WO2013120429A1 - 一种进行天线校准的方法、系统和设备 - Google Patents

一种进行天线校准的方法、系统和设备 Download PDF

Info

Publication number
WO2013120429A1
WO2013120429A1 PCT/CN2013/071451 CN2013071451W WO2013120429A1 WO 2013120429 A1 WO2013120429 A1 WO 2013120429A1 CN 2013071451 W CN2013071451 W CN 2013071451W WO 2013120429 A1 WO2013120429 A1 WO 2013120429A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
network side
calibration
side device
weighting
Prior art date
Application number
PCT/CN2013/071451
Other languages
English (en)
French (fr)
Inventor
高秋彬
张然然
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US14/379,072 priority Critical patent/US9419698B2/en
Priority to EP13748668.4A priority patent/EP2816739B1/en
Publication of WO2013120429A1 publication Critical patent/WO2013120429A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system and device for performing antenna calibration. Background technique
  • a MIMO (Multi-Input Multiple-Output) system refers to a system in which multiple antennas are mounted at both the transmitting end and the receiving end.
  • the MIMO system adds spatial domain processing based on the traditional time-frequency processing, and the array processing gain and diversity gain can be further obtained.
  • the transmitter can know the channel information in some way, the transmitted signal can be optimized according to the channel characteristics to improve the receiving shield and reduce the complexity of the receiver.
  • Linear precoding/beamforming technology is one of the optimization methods, which is an effective means to combat fading channels, reduce the probability of errors, and improve system performance.
  • the channel information from the base station to the UE is an important factor affecting system performance.
  • the UE feeds back the estimated channel information to the base station through the uplink channel, occupies a large amount of uplink channel resources, and introduces quantization errors and the like.
  • TDD Time Division Duplex
  • uplink and downlink signals are transmitted on the same frequency band, so the reciprocity of the uplink and downlink channels is established.
  • the so-called reciprocity means that the uplink channel and the downlink channel are the same.
  • the uplink channel can be estimated by the uplink signal sent by the UE by using the uplink and downlink channel reciprocity, thereby obtaining downlink channel information, and a large amount of feedback overhead is saved.
  • the reciprocity of the channel is established for the spatially propagated physical channel.
  • the signal is transmitted to the antenna through the transmitting circuit, and the signal received from the antenna is also transmitted to the baseband through the receiving circuit.
  • the transmitting circuit and the receiving circuit are two different circuits, so the delay and amplitude gain introduced by the transmitting circuit and the receiving circuit are not the same, that is, the transmitting and receiving circuits do not match.
  • the mismatch between the transmitting circuit and the receiving circuit causes the reciprocity of the uplink and downlink channels to be not strictly established.
  • a method for canceling the influence caused by the mismatch between the uplink and downlink circuits is to perform antenna calibration: calculating a calibration factor according to the information reported by the UE or the information measured by the base station, and performing compensation adjustment on the channel estimated by the uplink signal, or treating The transmitted data is compensated for adjustment.
  • CoMP Coordinatd Multipoint Transmission/Reception
  • Multi-point coordinated transmission technology is divided into downlink coordinated transmission and uplink joint reception.
  • Downlink multipoint coordinated transmission technology solutions are mainly divided into two categories: cooperative scheduling and joint transmission. Co-scheduling is to avoid or reduce the interference between each other through the coordination of time, frequency and space resources between cells.
  • the interference of the small interval is the main factor that restricts the performance of the cell edge UE. Therefore, cooperative scheduling can improve the performance of the cell edge UE by reducing the interference between cells. As shown in FIG. 1A, through coordinated scheduling of three cells, three UEs that may be mutually interfered are scheduled to mutually orthogonal resources (representing different resources in different colors), effectively avoiding the cell. Interference between the two.
  • multiple cells simultaneously transmit data to the UE to enhance the UE receiving signals.
  • three cells transmit data to one UE on the same resource, and the UE simultaneously receives signals of multiple cells.
  • the superposition of useful signals from multiple cells can improve the signal shield received by the UE, and on the other hand, reduce the interference received by the UE, thereby improving system performance.
  • the coordinated multi-point transmission technology can effectively implement the channel state information that can be obtained depending on the transmitting end.
  • linear precoding ie, beamforming
  • the transmitter can obtain channel state information through feedback from the user equipment, but the feedback channel will occupy valuable uplink spectrum resources, thereby reducing the uplink spectrum efficiency. This is especially true in multipoint coordinated transmission.
  • Each base station participating in coordinated transmission needs to obtain channel state information to the user equipment, so its feedback overhead increases linearly with the number of cooperative base stations. Considering the specific transmission scheme, the accuracy of channel state information requirements may also be higher, which means that more uplink bandwidth resources are occupied.
  • the uplink and downlink antenna calibration of the same base station can be better achieved by self-calibration, there is no effective method for solving the antenna calibration between the base stations, so that the uplink and downlink reciprocity of the multi-base station joint channel is not strictly established.
  • the TDD system cannot obtain the downlink multi-base station joint channel based on the measured uplink channel, so that the TDD advantage cannot be fully utilized.
  • a method, system and device for performing antenna calibration according to an embodiment of the present invention are provided to solve the problem that the user equipment feedback channel coefficient is required in the air interface calibration method in which the user equipment participates in the prior art, and the channel coefficient is directly quantized. The method will take up a lot of uplink overhead and reduce the efficiency of the system.
  • the user equipment performs downlink channel measurement to determine a downlink channel matrix.
  • the user equipment notifies the first weighting matrix determined by the network side.
  • the network side device performs uplink channel measurement to determine an uplink channel matrix
  • the network side device determines a calibration coefficient according to the uplink channel matrix and the received first weighting matrix from the user equipment;
  • the network side device performs antenna calibration according to the determined calibration coefficient.
  • a downlink matrix determining module configured to perform downlink channel measurement, and determine a downlink channel matrix
  • a weighting matrix determining module configured to determine, according to the downlink channel matrix, a first weighting matrix for performing antenna calibration
  • a notification module configured to notify the first weight matrix determined by the network side.
  • An uplink matrix determining module configured to perform uplink channel measurement, to determine an uplink channel matrix
  • a coefficient determining module configured to determine a calibration coefficient according to the uplink channel matrix and the received first weighting matrix from the user equipment
  • a calibration module for performing antenna calibration based on the determined calibration coefficients.
  • a user equipment configured to perform downlink channel measurement, determine a downlink channel matrix, determine, according to the downlink channel matrix, a first weighting matrix for performing antenna calibration, and notify the first weighting matrix determined by the network side;
  • the network side device is configured to perform uplink channel measurement, determine an uplink channel matrix, determine a calibration coefficient according to the uplink channel matrix and the received first weight matrix from the user equipment, and perform antenna calibration according to the determined calibration coefficient.
  • the user equipment performs eigenvalue decomposition processing on the downlink channel matrix or adds the identifier corresponding to the first weighting matrix to the network side device, thereby reducing occupied uplink overhead and improving system efficiency.
  • the embodiment of the present invention can implement antenna calibration between base stations, so that system performance can be improved when the uplink and downlink channel reciprocity is not established in the system; if the TDD system is used, when the uplink and downlink channel reciprocity in the system is not established The TDD system can obtain the downlink multi-base station joint channel based on the measured uplink channel, and improve the performance of the coordinated multi-point transmission, thereby fully utilizing the TDD advantage.
  • 1A is a schematic diagram of collaborative scheduling in the background art
  • 1B is a schematic diagram of cooperative transmission in the background art
  • FIG. 2 is a schematic structural diagram of a system for performing antenna calibration according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a first pilot pattern according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a second pilot pattern according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a first port configuration according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a second port configuration according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user equipment in a system for performing antenna calibration according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a network side device in a system for performing antenna calibration according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a user equipment according to an embodiment of the present invention
  • FIG. 10 is a schematic flowchart of a method for performing antenna calibration by a network side device according to an embodiment of the present invention.
  • the user equipment performs downlink channel measurement to determine a downlink channel matrix.
  • the user equipment determines a first weighting matrix for performing antenna calibration according to the downlink channel matrix.
  • the user equipment notifies the network side to determine The first weighting matrix.
  • the user equipment performs eigenvalue decomposition processing on the downlink channel matrix or reports the identifier corresponding to the first weighting matrix to the network side device, thereby reducing occupied uplink overhead and improving system efficiency.
  • the system for performing antenna calibration in the embodiment of the present invention includes: a user equipment 10 and a network side device 20.
  • the user equipment 10 is configured to perform downlink channel measurement, determine a downlink channel matrix, determine, according to the downlink channel matrix, a first weighting matrix for performing antenna calibration, and notify the network side to determine the first a weighting matrix;
  • the network side device 20 is configured to perform uplink channel measurement, determine an uplink channel matrix, determine a calibration coefficient according to the uplink channel matrix and the received first weighting matrix from the user equipment, and perform antenna calibration according to the determined calibration coefficient.
  • the network side device 20 can select a particular user device 10 to participate in the calibration, and perform the measurements and feedback required for calibration.
  • the selected user equipment 10 may be a user equipment 10 having a good channel shield and a low moving speed. Prior to this, the user equipment 10 can perform the ability to support the measurement and feedback required for calibration; the network side device 20 can also determine whether the capability of measurement and feedback required for calibration is supported according to the version of the user equipment 10.
  • the network side device 20 notifies the user equipment 10 to perform downlink channel measurement within a frequency domain range and/or a specific subframe;
  • the user equipment 10 performs downlink channel measurement according to the frequency domain range notified by the network side and/or the specific subframe notified by the network side.
  • the network side device 20 notifies the user equipment 10 of the frequency domain range for downlink channel measurement: the frequency domain range has a pilot for the calibration measurement sent by the network side device 20; the network side device 20 passes the high layer signaling half.
  • the frequency domain range is statically configured, or the frequency domain range is dynamically indicated by the physical layer control signaling; or the user equipment 10 measures the downlink channel in a pre-defined fixed frequency domain range, where the frequency domain range is sent by the network side device 20
  • the pilot that can be used to calibrate the measurement.
  • the frequency domain range may be the entire system bandwidth, and the network side device 20 does not need to notify the user equipment 10 of the specific frequency domain range.
  • the network side device 20 notifies the user equipment 10 of the specific subframe for downlink channel measurement:
  • the network side device 20 notifies the user equipment 10 to measure the downlink channel in a specific subframe (calibration measurement subframe), and the subframes exist in the network.
  • the pilot that is sent by the side device 20 and can be used for calibration measurement (hereinafter referred to as a calibration pilot, the calibration pilot may be a CRS (Cell-specific reference signals), a CSI-RS (channel state information measurement reference signal) ), DM-RS (Demodulation Reference Signal) and other existing pilots in LTE systems).
