  • the processor is further configured to perform pairing selection on a plurality of the terminal devices according to status information of the downlink channel, to obtain a paired terminal device and an unpaired terminal device;
  • the processor is further configured to calculate, according to the status information of the downlink channel, a downlink multi-user beamforming MU-BF weight of the paired terminal device and a downlink single-user beamforming SU-BF of the unpaired terminal device.
  • the processor is further configured to schedule the paired terminal device according to the MU-BF weight, and schedule the unpaired terminal device according to the SU-BF weight.
  • a fourth aspect of the embodiments of the present invention provides a base station, including: any one of the devices of the third aspect, where the device is integrated in a base station.
  • the weighting matrix is used to weight the common CRS of the first cell where the terminal device is located to obtain the first CRS, and the obtained first CRS is sent to the terminal device for the terminal device pair.
  • the first CRS performs measurement, acquires PMI and CQI, and receives CQI and PMI sent by the terminal device, and acquires state information of the downlink channel of the terminal device according to the weighting matrix, the PMI, and the CQI.
  • the common CRS of the first cell where the terminal device is located is weighted by the weighting matrix, and the state information of the downlink channel of the terminal device is obtained according to the weighting matrix, the PMI, and the CQI, the fixed codebook obtained by the prior art is avoided. Matching the phenomenon of channel changes of the system, thereby improving the accuracy of state information acquisition.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of a method for acquiring downlink channel state information according to an embodiment of the present disclosure
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of a method for acquiring downlink channel state information according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of an apparatus for acquiring downlink channel state information according to an embodiment of the present disclosure
  • Embodiment 4 is a schematic structural diagram of Embodiment 2 of an apparatus for acquiring downlink channel state information according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of Embodiment 3 of an apparatus for acquiring downlink channel state information according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of Embodiment 4 of an apparatus for acquiring downlink channel state information according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a base station according to an embodiment of the present disclosure.
  • the terminal device may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, Radio Access Network; RAN for short), and the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has
  • the computer of the mobile terminal for example, may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Equipment (User Device), or User Equipment.
  • a base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (Base Transceiver Station; BTS for short) in CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
  • the embodiment of the present invention is applicable to a Frequency Division Duplex (FDD) system and a Time Division Duplex (TDD) system of 1T2R, and is specifically applicable to an FD-MIMO system of FDD or TDD. Since the uplink and downlink channels of the FDD system are not reciprocal, the base station cannot obtain the downlink channel state information according to the uplink measurement result. Therefore, the embodiment of the present invention can be applied to the FDD system. In addition, for the TDD system, since the uplink and downlink channels have reciprocity, the base station side can obtain the downlink channel state information by measuring the uplink channel, but for the 1T2R terminal device, only one antenna participates in the uplink transmission, while the downlink reception occurs. Two antennas are used, and the reciprocity of the channel can only obtain half of the downlink channel information. Therefore, the present invention can also be applied to the scenario of acquiring the complete channel state information in the TDD system.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • FIG. 1 is a schematic flowchart diagram of Embodiment 1 of a method for acquiring downlink channel state information according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for acquiring downlink channel state information, which may be performed by any device that performs a method for acquiring downlink channel state information, and the device may be implemented by software and/or hardware.
  • the device can be integrated in the base station.
  • the method in this embodiment may include:
  • Step 101 Weighting a common CRS of the first cell where the terminal device is located by using a weighting matrix to obtain a first CRS.
  • the common CRS of the first cell adopts a varying weighting matrix W on different time domain symbols.
  • (t) Perform a weighting process to obtain a first CRS.
  • the common CRS may be weighted by a precoding matrix to obtain a first CRS of an Orthogonal Frequency Division Multiplexing (OFDM) symbol at the tth time, where t As a positive integer, the precoding matrix is a matrix that satisfies the continuous change in the time domain.
  • the weighting matrix W(t) may include the following forms:
  • W(t) satisfies the following feature: W(t) is a matrix of N T ⁇ N CRS_Port_Num , where N T is the number of physical transmit antennas, for example, may be 4, etc., N CRS_Port_Num is the number of logical transmit antennas, W ( The phase of the element value of t) will continue to phase rotate according to t.
  • f 0 , f 1 , f 2 and f 3 are the phase change amounts at different positions, and the specific values thereof can be set according to actual conditions, for example, can be set to [15 20 -15 -20]*0.001/14, etc.
  • 0.001/14 represents the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents relative phase change on every additional OFDM symbol in the time domain.
  • the value is the index value of the OFDM symbol, and the specific value can be counted from the 0th symbol of the first subframe of the radio frame 0.
  • U(t) is also a 4 ⁇ 4 diagonal matrix, which is as follows:
  • f 0 , f 1 , f 2 and f 3 are the phase change amounts at different positions, and the specific values thereof can be set according to actual conditions, for example, can be set to [15 20 -15 -20]*0.001/14, etc.
  • 0.001/14 represents the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents relative phase change on every additional OFDM symbol in the time domain.
  • the value is the index value of the OFDM symbol, and the specific value can be counted from the 0th symbol of the first subframe of the radio frame 0.
  • Q is a 4 ⁇ 4 unitary matrix, which satisfies the following relationship:
  • U(t) is a 4 ⁇ 4 diagonal matrix, which is as follows:
  • f 0 , f 1 , f 2 and f 3 are the phase change amounts at different positions, and the specific values thereof can be set according to actual conditions, for example, can be set to [15 20 -15 -20]*0.001/14, etc.
  • 0.001/14 represents the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents relative phase change on every additional OFDM symbol in the time domain.
  • the value is the index value of the OFDM symbol, and the specific value can be counted from the 0th symbol of the first subframe of the radio frame 0.
  • Q is a 4 ⁇ 4 unitary matrix, which satisfies the following relationship:
  • the weighting matrix W(t) may also include the following forms:
  • U(t) is a diagonal matrix of 8 ⁇ 8, which is as follows:
  • f 0 to f 7 are phase change amounts at different positions, and the specific values thereof may be set according to actual conditions, for example, may be set to [15 20 -15 -20]*0.001/14, etc., wherein 0.001/14 Indicates the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents the relative phase change amount per 1 OFDM symbol added in the time domain; t is the OFDM symbol The accumulated index value may be counted from the 0th symbol of the 0th subframe of the radio frame 0.
  • U(t) is a 4 ⁇ 4 diagonal matrix, which is as follows:
  • f 0 to f 4 are phase change amounts at different positions, and the specific values thereof may be set according to actual conditions, for example, may be set to [15 20 -15 -20]*0.001/14, etc., wherein 0.001/14 Indicates the time granularity of 1 OFDM symbol, that is, 14 OFDM symbols in 1 ms; [15 20 -15 -20]*0.001/14 represents the relative phase change amount per 1 OFDM symbol added in the time domain; t is the OFDM symbol The accumulated index value may be counted from the 0th symbol of the 0th subframe of the radio frame 0.
  • W(t) may also be a matrix that satisfies other features, as long as it is a matrix obtained by performing precoding matrix weighting on the common CRS.
  • the precoding matrix with continuously varying phases can well meet the requirements of the interpolation filtering processing between subframes when the terminal device performs channel estimation.
  • Step 102 Send the first CRS to the terminal device.
  • Step 103 Receive PMI and CQI sent by the terminal device, where the PMI is obtained by the terminal device for the first CRS, and the CQI is obtained by the terminal device for the first CRS.
  • Step 104 Obtain a state of a downlink channel of the terminal device according to the weighting matrix, the PMI, and the CQI.
  • Information, the status information of the downlink channel includes a channel covariance matrix of the downlink channel or a feature vector of the downlink channel.
  • the base station sends the obtained first CRS to the terminal device, and the terminal device performs measurement on the first CRS, respectively obtains PMI and CQI, and feeds back the obtained PMI and CQI to the base station, so that the base station Obtaining downlink channel state information of the terminal device according to the weighting matrix, the PMI, and the CQI.
  • the PMI is a PMI corresponding to the MIMO format.
  • the base station before the base station sends the first CRS to the terminal device, the base station further needs to configure, by using signaling, a feedback mode of the MIMO of the terminal device, a feedback format of the PMI corresponding to the MIMO, and a feedback format of the CQI.
  • the base station can configure the feedback mode of the MIMO of the terminal device to the TM8 mode, and the feedback format of the PMI and the CQI will be configured according to the provisions of the existing LTE protocol, such as Modes 1-2 that can be based on the PUSCH non-periodic path feedback.
  • 2-2, 3-1 configuration can also be configured with PUCCH cycle feedback Mode 1-1 or Mode 2-1 and so on.
  • the base station may configure the downlink PMI feedback format and the CQI feedback format for the terminal device by determining the delay extension information and according to the determined delay extension information.
  • a terminal device with a large delay extension information may be configured as Mode 1-2
  • a terminal extension device with a medium delay extension information may be configured as Mode 2-2
  • a PMI feedback format of a terminal device with a small delay extension information It can be based on the configuration of Mode 1-1 or Mode 2-1 of PUCCH feedback, and the like.
  • the base station configures a feedback format of the PMI and a feedback format of the CQI for the terminal device according to the determined delay extension information, where the base station obtains the delay extension information according to the uplink signal of the terminal device, according to the delay.
  • the extended information and the preset signaling feedback overhead information are configured to configure a PMI feedback format and a CQI feedback format for the terminal device.
  • the uplink signal may include, for example, an uplink measurement pilot signal, an uplink demodulation pilot signal, or a random access sequence signal, and the like.
  • the base station may further configure a feedback format of the downlink PMI and a feedback format of the CQI for the terminal device according to the environment state of the terminal device, that is, the usage scenario of the base station. For example, in an open environment such as an airport or a stadium, the delay spread is small.
