WO2013023534A1 - 数据传输方法和设备 - Google Patents
数据传输方法和设备 Download PDFInfo
- Publication number
- WO2013023534A1 WO2013023534A1 PCT/CN2012/079647 CN2012079647W WO2013023534A1 WO 2013023534 A1 WO2013023534 A1 WO 2013023534A1 CN 2012079647 W CN2012079647 W CN 2012079647W WO 2013023534 A1 WO2013023534 A1 WO 2013023534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- terminal device
- calibration
- parameter
- frequency band
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/24—Monitoring; Testing of receivers with feedback of measurements to the transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/12—Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a data transmission method and device. Background technique
- a MIMO (Multiple Input Multiple Output) system refers to a system in which multiple antennas are installed at both the transmitting end and the receiving end.
- the MIMO system adds spatial domain processing based on the traditional time-frequency processing, and the array processing gain and diversity gain can be further obtained.
- the transmitter can know the channel information in some way, the transmitted signal can be optimized according to the channel characteristics to improve the reception quality and reduce the complexity of the receiver.
- Linear precoding/beamforming technology is one of the optimization methods, which is an effective means to combat fading channels, reduce the probability of errors, and improve system performance.
- the channel information from the base station to the UE is an important factor affecting system performance.
- the UE User Equipment, ie, the terminal equipment
- FDD Frequency Division Duplexing
- the UE feeds back the estimated channel information to the base station through the uplink channel, occupies a large amount of uplink channel resources, and introduces quantization errors and the like.
- TDD Time Division Duplexing
- uplink and downlink signals are transmitted on the same frequency band, so the reciprocity of the uplink and downlink channels is established.
- the so-called reciprocity means that the uplink channel and the downlink channel are the same.
- the uplink and downlink channel reciprocity can be used to estimate the uplink channel by the uplink signal sent by the UE, thereby obtaining downlink channel information, and a large amount of feedback overhead is saved.
- the reciprocity of the channel is established for the spatially propagated physical channel.
- the signal is transmitted to the antenna through the transmitting circuit, and the signal received from the antenna is also received.
- the road is transported to the base belt.
- the transmitting circuit and the receiving circuit are two different circuits, so the delay and amplitude gain introduced by the transmitting circuit and the receiving circuit are not the same, that is, the transmitting and receiving circuits do not match.
- the mismatch between the transmitting circuit and the receiving circuit results in the reciprocity of the uplink and downlink channels is not strictly established.
- the uplink and downlink circuits do not match, especially when the delays are different, it is impossible to ensure that the signals of the antennas are superimposed in phase, so that the signal-to-noise ratio of the received signals is reduced, resulting in performance degradation.
- a method for canceling the influence caused by the mismatch between the uplink and downlink circuits is to perform antenna calibration: calculating a calibration factor according to the information reported by the UE or the information measured by the base station, performing compensation adjustment on the channel estimated by the uplink signal, or sending the signal The data is adjusted for compensation.
- Coordinated Multi-Point Transmission technology is a collaboration between geographically separated multiple transmission points.
- the plurality of transmission points are base stations of different cells or separate transmission devices inside one cell.
- Multi-point coordinated transmission technology is divided into downlink coordinated transmission and uplink joint reception.
- the downlink multi-point cooperative transmission technology solutions are mainly divided into two categories: cooperative scheduling and joint transmission.
- Co-scheduling is to avoid or reduce interference between each other through the coordination of time, frequency and space resources between cells.
- the interference of the small interval is the main factor that restricts the performance of the cell edge UE. Therefore, cooperative scheduling can improve the performance of the cell edge UE by reducing the interference between cells.
- FIG 1 through the coordinated scheduling of three cells, resources may be mutually mutual, and interference between cells is effectively avoided.
- multiple cells simultaneously transmit data to the UE to enhance the UE receiving the signal.
- three cells transmit data to one UE on the same resource, and the UE simultaneously receives signals of multiple cells.
- the superposition of useful signals from multiple cells can improve the signal quality received by the UE, and on the other hand, reduce the interference experienced by the UE, thereby improving system performance.
- the coordinated multi-point transmission technology can effectively implement the channel state information that can be obtained depending on the transmitting end.
- the linear precoding (beamforming) technique can be used to improve the signal. Quality and suppression of interference between users.
- the transmitting end can obtain the channel state information through the feedback of the terminal, but the feedback channel occupies valuable uplink spectrum resources, thereby reducing the uplink spectrum efficiency. This is especially true in multipoint coordinated transmission.
- Each cell (transmission point) participating in cooperative transmission needs to obtain channel state information to the terminal, so its feedback overhead increases linearly with the number of cooperation points.
- the accuracy required for channel state information may also be higher, which means that more uplink bandwidth resources are occupied. This already very tight uplink transmission resource is even more stretched at this time.
- the feedback channel state information inevitably has quantization error. Quantization errors reduce the performance of coordinated multi-point transmissions. Obtaining channel state information using channel reciprocity in a TDD system does not introduce additional feedback overhead, and there is no quantization error introduced by feedback, which is a very competitive solution.
- the CoMP scheme using channel reciprocity also faces the requirement of antenna calibration.
- the air interface calibration involved in the terminal as described above requires uplink and downlink pilot signals.
- the uplink pilot signal can be SRS (Sounding Reference Signal).
- the downlink pilot signals include a CSI-RS (Channel State Information Reference Signal), a CRS (Cell-Specific Reference Signal), a DMRS (Demodulation Reference Signal), and a PRS. (Positioning Reference Signals, etc.) can be selected, but the prior art does not have a suitable solution for antenna calibration. Summary of the invention
- the embodiment of the invention provides a data transmission method and device, and solves the problem that the antenna calibration cannot be accurately implemented in the prior art scheme when the uplink and downlink reciprocity is not strictly established.
- an embodiment of the present invention provides an antenna calibration method, which includes at least the following steps: When the base station needs the terminal device to perform calibration measurement and feedback, the base station sends a trigger message to the terminal device;
- the base station notifies the terminal device to calibrate location information of the pilot signal; the base station sends a calibration pilot to the terminal device in a corresponding subframe according to the location information of the calibration pilot signal and the measurement time parameter.
- the base station performs antenna calibration based on the calibration parameter information.
- the embodiment of the present invention further provides a base station, where the method includes: a triggering module, configured to send a trigger message to the terminal device when the terminal device is required to perform calibration measurement and feedback;
- a sending module configured to notify the terminal device to calibrate location information of the pilot signal, and send a calibration pilot to the terminal device in a corresponding subframe according to the location information of the calibration pilot signal and the measurement time parameter Signal
- a receiving module configured to receive, according to a feedback time parameter, calibration parameter information fed back by the terminal device on a corresponding subframe
- a calibration module configured to perform antenna calibration according to calibration parameter information received by the receiving module.
- an embodiment of the present invention further provides an antenna calibration method, including at least the following steps:
- the terminal device determines calibration parameter information according to the calibration pilot signal; the terminal device reports the calibration parameter information to the base station in a corresponding subframe according to a feedback time parameter pre-configured by the base station, so that the terminal device The base station performs antenna calibration based on the calibration parameter information.
- the embodiment of the present invention further provides a terminal device, including: a receiving module, configured to receive a trigger message sent by a base station, and calibrate location information of the pilot signal, and according to the location of the calibration pilot signal Information, and a measurement time parameter pre-configured by the base station, receiving a calibration pilot signal sent by the base station in a corresponding subframe;
- a determining module configured to determine calibration parameter information according to the calibration pilot signal received by the receiving module
- a sending module configured to report, according to the feedback time parameter pre-configured by the base station, calibration parameter information determined by the determining module to the base station in a corresponding subframe, so that the base station performs, according to the calibration parameter information, Antenna calibration.
- the base station triggers the terminal device to perform calibration measurement and feedback through a trigger message, and notifies the location information of the corresponding calibration information, and the terminal device performs calibration measurement on the corresponding resource according to a fixed timing and performs Feedback, so that the base station performs antenna calibration according to the feedback information, so that the base station can flexibly control and calibrate the timing of the measurement by triggering the message, thereby improving the accuracy and control flexibility of the calibration operation.
- FIG. 1 is a schematic diagram of a scenario of a collaborative scheduling solution in the prior art
- FIG. 2 is a schematic diagram of an implementation scenario of a joint transmission scheme in the prior art
- FIG. 3 is a schematic flowchart of an antenna calibration method according to an embodiment of the present invention
- FIG. 4 is a specific scenario according to an embodiment of the present invention
- FIG. 5 is a schematic flowchart diagram of an antenna calibration method in a specific scenario according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. detailed description
- multi-antenna technology has become one of the key technologies of the next generation wireless communication system.
- the linear precoding/beamforming technology in the multi-antenna technology is an effective means for combating fading channels, reducing the probability of errors, and improving system performance. .