  • the subframe can be determined in a cycle + subframe offset manner.
  • the calibration measurement subframe can also be dynamically indicated by physical layer signaling.
  • the network side device 20 notifies the user equipment 10 of the frequency domain range and the specific sub-channel for downlink channel measurement. That is, the above 1 and 2 are used in combination, and there is a calibration pilot in a specific frequency domain range of a specific subframe, and the user equipment 10 estimates the downlink channel within the range.
  • the network side device 20 also needs to notify the user equipment 10 of the number of antennas that need to be calibrated, and the RE (Resource Element) occupied by the resource range of the calibration pilot of each antenna, that is, the HHH of the calibration pilot. ...picture, I2.
  • the pilot pattern of 2-port CSI-RS is shown in Figure 3.
  • the pilot pattern of 8-port CSI-RS is shown in Figure 4.
  • the multiple antennas of the calibration pilot may be antennas of the same transmission point (for example, the network side device 20), or may be antennas of different network side devices 20.
  • 2 antennas which may be 2 antennas of one network side device 20, or antennas of two network side devices 20, respectively.
  • the user equipment 10 may not distinguish which network side device 20 each antenna comes from when making measurements.
  • the number of antennas per network side device 20 may be more than one. In this case, there are two ways of processing:
  • the processing mode is as follows: One calibration pilot port is configured for each antenna of each network side device.
  • network side device A has 4 antennas
  • network side device B has 4 antennas
  • network side device A and network side device B For antenna calibration, the user equipment can be configured with 8 calibration pilot ports for calibration pilots, and each antenna corresponds to a calibration pilot calibration pilot port, as shown in FIG.
  • Processing Method 2 It is assumed that the network side device of each cell has completed the antenna calibration between the antennas of the base station by other methods, and obtains an initial calibration coefficient, for example, an initial calibration coefficient is obtained by a network side device self-calibration method.
  • Each base station selects one antenna to participate in the antenna calibration process of multiple base stations.
  • the network side device A has 4 antennas, the first antenna is selected to participate in the calibration, and the network side device B has 4 antennas, and the first antenna is selected.
  • the antenna participates in the calibration, and the network side device A and the network side device B have two antennas participating in the calibration, and the user equipment can be configured with the calibration pilot of the 2 calibration pilot port, and the antenna selected by each network side device corresponds to one calibration. Pilot port, as shown in Figure 6. This method can reduce the number of ports for calibrating pilots, reduce pilot overhead, and reduce feedback overhead.
  • the network side device 20 selects one antenna from the plurality of antennas to transmit an uplink pilot signal from the calibration pilot port.
  • the user equipment 10 determines, according to the estimated downlink channel matrix, a plurality of manners for performing the first weighting matrix for antenna calibration, and several types are listed below:
  • the user equipment 10 is estimated based on the estimated downlink matrix
  • M is the number of receiving antennas of the user equipment 10
  • N is configured Calibrate the number of pilot ports. Determining the first weighting matrix mode 1.
  • the user equipment 10 performs eigenvalue decomposition processing on the downlink channel matrix, and uses the feature vector corresponding to the largest eigenvalue as the first weighting matrix.
  • the user equipment 10 selects a first weighting matrix from the first weighting matrix set according to the downlink channel matrix.
  • the user equipment 10 selects the first weighting matrix according to the following formula:
  • V argmax
  • V is the first weighting matrix
  • C f ⁇ "" ⁇ is the first weighting matrix set
  • L is the element of the first weighting matrix set Number
  • H is the downlink channel matrix.
  • the dimension of the first weighting matrix in the first weighting matrix set is N x 1 ; wherein N is the number of calibration pilot ports. That is, N rows and 1 column, ⁇ _ tl ' 2 '"'' N ] , the following descriptions take the dimension as an example, and the methods of other dimensions are similar, and will not be described again.
  • the user For determining the first weighting matrix mode one, the user The device 10 quantizes each element in the first weighting matrix and then up.
  • the user equipment 10 determines an identifier corresponding to the first weighting matrix in the selected first weighting matrix set, and selects the determined identifier.
  • the calculation and feedback of the first weighting matrix are performed for a certain bandwidth.
  • the system bandwidth is divided into thousands of subbands, and each subband calculates and feeds back a first weighting matrix.
  • the user equipment 10 sends an uplink pilot signal on the resource specified by the network side device 20, and is used by the network side device 20 to perform uplink channel estimation.
  • the network side device 20 notifies the user equipment to transmit the uplink pilot signal in the frequency domain range and
  • the user equipment 10 transmits an uplink pilot signal according to a frequency domain range notified by the network side and/or a specific subframe notified by the network side.
  • the network device 20 calculates an uplink channel matrix by using an uplink pilot signal sent by the user equipment.
  • the receiving antenna of the uplink channel matrix is the transmitting day of the calibration pilot Line.
  • R is the number of antennas that the user equipment transmits the uplink pilot signal.
  • R may be equal to M, that is, the user equipment sends an uplink pilot signal from all antennas that receive downlink calibration pilots.
  • R may also be smaller than M, that is, the user equipment sends an uplink pilot signal from an antenna that partially receives the downlink calibration pilot.
  • the uplink pilot signal sent by the user equipment may be an SRS (Sounding Reference Signal) or a DMRS (Demodulation Reference Signal).
  • the network side device 20 calculates the calibration coefficients of the N antennas, and the calibration coefficients can be calculated by solving the following optimization problems:
  • the network side device 20 can determine the calibration coefficient according to the formula 1:
  • V [v l 9 v is the first weighting matrix
  • N The diagonal matrix constructed by the first weighting matrix, N is the number of calibration pilot ports.
  • the network side device 20 receives a plurality of first weighting matrices. For example, the network side device 20 obtains
  • each group of data includes an uplink channel And the corresponding first feedback of the user equipment 10
  • Weight matrix, ⁇ , ⁇ and in the same group of data correspond to the same user equipment 10, need to guarantee
  • the length of time between the time of U obtained by the network side device 20 and the time obtained by the user equipment 10 cannot be greater than a threshold and corresponds to the same frequency band.
  • the Q group data value may be obtained by a user equipment 10 measuring multiple times, or may be obtained by different user equipment 10 measuring the above.
  • the optimization problem of the calibration coefficient is obtained by jointly optimizing the Q group data values, and the network side device 20 can determine the calibration coefficient according to the formula 2:
  • the network side device 20 of the embodiment of the present invention may also determine the calibration coefficients in the following manner:
  • the network side device 20 determines a second weight matrix according to the uplink channel matrix, and determines a calibration coefficient according to the first weight matrix and the second weight matrix.
  • the manner in which the network side device 20 determines the first weighting matrix is different.
  • the following are listed in the following: determining the first weighting matrix mode 1: the network side device 10 according to the received first weighting matrix reported by the user equipment 10
  • the identification determines a first weighting matrix from the first set of weighting matrices.
  • Determining the first weighting matrix mode 2 The network side device 20 determines the first weighting matrix according to each element in the first weighting matrix reported by the user equipment 10 received.
  • the manner in which the network side device 20 determines the second weighting matrix is various. The following are listed: Determining the second weighting matrix mode 1. The network side device 20 performs eigenvalue decomposition processing on the uplink channel matrix, which will be the largest. The feature vector corresponding to the feature value is used as the second weighting matrix.
  • the network side device 20 selects a second weighting matrix from the second weighting matrix set according to the uplink channel matrix.
  • the network side device 20 selects the second weighting matrix according to the following formula:
  • the dimension of the second weighting matrix in the second set of weighting matrices is N x 1 ; wherein N is the number of calibration pilot ports.
  • the network side device 20 divides the value corresponding to the antenna in the second weighting moment by the value corresponding to the antenna in the first weighting moment to obtain a calibration coefficient corresponding to the antenna.
  • the network side device takes a weighted average of the calibration coefficients to obtain a final calibration coefficient, that is,
  • Ni is a calibration coefficient vector determined according to the first weighting matrix.
  • the root antenna is configured with a calibration pilot port, and the calibration coefficients calculated above (including the calibration coefficients obtained by using Equations 1 and 2, and the calibration coefficients determined according to the first weight matrix and the second weight matrix) may be representative thereof.
  • the calibration factor of the antenna in order to obtain the calibration coefficients of all of its antennas, requires further processing.
  • the network side device 20 is configured according to the calibration pilot port.
  • the initial calibration coefficients of the respective antennas corresponding to the calibration pilot ports and the calibration coefficients determined by the calibration pilot ports determine the actual calibration coefficients of the respective antennas.
  • a base station has S antennas, and other methods, such as self-calibration methods, obtain calibration coefficients for each antenna as ⁇ 2 ⁇ 2 ,..., ⁇ ] 7 " , where is the calibration coefficient of the kth antenna
  • the calibration coefficient of the representative antenna (first antenna) calculated by the method embodiment is a, and the final calibration coefficient of the antenna of the network side device 20 can be calculated as ⁇ 2 ⁇ , " ⁇ ,..., ⁇ ] 7 ".
  • the embodiment of the present invention can implement antenna calibration between the base stations, so that when the reciprocity of the uplink and downlink channels in the system is not established, the system performance can be improved; if the application is in the TDD system, when the reciprocity of the uplink and downlink channels in the system is not established, The TDD system can obtain the downlink multi-base station joint channel based on the measured uplink channel, and improve the performance of the coordinated multi-point transmission, thereby fully utilizing the TDD advantage.
  • the network side device in the embodiment of the present invention may be a base station (such as a macro base station, a home base station, etc.), or an RN (relay) device, or other network side devices.
  • a base station such as a macro base station, a home base station, etc.
  • RN relay
  • the embodiment of the present invention further provides a user equipment, a network side device, a method for reporting a first weight matrix by a user equipment, and a method for performing network calibration by a network side device, and the principle of solving the problem by the device and the method
  • the system for performing antenna calibration is similar to the embodiment of the present invention. Therefore, the implementation of these devices and methods can be referred to the implementation of the system, and the repeated description is omitted.
  • the user equipment in the system for performing antenna calibration includes: a downlink matrix determining module 700, a weighting matrix determining module 710, and a notification module 720.
  • the downlink matrix determining module 700 is configured to perform downlink channel measurement, and determine a downlink channel matrix.
  • the weighting matrix determining module 710 is configured to determine, according to the downlink channel matrix, a first weighting matrix for performing antenna calibration.
  • the notification module 720 is configured to notify the first weight matrix determined by the network side.