  • the base station can configure the MIMO format of the terminal device to the TM8 mode, and the PMI feedback format and the CQI feedback format can be based on the PUCCH channel. Feedback Mode 1-1 or Mode 2-1 is configured and so on.
  • the base station After the base station configures the feedback format of the MIMO and the feedback format of the MIMO corresponding PMI and the feedback format of the CQI, the base station sends the feedback format of the PMI and the feedback format of the CQI to the terminal device, so that the terminal device performs the first CRS on the terminal device. Measurement, get feedback with PMI The format matches the PMI and the CQI that matches the CQI feedback format.
  • the base station adopts the above configuration mode, and configures a downlink PMI feedback format and a downlink CQI feedback format for the terminal device, so that the capacity performance and the feedback overhead of the base station are optimized.
  • the base station may acquire the state information of the downlink channel of the terminal device by using the obtained weighting matrix and the received PMI and CQI, where the state information of the downlink channel includes the channel of the downlink channel. Covariance matrix or eigenvector of the downlink channel.
  • the base station obtains the signal-to-noise ratio of the downlink channel of the terminal device according to the CQI, and calculates an equivalent codebook corresponding to the PMI according to the weighting matrix, and then calculates the equivalent according to the obtained signal-to-noise ratio.
  • the codebook acquires status information of the downlink channel.
  • the number of logical antenna 4 is assumed that a first cell, the base station 16 will receives the CQI, wherein any one CQI called CQI I, then the inverse quantization process CQI I get I CQI corresponding to noise ratio ⁇ i .
  • the base station After obtaining the signal to noise ratio of the downlink channel, the base station calculates an equivalent codebook corresponding to the PMI according to the weighting matrix. Specifically, if the number of logical antennas of the first cell is 4, the base station receives 16 PMIs, and any one of the PMIs is called PMI i , and multiplies the matrix codebook corresponding to the received PMI i by PMI i .
  • the corresponding weighting matrix is the equivalent codebook
  • the base station may further calculate an equivalent codebook matrix according to the previously accumulated N PMIs, and sequentially improve the accuracy of the calculation of the equivalent codebook matrix.
  • the base station After the base station obtains the signal to noise ratio and the equivalent codebook, the state information of the downlink channel can be acquired.
  • the implementation principle of the solution in this embodiment will be described below.
  • R is the covariance matrix of the downlink channel
  • ⁇ 2 is the noise power of the downlink channel
  • H is the channel matrix
  • equation (1) can be transformed into equation (2).
  • T represents the transposition of the matrix.
  • ⁇ 2 is the noise power of the downlink channel, it is approximately a constant value. Since the directivity of the covariance matrix is not affected, ⁇ 2 is directly ignored in the derivation of equation (3).
  • the base station obtains 16 signal-to-noise ratios ⁇ 0 to ⁇ 15 and obtains 16 equivalent codebooks. Then, x 0 to x 15 can be calculated according to the formula (4), thereby obtaining a covariance matrix R.
  • the downlink channel covariance matrix is a 4 ⁇ 4 matrix, which means that 16 unknown variables to be solved. From a mathematical point of view, the solution of 16 unknown variables can be solved as long as 16 linear equations can be constructed. In actual engineering, certain engineering can be done, not necessarily 16 times. measuring. Assuming M times (M is less than 16), then the pseudo-inverse calculation in equation (5) can be used:
  • T is a matrix of N rows and 16 columns.
  • the base station can calculate the feature vector of the downlink channel according to the channel covariance matrix, and the specific calculation manner is not described herein again.
  • the base station can use the pre-designed beamforming vector to weight the data before transmitting the downlink data to the terminal device.
  • the shape vector may select a feature vector corresponding to the maximum eigenvalue of the channel covariance matrix, so that when the base station transmits data to the target terminal device, the main lobe direction of the antenna pattern is aligned with the target terminal device, and the zero point is aligned with the interference direction. Therefore, the interference can be effectively suppressed, and the signal to interference plus noise ratio (SINR) of the target terminal device is improved.
  • SINR signal to interference plus noise ratio
  • the base station After the interference is suppressed, the base station indicates that each terminal device occupies the same time-frequency resource through the downlink control channel, thereby realizing multi-user time-frequency resource multiplexing, thereby improving system capacity.
  • the physical transmit antenna is 4T, up to 4 users of time-frequency resource multiplexing can be realized.
  • the first CRS is obtained by weighting the common CRS of the first cell where the terminal device is located by using the weighting matrix, and the obtained first CRS is sent to the terminal device for the terminal device pair.
  • the first CRS performs measurement, acquires PMI and CQI, and receives CQI and PMI sent by the terminal device, and obtains the final according to the weighting matrix, PMI, and CQI. Status information of the downlink channel of the end device.
  • the weighted matrix is used to weight the common CRS of the first cell where the terminal device is located, and the state information of the downlink channel of the terminal device is obtained according to the weighting matrix, the PMI, and the CQI, thereby avoiding the fixed codebook obtained by quantization in the prior art.
  • the phenomenon of matching the changed channel of the system is improved, thereby improving the accuracy of the state information acquisition.
  • the physical transmit antenna of the sector is shaped by the beam weight. At least two beams with a logical antenna number of 4 different azimuth angles, and the first cell is one of at least two beams with a logical antenna number of 4 pointed by different azimuth angles.
  • the base station needs to perform digital beam on the physical transmit antenna.
  • the splitting shape is split and split into beams of no less than two logical antennas with a different azimuth pointing.
  • the beam obtained after the splitting can be configured as a different physical cell or a physical cell.
  • the specific configuration of the split beam is not limited in this embodiment.
  • the first CRS is obtained by weighting the common CRS of the first cell where the terminal device is located by using the weighting matrix, and the obtained first CRS is sent to the terminal device for the terminal device pair.
  • the first CRS performs measurement, acquires PMI and CQI, and receives CQI and PMI sent by the terminal device, and acquires state information of the downlink channel of the terminal device according to the weighting matrix, the PMI, and the CQI.
  • the base station Since the common CRS of the first cell where the terminal device is located is weighted by the weighting matrix, and the state information of the downlink channel of the terminal device is obtained according to the weighting matrix, the PMI, and the CQI, the fixed codebook obtained by the prior art is avoided. Matching the phenomenon of channel changes of the system, thereby improving the accuracy of state information acquisition.
  • the base station since the number of physical transmit antennas is greater than 8 or the base station is a time division duplex TDD system, the base station performs beam weight shaping on the physical transmit antenna to obtain at least two beams with a logical antenna number of 4 different azimuth angles. To make the way to get status information more widely used.
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of a method for acquiring downlink channel state information according to an embodiment of the present invention.
  • the method in this embodiment may include:
  • Step 201 Perform pairing selection on multiple terminal devices according to status information of the downlink channel, and obtain a paired terminal device and an unpaired terminal device.
  • the base station after acquiring the status information of the downlink channel, the base station will pair the multiple terminal devices according to the existing pairing manner to obtain the paired terminal device and the unpaired terminal device, where the paired terminal device For a paired terminal device, the unpaired terminal device is a terminal device other than the paired terminal device among the plurality of terminal devices.
  • Step 202 Calculate, according to the status information of the downlink channel, a downlink multi-user beamforming MU-BF weight of the paired terminal device and a downlink single-user beamforming SU-BF weight of the unpaired terminal device.
  • the base station performs downlink MU-BF weights of the paired terminal equipment and downlink SU-BF weights of the unpaired terminal equipment according to the obtained channel covariance matrix of the downlink channel of the terminal equipment or the feature vector of the downlink channel.
  • the calculation is performed.
  • algorithms such as ZF-BF and BD-BF can be used for calculation.
  • Step 203 Perform scheduling on the paired terminal device according to the MU-BF weight, and schedule the unpaired terminal device according to the SU-BF weight.
  • the base station performs scheduling on the paired terminal device according to the calculated MU-BF weight, and performs scheduling on the unpaired terminal device according to the calculated SU-BF weight. After the scheduling is completed, the base station needs to perform channel. The correction is such that the time for transmitting or receiving data of each channel remains the same. After the channel correction is completed, the scheduled paired terminal device and the scheduled unpaired terminal device are subjected to antenna data air interface transmission.
  • the first CRS is obtained by weighting the common CRS of the first cell where the terminal device is located by using the weighting matrix, and the obtained first CRS is sent to the terminal device for the terminal device pair.
  • the first CRS performs measurement, acquires PMI and CQI, and receives CQI and PMI sent by the terminal device, and acquires state information of the downlink channel of the terminal device according to the weighting matrix, the PMI, and the CQI.
  • the common CRS of the first cell where the terminal device is located is weighted by the weighting matrix, and the state information of the downlink channel of the terminal device is obtained according to the weighting matrix, the PMI, and the CQI, the fixed codebook obtained by the prior art is avoided. Matching the phenomenon of channel changes of the system, thereby improving the accuracy of state information acquisition.
  • the base station obtains the status information, the downlink data is transmitted according to the obtained status information, thereby improving the network capacity.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of an apparatus for acquiring downlink channel state information according to an embodiment of the present invention.
  • the apparatus for acquiring downlink channel state information provided by the embodiment of the present invention includes a weighting module 11 and a sending module 12 The receiving module 13 and the obtaining module 14.
  • the weighting module 11 is configured to obtain a first CRS by weighting a common reference signal CRS of the first cell where the terminal device is located by using a weighting matrix;
  • the sending module 12 is configured to send the first CRS to the terminal device
  • the receiving module 13 is configured to receive a precoding matrix indication PMI and a channel quality indicator CQI sent by the terminal device, where the PMI is obtained by the terminal device to measure the first CRS, where the CQI is the terminal device The first CRS measurement is obtained;
  • the obtaining module 14 is configured to acquire, according to the weighting matrix, the PMI and the CQI, status information of a downlink channel of the terminal device, where status information of the downlink channel includes a channel covariance matrix of the downlink channel, or a feature vector of the downlink channel;
  • the number of logical antennas of the first cell is 4, and the precoding matrix is a matrix that continuously changes in the time domain.