- the TDD system utilizes the reciprocity of the uplink and downlink channels, and obtains the downlink channel information of the base station to the UE according to the estimated uplink channel information of the UE to the base station, thereby calculating the precoding matrix/beamforming weight.
- the uplink and downlink reciprocity in the actual system is not strictly established, which affects the performance of the system.
- the embodiment of the present invention provides an antenna calibration method, in which a base station triggers a terminal device to perform calibration measurement and feedback by triggering a message, thereby realizing practical flexible control for calibration measurement and improving calibration accuracy.
- FIG. 3 it is a schematic flowchart of an antenna calibration method according to an embodiment of the present invention. The method specifically includes the following steps:
- Step S301 The base station sends a trigger message to the terminal device.
- the base station receives its own capability information reported by the terminal device.
- the base station may receive capability information reports of multiple terminal devices, and select a terminal device participating in the calibration according to the information.
- the base station When the base station determines that the terminal device participates in the calibration according to the received capability information of each terminal device, the base station sends a notification message confirming that the terminal device participates in the calibration to the terminal device selected to participate in the calibration.
- the process of sending a trigger message in this step is specifically that the base station sends downlink physical layer control signaling that triggers the terminal device to perform calibration measurement or feedback to the terminal device.
- the downlink physical layer control signaling indicates whether calibration measurement and feedback are performed by using 1 bit;
- the downlink physical layer control signaling indicates, by using a plurality of bits, whether the corresponding frequency band performs calibration measurement and feedback.
- the downlink physical layer control signaling uses a bitmap to indicate whether the corresponding frequency band needs to be measured and fed back.
- the downlink physical layer control signaling further includes resource allocation information of the uplink channel reported by the calibration parameter information, so that the terminal device can perform feedback of the calibration parameter information on the corresponding resource.
- the downlink physical layer control signaling is also used to trigger the sending of the aperiodic SRS on the corresponding frequency band.
- the delay between the two measurements can be reduced and the delay can be improved. The accuracy of the calibration calculation.
- Step S302 The base station notifies the terminal device to calibrate the location information of the pilot signal, and the location information of the calibration pilot signal that is notified to the terminal device in this step, specifically, the base station uses high layer signaling or physical layer control signaling.
- the terminal device sends a frequency band parameter of the calibration measurement, where the frequency band parameter of the calibration measurement is specifically a frequency band parameter of one frequency band or a frequency band parameter of multiple frequency bands.
- the frequency band parameter includes at least resource location information occupied by the frequency band, and the resource location information may be continuous or discontinuous, for example, configuring the terminal device in a continuous manner. Measurements were taken on the PRB.
- the base station sends, by using the high layer signaling, or the physical layer control signaling, the pilot parameters, such as the number of ports, occupied by the frequency band parameter corresponding to the calibration measurement to the terminal device. Time-frequency resource location, etc.
- step S301 and step S302 have no necessary time-order relationship, and may be combined and sent in one message, or may be sent through two separate messages, and such a defense also belongs to the present invention.
- Step S303 The base station sends a calibration pilot signal to the terminal device in a corresponding subframe according to the location information of the calibration pilot signal and the measurement time parameter.
- Step S304 The base station receives calibration parameter information fed back by the terminal device in a corresponding subframe according to the feedback time parameter.
- the measurement time parameter and the feedback time parameter in the above two steps are all configured before the implementation of step S302 and step S304, and the specific configuration manner includes two types:
- a preset fixed value that is, a fixed value pre-agreed by the base station and the terminal device as a corresponding parameter.
- the parameter information notified to the terminal device by the base station through the configuration message is used as a corresponding parameter.
- the corresponding parameter information is used to make the timings of the calibration measurement and feedback on both sides of the base station and the terminal device have the same configuration, so that the calibration pilot signal transmission can be performed at the corresponding timing position. Feedback of calibration parameter information.
- the corresponding measurement time parameter and the feedback time parameter may be estimated based on the time (eg, the subframe position) at which the trigger message is received, thereby determining the specific calibration information reception time and the feedback of the calibration parameter information.
- Time wherein, in order to calibrate the normal feedback of the parameter information, the corresponding feedback time or the position of the feedback calibration parameter information should be later than the time or position at which the calibration pilot signal is received.
- the calibrated pilot signal can be CSI-RS, CRS, DMRS, or a newly designed pilot signal.
- the processing that needs to be completed in advance further includes:
- the base station and the terminal device respectively predefine a plurality of fixed values as measurement time parameters and feedback time parameters corresponding to each frequency band; or
- the base station notifies the measurement time parameter and the feedback time parameter corresponding to each frequency band of the terminal device by sending a configuration message to the terminal device.
- Step S305 The base station performs antenna calibration according to the calibration parameter information.
- the foregoing process may be specifically as follows:
- the base station sends a trigger message to the terminal device on the nth subframe
- the base station notifies the terminal device to calibrate location information of the pilot signal;
- the base station sends a calibration pilot signal to the terminal device on the n+kth subframe according to the location information of the calibration pilot signal and the measurement time parameter k;
- the base station performs antenna calibration according to the calibration parameter information
- the trigger message sent by the receiving base station is received, and the calibration information sent by the base station is received at the corresponding location according to the location information of the corresponding calibration pilot signal, and then performed at the feedback time agreed with the base station.
- Corresponding feedback of the calibration parameter information so that the base station completes the antenna calibration, wherein the time for receiving the calibration information and the feedback calibration parameter information is determined according to the time parameter of the base station pre-configured according to the time parameter of the base station, and the time of receiving the trigger message is determined.
- processing flow on the terminal device side can be specifically described as:
- the terminal device Determining, by the terminal device, the calibration parameter information according to the calibration pilot signal; the terminal device reporting the calibration parameter information to the base station in the n+mth subframe according to the feedback time parameter m pre-configured by the base station So that the base station performs antenna calibration according to the calibration parameter information;
- the base station triggers the terminal device to perform calibration measurement and feedback by using a trigger message, and notifies the location information of the corresponding calibration information, and finally
- the terminal device performs calibration measurement and feedback on the corresponding resources according to a fixed timing, so that the base station performs antenna calibration according to the feedback information, so that the base station can flexibly control and calibrate the timing of the measurement by triggering messages, thereby improving the precision and control of the calibration operation. flexibility.
- the embodiment of the invention provides an antenna calibration method, which controls whether the terminal device performs calibration measurement and feedback through a trigger message sent by the base station, and the corresponding calibration measurement and feedback time is preset according to both sides of the base station and the terminal device. The uniform timing is carried out.
- the frequency band is specifically used as an object of calibration measurement, and the specific measurement object, that is, the representation manner of the specific location information of the calibration information may be adjusted according to actual needs, such changes are not It affects the scope of protection of the present invention.
- FIG. 4 it is a schematic flowchart of an antenna calibration method in a specific application scenario according to an embodiment of the present invention.
- the base station triggers the terminal device to perform calibration measurement and feedback of one frequency band, and the specific processing procedure is as follows:
- Step S401 Each UE reports its own capability information to the base station.
- each UE needs to report whether the measurements and feedback required for calibration are supported.
- Step S402 The base station selects a UE that participates in antenna calibration according to the received capability information of each UE, and notifies the UE to participate in antenna calibration.
- the UE selected by the base station may be a terminal with good channel quality and low mobile speed.
- UE1 is selected to participate in antenna calibration, and UEs in the following steps refer to UE1, the description will not be repeated.
- Step S403 The base station configures, by using signaling, a parameter such as a frequency band in which the UE performs calibration measurement.
- a parameter such as a frequency band in which the UE performs calibration measurement.
- the UE is configured to perform measurements on a continuous PRB.
- the signaling for configuring the corresponding parameter may be high layer signaling, or may be physical layer control Sina.
- the signaling may further include pilot parameters in the corresponding frequency band, such as the number of ports, the occupied time-frequency resource location, and the like.
- Step S404 The base station triggers measurement and feedback of the UE by using the DCI signaling, where the base station sends the DCI signaling in the nth subframe.
- the base station configures only one frequency band for the UE. Therefore, only one bit is needed in the DCI to indicate whether calibration measurement and feedback are triggered.
- the DCI further includes resource allocation information for the uplink channel used for the calibration information, so that the UE performs feedback of the calibration parameter information according to the corresponding resource allocation information.
- the parameter information of step S403 and the DCI signaling of step S404 may be combined and sent to the UE, or may be separately sent to the UE.
- the UE is notified to participate.
- the corresponding parameter information and DCI signaling are respectively sent to the UE in the form of a separate message, and the specific transmission mode does not affect the protection scope of the present invention.
- the trigger bit in the DCI can also be used to trigger aperiodic SRS transmission on the corresponding frequency band, so that the actual antenna calibration can be matched with the uplink SRS signal transmission, and the time between the two measurements is reduced. Delay, improve the accuracy of calibration calculations.