  • the weighting matrix determining module 710 performs eigenvalue decomposition processing on the downlink channel matrix, and uses a feature vector corresponding to the largest eigenvalue as the first weighting matrix;
  • the notification module 720 quantizes and reports each element in the first weighting matrix.
  • the weighting matrix determining module 710 selects a first weighting matrix from the first set of weighting matrices according to the downlink channel matrix.
  • the notification module 720 determines an identifier corresponding to the first weighting matrix in the selected first weighting matrix set, and determines the determined identifier.
  • the downlink matrix determining module 700 performs downlink channel measurement according to a frequency domain range notified by the network side and/or a specific subframe notified by the network side.
  • the downlink matrix determining module 700 transmits the uplink pilot signal according to the frequency domain range notified by the network side and/or the specific subframe notified by the network side.
  • the network side device in the system for performing antenna calibration includes: an uplink matrix determination module 800, a coefficient determination module 810, and a calibration module 820.
  • the uplink matrix determining module 800 is configured to perform uplink channel measurement, and determine an uplink channel matrix.
  • the coefficient determining module 810 is configured to determine a calibration coefficient according to the uplink channel matrix and the received first weighting matrix from the user equipment.
  • the calibration module 820 is configured to perform antenna calibration according to the determined calibration coefficient.
  • the coefficient determining module 810 determines the calibration coefficient according to the formula 1.
  • the coefficient determining module 810 determines the calibration coefficients according to Equation 2.
  • the coefficient determining module 810 determines a second weighting matrix according to the uplink channel matrix, and determines a calibration coefficient according to the first weighting matrix and the second weighting matrix.
  • the system determining module 810 determines the first weighting matrix from the first weighting matrix set according to the received identifier of the first weighting matrix reported by the user equipment 10; or, according to the received user equipment 10 A first weighting matrix determined by each element in the first weighting matrix.
  • the coefficient determining module 810 performs eigenvalue decomposition processing on the uplink channel matrix, and uses a feature vector corresponding to the largest eigenvalue as a second weighting matrix; or selects from the second weighting matrix set according to the uplink channel matrix.
  • a second weighting matrix is a feature vector corresponding to the largest eigenvalue.
  • the coefficient determining module 810 divides the value corresponding to the antenna in the second weighting moment by the value corresponding to the antenna in the first weighting moment to obtain a calibration coefficient corresponding to the antenna.
  • the coefficient determining module 810 is configured according to Each first weighting matrix determines a calibration coefficient; averages the calibration coefficients to obtain a final calibration coefficient, or uses the feature vector corresponding to the largest eigenvalue of the matrix obtained according to Equation 3 as the final calibration coefficient.
  • the plurality of antennas of the network side device are configured with one calibration pilot port; or each antenna of the network side device is configured with a calibration pilot port.
  • the uplink matrix determination module 800 selects one antenna from the plurality of antennas to send pilots from the calibration pilot port. signal.
  • coefficient determining module 810 is based on the calibration pilots.
  • the initial calibration coefficients of the respective antennas corresponding to the ports and the calibration coefficients determined by the calibration pilot ports determine the actual calibration coefficients of the respective antennas.
  • the uplink matrix determining module 800 notifies the user equipment to perform a downlink channel measurement within a frequency domain range and/or a specific subframe.
  • the uplink matrix determining module 800 notifies the user equipment to transmit a frequency domain range and/or a specific subframe of the uplink pilot signal.
  • the method for reporting a first weighting matrix by a user equipment includes the following steps: Step 901: A user equipment performs downlink channel measurement to determine a downlink channel matrix.
  • Step 902 The user equipment determines, according to the downlink channel matrix, a first weighting matrix for performing antenna calibration.
  • Step 903 The user equipment notifies the first weighting matrix determined by the network side.
  • the user equipment performs downlink channel measurement according to a frequency domain range notified by the network side and/or a specific subframe notified by the network side.
  • the user equipment performs eigenvalue decomposition processing on the downlink channel matrix, and uses a feature vector corresponding to the largest eigenvalue as the first weighting matrix;
  • step 903 the user equipment quantizes and reports each element in the first weighting matrix.
  • the user equipment selects a first weighting matrix from the first weighting matrix set according to the downlink channel matrix.
  • the dimension of the first weighting matrix in the first set of weighting matrices is N x 1 ; where N is the number of antennas to be calibrated.
  • the user equipment determines an identifier corresponding to the first weighting matrix in the selected first weighting matrix set, and selects the determined identifier.
  • the user equipment is configured according to a frequency domain range notified by the network side and/or a specific subframe notified by the network side. Perform downlink channel measurements.