  • the apparatus for acquiring the downlink channel state information obtained by the embodiment of the present invention obtains the first CRS by weighting the common CRS of the first cell where the terminal device is located, and sends the obtained first CRS to the terminal device for the terminal device pair.
  • the first CRS performs measurement, acquires PMI and CQI, and receives CQI and PMI sent by the terminal device, and acquires state information of the downlink channel of the terminal device according to the weighting matrix, the PMI, and the CQI.
  • the common CRS of the first cell where the terminal device is located is weighted by the weighting matrix, and the state information of the downlink channel of the terminal device is obtained according to the weighting matrix, the PMI, and the CQI, the fixed codebook obtained by the prior art is avoided. Matching the phenomenon of channel changes of the system, thereby improving the accuracy of state information acquisition.
  • the obtaining module 14 is specifically configured to:
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of a device for acquiring downlink channel state information according to an embodiment of the present disclosure. As shown in FIG. 4, the present embodiment further includes: determining, according to the embodiment shown in FIG. Module 15 and configuration module 16.
  • the determining module 15 is configured to determine delay extension information.
  • the configuration module 16 is configured to configure a feedback format of the PMI and a feedback format of the CQI for the terminal device according to the delay extension information.
  • the sending module 12 is configured to send the feedback format of the PMI and the feedback format of the CQI to the terminal device, where the terminal device performs measurement on the first CRS, and obtains feedback with the PMI.
  • the configuration module 16 is specifically configured to:
  • FIG. 5 is a schematic structural diagram of Embodiment 3 of an apparatus for acquiring downlink channel state information according to an embodiment of the present invention. As shown in FIG. 5, the embodiment is further based on the embodiment shown in FIG. 3 or FIG. Including: processing module 17; wherein:
  • the processing module 17 is configured to: when the number of physical transmit antennas of the sector where the first cell is located is greater than 8 or when the base station is a time division duplex TDD system, the physical transmit antenna of the sector is shaped by the beam weight Two different azimuth angles point to a beam of 4 logical beams, and the first cell is one of the beams of the logical antenna number of 4 pointed by the at least two different azimuth angles.
  • the device for acquiring the downlink channel state information provided in this embodiment is used to perform the method for obtaining the downlink channel state information in the embodiment shown in FIG. 1.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of Embodiment 4 of a device for acquiring downlink channel state information according to an embodiment of the present invention. As shown in FIG. 6 , in this embodiment, the device further includes: a selecting module 18, The calculation module 19 and the scheduling module 20.
  • the selecting module 18 is configured to perform pairing selection on a plurality of the terminal devices according to status information of the downlink channel, to obtain a paired terminal device and an unpaired terminal device;
  • the calculating module 19 is configured to calculate, according to the status information of the downlink channel, a downlink multi-user beamforming MU-BF weight of the paired terminal device and a downlink single-user beamforming SU-BF weight of the unpaired terminal device. value;
  • the scheduling module 20 is further configured to schedule the paired terminal device according to the MU-BF weight, and schedule the unpaired terminal device according to the SU-BF weight.
  • the apparatus for acquiring downlink channel state information provided in this embodiment is used to perform the implementation shown in FIG.
  • the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a base station according to an embodiment of the present invention.
  • the base station provided by the embodiment of the present invention includes a processor 21, a transmitter 22, and a receiver 23.
  • the processor 21 is configured to obtain a first CRS by weighting a common reference signal CRS of the first cell where the terminal device is located by using a weighting matrix;
  • the transmitter 22 is configured to send the first CRS to the terminal device
  • the receiver 23 is configured to receive a precoding matrix indication PMI and a channel quality indicator CQI sent by the terminal device, where the PMI is obtained by the terminal device to measure the first CRS, where the CQI is the terminal device The first CRS measurement is obtained;
  • the processor 21 is further configured to acquire, according to the weighting matrix, the PMI and the CQI, status information of a downlink channel of the terminal device, where status information of the downlink channel includes a channel covariance matrix of the downlink channel. Or a feature vector of the downlink channel;
  • the number of logical antennas of the first cell is 4, and the precoding matrix is a matrix that continuously changes in the time domain.
  • the base station provided in this embodiment is used to perform the method for obtaining the downlink channel state information in any of the foregoing embodiments.
  • the implementation principle and the technical effects are similar, and details are not described herein again.
  • the processor 21 is specifically configured to:
  • the processor 21 is further configured to determine delay extension information
  • the processor 21 is further configured to configure, according to the delay extension information, a feedback format of the PMI and a feedback format of the CQI for the terminal device;