- Step S405 The base station sends a signal required for calibration, such as a calibration pilot, to the UE in the n+kth subframe according to the configuration of step S403.
- a signal required for calibration such as a calibration pilot
- k is the amount that the base station notifies the UE or the amount agreed in advance, that is, the measurement time parameter mentioned in the foregoing step S302.
- Step S406 After receiving the trigger DCI sent by the base station in the nth subframe, the UE performs measurement required for calibration in the n+kth subframe.
- step S405 and step S406 it can be seen that the transmission time of the calibration pilot signal in the base station and the UE remains the same, that is, the n+kth subframe, whereby the UE can perform calibration measurement according to the calibration pilot signal sent by the base station. .
- Step S407 After receiving the trigger DCI sent by the base station in the nth subframe, the UE feeds back the calibration parameter information required for calibration to the base station in the n+m subframes.
- m is the amount that the base station notifies the UE or the amount agreed in advance, that is, the feedback time parameter mentioned in the foregoing step S303.
- Step S408 The base station calibrates the antenna according to the calibration parameter information fed back by the UE.
- FIG. 5 it is a schematic flowchart of an antenna calibration method in a specific application scenario according to an embodiment of the present invention.
- the base station triggers the terminal device to perform calibration measurement and feedback of multiple frequency bands, and the specific processing procedure is as follows:
- Step S501 Each UE reports its own capability information to the base station.
- each UE needs to report whether the measurements and feedback required for calibration are supported.
- Step S502 The base station selects a UE that participates in antenna calibration according to the received capability information of each UE, and notifies the UE to participate in antenna calibration.
- the UE selected by the base station may be a terminal with good channel quality and low mobile speed.
- UE1 is selected to participate in antenna calibration, and UEs in the following steps refer to
- Step S503 The base station configures, by using signaling, a parameter such as a frequency band in which the UE performs calibration measurement.
- a parameter such as a frequency band in which the UE performs calibration measurement.
- the UE is configured to perform measurements on a continuous PRB.
- the signaling for configuring the corresponding parameter may be high layer signaling, or may be physical layer control Sina.
- the signaling may further include pilot parameters in the corresponding frequency band, such as the number of ports, the occupied time-frequency resource location, and the like.
- Step S504 The base station triggers measurement and feedback of the UE by using the DCI signaling when the terminal performs the calibration measurement and the feedback, where the base station sends the DCI signaling in the nth subframe.
- the base station configures more than one frequency band for the UE. Therefore, multiple bits may be needed in the DCI to indicate whether to trigger calibration measurement and feedback. For example, if the number of frequency bands allocated to the UE is 4, Multiple bits (eg, 2 bits) are required in the DCI to indicate which frequency band the UE is triggering.
- the DCI can use a bitmap to indicate whether the corresponding frequency band needs measurement and feedback.
- the DCI further includes resource allocation information for the uplink channel used for the calibration information, so that the UE performs feedback of the calibration parameter information according to the corresponding resource allocation information.
- the parameter information of the step S503 and the DCI signaling of the step S504 may be combined and sent to the UE, or may be separately sent to the UE.
- the UE is notified to participate. After the calibrated message is sent, the corresponding parameter information and DCI signaling are respectively sent to the UE in the form of a separate message, and the specific transmission mode does not affect the protection scope of the present invention.
- the trigger bit in the DCI can also be used to trigger aperiodic SRS transmission on the corresponding frequency band, so that the actual antenna calibration can be matched with the uplink SRS signal transmission, and the time between the two measurements is reduced. Delay, improve the accuracy of calibration calculations.
- Step S505 The base station sends the calibration pilot signal of the frequency band 1 to the UE in the n+k1 subframes according to the configuration of step S503, and transmits the calibration pilot signal of the frequency band 2 to the UE in the n+k2 subframes, at the n+th
- the calibration pilot signal of the frequency band 3 is transmitted to the UE in k3 subframes
- the calibration pilot signal of the frequency band 4 is transmitted to the UE in the n+k4th subframe.
- the measurement of the four frequency bands is taken as an example.
- the number of configured frequency bands is not limited thereto, and may be set according to actual needs. Such changes are not It affects the scope of protection of the present invention.
- Step S506 After receiving the trigger DCI sent by the base station in the nth subframe, the UE respectively performs the frequency band 1, the frequency band 2, and the frequency band 3 in the n+k1, n+k2, n+k3, and n+k4 subframes. And the measurement required to perform calibration in Band 4.
- step S505 and step S506 the transmission time of the calibration pilot signal in the base station and the UE remains the same, that is, the n+k1, n+k2, n+k3, n+k4 subframes, thereby, the UE
- the calibration measurement can be performed based on the calibration pilot signal transmitted by the base station.
- Step S507 After receiving the trigger DCI sent by the base station in the nth subframe, the UE feeds back calibration parameter information required for calibration to the n+ml, n+m2, n+m3, and n+m4 subframes, respectively. Base station.
- the ml, m2, m3, and m4 are the amount that the base station notifies the UE or the amount agreed in advance, that is, the feedback time parameter mentioned in the foregoing step S303.
- Step S508 The base station calibrates the antenna according to the calibration parameter information fed back by the UE. Compared with the prior art, the technical solution proposed by the embodiment of the present invention has the following advantages:
- the base station triggers the terminal device to perform calibration measurement and feedback through a trigger message, and notifies the location information of the corresponding calibration information, and the terminal device performs calibration measurement on the corresponding resource according to a fixed timing and performs Feedback, so that the base station performs antenna calibration according to the feedback information, so that the base station can flexibly control and calibrate the timing of the measurement by triggering the message, thereby improving the accuracy and control flexibility of the calibration operation.
- an embodiment of the present invention further provides a base station, and a schematic structural diagram thereof is shown in FIG. 6, which at least includes:
- the triggering module 61 is configured to send a trigger message to the terminal device when the terminal device is required to perform calibration measurement and feedback;
- the sending module 62 is configured to notify the terminal device to calibrate the location information of the pilot signal, and send a calibration guide to the terminal device in the corresponding subframe according to the location information of the calibration pilot signal and the measurement time parameter.
- the receiving module 63 is configured to receive, according to the feedback time parameter, on the corresponding subframe.
- the calibration module 64 is configured to perform antenna calibration according to the calibration parameter information received by the receiving module 63.
- the receiving module 63 is further configured to: before the sending module 62 sends the calibration pilot to the terminal device, receive the capability information reported by the terminal device;
- the sending module 62 is further configured to determine, according to the capability information of each terminal device received by the receiving module 63, that the terminal device participates in the calibration, and send a corresponding notification message to the terminal device.
- the trigger module 61 is specifically configured to:
- the downlink physical layer control signaling indicates whether calibration measurement and feedback are performed by using one bit, and the base station pre-configures the terminal.
- the downlink physical layer control signaling indicates whether calibration measurement and feedback are performed by using multiple bits.
- the triggering module 61 is further configured to send, by using high layer signaling, or physical layer control signaling, a frequency band parameter of the calibration measurement to the terminal device;
- the frequency band parameter of the calibration measurement is specifically a frequency band parameter of one frequency band or a frequency band parameter of multiple frequency bands.
- the measurement time parameter and the feedback time parameter are specifically a fixed value pre-agreed by the base station and the terminal device, or parameter information that is notified by the base station to the terminal device by using a configuration message;
- the base station and the terminal device respectively predefine a plurality of fixed values as the measurement time parameter and the feedback time parameter corresponding to each frequency band. Or the sending module 62 notifies the measurement time parameter and the feedback time parameter corresponding to each frequency band of the terminal device by sending a configuration message to the terminal device.
- the embodiment of the present invention further provides a terminal device, which is shown in FIG. 7 and includes at least:
- the receiving module 71 is configured to receive a trigger message sent by the base station, and calibrate the location information of the pilot signal, and according to the location information of the calibration pilot signal, and the pre-configured measurement time parameter of the base station, in the corresponding subframe. Receiving a calibration pilot signal sent by the base station;
- a determining module 72 configured to determine calibration parameter information according to the calibration pilot signal received by the receiving module 71;
- the sending module 73 is configured to report the calibration parameter information determined by the determining module 72 to the base station in a corresponding subframe according to a feedback time parameter that is configured in advance by the base station, so that the base station is configured according to the calibration parameter.
- Information for antenna calibration is configured to report the calibration parameter information determined by the determining module 72 to the base station in a corresponding subframe according to a feedback time parameter that is configured in advance by the base station, so that the base station is configured according to the calibration parameter.
- the sending module 73 is further configured to: before the receiving module 71 receives the trigger information sent by the base station, the capability information of the terminal device reported to the base station;
- the receiving module 71 is further configured to receive a notification message sent by the base station to confirm that the terminal device participates in calibration.