  • the user equipment sends the uplink pilot signal according to the frequency domain range notified by the network side and/or the specific subframe notified by the network side.
  • the method for performing antenna calibration by the network side device includes the following steps: Step 1001: A network side device performs uplink channel measurement to determine an uplink channel matrix.
  • Step 1002 The network side device determines a calibration coefficient according to the uplink channel matrix and the received first weight matrix from the user equipment.
  • Step 1003 The network side device performs antenna calibration according to the determined calibration coefficient.
  • the network side device determines the calibration coefficient according to the formula 1.
  • the network side device determines the calibration coefficient according to formula 2.
  • the network side device of the embodiment of the present invention can also determine the calibration coefficients in the following manner:
  • the network side device resides in the uplink channel matrix, determines a second weight matrix, and determines a calibration coefficient according to the first weight matrix and the second weight matrix.
  • the determining, by the network side device, the second weighting matrix comprises:
  • the network side device performs eigenvalue decomposition processing on the uplink channel matrix, and uses a feature vector corresponding to the largest eigenvalue as a second weighting matrix;
  • the network side device selects a second weighting matrix from the second weight matrix set according to the uplink channel matrix.
  • the dimension of the second weighting matrix in the second weighting matrix set is N X 1;
  • N is the number of antennas that need to be calibrated.
  • the network side device divides the value corresponding to the antenna in the second weighting moment by the value corresponding to the antenna in the first weighting moment to obtain a calibration coefficient corresponding to the antenna.
  • the network side device determines a calibration coefficient according to each first weighting matrix; averages the calibration coefficients to obtain a final calibration coefficient, or The feature vector corresponding to the largest eigenvalue of the matrix obtained according to Equation 3 is taken as the final calibration coefficient.
  • the plurality of antennas of the network side device are configured with one calibration pilot port; or each antenna of the network side device is configured with a calibration pilot port.
  • the network side device selects one antenna from the plurality of antennas to transmit a pilot signal from the calibration pilot port.
  • the network side device determines the calibration coefficient between the plurality of antennas, after the network side device determines the calibration coefficient, before performing the antenna calibration, for a calibration pilot port, according to the initial calibration coefficient of each antenna corresponding to the calibration pilot port and passing the calibration
  • the calibration coefficient determined by the pilot port determines the actual calibration coefficient of each antenna.
  • the user equipment is notified to perform downlink channel measurement in a frequency domain range and/or a specific subframe.
  • the network side device notifies the user equipment to transmit a frequency domain range and/or a specific subframe of the uplink pilot signal.
  • a process may be synthesized to form a method for performing antenna calibration, that is, steps 901 to 903 are performed first, and then steps 1001 to 1003 are performed.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which the program code available for the computer is included.
  • a computer-usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more flows of the flowchart or in a block or blocks of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例涉及无线通信技术领域,特别涉及一种进行天线校准的方法、系统和设备,用以解决现有技术中存在的用户设备参与的空中接口校准方法中需要用户设备反馈信道系数,对信道系数进行直接量化的方法会占用很大的上行开销,降低系统效率的问题。本发明实施例的方法包括:用户设备进行下行信道测量,确定下行信道矩阵;所述用户设备根据所述下行信道矩阵,确定用于进行天线校准的第一加权矩阵;所述用户设备通知所述网络侧确定的所述第一加权矩阵。由于本发明实施例用户设备对所述下行信道矩阵进行特征值分解处理或将第一加权矩阵对应的标识上报给网络侧设备,从而降低了占用的上行开销,提高了系统效率。

Description

一种进行天线校准的方法、 系统和设备 本申请要求在 2012年 2月 16日提交中国专利局、 申请号为 201210035678.4、 发 明名称为"一种进行天线校准的方法、 系统和设备"的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术领域, 特别涉及一种进行天线校准的方法、 系统和 设备。 背景技术
MIMO ( Multiple-Input Multiple-Output, 多输入多输出)系统指在发射端和接 收端都装有多根天线的系统。 MIMO系统在传统的时频处理的基础上增加了空域 的处理, 可以进一步获得阵列处理增益和分集增益。 MIMO系统中, 如果发射机 能够以某种方式获知信道信息, 就可以根据信道特性对发送信号进行优化, 以提 高接收盾量并降低对接收机复杂度的要求。线性预编码 /波束赋形技术就是其中一 种优化方法, 是对抗衰落信道, 降低差错概率, 提高系统性能的有效手段。
多天线线性预编码 /波束赋形传输技术中, 基站到 UE的信道信息是影响系统 性能的一个重要因素。 FDD ( Frequency division duplex, 频分双工) 系统中, UE 通过上行信道将估计得到的信道信息反馈给基站, 占用了大量的上行信道资源, 且会引入量化误差等。 在 TDD ( Time division duplex, 时分双工) 系统中, 上行 和下行的信号在相同的频段上发送, 因此上下行信道的互易性成立。 所谓互易性 是指上行信道和下行信道相同。利用上下行信道互易性可以由 UE发送的上行信号 估计出上行信道, 从而获得下行信道信息, 省去了大量的反馈开销。
信道的互易性对空间传播的物理信道成立。 信号在基带处理完成后要经过发 射电路输送到天线, 而从天线接收的信号也要经过接收电路输送到基带。 一般来 说, 发射电路和接收电路是两个不同的电路, 因此由发射电路和接收电路引入的 时延以及幅度增益并不相同, 也就是说收发电路不匹配。 发射电路和接收电路的 不匹配导致上下行信道互易性并不严格成立。
一种抵消上下行电路不匹配造成的影响的方法是进行天线校准:根据 UE上报 的信息以 ^或基站测量到的信息计算出校准因子,对由上行信号估计出来的信道 进行补偿调整, 或者对待发送的数据进行补偿调整。 CoMP ( Coordinated Multipoint Transmission/Reception, 多点协作传输 )技术 是地理位置上分离的多个基站之间的协作。 多个基站是不同小区的基站或者一个 小区内部的分离的多个基站。 多点协作传输技术分下行的协作传输和上行的联合 接收。 下行多点协作传输技术方案主要分为两类: 协同调度和联合发送。 协同调 度是通过小区之间的时间、 频率和空间资源的协调, 避免或者降低相互之间的千 扰。 小区间的千扰是制约小区边缘 UE性能的主要因素, 因此协同调度通过降低小 区间的千扰, 可以提高小区边缘 UE的性能。 如图 1A所示, 通过 3个小区的协同调 度, 将可能会相互千扰的三个 UE调度了到相互正交的资源上(以不同的颜色表示 不同的资源) , 有效的避免了小区之间的千扰。
联合发送方案中多个小区同时向 UE发送数据, 以增强 UE接收信号。 如图 1B 所示, 三个小区在相同的资源上向一个 UE发送数据, UE同时接收多个小区的信 号。一方面, 来自多个小区的有用信号叠加可以提升 UE接收的信号盾量, 另一方 面, 降低了 UE受到的千扰, 从而提高系统性能。
类似于单小区多天线传输方案, 多点协作传输技术是否可以有效实施依赖于 发射端所能获得的信道状态信息。 发射端获得理想的信道状态信息后, 可以用线 性预编码(即波束赋形)技术来提高信号盾量以及抑制用户彼此之间的千扰。 发 射端可以通过用户设备的反馈获得信道状态信息, 但是反馈信道会占用宝贵的上 行频谱资源, 从而降低上行的频谱效率。 这点在多点协作传输中尤为明显, 参与 协作传输的每个基站都需要获得到用户设备的信道状态信息, 因此其反馈开销是 随着协作基站的数目而线性增加的。 考虑到具体的传输方案, 对信道状态信息要 求的精度也可能更高, 这就意味着占用更多的上行带宽资源。 同时, 因为上行信 道的容量受限, 反馈的信道状态信息不可避免的存在量化误差。 量化误差则会降 低多点协作传输的性能。 TDD系统中利用信道互易性获得信道状态信息不会带来 额外的反馈开销, 且不存在因反馈而引入的量化误差, 是十分有竟争力的解决方 案。 利用信道互易性的 CoMP方案同样面临着天线校准的要求。