  • the transmitter 22 is further configured to send the feedback format of the PMI and the feedback format of the CQI to the terminal device, where the terminal device performs measurement on the first CRS, and acquires the PMI.
  • the feedback format matches the PMI and the CQI that matches the feedback format of the CQI.
  • the processor 21 is further configured to acquire delay extension information according to an uplink signal of the terminal device;
  • the terminal device The feedback format of the PMI and the feedback format of the CQI are set.
  • the processor 21 is further configured to: when the number of physical transmit antennas of the sector where the first cell is located is greater than 8 or when the base station is a time division duplex TDD system, the physical transmit antenna of the sector is beam-weighted
  • the value shaping results in a beam of at least two logical antennas with a different azimuth pointing, the first cell being one of the beams of the logical antenna number of 4 pointed by the at least two different azimuth angles.
  • the processor 21 is further configured to perform pairing selection on multiple terminal devices according to status information of the downlink channel, to obtain a paired terminal device and an unpaired terminal device;
  • the processor 21 is further configured to calculate, according to the status information of the downlink channel, a downlink multi-user beamforming MU-BF weight of the paired terminal device and a downlink single-user beamforming SU-BF of the unpaired terminal device.
  • the processor 21 is further configured to schedule the paired terminal device according to the MU-BF weight, and schedule the unpaired terminal device according to the SU-BF weight.
  • the base station provided in this embodiment is used to perform the method for obtaining the downlink channel state information in any of the foregoing embodiments.
  • the implementation principle and the technical effects are similar, and details are not described herein again.
  • the embodiment further provides a base station, which includes the apparatus for acquiring downlink channel state information according to any of the foregoing embodiments, where the apparatus is integrated in a base station, and the specific structure and function of the apparatus are similar to those in the foregoing embodiment. I will not repeat them here.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及一种下行信道状态信息的获取方法和装置,该方法包括:通过加权矩阵对终端设备所在的第一小区的公共CRS加权得到第一CRS;将第一CRS发送给终端设备;接收终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,PMI为终端设备对第一CRS测量得到,CQI为终端设备对第一CRS测量得到;根据加权矩阵,PMI和CQI获取终端设备的下行信道的状态信息,下行信道的状态信息包括下行信道的信道协方差矩阵或下行信道的特征向量;其中,第一小区的逻辑天线数为4,预编码矩阵为满足时域上连续变化的矩阵。本发明提供的下行信道状态信息的获取方法和装置可以提高获取下行信道状态信息的准确性。

Description

下行信道状态信息的获取方法和装置 技术领域
本发明实施例涉及通信技术,特别涉及一种下行信道状态信息的获取方法和装置。
背景技术
在多用户多输入多输出(Multi-User Multiple-Input Multiple-Out-put;简称:MU-MIMO)系统中,当多个用户在相同的时频资源上传输数据时,每个用户不但接收到基站发送给自己的数据流,还会接收到其他用户的干扰信号。为有效抑制用户间的干扰,提升系统容量和频谱效率,一种有效的解决方案就是波束赋形(Beamforming;简称:BF)技术,即基站侧在数据发射之前先使用预先设计好的波束赋形向量进行加权,使得基站发送该用户的数据时天线方向图的主瓣对准用户方向,而零值点对准干扰方向,提升终端设备来波方向的信噪比,达到抑制干扰的目的。
在现有技术中,在MU-MIMO BF中,通常采用如下方式获取下行信道的状态信息:基站首先基于终端设备反馈的预编码矩阵指示(Precoding Matrix Indication;简称:PMI)是否正交或者准正交进行MU-MIMO配对用户的调度处理,处理完成之后,将对MU-MIMO配对用户下行数据物理下行共享信道(Physical Downlink Shared Channel;简称:PDSCH)或解调的参考信号(De Modulation Reference Signal;简称:DMRS)BF进行加权以及测量导频映射,最后,基站将根据得到的加权值对配对用户进行下行数据的发射,终端设备在接收到基站发射的下行数据后将进行PMI或信道质量指示(Channel Quality Indicator;简称:CQI)的测量,并将测量结果上报给基站,以使基站获取到下行信道的状态信息。
然而,现有的获取下行信道状态信息的方式,终端设备向基站反馈的PMI是一个量化的固定码本,即通常以一个固定码本去匹配系统中变化的下行信道,由于该固定码本会存在一定的量化误差,从而造成基站获取的下行信道状态信息的精确度不高。
发明内容
本发明实施例提供了一种下行信道状态信息的获取方法和装置,以提高下行信道状态信息获取的精确度,从而有效抑制配对用户间的干扰。
本发明实施例第一方面下行信道状态信息的获取方法,应用于多用户多输入多输出MU-MIMO系统中,包括:
通过加权矩阵对终端设备所在的第一小区的公共参考信号(cell-specific reference signals,简称CRS)加权得到第一CRS;
将所述第一CRS发送给所述终端设备;
接收所述终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,所述PMI为所述终端设备对所述第一CRS测量得到,所述CQI为所述终端设备对所述第一CRS测量得到;
根据所述加权矩阵,所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,所述下行信道的状态信息包括所述下行信道的信道协方差矩阵或所述下行信道的特征向量;
其中,所述第一小区的逻辑天线数为4,所述预编码矩阵为满足时域上连续变化的矩阵。
其中,在终端设备所在的第一小区的逻辑天线数为4时,加权矩阵W(t)可以包括如下的几种形式:
第一种:W(t)满足如下特征:W(t)为NT×NCRS_Port_Num的矩阵,其中NT为物理发射天线数,例如可以为4等,NCRS_Port_Num为逻辑发射天线数,W(t)的元素值的相位会根据t不断进行相位旋转。
第二种:W(t)满足如下特征:W(t)=U(t),其中,U(t)为4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000001
其中,f0,f1,f2和f3为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中, 0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第一个子帧的第0个符号起开始计数。
第三种:W(t)满足如下特征:W(t)=U(t)*Q,其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为4,NCRS_Port_Num为逻辑发射天线数,其值也为4。U(t)也为一个4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000002
其中,f0,f1,f2和f3为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[1520-15-20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第一个子帧的第0个符号起开始计数。
另外,Q为4×4的酉矩阵,其满足如下的关系:
Figure PCTCN2016072009-appb-000003
第四种:W(t)满足如下特征:W(t)=Q*U(t),其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为4,NCRS_Port_Num为逻辑发射天线数,其值也为4。U(t)为4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000004
其中,f0,f1,f2和f3为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第一个子帧的第0个符号起开始计数。
另外,Q为4×4的酉矩阵,其满足如下的关系:
Figure PCTCN2016072009-appb-000005
另外,在8T波束赋形时,加权矩阵W(t)还可以包括如下的几种形式:
第一种:W(t)满足如下特征:W(t)=U(t)*Q,其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为8,NCRS_Port_Num为逻辑发射天线数,其值为4。U(t)为8×8的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000006
其中,f0~f7为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第0个子帧的第0个符号起开始计数。
另外,Q为4×4的酉矩阵,满足QHQ=E4*4
第二种:W(t)满足如下特征:W(t)=Q*U(t),其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为8,NCRS_Port_Num为逻辑发射天线数,其值为4。U(t)为4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000007
其中,f0~f4为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第0个子帧的第0个符号起开始计数。
另外,Q为8×4的酉矩阵,满足QHQ=E4*4
本方案提供的下行信道状态信息的获取方法,通过加权矩阵对终端设备所在的第一小区的公共CRS进行加权,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息,避免了现有技术中以量化得到的固定码本去匹配系统变化的信道的现象,从而提高了状态信息获取的精确度。
进一步地,所述根据所述加权矩阵、所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,包括:
根据所述CQI获得所述下行信道的信噪比;
根据所述加权矩阵,计算所述PMI对应的等效码本;
根据所述信噪比和所述等效码本,获取所述下行信道的状态信息。
在本方案中,基站根据计算出的PMI对应的等效码本和CQI,便可以获得信道协方差矩阵,其中,PMI为多输入多输出(Multiple-Input Multiple-Out-put;简称:MIMO)格式对应的PMI。在具体的实现过程中,假设第一小区的逻辑天线数为4,那么基站就会接收到16个CQI,其中任意一个CQI称为CQIi,那么对CQIi进行反量化处理就会得到CQIi对应的信噪比ρi