- the receiving module 71 is further configured to:
- the downlink physical layer control signaling indicates, by using 1 bit, whether calibration measurement and feedback are performed, when the pre-configured information of the base station received by the terminal device is to perform measurement of multiple frequency bands, the downlink physical layer control signaling indicates whether calibration measurement and feedback are performed by using a plurality of bits.
- the receiving module 71 is further configured to:
- the frequency band parameter of the calibration measurement is specifically a frequency band parameter of one frequency band or a frequency band parameter of multiple frequency bands.
- the measurement time parameter and the feedback time parameter are specifically a fixed value pre-agreed by the base station and the terminal device, or correspondingly determined by the terminal device according to the received configuration message sent by the base station. Parameter information;
- the base station and the terminal device respectively predefine a plurality of fixed values as measurement time parameters and feedback times corresponding to the respective frequency bands.
- the parameter, or the receiving module 71 determines the measurement time parameter and the feedback time parameter corresponding to each frequency band by receiving the configuration message sent by the base station.
- the base station triggers the terminal device to perform calibration measurement and feedback through a trigger message, and notifies the location information of the corresponding calibration information, and the terminal device performs calibration measurement on the corresponding resource according to a fixed timing and performs Feedback, so that the base station performs antenna calibration according to the feedback information, so that the base station can flexibly control and calibrate the timing of the measurement by triggering the message, thereby improving the accuracy and control flexibility of the calibration operation.
- the embodiments of the present invention can be implemented by hardware or by means of software plus a necessary general hardware platform.
- the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
- a number of instructions are included to cause a computer device (which may be a personal computer, a server, or a network side device, etc.) to perform the methods described in various implementation scenarios of embodiments of the present invention.
- modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
- the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种天线校准方法和设备,通过应用本发明实施例的技术方案,由基站向终端设备发送校准导频,以使终端设备根据该校准导频进行天线校准的信道测量和信息反馈,通过这样的处理,使终端设备可以根据符合多天线场景需要的导频信号,配合基站进行天线校准,在上下行互易性不严格成立的情况下,能够准确的实现天线校准。
Description
数据传输方法和设备 本申请要求于 2011 年 8 月 12 日提交中国专利局, 申请号为 201110231334.6, 发明名称为 "数据传输方法和设备" 的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 特别涉及一种数据传输方法和设备。 背景技术
MIMO ( Multiple-Input Multiple-Output, 多输入多输出) 系统指 在发射端和接收端都装有多根天线的系统。 MIMO系统在传统的时频 处理的基础上增加了空域的处理,可以进一步获得阵列处理增益和分 集增益。 MIMO系统中, 如果发射机能够以某种方式获知信道信息, 就可以根据信道特性对发送信号进行优化,以提高接收质量并降低对 接收机复杂度的要求。 线性预编码 /波束赋形技术就是其中一种优化 方法, 是对抗衰落信道, 降低差错概率, 提高系统性能的有效手段。
多天线线性预编码 /波束赋形传输技术中, 基站到 UE ( User Equipment, 用户设备, 即终端设备) 的信道信息是影响系统性能的 一个重要因素。 FDD ( Frequency Division Duplexing, 频分双工) 系 统中, UE通过上行信道将估计得到的信道信息反馈给基站, 占用了 大量的上行信道资源, 且会引入量化误差等。 在 TDD ( Time Division Duplexing, 时分双工) 系统中, 上行和下行的信号在相同的频段上 发送, 因此上下行信道的互易性成立。
所谓互易性是指上行信道和下行信道相同。利用上下行信道互易 性可以由 UE发送的上行信号估计出上行信道, 从而获得下行信道信 息, 省去了大量的反馈开销。
信道的互易性对空间传播的物理信道成立。信号在基带处理完成 后要经过发射电路输送到天线,而从天线接收的信号也要经过接收电
路输送到基带。 一般来说, 发射电路和接收电路是两个不同的电路, 因此由发射电路和接收电路引入的时延以及幅度增益并不相同,也就 是说收发电路不匹配。发射电路和接收电路的不匹配导致上下行信道 互易性并不严格成立。
如果上下行电路不匹配, 尤其是时延不同时, 则无法保证各天线 的信号同相叠加, 使得接收信号的信噪比降低, 造成性能恶化。
一种抵消上下行电路不匹配造成的影响的方法是进行天线校准: 根据 UE上报的信息以 或基站测量到的信息计算出校准因子,对由 上行信号估计出来的信道进行补偿调整,或者对待发送的数据进行补 偿调整。
另一方面 , 多点协作传输 ( Coordinated Multi-Point Transmission, CoMP )技术是地理位置上分离的多个传输点之间的协作。 多个传输 点是不同小区的基站或者一个小区内部的分离的多个传输设备。多点 协作传输技术分下行的协作传输和上行的联合接收。下行多点协作传 输技术方案主要分为两类: 协同调度和联合发送。