实际系统中尽管借助自校准可以较好实现同一基站的上下行天线校准, 然而 尚无有效方法解决基站间天线校准, 从而对多基站联合信道上下行互易性并不严 格成立。 在不满足上下行互易性的情况下, TDD系统无法基于所测量的上行信道 获得下行多基站联合信道, 从而不能充分发挥 TDD优势。
综上所述, 目前用户设备参与的空中接口校准方法中需要用户设备反馈信道 系数, 对信道系数进行直接量化的方法会占用很大的上行开销, 降低系统效率。 发明内容 本发明实施例提供的一种进行天线校准的方法、 系统和设备, 用以解决现有 技术中存在的用户设备参与的空中接口校准方法中需要用户设备反馈信道系数, 对信道系数进行直接量化的方法会占用很大的上行开销, 降低系统效率的问题。
本发明实施例提供的一种进行天线校准的方法, 包括:
用户设备进行下行信道测量, 确定下行信道矩阵;
所述用户设备根据所述下行信道矩阵, 确定用于进行天线校准的第一加权矩 阵;
所述用户设备通知所述网络侧确定的所述第一加权矩阵。
本发明实施例提供的另一种进行天线校准的方法, 包括:
网络侧设备进行上行信道测量, 确定上行信道矩阵;
所述网络侧设备根据上行信道矩阵和收到的来自用户设备的第一加权矩阵, 确定校准系数;
所述网络侧设备根据确定的校准系数进行天线校准。
本发明实施例提供的一种进行天线校准的用户设备, 包括:
下行矩阵确定模块, 用于进行下行信道测量, 确定下行信道矩阵; 加权矩阵确定模块, 用于根据所述下行信道矩阵, 确定用于进行天线校准的 第一加权矩阵;
通知模块, 用于通知所述网络侧确定的所述第一加权矩阵。
本发明实施例提供的一种进行天线校准的网络侧设备, 包括:
上行矩阵确定模块, 用于进行上行信道测量, 确定上行信道矩阵; 系数确定模块, 用于根据上行信道矩阵和收到的来自用户设备的第一加权矩 阵, 确定校准系数;
校准模块, 用于根据确定的校准系数进行天线校准。
本发明实施例提供的一种进行天线校准的系统, 包括:
用户设备, 用于进行下行信道测量, 确定下行信道矩阵, 根据所述下行信道 矩阵, 确定用于进行天线校准的第一加权矩阵, 通知所述网络侧确定的所述第一 加权矩阵;
网络侧设备, 用于进行上行信道测量, 确定上行信道矩阵, 根据上行信道矩 阵和收到的来自用户设备的第一加权矩阵, 确定校准系数, 根据确定的校准系数 进行天线校准。
由于本发明实施例用户设备对所述下行信道矩阵进行特征值分解处理或将第 一加权矩阵对应的标识上 ·ί艮给网络侧设备 , 从而降低了占用的上行开销, 提高了 系统效率。 进一步的, 本发明实施例能够实现基站间天线校准, 从而在系统中上下行信 道互易性不成立时, 能够提高系统性能; 若应用在 TDD 系统中, 在系统中上下 行信道互易性不成立时, 使得 TDD 系统可以基于所测量的上行信道获得下行多 基站联合信道, 提高多点协作传输的性能, 从而充分发挥 TDD优势。 附图说明
图 1A为背景技术中协同调度的示意图;
图 1B为背景技术中协同传输的示意图;
图 2为本发明实施例进行天线校准的系统结构示意图;
图 3为本发明实施例第一种导频图样示意图;
图 4为本发明实施例第二种导频图样示意图;
图 5为本发明实施例第一种端口配置示意图;
图 6为本发明实施例第二种端口配置示意图;
图 7为本发明实施例进行天线校准的系统中用户设备的结构示意图; 图 8为本发明实施例进行天线校准的系统中网络侧设备的结构示意图; 图 9为本发明实施例用户设备上 4艮一加权矩阵的方法流程示意图; 图 10为本发明实施例网络侧设备进行天线校准的方法流程示意图。 具体实施方式
本发明实施例用户设备进行下行信道测量, 确定下行信道矩阵; 所述用户设 备根据所述下行信道矩阵, 确定用于进行天线校准的第一加权矩阵; 所述用户设 备通知所述网络侧确定的所述第一加权矩阵。 由于本发明实施例用户设备对所述 下行信道矩阵进行特征值分解处理或将第一加权矩阵对应的标识上报给网络侧设 备, 从而降低了占用的上行开销, 提高了系统效率。
下面结合说明书附图对本发明实施例作进一步详细描述。
在下面的说明过程中, 先从网络侧和用户设备侧的配合实施进行说明, 最后 分别从网络侧与用户设备侧的实施进行说明,但这并不意味着二者必须配合实施, 实际上, 当网络侧与用户设备侧分开实施时, 也解决了分别在网络侧、 用户设备 侧所存在的问题, 只是二者结合使用时, 会获得更好的技术效果。
如图 2所示,本发明实施例进行天线校准的系统包括: 用户设备 10和网络侧设 备 20。
用户设备 10, 用于进行下行信道测量, 确定下行信道矩阵, 根据所述下行信 道矩阵, 确定用于进行天线校准的第一加权矩阵, 通知所述网络侧确定的所述第 一加权矩阵;
网络侧设备 20, 用于进行上行信道测量, 确定上行信道矩阵, 根据上行信道 矩阵和收到的来自用户设备的第一加权矩阵, 确定校准系数, 根据确定的校准系 数进行天线校准。
在实施中, 网络侧设备 20可以选择特定的用户设备 10参与校准, 进行校准所 需的测量与反馈。 选择的用户设备 10可以是信道盾量好且移动速度低的用户设备 10。 在此之前用户设备 10可以上 4艮是否支持校准所需的测量和反馈的能力; 网络 侧设备 20也可以根据用户设备 10的版本判断是否支持校准所需的测量和反馈的能 力。
较佳地, 网络侧设备 20通知所述用户设备 10进行下行信道测量的频域范围内 和 /或特定子帧;
相应的, 用户设备 10根据网络侧通知的频域范围和 /或网络侧通知的特定子 帧, 进行下行信道测量。
具体的,
1、 网络侧设备 20通知所述用户设备 10进行下行信道测量的频域范围: 该频域范围内存在网络侧设备 20发送的用于校准测量的导频; 网络侧设备 20 通过高层信令半静态配置该频域范围, 或者通过物理层控制信令动态指示该频域 范围; 或者用户设备 10在预先约定好的固定频域范围内测量下行信道, 该频域范 围内存在网络侧设备 20发送的可以用于校准测量的导频。 特别的, 频域范围可以 是整个系统带宽, 此时网络侧设备 20不需要通知用户设备 10具体的频域范围。
2、 网络侧设备 20通知所述用户设备 10进行下行信道测量的特定子帧: 网络侧设备 20通知用户设备 10在特定子帧内(校准测量子帧)测量下行信道, 这些子帧内存在网络侧设备 20发送的可以用于校准测量的导频 (下称校准导频, 校准导频可以是 CRS ( Cell-specific reference signals,小区专属导频信号)、 CSI-RS (信道状态信息测量参考信号)、 DM-RS ( Demodulation reference signal, 解调参 考信号)等 LTE系统中已有的导频) 。 子帧可以以周期 +子帧偏移的方式确定。
τ
例如: 周期为 pmod , 子帧偏移为 offset , 则在子帧 s内存在校准导频的条 件为 ― Soffset ) m0d T period = 0 . 校准测量子帧也可以通过物理层信令动态指 示。
3、网络侧设备 20通知所述用户设备 10进行下行信道测量的频域范围和特定子 即将上面的 1和 2结合起来使用,在特定子帧的特定频域范围内存在校准导频, 用户设备 10在该范围内估计下行信道。
在实施中, 网络侧设备 20还需要通知用户设备 10需要校准的天线数目, 以及 每根天线的校准导频的资源范围内所占用的 RE ( Resource Element, 资源单元) , 即校准导频的 H H H…图,I2 样。 例如: 釆用 2端口或者 8端口 CSI-RS导频进行校准, 2端口 CSI-RS的导频图样如图 3所示, 8端口 CSI-RS的导频图样如图 4所示。
在实施中, 校准导频的多根天线的可以是同一个传输点(如, 网络侧设备 20 ) 的天线, 也可以是来自不同网络侧设备 20的天线。 例如: 2才 天线, 可以是一个网 络侧设备 20的 2根天线,或者分别是两个网络侧设备 20的天线。用户设备 10在进行 测量时可以不区分每根天线分别来自哪个网络侧设备 20。
多个基站校准的场景中,每个网络侧设备 20的天线数目可能会多于 1根,这种 情况下有两种处理方式:
处理方式一、 为每个网络侧设备的每根天线都配置一个校准导频端口, 例如 网络侧设备 A有 4根天线, 网络侧设备 B有 4根天线, 网络侧设备 A和网络侧设备 B 的天线进行天线校准,则可以给用户设备配置 8校准导频端口的校准导频,每根天 线都对应一个校准导频校准导频端口, 如图 5所示。
处理方式二、 假定每个小区的网络侧设备通过其他的方法已经完成了该基站 的各根天线之间的天线校准, 获得了初始校准系数, 例如通过网络侧设备自校准 方法获得初始校准系数。每个基站选出 1根天线参与多基站的天线校准过程,例如: 网络侧设备 A有 4根天线, 选出第 1根天线参与校准, 网络侧设备 B有 4根天线, 选 出第 1根天线参与校准, 网络侧设备 A和网络侧设备 B—共有 2根天线参与校准, 则 可以给用户设备配置 2校准导频端口的校准导频,每个网络侧设备选出的天线都对 应一个校准导频端口, 如图 6所示。 该方法可以减少校准导频的端口数, 降低导频 开销, 降低反馈开销。
针对处理方式二, 网络侧设备 20从所述多根天线中选择一根天线从所述校准 导频端口上发送上行导频信号。
较佳地, 用户设备 10根据估计出的下行信道矩阵, 确定用于进行天线校准的 第一加权矩阵的方式有多种, 下面列举几种:
设 用 户 设 备 10 根 据 估 计 出 的 下 行 信 道 矩 阵 为
H,
H
Figure imgf000007_0001
, 其中 M为用户设备 10的接收天线数目, N为配置的 校准导频端口数目。 确定第一加权矩阵方式一、 用户设备 10对所述下行信道矩阵进行特征值分解 处理, 将最大特征值对应的特征向量作为第一加权矩阵。
具体的, 用户设备 10对信道矩阵的相关矩阵 R = HffH做特征值分解, 取其 最大特征值对应的特征向量为第一加权矩阵, 记为 V。
确定第一加权矩阵方式二、 用户设备 10根据所述下行信道矩阵, 从第一加权 矩阵集合中选择一个第一加权矩阵。
具体的, 用户设备 10根据下列公式选择第一加权矩阵:
V = argmax || Wk HHHHWk ||2 其中, V为第一加权矩阵; C f^^^""^}为第一加权矩阵集合; L为 第一加权矩阵集合中元素的个数; H为下行信道矩阵。
较佳地, 第一加权矩阵集合中的第一加权矩阵的维数是 N x 1 ; 其中, N为校 准导频端口数目。 即 N行 1列, ^ _ t l ' 2 ' " ' ' N ] , 后面的说明均以该维 数为例, 其他维数的方法类似, 不再赘述。 针对确定第一加权矩阵方式一, 用户设备 10将所述第一加权矩阵中的各个元 素量化后上 ·ί艮。
针对确定第一加权矩阵方式二, 用户设备 10确定选择的第一加权矩阵集合中 的第一加权矩阵对应的标识, 并上 4艮确定的标识。
其中, 第一加权矩阵的计算与反馈是针对一定带宽进行的, 例如将系统带宽 划分成若千个子带, 每个子带计算并反馈 1个第一加权矩阵。
在实施中, 用户设备 10在网络侧设备 20指定的资源上发送上行导频信号, 用 于网络侧设备 20进行上行信道估计。
较佳地, 网络侧设备 20通知所述用户设备发送上行导频信号的频域范围内和
/或特定子帧; 相应的, 用户设备 10根据网络侧通知的频域范围和 /或网络侧通 知的特定子帧, 发送上行导频信号。
网络 设备 20通过用户设备发送的上行导频信号计算出上行信道矩阵
Figure imgf000008_0001
, 上行信道矩阵的接收天线即为校准导频的发射天 线。 R为用户设备发送上行导频信号的天线数目。 较优的, R可以等于 M, 即用户 设备从所有接收下行校准导频的天线上发送上行导频信号。 较优的, R也可以小 于 M, 即用户设备从部分接收下行校准导频的天线上发送上行导频信号。 用户设 备发送的上行导频信号可以是 SRS ( Sounding Reference Signal , 上行探测参考信 号) , 也可以是 DMRS ( Demodulation Reference Signal, 解调参考信号) 。 网络侧设备 20计算 N根天线的校准系数, 可以通过求解如下的优化问题的方 式计算校准系数:
Z) = arg max || (7¾ ||2
为第 k个校准导频端口对应的天线的校准系
Figure imgf000009_0001
较佳地, 若网络侧设备 20接收到一个第一加权矩阵, 针对上面的优化问题进 行变化后, 网络侧设备 20可以根据公式一确定校准系数:
^ = arg
Figure imgf000009_0002
为确定的校准系数; 为上行信道矩阵
T
. V = [vl 9v 为 第 一 加 权 矩 阵 ;
· · · 0
0 0
" · . :
… Vm I , 为根据
Figure imgf000009_0003
第一加权矩阵构造的对角矩阵, N为校准导频端口的数目。 e,
进一步的, fc为第 k个校准导频端口对应的天线的校准系数。 容易看出公式 一的解即为矩阵 (G LdiOf G (tt(ig(V、的最大特征值对应的特征向量, 即 E = eigvec{{GU T Ldiag(V))H GU T Ldiag(V)) , eigvec(A)为矩阵 A的最大特征值对应的特 征向量。 较佳地, 若网络侧设备 20接收到多个第一加权矩阵。 比如网络侧设备 20获得
Q组数据值, 每组数据包括上行信道
Figure imgf000010_0001
以及对应的用户设备 10反馈的第一加
V GTTT V
权矩阵 其中同一组数据中的 ^,^和 对应同一个用户设备 10, 需要保证
GTTT V
网络侧设备 20获得的 U 的时刻和用户设备 10获得的 的时刻之间的时间长 度不能大于阈值且对应相同的频带。 这 Q组数据值可以是一个用户设备 10多次测量上报得到的, 也可以是不同的 用户设备 10测量上 4艮得到的。 由 Q组数据值联合优化得到校准系数的优化问题, 网络侧设备 20可以根据公式二确定校准系数:
1 2
Ε = argmax— G^L qdiag(Vq)F \\2
F Q ^ ... ....公式二; 其中, = l, 2,' ' ',^v J 系数; ^ ^为1 ^对应的上 行信道矩阵的转置; q
Figure imgf000010_0002
为第一加权矩阵; Q为接收 ίι, 的第一加权矩阵的数量 F = L/i,/2, ',/ J NN ] 为 函数变量
V?1 0 … 0
0 vi2 0 0
diag(V )―