基站在获得下行信道的信噪比之后,将根据加权矩阵,计算PMI对应的等效码本。具体来说,假设第一小区的逻辑天线数为4,那么基站就会接收到16个PMI,其中任意一个PMI称为PMIi,利用接收到的PMIi所对应的矩阵码本乘以PMIi所对应的加权矩阵即为等效码本
Figure PCTCN2016072009-appb-000008
为了提高获取的状态信息的精确性,基站还可以根据之前累积的N个PMI计算等效码本矩阵,依次提高等效码本矩阵计算的准确性。
基站获取到信噪比和等效码本之后,便可以获取到下行信道的信道协方差矩阵。
另外,基站在获取到下行信道的信道协方差矩阵之后,便可以根据该信道协方差矩阵,计算出下行信道的特征向量,具体的计算方式此处不再赘述。
由于基站可以根据CQI和根据加权矩阵计算出的PMI对应的等效码本,计算获取下行信道的状态信息,可以提高获取的状态信息的精确度。
进一步地,所述将所述第一CRS发送给所述终端设备之前,所述方法还包括:
确定时延扩展信息;
根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式;
将所述PMI的反馈格式和所述CQI的反馈格式发送给所述终端设备,以供所述终端设备对所述第一CRS进行测量,获取与所述PMI的反馈格式匹配的PMI和与所述CQI的反馈格式匹配的CQI。
在本方案中,所述确定时延扩展信息,并根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式,包括:
根据所述终端设备的上行信号,获取时延扩展信息;
根据所述时延扩展信息和预设的信令反馈开销信息,为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式。
在基站接收终端设备反馈的PMI和CQI格式之前,基站还需要通过信令配置终端设备的MIMO的反馈格式和PMI的反馈格式以及CQI的反馈格式。例如:基站可以将终端设备的MIMO的反馈格式配置为TM8模式,而PMI和CQI的反馈格式将按照现有长期演进(Long Term Evolution;简称:LTE)协议中的规定进行配置,如可以基于物理上行共享信道(Physical Uplink Shared Channel;简称:PUSCH)非周期随路反馈的Modes 1-2,2-2,3-1进行配置,也可以采用物理上行链路控制信道(Physical Uplink Control Channel;简称:PUCCH)周期反馈的Mode 1-1或者Mode 2-1进行配置等等。
可选地,基站可以根据终端设备的上行信号,获取时延扩展信息,并根据获取到的时延扩展信息和预设的信令反馈开销信息,为终端设备配置下行 PMI的反馈格式和CQI的反馈格式。其中,上行信号例如可以包括上行测量导频信号、上行解调导频信号或者随机接入序列信号等等。举例来说,时延扩展信息较大的终端设备可以配置为Mode 1-2,时延扩展信息中等的终端设备可以配置为Mode2-2,时延扩展信息小的终端设备的PMI反馈格式可以基于PUCCH反馈的Mode 1-1或者Mode 2-1等配置。
可选地,基站还可以根据终端设备所处的环境状态,为终端设备配置下行PMI的反馈格式和CQI的反馈格式。举例来说,在飞机场、体育馆等开阔的环境中时,时延扩展较小,此时基站可以将终端设备的MIMO的反馈格式配置为TM8模式,而PMI的反馈格式和CQI的反馈格式可以基于PUCCH信道反馈的Mode 1-1或者Mode 2-1进行配置等等。
基站在为终端设备配置PMI的反馈格式和CQI的反馈格式之后,将上述PMI的反馈格式和CQI的反馈格式发送给终端设备,以使终端设备对第一CRS进行测量,获取与PMI的反馈格式匹配的PMI和与CQI的反馈格式匹配的CQI。
在本方案中,基站采用如上的配置方式,为终端设备配置下行PMI的反馈格式和下行CQI的反馈格式,可以使基站的容量性能和反馈开销达到最优。
进一步地,若所述第一小区所在的扇区的物理发射天线数大于8或基站为时分双工TDD制式,所述扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,所述第一小区为所述至少两个不同方位角指向的逻辑天线数为4的波束中的一个。
当第一小区所在的扇区的物理发射天线数大于8时,或者当基站为TDD制式时,或者对于单发终端设备或者信道探测参考信号(Sounding Reference Signal;简称:SRS)资源不够时,基站均需要对物理发射天线进行数字波束劈裂赋形,将其劈裂成不少于2个不同方位角指向的逻辑天线数为4的波束。其中,劈裂后获得的波束可以配置成不同的物理小区,也可以配置成相同的物理小区,对于劈裂后的波束的具体配置方式,本实施例在此不作限制。当基站将物理发射天线进行波束权值赋形之后,对于获得的至少两个不同方位角指向的逻辑天线数为4的波束,将按照上述实施例中的方式进行处理,以获得下行信道的状态信息。
在本方案中,由于在物理发射天线数大于8或基站为时分双工TDD制式时,基站通过对物理发射天线进行波束权值赋形,以获得至少两个不同方位角指向的逻辑天线数为4的波束,使获取状态信息的方式应用更加广泛。
进一步地,所述根据所述加权矩阵、所述PMI和所述CQI获取所述终端设备的下行信道的状态信息之后,还包括:
根据所述下行信道的状态信息,对多个所述终端设备进行配对选择,获得配对终端设备和非配对终端设备;
根据所述下行信道的状态信息,计算所述配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户波束赋形SU-BF权值;
根据所述MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度。
基站根据获得的下行信道的信道协方差矩阵或下行信道的特征向量,对配对终端设备的下行多用户波束赋形(Multi-User Beamforming;简称:MU-BF)权值和非配对终端设备的下行单用户波束赋形(single-User Beamforming;简称:SU-BF)权值进行计算,在实际应用中,可以采用ZF-BF、BD-BF等算法计算。
基站根据计算获得的MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度,调度处理完成之后,基站需要进行通道的校正,使得各个通道发射或接收数据的时间保持一致,通道校正完成之后,将根据MU-BF权值和SU-BF权值,对调度后的配对终端设备和非配对终端设备进行天线数据空口发射。
在本方案中,当基站获取到状态信息后,再根据获得的状态信息进行下行数据的发射,由此可以提升网络容量。
本发明实施例第二方面提供一种下行信道状态信息的获取装置,包括:
加权模块,用于通过加权矩阵对终端设备所在的第一小区的公共参考信号CRS加权得到第一CRS;
发送模块,用于将所述第一CRS发送给所述终端设备;
接收模块,用于接收所述终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,所述PMI为所述终端设备对所述第一CRS测量得到,所述CQI为所述终端设备对所述第一CRS测量得到;
获取模块,用于根据所述加权矩阵,所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,所述下行信道的状态信息包括所述下行信道的信道协方差矩阵或所述下行信道的特征向量;
其中,所述第一小区的逻辑天线数为4,所述预编码矩阵为满足时域上连续变化的矩阵。
进一步地,所述获取模块,具体用于:
根据所述CQI获得所述下行信道的信噪比;
根据所述加权矩阵,计算所述PMI对应的等效码本;
根据所述信噪比和所述等效码本,获取所述下行信道的状态信息。
进一步地,所述装置还包括:确定模块和配置模块;其中,
所述确定模块,用于确定时延扩展信息;
所述配置模块,用于根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式;
所述发送模块,用于将所述PMI的反馈格式和所述CQI的反馈格式发送给所述终端设备,以供所述终端设备对所述第一CRS进行测量,获取与所述PMI的反馈格式匹配的PMI和与所述CQI的反馈格式匹配的CQI。
进一步地,所述配置模块,具体用于:
根据所述终端设备的上行信号,获取时延扩展信息;
根据所述时延扩展信息和预设的信令反馈开销信息,为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式。
进一步地,所述装置还包括:处理模块;其中:
所述处理模块,用于在所述第一小区所在的扇区的物理发射天线数大于8或基站为时分双工TDD制式时,所述扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,所述第一小区为所述至少两个不同方位角指向的逻辑天线数为4的波束中的一个。
进一步地,所述装置还包括:选择模块、计算模块和调度模块;其中,
所述选择模块,用于根据所述下行信道的状态信息,对多个所述终端设备进行配对选择,获得配对终端设备和非配对终端设备;
所述计算模块,还用于根据所述下行信道的状态信息,计算所述配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户 波束赋形SU-BF权值;
所述调度模块,用于根据所述MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度。
本发明实施例第三方面提供一种基站,包括:
处理器,用于通过加权矩阵对终端设备所在的第一小区的公共参考信号CRS加权得到第一CRS;
发送器,用于将所述第一CRS发送给所述终端设备;
接收器,用于接收所述终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,所述PMI为所述终端设备对所述第一CRS测量得到,所述CQI为所述终端设备对所述第一CRS测量得到;
所述处理器,还用于根据所述加权矩阵,所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,所述下行信道的状态信息包括所述下行信道的信道协方差矩阵或所述下行信道的特征向量;
其中,所述第一小区的逻辑天线数为4,所述预编码矩阵为满足时域上连续变化的矩阵。
进一步地,所述处理器具体用于:
根据所述CQI获得所述下行信道的信噪比;
根据所述加权矩阵,计算所述PMI对应的等效码本;
根据所述信噪比和所述等效码本,获取所述下行信道的状态信息。
进一步地,所述处理器,还用于确定时延扩展信息;
所述处理器,还用于根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式;
所述发送器,还用于将所述PMI的反馈格式和所述CQI的反馈格式发送给所述终端设备,以供所述终端设备对所述第一CRS进行测量,获取与所述PMI的反馈格式匹配的PMI和与所述CQI的反馈格式匹配的CQI。
进一步地,所述处理器,还用于根据所述终端设备的上行信号,获取时延扩展信息;
根据所述时延扩展信息和预设的信令反馈开销信息,为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式。
进一步地,所述处理器,还用于在所述第一小区所在的扇区的物理发射 天线数大于8或基站为时分双工TDD制式时,所述扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,所述第一小区为所述至少两个不同方位角指向的逻辑天线数为4的波束中的一个。。
进一步地,所述处理器,还用于根据所述下行信道的状态信息,对多个所述终端设备进行配对选择,获得配对终端设备和非配对终端设备;
所述处理器,还用于根据所述下行信道的状态信息,计算所述配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户波束赋形SU-BF权值;
所述处理器,还用于根据所述MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度。
本发明实施例第四方面提供一种基站,包括:第三方面的任一种装置,所述装置集成于基站中。
本发明提供的下行信道状态信息的获取方法和装置,通过加权矩阵对终端设备所在的第一小区的公共CRS加权得到第一CRS,将获得的第一CRS发送给终端设备,用于终端设备对第一CRS进行测量,获取PMI和CQI,并接收终端设备发送的CQI和PMI,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息。由于通过加权矩阵对终端设备所在的第一小区的公共CRS进行加权,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息,避免了现有技术中以量化得到的固定码本去匹配系统变化的信道的现象,从而提高了状态信息获取的精确度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的下行信道状态信息的获取方法实施例一的流程示意图;
图2为本发明实施例提供的下行信道状态信息的获取方法实施例二的流程示意图;
图3为本发明实施例提供的下行信道状态信息的获取装置实施例一的结构示意图;
图4为本发明实施例提供的下行信道状态信息的获取装置实施例二的结构示意图;
图5为本发明实施例提供的下行信道状态信息的获取装置实施例三的结构示意图;
图6为本发明实施例提供的下行信道状态信息的获取装置实施例四的结构示意图;
图7为本发明实施例提供的基站实施例一的结构示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。本文中结合终端设备和/或基站来描述各种方面。