协同调度是通过小区之间的时间、 频率和空间资源的协调, 避免 或者降低相互之间的干扰。 小区间的干扰是制约小区边缘 UE性能的 主要因素, 因此协同调度通过降低小区间的干扰, 可以提高小区边缘 UE的性能。 如图 1所示, 通过 3个小区的协同调度, 将可能会相互 的资源 ), 有效的避免了小区之间的干扰。
联合发送方案中多个小区同时向 UE发送数据, 以增强 UE接收 信号。 如图 2所示, 三个小区在相同的资源上向一个 UE发送数据, UE同时接收多个小区的信号。 一方面, 来自多个小区的有用信号叠 加可以提升 UE接收的信号质量, 另一方面, 降低了 UE受到的干扰, 从而提高系统性能。
类似于单点(单小区)多天线传输方案, 多点协作传输技术是否 可以有效实施依赖于发射端所能获得的信道状态信息。发射端获得理 想的信道状态信息后, 可以用线性预编码(波束赋形 )技术来提高信
号质量以及抑制用户彼此之间的干扰。发射端可以通过终端的反馈获 得信道状态信息, 但是反馈信道会占用宝贵的上行频谱资源, 从而降 低上行的频谱效率。 这点在多点协作传输中尤为明显, 参与协作传输 的每个小区(传输点)都需要获得到终端的信道状态信息, 因此其反 馈开销是随着协作点的数目而线性增加的。 考虑到具体的传输方案, 对信道状态信息要求的精度也可能更高,这就意味着占用更多的上行 带宽资源。 本已经很紧张的上行传输资源此时更加显得捉襟见肘。 同 时, 因为上行信道的容量受限,反馈的信道状态信息不可避免的存在 量化误差。 量化误差则会降低多点协作传输的性能。 TDD 系统中利 用信道互易性获得信道状态信息不会带来额外的反馈开销,且不存在 因反馈而引入的量化误差, 是十分有竟争力的解决方案。
在实现本发明的过程中,发明人发现现有技术中至少存在以下问 题:
利用信道互易性的 CoMP方案同样面临着天线校准的要求,如前 所述的终端参与的空中接口校准需要上下行的导频信号。
上行导频信号用 SRS( Sounding Reference Signal,探测参考信号) 即可。而下行导频信号有 CSI-RS ( Channel State Information Reference Signal,信道状态信息参考信号 )、 CRS ( Cell- specific Reference Signal, 小区专用参考信号)、 DMRS ( Demodulation Reference Signal, 解调参 考信号)和 PRS ( Positioning Reference Signals, 定位参考信号)等可 以选择, 但是, 现有技术对于天线校准并没有合适的解决方案。 发明内容
本发明实施例提供一种数据传输方法和设备,解决现有的技术方 案中, 在上下行互易性并不严格成立的情况下, 不能准确实现天线校 准的问题。
为达到上述目的, 本发明实施例一方面提供了一种天线校准方 法, 至少包括以下步骤:
当基站需要终端设备进行校准测量和反馈时,所述基站向所述终 端设备发送触发消息;
所述基站通知所述终端设备校准导频信号的位置信息; 所述基站根据所述校准导频信号的位置信息, 以及测量时间参 数, 在相应的子帧上向所述终端设备发送校准导频信号;
所述基站根据反馈时间参数,在相应的子帧上接收所述终端设备 反馈的校准参数信息;
所述基站根据所述校准参数信息进行天线校准。
另一方面, 本发明实施例还提供了一种基站, 至少包括: 触发模块, 用于在需要终端设备进行校准测量和反馈时, 向所述 终端设备发送触发消息;
发送模块, 用于通知所述终端设备校准导频信号的位置信息, 并 根据所述校准导频信号的位置信息, 以及测量时间参数, 在相应的子 帧上向所述终端设备发送校准导频信号;
接收模块, 用于根据反馈时间参数, 在相应的子帧上接收所述终 端设备反馈的校准参数信息;
校准模块,用于根据所述接收模块所接收到的校准参数信息进行 天线校准。
另一方面, 本发明实施例还提供了一种天线校准方法, 至少包括 以下步骤:
终端设备接收基站发送的触发消息;
所述终端设备接收所述基站发送的校准导频信号的位置信息; 所述终端设备根据所述校准导频信号的位置信息,以及所述基站 预先配置的测量时间参数,在相应的子帧上接收所述基站发送的校准 导频信号;
所述终端设备根据所述校准导频信号确定校准参数信息; 所述终端设备根据所述基站预先配置的反馈时间参数,在相应的 子帧上向所述基站上报所述校准参数信息,以使所述基站根据所述校 准参数信息进行天线校准。
另一方面, 本发明实施例还提供了一种终端设备, 至少包括: 接收模块, 用于接收基站发送的触发消息, 以及校准导频信号的 位置信息, 并根据所述校准导频信号的位置信息, 以及所述基站预先 配置的测量时间参数,在相应的子帧上接收所述基站发送的校准导频 信号;
确定模块,用于根据所述接收模块所接收到的校准导频信号确定 校准参数信息;
发送模块, 用于根据所述基站预先配置的反馈时间参数, 在相应 的子帧上向所述基站上报所述确定模块所确定的校准参数信息,以使 所述基站根据所述校准参数信息进行天线校准。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,由基站通过触发消息触发终 端设备进行校准测量和反馈, 并通知相应的校准信息的位置信息, 终 端设备按照固定的时序在相应的资源上进行校准测量并进行反馈,以 使基站根据反馈信息进行天线校准, 从而, 基站可以通过触发消息灵 活控制和校准测量的时机, 提高校准操作的精度和控制灵活度。 附图说明
图 1为现有技术中的协同调度方案的场景示意图;
图 2为现有技术中的联合发送方案的实施场景示意图; 图 3为本发明实施例所提出的一种天线校准方法的流程示意图; 图 4 为本发明实施例所提出的一种具体场景中的天线校准方法 的流程示意图;
图 5 为本发明实施例所提出的一种具体场景中的天线校准方法 的流程示意图;
图 6为本发明实施例提出的一种基站的结构示意图;
图 7为本发明实施例提出的一种终端设备的结构示意图。
具体实施方式
如背景技术所述,多天线技术已经成为下一代无线通信系统的关 键技术之一, 多天线技术中的线性预编码 /波束赋形技术是对抗衰落 信道, 降低差错概率, 提高系统性能的有效手段。
TDD系统利用上下行信道的互易性,根据基站估计出的 UE到基 站的上行信道信息可以得到基站到 UE的下行信道信息, 从而计算出 预编码矩阵 /波束赋形权值。 然而, 实际系统中上下行互易性并不严 格成立, 这影响了系统的性能。
为了克服这样的缺陷, 本发明实施例提出了一种天线校准方法, 由基站通过触发消息的方式触发终端设备进行校准测量和反馈, 从 而, 实现对于校准测量的实际的灵活控制, 提高校准的精度。
如图 3所示,为本发明实施例所提出的一种天线校准方法的流程 示意图, 该方法具体包括以下步骤:
步骤 S301、 基站向所述终端设备发送触发消息。
在本步骤之前, 还包括参与校准的终端设备的选择过程, 具体说 明如下:
首先,所述基站接收所述终端设备上报的自身的能力信息,当然, 在实际的处理过程中, 基站可以接收到多个终端设备的能力信息上 报, 并根据这些信息选择参与校准的终端设备。
当所述基站根据接收到的各终端设备的能力信息,确定所述终端 设备参与校准时,基站向被选中参与校准的终端设备发送确认所述终 端设备参与校准的通知消息。
在具体的实施场景中, 本步骤中发送触发消息的流程, 具体为基 站向所述终端设备发送触发终端设备进行校准测量或反馈的下行物 理层控制信令。
当所述基站预先配置所述终端设备进行一个频带的测量时,所述 下行物理层控制信令中通过 1 个比特来指示是否进行校准测量和反 馈;
当所述基站预先配置所述终端设备进行多个频带的测量时,所述 下行物理层控制信令中通过多个比特来指示对应的频带是否进行校 准测量和反馈。
进一步的, 当所述基站预先配置所述终端设备进行多个频带的测 量时,所述下行物理层控制信令中采用位图的方式指示相应的频带是 否需要进行测量和反馈。
另一方面, 所述下行物理层控制信令中, 还包括校准参数信息上 报的上行信道的资源分配信息,以使终端设备可以在相应的资源上进 行校准参数信息的反馈。
在具体的实施场景中, 所述下行物理层控制信令, 还用于触发相 应频段上的非周期 SRS的发送, 通过与非周期 SRS的配合, 可以降 低两次测量之间的时延, 提高校准计算的精度。
步骤 S302、 所述基站通知所述终端设备校准导频信号的位置信 在本步骤中通知给终端设备的校准导频信号的位置信息,具体为 基站通过高层信令,或物理层控制信令向所述终端设备发送校准测量 的频带参数, 其中, 所述校准测量的频带参数, 具体为一个频带的频 带参数, 或多个频带的频带参数。
在具体的应用场景中, 所述频带参数, 至少包括所述频带所占用 的资源位置信息, 所述资源位置信息可以是连续的, 也可以是不连续 的, 例如, 配置终端设备在一段连续的 PRB上进行测量。
在具体的实施场景中, 所述基站具体通过高层信令, 或物理层控 制信令向所述终端设备发送所述校准测量的频带参数所对应的频带 内的导频参数, 例如端口数, 占用的时频资源位置等。
在实际的应用场景中,上述的步骤 S301和步骤 S302没有必然的 时间先后关系, 而且, 可以合并在一条消息中发送, 也可以分别通过 两条独立的消息进行发送, 这样的辩护同样属于本发明的保护范围。
步骤 S303、 所述基站根据所述校准导频信号的位置信息, 以及 测量时间参数, 在相应的子帧上向所述终端设备发送校准导频信号。
步骤 S304、 所述基站根据反馈时间参数, 在相应的子帧上接收 所述终端设备反馈的校准参数信息。
在以上的两个步骤中的测量时间参数和反馈时间参数均是在步 骤 S302和步骤 S304实施之前完成配置的,具体的配置方式包括两种:
( 1 )预设固定值, 即以所述基站和所述终端设备预先约定的固 定值作为相应的参数。
( 2 )通过消息通知, 即以所述基站通过配置消息通知给所述终 端设备的参数信息作为相应的参数。
完成相应的参数配置后,相应的参数信息用于使基站和终端设备 两侧对进行校验测量和反馈的时序具有相同的配置, 从而, 可以在相 应的时序位置进行校准导频信号的传输和校准参数信息的反馈。
在具体的实施场景中,相应的测量时间参数和反馈时间参数可以 以接收到触发消息的时间(例如子帧位置)为基础进行推算, 从而确 定具体的校准信息的接收时间和校准参数信息的反馈时间, 其中, 为 了校准参数信息的正常反馈,相应的反馈时间或反馈校准参数信息的 位置应晚于接收校准导频信号的时间或位置。
校准导频信号可以是 CSI-RS, CRS, DMRS, 也可以是新设计的 导频信号。
需要进一步指出的是, 在实际的操作中, 如果在步骤 S301 中, 基站需要向终端设备发送多个频带的频带参数, 那么, 需要提前完成 的处理还包括:
所述基站和所述终端设备分别预先约定多个固定值作为各频带 所对应的测量时间参数和反馈时间参数; 或,
所述基站通过向所述终端设备发送配置消息,分别通知所述终端 设备各频带所对应的测量时间参数和反馈时间参数。
步骤 S305、 所述基站根据所述校准参数信息进行天线校准。 在具体的实施场景中, 上述的处理流程可以具体为:
基站在第 n个子帧上向所述终端设备发送触发消息;
所述基站通知所述终端设备校准导频信号的位置信息;
所述基站根据所述校准导频信号的位置信息,以及测量时间参数 k, 在第 n+k个子帧上向所述终端设备发送校准导频信号;
所述基站根据反馈时间参数 m, 在第 n+m个子帧上接收所述终 端设备反馈的校准参数信息;
所述基站根据所述校准参数信息进行天线校准;
其中, m的值大于 k的值。
相对应的, 在终端设备侧, 则是接收基站发送的触发消息, 并根 据相应的校准导频信号的位置信息,在相应的位置接收基站发送的校 准信息,然后在与基站约定的反馈时间进行相应的校准参数信息的反 馈, 从而, 配合基站完成天线校准, 其中的接收校准信息和反馈校准 参数信息的时间均根据基站预先配置的相应时间参数信息,在接收触 发消息的时刻的基础上推算确定, 具体的处理流程参见上述说明, 与 之相类似, 在此, 不再重复说明。
与基站侧的说明相类似, 终端设备侧的处理流程可以具体描述 为:
终端设备在第 n个子帧接收基站发送的触发消息;
终端设备接收基站发送的校准导频信号的位置信息;
所述终端设备根据所述校准导频信号的位置信息,以及所述基站 预先配置的测量时间参数 k, 在第 n+k个子帧上接收所述基站发送的 校准导频信号;
所述终端设备根据所述校准导频信号确定校准参数信息; 所述终端设备根据所述基站预先配置的反馈时间参数 m, 在第 n+m个子帧上向所述基站上报所述校准参数信息,以使所述基站根据 所述校准参数信息进行天线校准;
其中, m的值大于 k的值。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,由基站通过触发消息触发终 端设备进行校准测量和反馈, 并通知相应的校准信息的位置信息, 终
端设备按照固定的时序在相应的资源上进行校准测量并进行反馈,以 使基站根据反馈信息进行天线校准, 从而, 基站可以通过触发消息灵 活控制和校准测量的时机, 提高校准操作的精度和控制灵活度。
下面, 结合具体的应用场景, 对本发明实施例所提出的技术方案 进行说明。
本发明实施例提出了一种天线校准方法,通过基站发送的触发消 息来控制终端设备是否执行校准测量和反馈,而相应的校准测量的和 反馈的时间, 则按照基站和终端设备两侧预设的统一的时序来进行。
为了方便说明, 本发明后续实施例具体以 DCI信息作为触发消 息的具体示例来进行说明, 当然, 在实际应用中, 其他能够同样实现 触发操作的消息也可以应用于本发明实施例所提出的技术方案,这样 的变化并不影响本发明的保护范围。
进一步的, 针对于基站触发终端设备进行一个或多个测量的差 异, 本发明后续实施例分别针对两种情况进行说明。
需要指出的是, 在以下的实施例中, 具体以频带作为校准测量的 对象进行说明, 具体测量对象, 即校准信息的具体位置信息的表示方 式可以根据实际的需要进行调整,这样的变化并不影响本发明的保护 范围。
如图 4所示,为本发明实施例所提出的一种具体应用场景下的天 线校准方法的流程示意图。
在本实施例中,基站触发终端设备进行一个频带的校准测量和反 馈, 具体处理过程如下:
步骤 S401、 各 UE向基站上报自身的能力信息。
即各 UE需要上报是否支持校准所需的测量和反馈。
步骤 S402、基站根据接收到的各 UE的能力信息,选择参与天线 校准的 UE, 并通知该 UE参与天线校准。
在具体的实施场景中, 基站选择的 UE可以是信道质量好且移动 速度低的终端。
在本实施例中,选择 UE1参与天线校准, 以下各步骤的 UE均指
UE1 , 不再重复说明。
步骤 S403、 基站通过信令配置 UE进行校准测量的频带等参数。 例如, 配置 UE在一段连续的 PRB上进行测量。
具体的, 配置相应的参数的信令可以是高层信令, 也可以是物理 层控制新浪。
进一步的, 该信令中还可以包括对应的频带内的导频参数, 如端 口数, 占用的时频资源位置等。
步骤 S404、 基站在需要终端进行校准测量和反馈时, 通过 DCI 信令触发 UE的测量和反馈, 其中, 基站在第 n个子帧下发该 DCI 信令。
在本实施例中, 基站给 UE配置的频带只有 1个, 因此, DCI中 只需要 1个比特来指示是否触发校准测量和反馈。
在实际的应用场景中, DCI中还包括用于校准信息上报的上行信 道的资源分配信息, 以使 UE根据相应的资源分配信息进行校准参数 信息的反馈。
在具体的实施场景中, 上述的步骤 S403的参数信息和步骤 S404 的 DCI信令可以合并在一起发送给 UE, 也可以分别独立的发送给 UE, 在本实施例中, 是在通知该 UE参与校准的消息发送之后, 以单 独的消息的形式分别向 UE发送相应的参数信息和 DCI信令,具体发 送方式的变化并不影响本发明的保护范围。
在具体的实施场景中, DCI中的触发比特也可以用于触发相应频 段上的非周期 SRS发送, 从而使天线校准的实际可以和上行 SRS信 号的发送相配合, 降低两次测量之间的时延, 提高校准计算的精度。
步骤 S405、 基站在第 n+k个子帧内按照步骤 S403 的配置, 向 UE发送校准所需的信号, 如校准导频。
其中, k是基站通知 UE的量或者事先约定好的量, 即前述的步 骤 S302中所提及的测量时间参数。
步骤 S406、 UE在收到基站在第 n个子帧发送的触发 DCI之后, 在第 n+k个子帧内执行校准所需的测量。
有步骤 S405和步骤 S406可以看出,基站和 UE中关于校准导频 信号的传输时间保持了一致, 即第 n+k个子帧, 由此, UE可以依据 基站发送的校准导频信号进行校准测量。
步骤 S407、 UE在收到基站在第 n个子帧发送的触发 DCI之后, 在第 n+m个子帧内将校准所需的校准参数信息反馈给基站。
具体的,可以在步骤 S404中的 DCI指示的上行信道资源上发送。 其中, m是基站通知 UE的量或者事先约定好的量, 即前述的步 骤 S303中所提及的反馈时间参数。
步骤 S408、 基站根据 UE反馈的校准参数信息对天线进行校准。 如图 5所示,为本发明实施例所提出的一种具体应用场景下的天 线校准方法的流程示意图。
在本实施例中,基站触发终端设备进行多个频带的校准测量和反 馈, 具体处理过程如下:
步骤 S501、 各 UE向基站上报自身的能力信息。
即各 UE需要上报是否支持校准所需的测量和反馈。
步骤 S502、基站根据接收到的各 UE的能力信息,选择参与天线 校准的 UE, 并通知该 UE参与天线校准。
在具体的实施场景中, 基站选择的 UE可以是信道质量好且移动 速度低的终端。
在本实施例中,选择 UE1参与天线校准, 以下各步骤的 UE均指
UE1 , 不再重复说明。
步骤 S503、 基站通过信令配置 UE进行校准测量的频带等参数。 例如, 配置 UE在一段连续的 PRB上进行测量。
具体的, 配置相应的参数的信令可以是高层信令, 也可以是物理 层控制新浪。
进一步的, 该信令中还可以包括对应的频带内的导频参数, 如端 口数, 占用的时频资源位置等。
在本实施例中, 基站配置给 UE的测量频带的数量多于一个, 切 割频带之间可以有交叠或者无交叠。
步骤 S504、 基站在需要终端进行校准测量和反馈时, 通过 DCI 信令触发 UE的测量和反馈, 其中, 基站在第 n个子帧下发该 DCI 信令。
在本实施例中, 基站给 UE配置的频带多于 1个, 因此, DCI中 可能需要多个比特来指示是否触发校准测量和反馈, 例如, 如果集中 给 UE配置的频带数量为 4个, 则在 DCI中需要多个比特(例如: 2 比特)来指示 UE触发哪个频带内的测量。
不仅如此,如果允许 UE测量并反馈多个频带内的校准信息, DCI 中则可以采用位图的方式指示相应的频带是否需要测量和反馈。
在实际的应用场景中, DCI中还包括用于校准信息上报的上行信 道的资源分配信息, 以使 UE根据相应的资源分配信息进行校准参数 信息的反馈。