; 0 ' · . ;
0 0 · · · vqN
, 为根据第一加权矩阵构造的对角矩阵。
其 中 , 公 式 二 的 优 化 问 题 的 解 为
Figure imgf000010_0003
。 除了上面釆用公式一和公式二的方式确定校准系数外, 本发明实施例的网络 侧设备 20还可以按照下列方式确定校准系数:
具体的, 网络侧设备 20根据所述上行信道矩阵, 确定第二加权矩阵, 并根据 第一加权矩阵和第二加权矩阵, 确定校准系数。
较佳地, 网络侧设备 20确定第一加权矩阵的方式有多种, 下面列举几种: 确定第一加权矩阵方式一: 网络侧设备 10根据接收到的用户设备 10上报的 第一加权矩阵的标识从第一加权矩阵集合中确定第一加权矩阵。 确定第一加权矩阵方式二: 网络侧设备 20根据接收到的用户设备 10上报的 第一加权矩阵中的每个元素确定的第一加权矩阵。
较佳地, 网络侧设备 20确定第二加权矩阵的方式有多种, 下面列举几种: 确定第二加权矩阵方式一、 网络侧设备 20对所述上行信道矩阵进行特征值分 解处理, 将最大特征值对应的特征向量作为第二加权矩阵。
确定第二加权矩阵方式二、 网络侧设备 20根据所述上行信道矩阵, 从第二加 权矩阵集合中选择一个第二加权矩阵。
具体的, 网络侧设备 20根据下列公式选择第二加权矩阵:
Z = argm x \\ Wk H(GU T L)HGU T LWk \\2
wk≡c2 . 其中, Z为第二加权矩阵; = {^' ^,· · ·^}为第二加权矩阵集合; L为 第二加权矩阵集合中元素的个数; GUTL为下行信道矩阵。 较佳地, 第二加权矩阵集合中的第二加权矩阵的维数是 N x 1 ; 其中, N为校 准导频端口的数目。
较佳地, 针对一根天线, 所述网络侧设备 20将第二加权矩中该天线对应的数 值除以第一加权矩中该天线对应的数值 , 得到该天线对应的校准系数。
具体的, 若第二加权矩阵为 Z = k, ,…, ^ , 则第 k根天线的校准系数可以 计算为 ^ = / V*。
在实施中, 如果网络侧设备 20获得 Q组数据(与上面描述的 Q组数据类似, 不 再赘述) , 网络侧设备 20根据每组数据可以算出一个校准系数向量 = i, 2,"',^^】 ,多组数据的校准系数向量可以经过综合处理得到更加稳 定可靠, 误差更小的校准系数。 具体的, 若所述网络侧设备接收到多个第一加权矩阵, 所述网络侧设备根据 每个第一加权矩阵确定一个校准系数;
所述网络侧设备对校准系数取加权平均, 得到最终的校准系数, 即
1 2
Q ^ " ¾1 , 其中 7 的作用是使每个校准系数向量的第一个元素为 1 , 不影响该校准系数向量的作用, 且使得取平均操作得到的结果更加合理; 或者 所述网络侧设釆用主成分分析方法, 即将根据公式三得到的矩阵的最大特征 值对应的特征向量作为最终的校准系数: 1 Q
q q
^ 9=1 ... ...公式三;
其中, 为校准系数向量; Q为接收到的第一加权矩阵的数量; q" f, Ni 为根据第一加权矩阵确定的校准系数向量。 较佳地, 对于多基站联合校准的情况, 即多根天线配置一个校准导频端口, 则上面计算出来的校准系数(包括釆用公式一和公式二得到的校准系数, 以及根 据第一加权矩阵和第二加权矩阵确定的校准系数)可能是其代表天线的校准系数, 为获得其全部天线的校准系数, 需要进一步处理。
具体的, 若多根天线配置一个校准导频端口, 且所述网络侧设备 20已经获得 所述多根天线之间的初始校准系数, 针对一个校准导频端口, 所述网络侧设备 20 根据该校准导频端口对应的各根天线的初始校准系数和通过该校准导频端口确定 的校准系数, 确定各根天线实际的校准系数。
假设某一基站有 S根天线, 釆用其他方法, 如自校准方法, 得到的各根天线 的校准系数为 ^二 ^ ^2,…,^]7" , 其中 为第 k根天线的校准系数。 应用本方法实 施例计算出来的其代表天线(第一根天线)校准系数为 a , 则该网络侧设备 20天线 最终的校准系数可以计算为 ^^二 ^ ," ^,…,^ ^ ]7"。
由于本发明实施例能够实现基站间天线校准, 从而在系统中上下行信道互易 性不成立时, 能够提高系统性能; 若应用在 TDD系统中, 在系统中上下行信道互 易性不成立时, 使得 TDD系统可以基于所测量的上行信道获得下行多基站联合信 道, 提高多点协作传输的性能, 从而充分发挥 TDD优势。
其中, 本发明实施例的网络侧设备可以是基站(比如宏基站、 家庭基站等), 也可以是 RN (中继)设备, 还可以是其它网络侧设备。
基于同一发明构思, 本发明实施例中还提供了一种用户设备、 网络侧设备、 用户设备上报第一加权矩阵的方法及网络侧设备进行天线校准的方法, 由于这些 设备和方法解决问题的原理与本发明实施例进行天线校准的系统相似, 因此这些 设备和方法的实施可以参见系统的实施, 重复之处不再赘述。
如图 7所示,本发明实施例进行天线校准的系统中的用户设备包括: 下行矩阵 确定模块 700、 加权矩阵确定模块 710和通知模块 720。
下行矩阵确定模块 700, 用于进行下行信道测量, 确定下行信道矩阵; 加权矩阵确定模块 710 ,用于根据所述下行信道矩阵,确定用于进行天线校准 的第一加权矩阵; 通知模块 720, 用于通知所述网络侧确定的所述第一加权矩阵。
较佳地,加权矩阵确定模块 710对所述下行信道矩阵进行特征值分解处理,将 最大特征值对应的特征向量作为第一加权矩阵;
相应的, 通知模块 720将所述第一加权矩阵中的各个元素量化后上报。
较佳地,加权矩阵确定模块 710根据所述下行信道矩阵,从第一加权矩阵集合 中选择一个第一加权矩阵。
相应的,通知模块 720确定选择的第一加权矩阵集合中的第一加权矩阵对应的 标识, 并上^ =艮确定的标识。
较佳地,下行矩阵确定模块 700根据网络侧通知的频域范围和 /或网络侧通知 的特定子帧, 进行下行信道测量。
较佳地,下行矩阵确定模块 700根据网络侧通知的频域范围和 /或网络侧通知 的特定子帧, 发送上行导频信号。
如图 8所示,本发明实施例进行天线校准的系统中的网络侧设备包括:上行矩 阵确定模块 800、 系数确定模块 810和校准模块 820。
上行矩阵确定模块 800 , 用于进行上行信道测量, 确定上行信道矩阵; 系数确定模块 810 ,用于根据上行信道矩阵和收到的来自用户设备的第一加权 矩阵, 确定校准系数;
校准模块 820 , 用于根据确定的校准系数进行天线校准。
较佳地,若系数确定模块 810接收到一个第一加权矩阵,所述系数确定模块 810 根据公式一确定校准系数。
较佳地, 若系数确定模块 810接收到多个第一加权矩阵, 系数确定模块 810根 据公式二确定校准系数。
较佳地, 系数确定模块 810根据所述上行信道矩阵, 确定第二加权矩阵,根据 第一加权矩阵和第二加权矩阵, 确定校准系数。
较佳地,系统确定模块 810根据接收到的用户设备 10上报的第一加权矩阵的 标识从第一加权矩阵集合中确定第一加权矩阵; 或者, 根据接收到的用户设备 10 上 ·ί艮的第一加权矩阵中的每个元素确定的第一加权矩阵。
较佳地, 系数确定模块 810对所述上行信道矩阵进行特征值分解处理,将最大 特征值对应的特征向量作为第二加权矩阵; 或根据所述上行信道矩阵, 从第二加 权矩阵集合中选择一个第二加权矩阵。
较佳地,针对一根天线, 系数确定模块 810将第二加权矩中该天线对应的数值 除以第一加权矩中该天线对应的数值 , 得到该天线对应的校准系数。
较佳地,若所述网络侧设备接收到多个第一加权矩阵, 系数确定模块 810根据 每个第一加权矩阵确定一个校准系数;对校准系数取平均,得到最终的校准系数, 或将根据公式三得到的矩阵的最大特征值对应的特征向量作为最终的校准系数。
较佳地, 网络侧设备的多根天线配置一个校准导频端口; 或网络侧设备的每 根天线都配置一个校准导频端口。
较佳地, 若所述网络侧设备的多根天线配置一个校准导频端口; 所述上行矩 阵确定模块 800从所述多根天线中选择一根天线从所述校准导频端口上发送导频 信号。
较佳地,若多根天线配置一个校准导频端口,且系数确定模块 810已经获得所 述多根天线之间的初始校准系数,针对一个校准导频端口, 系数确定模块 810根据 该校准导频端口对应的各根天线的初始校准系数和通过该校准导频端口确定的校 准系数, 确定各根天线实际的校准系数。
较佳地,上行矩阵确定模块 800通知所述用户设备进行下行信道测量的频域范 围内和 /或特定子帧。
较佳地,上行矩阵确定模块 800通知所述用户设备发送上行导频信号的频域范 围内和 /或特定子帧。
如图 9所示, 本发明实施例用户设备上报第一加权矩阵的方法包括下列步骤: 步骤 901、 用户设备进行下行信道测量, 确定下行信道矩阵;
步骤 902、用户设备根据所述下行信道矩阵,确定用于进行天线校准的第一加 权矩阵;
步骤 903、 用户设备通知所述网络侧确定的所述第一加权矩阵。
较佳地,步骤 901中,所述用户设备根据网络侧通知的频域范围和 /或网络侧 通知的特定子帧, 进行下行信道测量。
较佳地, 步骤 902中, 用户设备对所述下行信道矩阵进行特征值分解处理, 将 最大特征值对应的特征向量作为第一加权矩阵;
相应的,步骤 903中,所述用户设备将所述第一加权矩阵中的各个元素量化后 上报。
较佳地, 步骤 902中, 用户设备根据所述下行信道矩阵, 从第一加权矩阵集合 中选择一个第一加权矩阵。
较佳地, 第一加权矩阵集合中的第一加权矩阵的维数是 N x 1 ; 其中, N为需 要校准的天线数目。
较佳地,步骤 902中,所述用户设备确定选择的第一加权矩阵集合中的第一加 权矩阵对应的标识, 并上 4艮确定的标识。
较佳地,用户设备根据网络侧通知的频域范围和 /或网络侧通知的特定子帧, 进行下行信道测量。
较佳地,用户设备根据网络侧通知的频域范围和 /或网络侧通知的特定子帧, 发送上行导频信号。
如图 10所示, 本发明实施例网络侧设备进行天线校准的方法包括下列步骤: 步骤 1001、 网络侧设备进行上行信道测量, 确定上行信道矩阵;
步骤 1002、 网络侧设备根据上行信道矩阵和收到的来自用户设备的第一加权 矩阵, 确定校准系数;
步骤 1003、 网络侧设备根据确定的校准系数进行天线校准。
较佳地, 若网络侧设备接收到一个第一加权矩阵, 步骤 1002中, 网络侧设备 根据公式一确定校准系数。
较佳地, 若网络侧设备接收到多个第一加权矩阵, 步骤 1002中, 网络侧设备 根据公式二确定校准系数。
除了上面釆用公式一和公式二的方式确定校准系数外, 本发明实施例的网络 侧设备还可以按照下列方式确定校准系数:
具体的, 步骤 1002中, 所述网络侧设备才 居所述上行信道矩阵, 确定第二加 权矩阵, 根据第一加权矩阵和第二加权矩阵, 确定校准系数。
较佳地, 网络侧设备确定第二加权矩阵包括:
所述网络侧设备对所述上行信道矩阵进行特征值分解处理, 将最大特征值对 应的特征向量作为第二加权矩阵; 或
所述网络侧设备根据所述上行信道矩阵, 从第二加权矩阵集合中选择一个第 二加权矩阵。
较佳地, 第二加权矩阵集合中的第二加权矩阵的维数是 N X 1;
其中, N为需要校准的天线数目。
较佳地, 针对一根天线, 网络侧设备将第二加权矩中该天线对应的数值除以 第一加权矩中该天线对应的数值 , 得到该天线对应的校准系数。
较佳地, 若所述网络侧设备接收到多个第一加权矩阵, 所述网络侧设备根据 每个第一加权矩阵确定一个校准系数;对校准系数取平均,得到最终的校准系数, 或将根据公式三得到的矩阵的最大特征值对应的特征向量作为最终的校准系数。
较佳地, 所述网络侧设备的多根天线配置一个校准导频端口; 或所述网络侧 设备的每根天线都配置一个校准导频端口。
若所述网络侧设备的多根天线配置一个校准导频端口, 所述网络侧设备从所 述多根天线中选择一根天线从所述校准导频端口上发送导频信号。
较佳地, 若多根天线配置一个校准导频端口, 且所述网络侧设备已经获得所 述多根天线之间的初始校准系数, 网络侧设备确定校准系数之后, 进行天线校准 之前, 针对一个校准导频端口, 根据该校准导频端口对应的各根天线的初始校准 系数和通过该校准导频端口确定的校准系数, 确定各根天线实际的校准系数。
较佳地, 所述网络侧设备确定上行信道矩阵之前, 通知所述用户设备进行下 行信道测量的频域范围内和 /或特定子帧。
较佳地, 网络侧设备通知所述用户设备发送上行导频信号的频域范围内和 / 或特定子帧。
其中, 图 9和图 10可以合成一个流程, 形成一个进行天线校准的方法, 即先执 行步骤 901〜步骤 903 , 再执行步骤 1001〜步骤 1003。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算 机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软 件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计 算机可用程序代码的计算机可用存储介盾(包括但不限于磁盘存储器、 CD-ROM, 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统) 、 和计算机程序产品 的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或 方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框 的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机 或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机或其他可 编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流 程和 /或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以 特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令 产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或多个流程和 / 或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得 在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从 而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多 个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本 创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意 欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离 本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本 发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权 利 要 求