终端设备,可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,Radio Access Network;简称:RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service;简称:PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop;简称:WLL)站、个人数字助理(Personal Digital Assistant;简称:PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备 (User Device)、或用户装备(User Equipment)。
基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是CDMA中的基站(Base Transceiver Station;简称:BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本申请并不限定。
本发明实施例适用于频分双工(Frequency Division Duplex;简称:FDD)系统以及1T2R的时分双工(Time Division Duplex;简称TDD)系统中,具体适用于FDD或TDD的MU-MIMO系统中。由于FDD系统上下行信道不具互易性,基站不能根据上行测量结果获取下行信道状态信息,因此,本发明实施例可以适用于FDD系统中。另外,对于TDD系统,由于上下行信道具有互易性,基站侧可通过测量上行信道来获取下行信道状态信息,但是对于1T2R的终端设备,由于仅有一根天线参与上行发射,而下行接收时却使用2根天线,此时采用信道的互易性仅能获取一半的下行信道信息,因此,本发明同样可用于TDD系统中下行完整信道状态信息的获取的场景。
图1为本发明实施例提供的下行信道状态信息的获取方法实施例一的流程示意图。本发明实施例提供了一种下行信道状态信息的获取方法,该方法可以由任意执行下行信道状态信息的获取方法的装置来执行,该装置可以通过软件和/或硬件实现。本实施例中,该装置可以集成在基站中。如图1所示,本实施例的方法可以包括:
步骤101、通过加权矩阵对终端设备所在的第一小区的公共CRS加权得到第一CRS。
在本实施例中,在FDD系统或TDD系统中,在终端设备所在的第一小区的逻辑天线数为4时,对第一小区的公共CRS在不同时域符号上采用一个变化的加权矩阵W(t)进行加权处理,以得到第一CRS。在具体的实现过程中,可以通过对公共CRS进行预编码矩阵加权,以获得第t个时刻的正交频分复用(Orthogonal Frequency Division Multiplexing;简称:OFDM)符号的第一CRS,其中,t为正整数,预编码矩阵为满足时域上连续变化的矩阵, 而且在终端设备所在的第一小区的逻辑天线数为4时,加权矩阵W(t)可以包括如下的几种形式:
第一种:W(t)满足如下特征:W(t)为NT×NCRS_Port_Num的矩阵,其中NT为物理发射天线数,例如可以为4等,NCRS_Port_Num为逻辑发射天线数,W(t)的元素值的相位会根据t不断进行相位旋转。
第二种:W(t)满足如下特征:W(t)=U(t),其中,U(t)为4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000009
其中,f0,f1,f2和f3为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第一个子帧的第0个符号起开始计数。
第三种:W(t)满足如下特征:W(t)=U(t)*Q,其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为4,NCRS_Port_Num为逻辑发射天线数,其值也为4。U(t)也为一个4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000010
其中,f0,f1,f2和f3为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第一个子帧的第0个符号起开始计数。
另外,Q为4×4的酉矩阵,其满足如下的关系:
Figure PCTCN2016072009-appb-000011
第四种:W(t)满足如下特征:W(t)=Q*U(t),其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为4,NCRS_Port_Num为逻辑发射天线数,其值也为4。U(t)为4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000012
其中,f0,f1,f2和f3为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第一个子帧的第0个符号起开始计数。
另外,Q为4×4的酉矩阵,其满足如下的关系:
Figure PCTCN2016072009-appb-000013
另外,在8T波束赋形时,加权矩阵W(t)还可以包括如下的几种形式:
第一种:W(t)满足如下特征:W(t)=U(t)*Q,其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为8,NCRS_Port_Num为逻辑发射天线数,其值为4。U(t)为8×8的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000014
其中,f0~f7为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第0个子帧的第0个符号起开始计数。
另外,Q为4×4的酉矩阵,满足QHQ=E4*4
第二种:W(t)满足如下特征:W(t)=Q*U(t),其中,W(t)为NT×NCRS_Port_Num的矩阵,其中,NT为物理发射天线数,其值可以为8,NCRS_Port_Num为逻辑发射天线数,其值为4。U(t)为4×4的对角矩阵,其具体如下:
Figure PCTCN2016072009-appb-000015
其中,f0~f4为不同位置上的相位变化量,其具体取值可以根据实际情况进行设置,例如可以设置为[15 20 -15 -20]*0.001/14等,其中,0.001/14表示1个OFDM符号的时间粒度,即1ms有14个OFDM符号;[15 20 -15 -20]*0.001/14代表时域上每增加1个OFDM符号上相对的相位变化量;t为OFDM符号累计的索引值,其具体取值可以从无线帧0的第0个子帧的第0个符号起开始计数。
另外,Q为8×4的酉矩阵,满足QHQ=E4*4
当然,W(t)还可以为满足其他的特征的矩阵,其只要是对公共CRS进行预编码矩阵加权获得的矩阵即可。
由于公共CRS为公共导频信号,因此,采用连续变化相位的预编码矩阵,可以很好的满足终端设备在进行信道估计时进行子帧间的插值滤波处理的需求。
步骤102、将第一CRS发送给终端设备。
步骤103、接收终端设备发送的PMI和CQI,PMI为终端设备对第一CRS测量得到,CQI为终端设备对第一CRS测量得到。
步骤104、根据加权矩阵,PMI和CQI获取终端设备的下行信道的状态 信息,下行信道的状态信息包括下行信道的信道协方差矩阵或下行信道的特征向量。
在本实施例中,基站将获得的第一CRS发送到终端设备,终端设备将会对该第一CRS进行测量,分别获得PMI和CQI,并将获得的PMI和CQI反馈到基站,以使基站根据加权矩阵、PMI和CQI获取终端设备的下行信道状态信息。需要进行说明的是,该PMI为MIMO格式对应的PMI。
可选地,在基站将第一CRS发送给终端设备之前,基站还需要通过信令配置终端设备的MIMO的反馈模式、MIMO对应的PMI的反馈格式以及CQI的反馈格式。例如:基站可以将终端设备的MIMO的反馈模式配置为TM8模式,而PMI和CQI的反馈格式将按照现有LTE协议中的规定进行配置,如可以基于PUSCH非周期随路反馈的Modes 1-2,2-2,3-1进行配置,也可以采用PUCCH周期反馈的Mode 1-1或者Mode 2-1进行配置等等。
具体地,基站可以通过确定时延扩展信息,并根据确定出的时延扩展信息为终端设备配置下行PMI的反馈格式和CQI的反馈格式。举例来说,时延扩展信息较大的终端设备可以配置为Mode 1-2,时延扩展信息为中等的终端设备可以配置为Mode2-2,时延扩展信息较小的终端设备的PMI反馈格式可以基于PUCCH反馈的Mode 1-1或者Mode 2-1等配置等等。
可选地,基站根据确定出的时延扩展信息为终端设备配置PMI的反馈格式和CQI的反馈格式,具体可以采用如下方式:根据终端设备的上行信号,获取时延扩展信息,根据该时延扩展信息和预设的信令反馈开销信息,为终端设备配置PMI的反馈格式和CQI的反馈格式。其中,上行信号例如可以包括上行测量导频信号、上行解调导频信号或者随机接入序列信号等等。
另外,基站还可以根据终端设备所处的环境状态,即基站的使用场景,为终端设备配置下行PMI的反馈格式和CQI的反馈格式。举例来说,在飞机场、体育馆等开阔的环境中时,时延扩展较小,此时基站可以将终端设备的MIMO格式配置为TM8模式,且PMI反馈格式和CQI的反馈格式可以基于PUCCH信道反馈的Mode 1-1或者Mode 2-1进行配置等等。
基站在为终端设备配置MIMO的反馈格式以及MIMO对应的PMI的反馈格式和CQI的反馈格式之后,将上述PMI的反馈格式和CQI的反馈格式发送给终端设备,以使终端设备对第一CRS进行测量,获取与PMI的反馈 格式匹配的PMI和与CQI的反馈格式匹配的CQI。
基站采用如上的配置方式,为终端设备配置下行PMI的反馈格式和下行CQI的反馈格式,可以使基站的容量性能和反馈开销达到最优。
当基站在接收到终端设备反馈的PMI和CQI之后,将可以通过获得的加权矩阵以及接收到的PMI和CQI获取终端设备的下行信道的状态信息,其中,下行信道的状态信息包括下行信道的信道协方差矩阵或下行信道的特征向量。
在具体的实现过程中,基站将根据CQI获得终端设备的下行信道的信噪比,并根据加权矩阵,计算出PMI对应的等效码本,然后根据获得的信噪比和计算出的等效码本,获取下行信道的状态信息。
下面将具体阐述如何通过等效码本和CQI恢复得到信道协方差矩阵的过程:
假设第一小区的逻辑天线数为4,那么基站就会接收到16个CQI,其中任意一个CQI称为CQIi,那么对CQIi进行反量化处理就会得到CQIi对应的信噪比ρi
基站在获得下行信道的信噪比之后,将根据加权矩阵,计算PMI对应的等效码本。具体来说,假设第一小区的逻辑天线数为4,那么基站就会接收到16个PMI,其中任意一个PMI称为PMIi,利用接收到的PMIi所对应的矩阵码本乘以PMIi所对应的加权矩阵即为等效码本
Figure PCTCN2016072009-appb-000016
为了提高获取的状态信息的精确性,基站还可以根据之前累积的N个PMI计算等效码本矩阵,依次提高等效码本矩阵计算的准确性。
基站获取到信噪比和等效码本之后,便可以获取到下行信道的状态信息。为使本领域技术人员理解本实施例中的方案,下面先介绍本实施例中的方案的实现原理。
在周期内的N个子周期内,在预定天线数量的秩1的预编码码本的约束下,有公式(1)成立。
Figure PCTCN2016072009-appb-000017
其中,
Figure PCTCN2016072009-appb-000018
为等效码本;R为下行信道的协方差矩阵;σ2为下行信道的噪声功率;H为信道矩阵。
在4根发射天线的情况下,记等效码本为
Figure PCTCN2016072009-appb-000019
协方差矩阵
Figure PCTCN2016072009-appb-000020
其中,j为虚数单位,则公式(1)可变形为公式(2)。
Figure PCTCN2016072009-appb-000021
其中,在公式(2)中,T表示矩阵的转置。
经过一个子周期之后,则有公式(3)成立。
Figure PCTCN2016072009-appb-000022
因为σ2为下行信道的噪声功率,近似为一个恒定的值,因为不会对协方差矩阵的方向性产生影响,所以在公式(3)的推导过程中直接忽略了σ2
因为矩阵T满秩,即矩阵T的秩为16,则由公式(3)可得到公式(4)。
Figure PCTCN2016072009-appb-000023
因此,基站获得16个信噪比ρ0至ρ15,并获得16个等效码本
Figure PCTCN2016072009-appb-000024
后,就可以根据公式(4)计算出x0至x15,进而获得协方差矩阵R。
以上阐述的是理论上的一个原理,从目标问题来看,对于4天线而言,下行信道协方差矩阵是个4×4的矩阵,这意味着就是16个未知的待求解的变量。从数学意义上看,16个未知变量的求解,只要能够构造出16个线性方程组,就可以完整的求解得到;实际工程中,可以对此进行一定的工程化处理,不一定就需要16次测量。假设是M次(M小于16),那么就可以采用公式(5)中伪逆的计算方式进行:
Figure PCTCN2016072009-appb-000025
其中T为N行16列的矩阵。
本领域技术人员可以理解,基站在获取到终端设备的下行信道的信道协方差矩阵之后,便可以根据该信道协方差矩阵,计算出下行信道的特征向量,具体的计算方式此处不再赘述。
基站一旦获得终端设备的下行信道的信道协方差矩阵或者下行信道的特征向量,基站在向终端设备发射下行数据之前,便可以使用预先设计好的波束赋形向量对数据进行加权,此时,波束赋形向量可以选取信道协方差矩阵的最大特征值对应的特征向量,使得基站向目标终端设备发射数据时,天线方向图的主瓣方向对准该目标终端设备,而零值点对准干扰方向,这样就可以有效地抑制干扰,提升目标终端设备的信号与干扰加噪声比(Signal to Interference plus Noise Ratio;简称:SINR)。在干扰得到抑制之后,基站通过下行控制信道指示各终端设备占用相同的时频资源,实现多用户的时频资源复用,从而可以提升系统容量。当物理发射天线为4T时,最多可实现4用户的时频资源复用。
本发明实施例提供的下行信道状态信息的获取方法,通过加权矩阵对终端设备所在的第一小区的公共CRS加权得到第一CRS,将获得的第一CRS发送给终端设备,用于终端设备对第一CRS进行测量,获取PMI和CQI,并接收终端设备发送的CQI和PMI,并根据加权矩阵、PMI和CQI获取终 端设备的下行信道的状态信息。由于通过加权矩阵对终端设备所在的第一小区的公共CRS进行加权,并根据加权矩阵、PMI和CQI获取该终端设备的下行信道的状态信息,避免了现有技术中以量化得到的固定码本去匹配系统变化的信道的现象,从而提高了状态信息获取的精确度。