在具体的实施场景中, 上述的步骤 S503的参数信息和步骤 S504 的 DCI信令可以合并在一起发送给 UE, 也可以分别独立的发送给 UE, 在本实施例中, 是在通知该 UE参与校准的消息发送之后, 以单 独的消息的形式分别向 UE发送相应的参数信息和 DCI信令,具体发 送方式的变化并不影响本发明的保护范围。
在具体的实施场景中, DCI中的触发比特也可以用于触发相应频 段上的非周期 SRS发送, 从而使天线校准的实际可以和上行 SRS信 号的发送相配合, 降低两次测量之间的时延, 提高校准计算的精度。
步骤 S505、 基站按照步骤 S503的配置, 在第 n+kl个子帧内向 UE发送频带 1的校准导频信号,在第 n+k2个子帧内向 UE发送频带 2的校准导频信号,在第 n+k3个子帧内向 UE发送频带 3的校准导频 信号, 在第 n+k4个子帧内向 UE发送频带 4的校准导频信号。
本实施例中, 以配置 4个频带的测量为例进行说明, 在实际的应 用场景中, 所配置的频带数量并不以此为限, 可以根据实际的需要进 行设定, 这样的变化并不影响本发明的保护范围。
其中, kl、 k2、 k3、 k4是基站通知 UE的量或者事先约定好的量, 即前述的步骤 S302中所提及的测量时间参数。
步骤 S506、 UE在收到基站在第 n个子帧发送的触发 DCI之后, 在第 n+kl、 n+k2、 n+k3、 n+k4个子帧内分别对频带 1、 频带 2、 频 带 3、 和频带 4执行校准所需的测量。
有步骤 S505和步骤 S506可以看出,基站和 UE中关于校准导频 信号的传输时间保持了一致, 即第 n+kl、 n+k2、 n+k3、 n+k4个子帧, 由此, UE可以依据基站发送的校准导频信号进行校准测量。
步骤 S507、 UE在收到基站在第 n个子帧发送的触发 DCI之后, 分别在第 n+ml、 n+m2、 n+m3、 n+m4个子帧内将校准所需的校准参 数信息反馈给基站。
具体的,可以在步骤 S504中的 DCI指示的上行信道资源上发送。 其中, ml、 m2、 m3、 m4是基站通知 UE的量或者事先约定好 的量, 即前述的步骤 S303中所提及的反馈时间参数。
具体的, 可以有 kl=k2=k3,...,=k4, 也可以有 ml=m2= m3= m4。 步骤 S508、 基站根据 UE反馈的校准参数信息对天线进行校准。 与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,由基站通过触发消息触发终 端设备进行校准测量和反馈, 并通知相应的校准信息的位置信息, 终 端设备按照固定的时序在相应的资源上进行校准测量并进行反馈,以 使基站根据反馈信息进行天线校准, 从而, 基站可以通过触发消息灵 活控制和校准测量的时机, 提高校准操作的精度和控制灵活度。
为了实现本发明实施例的技术方案,本发明实施例还提供了一种 基站, 其结构示意图如图 6所示, 至少包括:
触发模块 61 , 用于在需要终端设备进行校准测量和反馈时, 向 所述终端设备发送触发消息;
发送模块 62, 用于通知所述终端设备校准导频信号的位置信息, 并根据所述校准导频信号的位置信息, 以及测量时间参数, 在相应的 子帧上向所述终端设备发送校准导频信号;
接收模块 63, 用于根据反馈时间参数, 在相应的子帧上接收所
述终端设备反馈的校准参数信息;
校准模块 64, 用于根据所述接收模块 63所接收到的校准参数信 息进行天线校准。
在具体的实施场景中,
所述接收模块 63 , 还用于在所述发送模块 62向终端设备发送校 准导频之前, 接收所述终端设备上报的自身的能力信息;
所述发送模块 62, 还用于根据所述接收模块 63所接收到的各终 端设备的能力信息, 确定所述终端设备参与校准, 并向所述终端设备 发送相应的通知消息。
另一方面, 所述触发模块 61 , 具体用于:
向所述终端设备发送触发终端设备进行校准测量或反馈的下行 物理层控制信令;
其中, 当所述基站预先配置所述终端设备进行一个频带的测量 时,所述下行物理层控制信令中通过 1个比特来指示是否进行校准测 量和反馈, 当所述基站预先配置所述终端设备进行多个频带的测量 时,所述下行物理层控制信令中通过多个比特来指示是否进行校准测 量和反馈。
进一步的, 所述触发模块 61 , 还用于通过高层信令, 或物理层 控制信令向所述终端设备发送校准测量的频带参数;
其中, 所述校准测量的频带参数, 具体为一个频带的频带参数, 或多个频带的频带参数。
在实际的应用场景中, 所述测量时间参数和反馈时间参数, 具体 为所述基站和所述终端设备预先约定的固定值,或所述基站通过配置 消息通知给所述终端设备的参数信息;
其中, 在所述发送模块 62向所述终端设备发送多个频带的频带 参数之前,所述基站和所述终端设备分别预先约定多个固定值作为各 频带所对应的测量时间参数和反馈时间参数, 或所述发送模块 62通 过向所述终端设备发送配置消息,分别通知所述终端设备各频带所对 应的测量时间参数和反馈时间参数。
进一步的, 本发明实施例还提出了一种终端设备, 其结构示意图 如图 7所示, 至少包括:
接收模块 71 , 用于接收基站发送的触发消息, 以及校准导频信 号的位置信息, 并根据所述校准导频信号的位置信息, 以及所述基站 预先配置的测量时间参数,在相应的子帧上接收所述基站发送的校准 导频信号;
确定模块 72, 用于根据所述接收模块 71所接收到的校准导频信 号确定校准参数信息;
发送模块 73, 用于根据所述基站预先配置的反馈时间参数, 在 相应的子帧上向所述基站上报所述确定模块 72所确定的校准参数信 息, 以使所述基站根据所述校准参数信息进行天线校准。
在实际的应用场景中,
所述发送模块 73, 还用于在所述接收模块 71接收基站发送的触 发信息之前, 向所述基站上报的所述终端设备的能力信息;
所述接收模块 71 , 还用于接收所述基站发送的确认所述终端设 备参与校准的通知消息。
另一方面, 所述接收模块 71 , 还用于:
接收所述基站发送的触发所述终端设备进行校准测量或反馈的 下行物理层控制信令;
其中, 当所述终端设备接收到的所述基站预先配置的信息为进行 一个频带的测量时,所述下行物理层控制信令中通过 1个比特来指示 是否进行校准测量和反馈, 当所述终端设备接收到的所述基站预先配 置的信息为进行多个频带的测量时,所述下行物理层控制信令中通过 多个比特来指示是否进行校准测量和反馈。
需要指出的是, 所述接收模块 71 , 还用于:
接收所述基站通过高层信令,或物理层控制信令发送的校准测量 的频带参数;
其中, 所述校准测量的频带参数, 具体为一个频带的频带参数, 或多个频带的频带参数。
进一步的, 所述测量时间参数和反馈时间参数, 具体为所述基站 和所述终端设备预先约定的固定值,或所述终端设备根据接收到的所 述基站发送的配置消息, 所确定的相应的参数信息;
其中, 在所述接收模块 71接收到所述基站发送的多个频带的频 带参数之前,所述基站和所述终端设备分别预先约定多个固定值作为 各频带所对应的测量时间参数和反馈时间参数, 或所述接收模块 71 通过接收所述基站发送的配置消息,分别确定各频带所对应的测量时 间参数和反馈时间参数。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,由基站通过触发消息触发终 端设备进行校准测量和反馈, 并通知相应的校准信息的位置信息, 终 端设备按照固定的时序在相应的资源上进行校准测量并进行反馈,以 使基站根据反馈信息进行天线校准, 从而, 基站可以通过触发消息灵 活控制和校准测量的时机, 提高校准操作的精度和控制灵活度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬 件平台的方式来实现。基于这样的理解, 本发明实施例的技术方案可 以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性 存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或网络侧 设备等)执行本发明实施例各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附图中的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照 实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位 于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以 合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。
明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落 入本发明实施例的业务限制范围。
Claims
1、 一种天线校准方法, 其特征在于, 至少包括以下步骤: 基站向终端设备发送触发消息;
所述基站通知所述终端设备校准导频信号的位置信息; 所述基站根据所述校准导频信号的位置信息, 以及测量时间参 数, 在相应的子帧上向所述终端设备发送校准导频信号;
所述基站根据反馈时间参数,在相应的子帧上接收所述终端设备 反馈的校准参数信息;
所述基站根据所述校准参数信息进行天线校准。
2、 如权利要求 1所述的方法, 其特征在于, 所述基站向终端设 备发送校准导频之前, 还包括:
所述基站接收所述终端设备上报的自身的能力信息;
所述基站根据接收到的各终端设备的能力信息,确定所述终端设 知消息。