1、 一种进行天线校准的方法, 其特征在于, 该方法包括:
用户设备进行下行信道测量, 确定下行信道矩阵;
所述用户设备根据所述下行信道矩阵, 确定用于进行天线校准的第一加权矩 阵;
所述用户设备通知所述网络侧确定的所述第一加权矩阵。
2、如权利要求 1所述的方法, 其特征在于, 所述用户设备确定第一加权矩阵 包括:
所述用户设备对所述下行信道矩阵进行特征值分解处理, 将最大特征值对应 的特征向量作为第一加权矩阵;
所述用户设备通知所述网络侧确定的所述第一加权矩阵包括:
所述用户设备将所述第一加权矩阵中的各个元素量化后上 4艮。
3、如权利要求 1所述的方法, 其特征在于, 所述用户设备确定第一加权矩阵 包括:
所述用户设备根据所述下行信道矩阵, 从第一加权矩阵集合中选择一个第一 加权矩阵。
4、如权利要求 3所述的方法, 其特征在于, 所述用户设备通知所述网络侧确 定的所述第一加权矩阵包括:
所述用户设备确定选择的第一加权矩阵集合中的第一加权矩阵对应的标识, 并上报确定的标识。
5、 如权利要求 1 ~ 4任一所述的方法, 其特征在于, 所述用户设备进行下行 信道测量包括:
所述用户设备根据网络侧通知的频域范围和 /或网络侧通知的特定子帧, 进 行下行信道测量。
6、 如权利要求 1 ~ 4任一所述的方法, 其特征在于, 进一步包括: 所述用户设备才 居网络侧通知的频域范围和 /或网络侧通知的特定子帧, 发 送上行导频信号。
7、 一种进行天线校准的方法, 其特征在于, 该方法包括:
网络侧设备进行上行信道测量, 确定上行信道矩阵;
所述网络侧设备根据上行信道矩阵和收到的来自用户设备的第一加权矩阵, 确定校准系数;
所述网络侧设备根据确定的校准系数进行天线校准。
8、如权利要求 7所述的方法, 其特征在于, 所述收到的第一加权矩阵是所述 网络侧设备根据接收到的所述用户设备上报的第一加权矩阵的标识从第一加权矩 阵集合中确定的。
9、如权利要求 7所述的方法, 其特征在于, 所述收到的第一加权矩阵是所述 网络侧设备根据接收到的所述用户设备上报的第一加权矩阵中的每个元素确定 的。
10、 如权利要求 7所述的方法, 其特征在于, 所述网络侧设备接收到一个第 一加权矩阵;
所述网络侧设备根据下列公式确定校准系数:
= argmax || G^ft^( )F ||2
F · 其中 , 为确定的校准系数; GuTL 为 J 行信道矩阵的转置; 为第一加权矩阵; 为函数 ; 0 … 0
0 v2 0 0
diag(V)―
; 0 ' · . ;
0 0
变量; … v ,
, 为根据第一加权矩阵构造的对角矩阵, N为 校准天线端口的个数。
11、 如权利要求 7所述的方法, 其特征在于, 所述网络侧设备接收到多个第 一加权矩阵;
所述网络侧设备根据下列公式确定校准系数:
E = argmaxJ-XH GU T L qdiag(Vq)F ||2
其中, 为确定的校准系数; UL'q为 对应的上行信道矩阵的转置;
Figure imgf000019_0001
为第一加权矩阵; Q 为接收到的第一加权矩阵的
V 0 0
0 0 diag(V )―
F - [ ΡΛ'"'Ά] 为函数变量; 0 0 qN 为根据第一加权矩阵构造的对角矩阵。
12、 如权利要求 7所述的方法, 其特征在于, 所述网络侧设备确定校准系数 包括:
所述网络侧设备根据所述上行信道矩阵, 确定第二加权矩阵;
所述网络侧设备根据第一加权矩阵和第二加权矩阵, 确定校准系数。
13、如权利要求 12所述的方法, 其特征在于, 所述网络侧设备确定第二加权 矩阵包括:
所述网络侧设备对所述上行信道矩阵进行特征值分解处理, 将最大特征值对 应的特征向量作为第二加权矩阵; 或
所述网络侧设备根据所述上行信道矩阵, 从第二加权矩阵集合中选择一个第 二加权矩阵。
14、如权利要求 12所述的方法, 其特征在于, 所述网络侧设备确定校准系数 包括:
针对一根天线, 所述网络侧设备将第二加权矩中该天线对应的数值除以第一 加权矩中该天线对应的数值 , 得到该天线对应的校准系数。
15、如权利要求 12 ~ 14任一所述的方法, 其特征在于, 所述网络侧设备确定 校准系数包括:
若所述网络侧设备接收到多个第一加权矩阵, 所述网络侧设备根据每个第一 加权矩阵确定一个校准系数;
所述网络侧设备对校准系数取加权平均, 得到最终的校准系数, 或将根据下 列公式得到的矩阵的最大特征值对应的特征向量作为最终的校准系数:
1 Q
-) 1 1
\l q=l . 其中 , 为校准系数; Q 为接收到的第一加权矩阵的数量;
Eq
Figure imgf000020_0001
为根据第一加权矩阵确定的校准系数。
16、 如权利要求 7 ~ 14任一所述的方法, 其特征在于, 所述网络侧设备的多 根天线配置一个校准导频端口; 或
所述网络侧设备的每根天线都配置一个校准导频端口。
17、如权利要求 16所述的方法, 其特征在于, 若所述网络侧设备的多根天线 配置一个校准导频端口, 所述网络侧设备从所述多根天线中选择一根天线从所述 校准导频端口上发送导频信号。
18、如权利要求 16所述的方法, 其特征在于, 所述网络侧设备确定校准系数 之后, 进行天线校准之前还包括:
若多根天线配置一个校准导频端口, 且所述网络侧设备已经获得所述多根天 线之间的初始校准系数, 针对一个校准导频端口, 所述网络侧设备根据该校准导 频端口对应的各根天线的初始校准系数和通过该校准导频端口确定的校准系数, 确定各根天线实际的校准系数。
19、 如权利要求 7 ~ 14任一所述的方法, 其特征在于, 所述网络侧设备接收 来自用户设备的第一加权矩阵之前还包括:
所述网络侧设备通知所述用户设备进行下行信道测量的频域范围内和 /或特 定子帧。
20、 如权利要求 7 ~ 14任一所述的方法, 其特征在于, 所述网络侧设备确定 上行信道矩阵之前还包括:
所述网络侧设备通知所述用户设备发送上行导频信号的频域范围内和 /或特 定子帧。
21、 一种进行天线校准的用户设备, 其特征在于, 该用户设备包括: 下行矩阵确定模块, 用于进行下行信道测量, 确定下行信道矩阵; 加权矩阵确定模块, 用于根据所述下行信道矩阵, 确定用于进行天线校准的 第一加权矩阵;
通知模块, 用于通知所述网络侧确定的所述第一加权矩阵。
22、如权利要求 21所述的用户设备, 其特征在于, 所述加权矩阵确定模块具 体用于:
对所述下行信道矩阵进行特征值分解处理, 将最大特征值对应的特征向量作 为第一加权矩阵;
所述通知模块具体用于:
将所述第一加权矩阵中的各个元素量化后上 ·ί艮。
23、如权利要求 21所述的用户设备, 其特征在于, 所述加权矩阵确定模块具 体用于:
根据所述下行信道矩阵, 从第一加权矩阵集合中选择一个第一加权矩阵。
24、 如权利要求 23所述的用户设备, 其特征在于, 所述通知模块具体用于: 确定选择的第一加权矩阵集合中的第一加权矩阵对应的标识, 并上 4艮确定的 标识。
25、如权利要求 21 ~ 24任一所述的用户设备, 其特征在于, 所述下行矩阵确 定模块具体用于:
根据网络侧通知的频域范围和 /或网络侧通知的特定子帧, 进行下行信道测 量。
26、如权利要求 24 ~ 24任一所述的用户设备, 其特征在于, 所述下行矩阵确 定模块还用于:
根据网络侧通知的频域范围和 /或网络侧通知的特定子帧, 发送上行导频信 号。
27、 一种进行天线校准的网络侧设备, 其特征在于, 该方法包括: 上行矩阵确定模块, 用于进行上行信道测量, 确定上行信道矩阵; 系数确定模块, 用于根据上行信道矩阵和收到的来自用户设备的第一加权矩 阵, 确定校准系数;
校准模块, 用于根据确定的校准系数进行天线校准。
28、如权利要求 27所述的方法, 其特征在于, 所述收到的第一加权矩阵是所 述系统数据确定模块根据接收到的所述用户设备上报的第一加权矩阵的标识从第 一加权矩阵集合中确定的。
29、如权利要求 27所述的方法, 其特征在于, 所述收到的第一加权矩阵是所 述系统数据确定模块根据接收到的所述用户设备上报的第一加权矩阵中的每个元 素确定的。
30、如权利要求 27所述的网络侧设备, 其特征在于, 若接收到一个第一加权 矩阵, 所述系数确定模块根据下列公式确定校准系数:
^ = argmax||G^^( ) ||
F 其中 , 为确定的校准系数; 为上行信道矩阵的转置;
τ = [ τ , 2 , · · · , ] 为第一一加力口权^4矩^阵主.; J i = _ [Lf/l19,fJ229,---9,fJNN]」 为函数
; 0 … 0
0 v2 0 0
diag{V)―
; 0 '·. ;
0 0 … „
, 为根据第一加权矩阵构造的对角矩阵, N为 校准天线端口的个数。
31、如权利要求 27所述的网络侧设备, 其特征在于, 若接收到多个第一加权 矩阵, 所述系数确定模块根据下列公式确定校准系数:
1 2
E = argmax— G^L diag(V )F \\2
F q=\ . 其中, 为确定的校准系数; UL'q为 g对应的上行信道矩阵的转置; q L ql ql qN 一加权矩阵; Q 为接收到的第一加权矩阵的
数量; F v iN
Figure imgf000023_0001
为根据第一加权矩阵构造的对角矩阵。
32、如权利要求 27所述的网络侧设备, 其特征在于, 所述系数确定模块具体 用于:
根据所述上行信道矩阵, 确定第二加权矩阵, 根据第一加权矩阵和第二加权 矩阵, 确定校准系数。
33、如权利要求 32所述的网络侧设备, 其特征在于, 所述系数确定模块具体 用于:
对所述上行信道矩阵进行特征值分解处理, 将最大特征值对应的特征向量作 为第二加权矩阵; 或根据所述上行信道矩阵, 从第二加权矩阵集合中选择一个第 二加权矩阵。
34、如权利要求 32所述的网络侧设备, 其特征在于, 所述系数确定模块具体 用于:
针对一根天线, 将第二加权矩中该天线对应的数值除以第一加权矩中该天线 对应的数值 , 得到该天线对应的校准系数。
35、如权利要求 32 ~ 34任一所述的网络侧设备, 其特征在于, 所述系数确定 模块具体用于:
若所述网络侧设备接收到多个第一加权矩阵, 根据每个第一加权矩阵确定一 个校准系数; 对校准系数取平均, 得到最终的校准系数, 或将根据下列公式得到 的矩阵的最大特征值对应的特征向量作为最终的校准系数:
Figure imgf000023_0002
其中 , 为校准系数; Q 为接收到的第一加权矩阵的数量 ' 一『 ιΓ
q = 1^1 ' ^2 V, J 为根据第一加权矩阵确定的校准系数。
36、如权利要求 32 ~ 34任一所述的网络侧设备, 其特征在于, 所述网络侧设 备的多根天线配置一个校准导频端口; 或
所述网络侧设备的每根天线都配置一个校准导频端口。
37、如权利要求 36所述的网络侧设备, 其特征在于, 若所述网络侧设备的多 根天线配置一个校准导频端口; 所述上行矩阵确定模块还用于:
从所述多根天线中选择一根天线从所述校准导频端口上发送导频信号。
38、如权利要求 36所述的网络侧设备, 其特征在于, 所述系数确定模块还用 于:
若多根天线配置一个校准导频端口, 且已经获得所述多根天线之间的初始校 准系数, 针对一个校准导频端口, 根据该校准导频端口对应的各根天线的初始校 准系数和通过该校准导频端口确定的校准系数, 确定各根天线实际的校准系数。
39、如权利要求 32 ~ 34任一所述的网络侧设备, 其特征在于, 所述上行矩阵 确定模块还用于:
通知所述用户设备进行下行信道测量的频域范围内和 /或特定子帧。
40、如权利要求 32 ~ 34任一所述的网络侧设备, 其特征在于, 所述上行矩阵 确定模块还用于:
通知所述用户设备发送上行导频信号的频域范围内和 /或特定子帧。
41、 一种进行天线校准的系统, 其特征在于, 该系统包括:
用户设备, 用于进行下行信道测量, 确定下行信道矩阵, 根据所述下行信道 矩阵, 确定用于进行天线校准的第一加权矩阵, 通知所述网络侧确定的所述第一 加权矩阵;
网络侧设备, 用于进行上行信道测量, 确定上行信道矩阵, 根据上行信道矩 阵和收到的来自用户设备的第一加权矩阵, 确定校准系数, 根据确定的校准系数 进行天线校准。
PCT/CN2013/071451 2012-02-16 2013-02-06 一种进行天线校准的方法、系统和设备 WO2013120429A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/379,072 US9419698B2 (en) 2012-02-16 2013-02-06 Antenna calibration method, system and apparatus
EP13748668.4A EP2816739B1 (en) 2012-02-16 2013-02-06 Aerial calibration method, system and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210035678.4A CN103259581B (zh) 2012-02-16 2012-02-16 一种进行天线校准的方法、系统和设备
CN201210035678.4 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013120429A1 true WO2013120429A1 (zh) 2013-08-22

Family