可选地,在上述实施例的基础上,若第一小区所在的扇区的物理发射天线数大于8或基站为时分双工TDD制式,该扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,上述第一小区为至少两个不同方位角指向的逻辑天线数为4的波束中的一个。
具体地,当第一小区所在的扇区的物理发射天线数大于8时,或者当基站为TDD制式时,或者对于单发终端设备或者SRS资源不够时,基站均需要对物理发射天线进行数字波束劈裂赋形,将其劈裂成不少于2个不同方位角指向的逻辑天线数为4的波束。其中,劈裂后获得的波束可以配置成不同的物理小区,也可以配置成相同的物理小区,对于劈裂后的波束的具体配置方式,本实施例在此不作限制。当基站将物理发射天线进行波束权值赋形之后,对于获得的至少两个不同方位角指向的逻辑天线数为4的波束,将按照上述实施例中的方式进行处理,以获得下行信道的状态信息。
本发明实施例提供的下行信道状态信息的获取方法,通过加权矩阵对终端设备所在的第一小区的公共CRS加权得到第一CRS,将获得的第一CRS发送给终端设备,用于终端设备对第一CRS进行测量,获取PMI和CQI,并接收终端设备发送的CQI和PMI,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息。由于通过加权矩阵对终端设备所在的第一小区的公共CRS进行加权,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息,避免了现有技术中以量化得到的固定码本去匹配系统变化的信道的现象,从而提高了状态信息获取的精确度。另外,由于在物理发射天线数大于8或基站为时分双工TDD制式时,基站通过对物理发射天线进行波束权值赋形,以获得至少两个不同方位角指向的逻辑天线数为4的波束,使获取状态信息的方式应用更加广泛。
图2为本发明实施例提供的下行信道状态信息的获取方法实施例二的流程示意图。本实施例在下行信道状态信息的获取方法实施例一的基础上,对获取到下行信道的状态信息之后,如何根据该状态信息发射下行数据的实施 例,做详细说明。如图2所示,本实施例的方法可以包括:
步骤201、根据下行信道的状态信息,对多个终端设备进行配对选择,获得配对终端设备和非配对终端设备。
在本实施例中,基站在获取到下行信道的状态信息之后,将会按照现有的配对方式,对多个终端设备进行配对,以获得配对终端设备和非配对终端设备,其中,配对终端设备为配对成功的终端设备,非配对终端设备为多个终端设备中除配对终端设备之外的其他终端设备。
步骤202、根据下行信道的状态信息,计算配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户波束赋形SU-BF权值。
在本实施例中,基站根据获得的终端设备的下行信道的信道协方差矩阵或下行信道的特征向量,对配对终端设备的下行MU-BF权值和非配对终端设备的下行SU-BF权值进行计算,在实际应用中,可以采用ZF-BF、BD-BF等算法计算。
步骤203、根据MU-BF权值,对配对终端设备进行调度,并根据SU-BF权值,对非配对终端设备进行调度。
在本实施例中,基站根据计算获得的MU-BF权值,对配对终端设备进行调度,根据计算获得的SU-BF权值,对非配对终端设备进行调度,调度完成之后,基站需要进行通道的校正,使得各个通道发射或接收数据的时间保持一致,通道校正完成之后,将对调度后的配对终端设备和调度后的非配对终端设备进行天线数据空口发射。
本发明实施例提供的下行信道状态信息的获取方法,通过加权矩阵对终端设备所在的第一小区的公共CRS加权得到第一CRS,将获得的第一CRS发送给终端设备,用于终端设备对第一CRS进行测量,获取PMI和CQI,并接收终端设备发送的CQI和PMI,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息。由于通过加权矩阵对终端设备所在的第一小区的公共CRS进行加权,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息,避免了现有技术中以量化得到的固定码本去匹配系统变化的信道的现象,从而提高了状态信息获取的精确度。另外,当基站获取到状态信息后,再根据获得的状态信息进行下行数据的发射,由此可以提升网络容量。
图3为本发明实施例提供的下行信道状态信息的获取装置实施例一的结构示意图,如图3所示,本发明实施例提供的下行信道状态信息的获取装置包括加权模块11,发送模块12、接收模块13和获取模块14。
其中,加权模块11用于通过加权矩阵对终端设备所在的第一小区的公共参考信号CRS加权得到第一CRS;
发送模块12用于将所述第一CRS发送给所述终端设备;
接收模块13用于接收所述终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,所述PMI为所述终端设备对所述第一CRS测量得到,所述CQI为所述终端设备对所述第一CRS测量得到;
获取模块14用于根据所述加权矩阵,所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,所述下行信道的状态信息包括所述下行信道的信道协方差矩阵或所述下行信道的特征向量;
其中,所述第一小区的逻辑天线数为4,所述预编码矩阵为满足时域上连续变化的矩阵。
本发明实施例提供的下行信道状态信息的获取装置,通过加权矩阵对终端设备所在的第一小区的公共CRS加权得到第一CRS,将获得的第一CRS发送给终端设备,用于终端设备对第一CRS进行测量,获取PMI和CQI,并接收终端设备发送的CQI和PMI,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息。由于通过加权矩阵对终端设备所在的第一小区的公共CRS进行加权,并根据加权矩阵、PMI和CQI获取终端设备的下行信道的状态信息,避免了现有技术中以量化得到的固定码本去匹配系统变化的信道的现象,从而提高了状态信息获取的精确度。
可选地,所述获取模块14具体用于:
根据所述CQI获得所述下行信道的信噪比;
根据所述加权矩阵,计算所述PMI对应的等效码本;
根据所述信噪比和所述等效码本,获取所述下行信道的状态信息。
图4为本发明实施例提供的下行信道状态信息的获取装置实施例二的结构示意图,如图4所示,本实施例在图3所示实施例的基础上,所述装置还包括:确定模块15和配置模块16。
其中,所述确定模块15用于确定时延扩展信息;
所述配置模块16用于根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式;
所述发送模块12用于将所述PMI的反馈格式和所述CQI的反馈格式发送给所述终端设备,以供所述终端设备对所述第一CRS进行测量,获取与所述PMI的反馈格式匹配的PMI和与所述CQI的反馈格式匹配的CQI。
可选地,所述配置模块16具体用于:
根据所述终端设备的上行信号,获取时延扩展信息;
根据所述时延扩展信息和预设的信令反馈开销信息,为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式。
图5为本发明实施例提供的下行信道状态信息的获取装置实施例三的结构示意图,如图5所示,本实施例在图3或图4所示实施例的基础上,所述装置还包括:处理模块17;其中:
所述处理模块17用于在所述第一小区所在的扇区的物理发射天线数大于8或基站为时分双工TDD制式时,所述扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,所述第一小区为所述至少两个不同方位角指向的逻辑天线数为4的波束中的一个。
本实施例提供的下行信道状态信息的获取装置,用于执行图1所示实施例所述的下行信道状态信息的获取方法,其实现原理和技术效果类似,在此不再赘述。
图6为本发明实施例提供的下行信道状态信息的获取装置实施例四的结构示意图,如图6所示,本实施例在上述实施例的基础上,所述装置还包括:选择模块18、计算模块19和调度模块20。
其中,所述选择模块18用于根据所述下行信道的状态信息,对多个所述终端设备进行配对选择,获得配对终端设备和非配对终端设备;
所述计算模块19用于根据所述下行信道的状态信息,计算所述配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户波束赋形SU-BF权值;
所述调度模块20还用于根据所述MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度。
本实施例提供的下行信道状态信息的获取装置,用于执行图2所示实施 例所述的下行信道状态信息的获取方法,其实现原理和技术效果类似,在此不再赘述。
图7为本发明实施例提供的基站实施例一的结构示意图,如图7所示,本发明实施例提供的基站包括处理器21,发送器22和接收器23。
其中,处理器21用于通过加权矩阵对终端设备所在的第一小区的公共参考信号CRS加权得到第一CRS;
发送器22用于将所述第一CRS发送给所述终端设备;
接收器23用于接收所述终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,所述PMI为所述终端设备对所述第一CRS测量得到,所述CQI为所述终端设备对所述第一CRS测量得到;
所述处理器21还用于根据所述加权矩阵,所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,所述下行信道的状态信息包括所述下行信道的信道协方差矩阵或所述下行信道的特征向量;
其中,所述第一小区的逻辑天线数为4,所述预编码矩阵为满足时域上连续变化的矩阵。
本实施例提供的基站,用于执行上述任一实施例所述的下行信道状态信息的获取方法,其实现原理和技术效果类似,在此不再赘述。
可选地,所述处理器21具体用于:
根据所述CQI获得所述下行信道的信噪比;
根据所述加权矩阵,计算所述PMI对应的等效码本;
根据所述信噪比和所述等效码本,获取所述下行信道的状态信息。
可选地,所述处理器21还用于确定时延扩展信息;
所述处理器21还用于根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式;
所述发送器22还用于将所述PMI的反馈格式和所述CQI的反馈格式发送给所述终端设备,以供所述终端设备对所述第一CRS进行测量,获取与所述PMI的反馈格式匹配的PMI和与所述CQI的反馈格式匹配的CQI。
可选地,所述处理器21还用于根据所述终端设备的上行信号,获取时延扩展信息;
根据所述时延扩展信息和预设的信令反馈开销信息,为所述终端设备配 置所述PMI的反馈格式和所述CQI的反馈格式。
可选地,所述处理器21还用于在所述第一小区所在的扇区的物理发射天线数大于8或基站为时分双工TDD制式时,所述扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,所述第一小区为所述至少两个不同方位角指向的逻辑天线数为4的波束中的一个。
可选地,所述处理器21还用于根据所述下行信道的状态信息,对多个所述终端设备进行配对选择,获得配对终端设备和非配对终端设备;
所述处理器21还用于根据所述下行信道的状态信息,计算所述配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户波束赋形SU-BF权值;
所述处理器21还用于根据所述MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度。
本实施例提供的基站,用于执行上述任一实施例所述的下行信道状态信息的获取方法,其实现原理和技术效果类似,在此不再赘述。
本实施例还提供一种基站,包括上述任一实施例中所述的下行信道状态信息的获取装置,其中,该装置集成于基站中,该装置的具体结构和功能与上述实施例中类似,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种下行信道状态信息的获取方法,其特征在于,应用于多用户多输入多输出MU-MIMO系统中,包括:
    通过加权矩阵对终端设备所在的第一小区的公共参考信号CRS加权得到第一CRS;
    将所述第一CRS发送给所述终端设备;
    接收所述终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,所述PMI为所述终端设备对所述第一CRS测量得到,所述CQI为所述终端设备对所述第一CRS测量得到;
    根据所述加权矩阵,所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,所述下行信道的状态信息包括所述下行信道的信道协方差矩阵或所述下行信道的特征向量;
    其中,所述第一小区的逻辑天线数为4,所述预编码矩阵为满足时域上连续变化的矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述加权矩阵、所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,包括:
    根据所述CQI获得所述下行信道的信噪比;
    根据所述加权矩阵,计算所述PMI对应的等效码本;
    根据所述信噪比和所述等效码本,获取所述下行信道的状态信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述将所述第一CRS发送给所述终端设备之前,所述方法还包括:
    确定时延扩展信息;
    根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式;
    将所述PMI的反馈格式和所述CQI的反馈格式发送给所述终端设备,以供所述终端设备对所述第一CRS进行测量,获取与所述PMI的反馈格式匹配的PMI和与所述CQI的反馈格式匹配的CQI。
  4. 根据权利要求3所述的方法,其特征在于,所述确定时延扩展信息,并根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述 CQI的反馈格式,包括:
    根据所述终端设备的上行信号,获取时延扩展信息;
    根据所述时延扩展信息和预设的信令反馈开销信息,为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,若所述第一小区所在的扇区的物理发射天线数大于8或基站为时分双工TDD制式,所述扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,所述第一小区为所述至少两个不同方位角指向的逻辑天线数为4的波束中的一个。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据所述加权矩阵、所述PMI和所述CQI获取所述终端设备的下行信道的状态信息之后,还包括:
    根据所述下行信道的状态信息,对多个所述终端设备进行配对选择,获得配对终端设备和非配对终端设备;
    根据所述下行信道的状态信息,计算所述配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户波束赋形SU-BF权值;
    根据所述MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度。
  7. 一种下行信道状态信息的获取装置,其特征在于,包括:
    加权模块,用于通过加权矩阵对终端设备所在的第一小区的公共参考信号CRS加权得到第一CRS;
    发送模块,用于将所述第一CRS发送给所述终端设备;
    接收模块,用于接收所述终端设备发送的预编码矩阵指示PMI和信道质量指示CQI,所述PMI为所述终端设备对所述第一CRS测量得到,所述CQI为所述终端设备对所述第一CRS测量得到;
    获取模块,用于根据所述加权矩阵,所述PMI和所述CQI获取所述终端设备的下行信道的状态信息,所述下行信道的状态信息包括所述下行信道的信道协方差矩阵或所述下行信道的特征向量;
    其中,所述第一小区的逻辑天线数为4,所述预编码矩阵为满足时域上连续变化的矩阵。
  8. 根据权利要求7所述的装置,其特征在于,所述获取模块,具体用于:
    根据所述CQI获得所述下行信道的信噪比;
    根据所述加权矩阵,计算所述PMI对应的等效码本;
    根据所述信噪比和所述等效码本,获取所述下行信道的状态信息。
  9. 根据权利要求7或8所述的装置,其特征在于,所述装置还包括:确定模块和配置模块;其中,
    所述确定模块,用于确定时延扩展信息;
    所述配置模块,用于根据所述时延扩展信息为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式;
    所述发送模块,用于将所述PMI的反馈格式和所述CQI的反馈格式发送给所述终端设备,以供所述终端设备对所述第一CRS进行测量,获取与所述PMI的反馈格式匹配的PMI和与所述CQI的反馈格式匹配的CQI。
  10. 根据权利要求9所述的装置,其特征在于,所述配置模块,具体用于:
    根据所述终端设备的上行信号,获取时延扩展信息;
    根据所述时延扩展信息和预设的信令反馈开销信息,为所述终端设备配置所述PMI的反馈格式和所述CQI的反馈格式。
  11. 根据权利要求7-10任一项所述的装置,其特征在于,所述装置还包括:处理模块;其中:
    所述处理模块,用于在所述第一小区所在的扇区的物理发射天线数大于8或基站为时分双工TDD制式时,所述扇区的物理发射天线被波束权值赋形得到至少两个不同方位角指向的逻辑天线数为4的波束,所述第一小区为所述至少两个不同方位角指向的逻辑天线数为4的波束中的一个。
  12. 根据权利要求7-11任一项所述的装置,其特征在于,所述装置还包括:选择模块、计算模块和调度模块;其中,
    所述选择模块,用于根据所述下行信道的状态信息,对多个所述终端设备进行配对选择,获得配对终端设备和非配对终端设备;
    所述计算模块,用于根据所述下行信道的状态信息,计算所述配对终端设备的下行多用户波束赋形MU-BF权值和非配对终端设备的下行单用户波 束赋形SU-BF权值;
    所述调度模块,还用于根据所述MU-BF权值,对所述配对终端设备进行调度,并根据所述SU-BF权值,对所述非配对终端设备进行调度。
  13. 一种基站,其特征在于,包括如权利要求7-12任一项所述的装置,所述装置集成于基站中。
PCT/CN2016/072009 2016-01-25 2016-01-25 下行信道状态信息的获取方法和装置 WO2017127987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680023996.5A CN107534883B (zh) 2016-01-25 2016-01-25 下行信道状态信息的获取方法和装置
PCT/CN2016/072009 WO2017127987A1 (zh) 2016-01-25 2016-01-25 下行信道状态信息的获取方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/072009 WO2017127987A1 (zh) 2016-01-25 2016-01-25 下行信道状态信息的获取方法和装置

Publications (1)

Publication Number Publication Date
WO2017127987A1 true WO2017127987A1 (zh) 2017-08-03

Family

ID=59396941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072009 WO2017127987A1 (zh) 2016-01-25 2016-01-25 下行信道状态信息的获取方法和装置

Country Status (2)

Country Link
CN (1) CN107534883B (zh)
WO (1) WO2017127987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322241A (zh) * 2017-12-20 2018-07-24 上海华为技术有限公司 一种数据传输方法及相关设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448804B (zh) * 2020-11-18 2024-05-10 上海擎昆信息科技有限公司 一种dmrs频域映射方法及装置、电子设备、存储介质
WO2023159547A1 (en) * 2022-02-28 2023-08-31 Qualcomm Incorporated Parameters for lattice reduction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220068A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
US20140016596A1 (en) * 2011-04-03 2014-01-16 Lg Electronics Inc. Method and apparatus for transmitting/receiving downlink control channel in wireless communication system
CN103825664A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法和装置、以及信号传输方法和装置
CN103918195A (zh) * 2011-11-07 2014-07-09 摩托罗拉移动有限责任公司 在具有协作多点传输的正交频分复用通信系统中联合处理方案的csi反馈的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693429B2 (en) * 2009-03-31 2014-04-08 Qualcomm Incorporated Methods and apparatus for generation and use of reference signals in a communications system
CN102449924B (zh) * 2009-05-29 2015-11-25 Lg电子株式会社 使用空间静默传输信号的方法和装置
CN101630966B (zh) * 2009-08-20 2015-04-01 中兴通讯股份有限公司 多输入多输出系统中信道质量的反馈方法
US9686058B2 (en) * 2011-10-26 2017-06-20 Lg Electronics Inc. Method and apparatus for controlling inter-cell interference in wireless communication system
CN105262520B (zh) * 2014-07-18 2018-07-27 上海诺基亚贝尔股份有限公司 一种调整有源天线阵列及参考信号映射的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140016596A1 (en) * 2011-04-03 2014-01-16 Lg Electronics Inc. Method and apparatus for transmitting/receiving downlink control channel in wireless communication system
CN103918195A (zh) * 2011-11-07 2014-07-09 摩托罗拉移动有限责任公司 在具有协作多点传输的正交频分复用通信系统中联合处理方案的csi反馈的方法和装置
CN103220068A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
CN103825664A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法和装置、以及信号传输方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322241A (zh) * 2017-12-20 2018-07-24 上海华为技术有限公司 一种数据传输方法及相关设备
CN108322241B (zh) * 2017-12-20 2021-01-15 上海华为技术有限公司 一种数据传输方法及相关设备

Also Published As

Publication number Publication date
CN107534883B (zh) 2020-07-14
CN107534883A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
CN113840324B (zh) 一种测量上报方法及装置
CN107888269B (zh) 一种报告信道状态信息的方法、用户设备和基站
WO2012141257A1 (ja) 移動端末装置、無線基地局装置、無線通信方法及び無線通信システム
WO2013120429A1 (zh) 一种进行天线校准的方法、系统和设备
WO2021037200A1 (zh) 信道测量的方法和通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
JP6729851B2 (ja) チャネル情報を伝送する装置および方法
WO2017124827A1 (zh) 多天线数据传输的方法、网络设备、终端设备及系统
WO2015196974A1 (zh) 一种针对csi反馈系统的发射加权方法及装置
EP3520231A1 (en) Advanced csi reporting for hybrid class a/b operation
US10505779B2 (en) Method and apparatus for obtaining downlink channel information and network side device
CN114600384B (zh) 一种信道测量方法和通信装置
CN106452544B (zh) 一种无线通信方法、基站及终端
WO2017127987A1 (zh) 下行信道状态信息的获取方法和装置
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
US9048970B1 (en) Feedback for cooperative multipoint transmission systems
CN115315906A (zh) 一种信道测量方法和通信装置
US20230019630A1 (en) Update Method and Communications Apparatus
CN108322241B (zh) 一种数据传输方法及相关设备
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
WO2022060855A2 (en) Methods of csi-rs beamforming in angle-delay domains for type ii port selection codebook
WO2022227976A1 (zh) 通信方法和通信装置
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
US20240178893A1 (en) Channel information feedback method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886874

Country of ref document: EP

Kind code of ref document: A1