ID=48963311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071451 WO2013120429A1 (zh) 2012-02-16 2013-02-06 一种进行天线校准的方法、系统和设备

Country Status (4)

Country Link
US (1) US9419698B2 (zh)
EP (1) EP2816739B1 (zh)
CN (1) CN103259581B (zh)
WO (1) WO2013120429A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105471523A (zh) * 2015-11-17 2016-04-06 东南大学 多天线系统的协作分集互易性校准方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096102A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 一种基站间互易性校正的方法及装置
CN104092517B (zh) * 2014-07-30 2017-10-24 北京北方烽火科技有限公司 多天线系统中的信道信息上报、下行数据传输方法和装置
US10355742B2 (en) * 2015-02-13 2019-07-16 Lg Electronics Inc. Method and devices for ray-scanning in wireless access system supporting millimeter waves
US9866301B2 (en) * 2015-03-27 2018-01-09 Alcatel Lucent Channel estimation techniques for LSAS backhaul and the like
CN108886200A (zh) * 2016-03-31 2018-11-23 华为技术有限公司 一种数据传输方法和装置
CN106713189B (zh) * 2016-07-08 2019-10-11 北京展讯高科通信技术有限公司 上行信道估计方法、导频信号传输方法及基站
EP3479495B1 (en) * 2016-07-22 2023-05-31 Huawei Technologies Duesseldorf GmbH Method for obtaining uplink calibration values, calibration method, and corresponding terminal and base station
CN110233655B (zh) * 2017-01-06 2020-10-27 华为技术有限公司 一种信号传输方法和网络设备以及终端设备
US10727995B2 (en) * 2017-05-18 2020-07-28 Qualcomm Incorporated Configuring reference signal transmission in wireless communications
US10454664B2 (en) * 2018-01-12 2019-10-22 Xiao-an Wang Phase synchronization and channel reciprocity calibration of antennas via terminal feedback
CN111130582B (zh) * 2018-11-01 2022-02-25 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
TWI717736B (zh) 2019-05-15 2021-02-01 財團法人工業技術研究院 多天線系統及其通道校正方法
US11683757B2 (en) * 2020-06-22 2023-06-20 Qualcomm Incorporated Leveraging wake-up signals and discontinuous reception cycles for assisted antenna calibration
US20230327715A1 (en) * 2020-08-06 2023-10-12 Ish Kumar JAIN Enabling reliable millimeter-wave links using multi-beam, pro-active tracking, and phased arrays designs
EP4268391A4 (en) * 2020-12-22 2024-02-28 Telefonaktiebolaget LM Ericsson (publ) CALIBRATION OF TRANSMITTING ANTENNA CHAINS AND RECEIVING ANTENNA CHAINS OF AN ANTENNA SYSTEM
CN114244414B (zh) * 2021-11-08 2024-04-12 华为技术有限公司 信号处理方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032000A1 (en) * 2000-10-11 2002-04-18 Airnet Communications Corporation Method and apparatus employing a remote wireless repeater for calibrating a wireless base station having an adaptive antenna array
CN102149123A (zh) * 2011-04-15 2011-08-10 北京邮电大学 一种CoMP系统中基站间天线校准方案和校准装置及基站
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144711A (en) * 1996-08-29 2000-11-07 Cisco Systems, Inc. Spatio-temporal processing for communication
JP4361938B2 (ja) * 2003-12-30 2009-11-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 双方向通信チャネルの相反性を実現する校正方法
SE0303583D0 (sv) * 2003-12-30 2003-12-30 Ericsson Telefon Ab L M Method and arrangement for reciprocity calibration in wireless communication
KR100895992B1 (ko) * 2005-09-16 2009-05-07 삼성전자주식회사 다중 안테나를 사용하는 무선통신시스템에서 안테나 개수를확장하기 위한 장치 및 방법
WO2007056672A2 (en) * 2005-11-02 2007-05-18 Qualcomm Incorporated Antenna array calibration for wireless communication systems
JP4356756B2 (ja) * 2006-04-27 2009-11-04 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
JP4544349B2 (ja) * 2008-07-14 2010-09-15 ソニー株式会社 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4605266B2 (ja) * 2008-07-23 2011-01-05 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、エンコード装置及びエンコード方法、並びにコンピュータ・プログラム
KR101871707B1 (ko) * 2010-04-02 2018-06-27 엘지전자 주식회사 무선통신 시스템에서 채널상태정보 피드백 하는 단말 장치 및 그 방법
CN102340339B (zh) * 2010-07-16 2014-03-26 上海贝尔股份有限公司 在无线网络的基站中用于校准天线互易性的方法及装置
US9019849B2 (en) * 2011-11-07 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Dynamic space division duplex (SDD) wireless communications with multiple antennas using self-interference cancellation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032000A1 (en) * 2000-10-11 2002-04-18 Airnet Communications Corporation Method and apparatus employing a remote wireless repeater for calibrating a wireless base station having an adaptive antenna array
CN102149123A (zh) * 2011-04-15 2011-08-10 北京邮电大学 一种CoMP系统中基站间天线校准方案和校准装置及基站
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816739A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105471523A (zh) * 2015-11-17 2016-04-06 东南大学 多天线系统的协作分集互易性校准方法
CN105471523B (zh) * 2015-11-17 2017-09-08 东南大学 多天线系统的协作分集互易性校准方法

Also Published As

Publication number Publication date
EP2816739A4 (en) 2015-01-21
CN103259581B (zh) 2016-08-03
EP2816739B1 (en) 2017-04-19
US20150341096A1 (en) 2015-11-26
US9419698B2 (en) 2016-08-16
CN103259581A (zh) 2013-08-21
EP2816739A1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2013120429A1 (zh) 一种进行天线校准的方法、系统和设备
CN113840324B (zh) 一种测量上报方法及装置
KR102438322B1 (ko) 무선 통신 시스템들을 위한 2차원 활성 안테나 어레이 동작
US10972168B2 (en) User equipment and method for wireless communication
JP6019502B2 (ja) 協調マルチポイント送信のためのチャネルフィードバック
EP2469729B1 (en) Method and apparatus for keeping the precoding channel coherency in a communication network
KR101452953B1 (ko) 안테나 교정 정보의 보고, 안테나 교정 계수의 확정 방법 및 장치
CN103477568B (zh) Mimo系统中的二维ue配对的方法和装置
CN102291189B (zh) 天线校准方法和设备
US20100285810A1 (en) Method for transmitting dedicated reference signal, and method for receiving dedicated reference signal
WO2022002079A1 (zh) 预编码矩阵确定方法及装置
JP2011130438A (ja) 無線通信システムにおけるマルチユーザmimoの伝送方法、基地局及びユーザ端末
CN110278013B (zh) 一种信道测量和反馈方法、网络设备及系统
JP2016536913A (ja) チャネル状態情報参照信号を構成するための方法、および基地局
CN115836492A (zh) 辅助增强nr类型ii csi反馈的信令传输
WO2013023534A1 (zh) 数据传输方法和设备
CN116095741A (zh) 一种信道测量方法及装置
JP2017502597A (ja) チャンネル情報フィードバック方法、基地局及び端末
WO2014023727A1 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission comp
WO2013173765A1 (en) Calculating and reporting channel characteristics
CN107078993B (zh) 一种获取下行信道信息的方法、装置以及网络侧设备
CN107534883B (zh) 下行信道状态信息的获取方法和装置
CN102547953A (zh) 一种获得波束赋形增益的方法
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
TW201822584A (zh) 多基站系統及其通道校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14379072

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013748668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013748668

Country of ref document: EP