3、 如权利要求 1所述的方法, 其特征在于, 所述基站向所述终 端设备发送触发消息, 具体为:
所述基站向所述终端设备发送触发终端设备进行校准测量或反 馈的下行物理层控制信令。
4、 如权利要求 3所述的方法, 其特征在于,
当所述基站预先配置所述终端设备进行一个频带的测量时,所述 下行物理层控制信令中通过 1 个比特来指示是否进行校准测量和反 馈;
当所述基站预先配置所述终端设备进行多个频带的测量时,所述 物理层控制信令中通过多个比特来指示是否进行校准测量和反
5、 如权利要求 4所述的方法, 其特征在于,
当所述基站预先配置所述终端设备进行多个频带的测量时,所述 下行物理层控制信令中采用位图的方式指示相应的频带是否需要进 行测量和反馈。
6、 如权利要求 5所述的方法, 其特征在于, 所述下行物理层控 制信令中, 还包括:
校准参数信息上报的上行信道的资源分配信息。
7、 如权利要求 3所述的方法, 其特征在于, 所述下行物理层控 制信令, 还用于触发相应频段上的非周期 SRS的发送。
8、 如权利要求 1所述的方法, 其特征在于, 所述通知所述终端 设备校准导频信号的位置信息, 具体为:
所述基站通过高层信令,或物理层控制信令向所述终端设备发送 校准测量的频带参数;
其中, 所述校准测量的频带参数, 具体为一个频带的频带参数, 或多个频带的频带参数。
9、 如权利要求 8所述的方法, 其特征在于, 所述频带参数, 至 少包括:
所述频带所占用的资源位置信息,所述资源位置信息可以是连续 的, 也可以是不连续的。
10、 如权利要求 8所述的方法, 其特征在于, 还包括: 所述基站通过高层信令,或物理层控制信令向所述终端设备发送 所述校准测量的频带参数所对应的频带内的导频参数。
11、 如权利要求 1所述的方法, 其特征在于, 所述测量时间参数 和反馈时间参数, 具体为:
所述基站和所述终端设备预先约定的固定值; 或,
所述基站通过配置消息通知给所述终端设备的参数信息。
12、 如权利要求 8或 11所述的方法, 其特征在于, 所述基站向 所述终端设备发送多个频带的频带参数之前, 还包括:
所述基站和所述终端设备分别预先约定多个固定值作为各频带 所对应的测量时间参数和反馈时间参数; 或,
所述基站通过向所述终端设备发送配置消息,分别通知所述终端 设备各频带所对应的测量时间参数和反馈时间参数。
13、 如权利要求 1所述的方法, 其特征在于, 所述方法, 具体包 括:
所述基站在第 n个子帧上向所述终端设备发送触发消息; 所述基站通知所述终端设备校准导频信号的位置信息; 所述基站根据所述校准导频信号的位置信息,以及测量时间参数 k, 在第 n+k个子帧上向所述终端设备发送校准导频信号;
所述基站根据反馈时间参数 m, 在第 n+m个子帧上接收所述终 端设备反馈的校准参数信息;
所述基站根据所述校准参数信息进行天线校准;
其中, m的值大于 k的值。
14、 一种基站, 其特征在于, 至少包括:
触发模块, 用于向所述终端设备发送触发消息;
发送模块, 用于通知所述终端设备校准导频信号的位置信息, 并 根据所述校准导频信号的位置信息, 以及测量时间参数, 在相应的子 帧上向所述终端设备发送校准导频信号;
接收模块, 用于根据反馈时间参数, 在相应的子帧上接收所述终 端设备反馈的校准参数信息;
校准模块,用于根据所述接收模块所接收到的校准参数信息进行 天线校准。
15、 如权利要求 14所述的基站, 其特征在于,
所述接收模块,还用于在所述发送模块向终端设备发送校准导频 之前, 接收所述终端设备上报的自身的能力信息;
所述发送模块,还用于根据所述接收模块所接收到的各终端设备 的能力信息, 确定所述终端设备参与校准, 并向所述终端设备发送相 应的通知消息。
16、 如权利要求 14所述的基站, 其特征在于, 所述触发模块, 具体用于:
向所述终端设备发送触发终端设备进行校准测量或反馈的下行 物理层控制信令;
其中, 当所述基站预先配置所述终端设备进行一个频带的测量 时,所述下行物理层控制信令中通过 1个比特来指示是否进行校准测 量和反馈, 当所述基站预先配置所述终端设备进行多个频带的测量 时,所述下行物理层控制信令中通过多个比特来指示是否进行校准测 量和反馈。
17、 如权利要求 14所述的基站, 其特征在于, 所述触发模块, 还用于通过高层信令,或物理层控制信令向所述终端设备发送校准测 量的频带参数;
其中, 所述校准测量的频带参数, 具体为一个频带的频带参数, 或多个频带的频带参数。
18、 如权利要求 14所述的基站, 其特征在于, 所述测量时间参 数和反馈时间参数, 具体为:
所述基站和所述终端设备预先约定的固定值,或所述基站通过配 置消息通知给所述终端设备的参数信息;
其中 ,在所述发送模块向所述终端设备发送多个频带的频带参数 之前,所述基站和所述终端设备分别预先约定多个固定值作为各频带 所对应的测量时间参数和反馈时间参数,或所述发送模块通过向所述 终端设备发送配置消息,分别通知所述终端设备各频带所对应的测量 时间参数和反馈时间参数。
19、 一种天线校准方法, 其特征在于, 至少包括以下步骤: 终端设备接收基站发送的触发消息;
所述终端设备接收所述基站发送的校准导频信号的位置信息; 所述终端设备根据所述校准导频信号的位置信息,以及测量时间 参数, 在相应的子帧上接收所述基站发送的校准导频信号;
所述终端设备根据所述校准导频信号确定校准参数信息; 所述终端设备根据反馈时间参数,在相应的子帧上向所述基站上 报所述校准参数信息,以使所述基站根据所述校准参数信息进行天线 校准。
20、 如权利要求 19所述的方法, 其特征在于, 所述终端设备接 收所述基站发送的触发消息之前, 还包括:
所述终端设备向所述基站上报的自身的能力信息;
所述终端设备接收所述基站发送的确认自身参与校准的通知消
21、 如权利要求 19所述的方法, 其特征在于, 所述终端设备接 收所述基站发送的触发消息, 具体为:
所述终端设备接收所述基站发送的触发所述终端设备进行校准 测量或反馈的下行物理层控制信令。
22、 如权利要求 21所述的方法, 其特征在于,
当所述终端设备接收到的所述基站预先配置的信息为进行一个 频带的测量时,所述下行物理层控制信令中通过 1个比特来指示是否 进行校准测量和反馈;
当所述终端设备接收到的所述基站预先配置的信息为进行多个 频带的测量时,所述下行物理层控制信令中通过多个比特来指示是否 进行校准测量和反馈。
23、 如权利要求 22所述的方法, 其特征在于,
当所述终端设备接收到的所述基站预先配置的信息为进行多个 频带的测量时,所述下行物理层控制信令中采用位图的方式指示相应 的频带是否需要进行测量和反馈。
24、 如权利要求 21所述的方法, 其特征在于, 所述下行物理层 控制信令中, 还包括:
校准参数信息上报的上行信道的资源分配信息。
25、 如权利要求 19所述的方法, 其特征在于, 所述终端设备接 收校准导频信号的位置信息, 具体为:
所述终端设备接收所述基站通过高层信令,或物理层控制信令发 送的校准测量的频带参数;
其中, 所述校准测量的频带参数, 具体为一个频带的频带参数, 或多个频带的频带参数。
26、 如权利要求 24所述的方法, 其特征在于, 所述频带参数, 至少包括:
所述频带所占用的资源位置信息,所述资源位置信息可以是连续 的, 也可以是不连续的。
27、 如权利要求 25所述的方法, 其特征在于, 还包括: 所述终端设备接收所述基站通过高层信令,或物理层控制信令发 送的所述校准测量的频带参数所对应的频带内的导频参数。
28、 如权利要求 19所述的方法, 其特征在于, 所述测量时间参 数和反馈时间参数, 具体为:
所述基站和所述终端设备预先约定的固定值; 或,
所述终端设备根据接收到的所述基站发送的配置消息,所确定的 相应的参数信息。
29、 如权利要求 19或 28所述的方法, 其特征在于, 所述终端设 备接收到所述基站发送的多个频带的频带参数之前, 还包括:
所述基站和所述终端设备分别预先约定多个固定值作为各频带 所对应的测量时间参数和反馈时间参数; 或,
所述终端设备通过接收所述基站发送的配置消息,分别确定各频 带所对应的测量时间参数和反馈时间参数。
30、 如权利要求 19所述的方法, 其特征在于, 所述方法, 具体 包括:
终端设备在第 n个子帧接收基站发送的触发消息;
所述终端设备接收所述基站发送的校准导频信号的位置信息; 所述终端设备根据所述校准导频信号的位置信息,以及所述基站 预先配置的测量时间参数 k, 在第 n+k个子帧上接收所述基站发送的 校准导频信号;
所述终端设备根据所述校准导频信号确定校准参数信息; 所述终端设备根据所述基站预先配置的反馈时间参数 m, 在第 n+m个子帧上向所述基站上报所述校准参数信息,以使所述基站根据 所述校准参数信息进行天线校准;
其中, m的值大于 k的值。
31、 一种终端设备, 其特征在于, 至少包括:
接收模块, 用于接收基站发送的触发消息, 以及校准导频信号的 位置信息, 并根据所述校准导频信号的位置信息, 以及所述基站预先 配置的测量时间参数,在相应的子帧上接收所述基站发送的校准导频 信号;
确定模块,用于根据所述接收模块所接收到的校准导频信号确定 校准参数信息;
发送模块, 用于根据所述基站预先配置的反馈时间参数, 在相应 的子帧上向所述基站上报所述确定模块所确定的校准参数信息,以使 所述基站根据所述校准参数信息进行天线校准。
32、 如权利要求 31所述的终端设备, 其特征在于,
所述发送模块,还用于在所述接收模块接收基站发送的触发信息 之前, 向所述基站上报的所述终端设备的能力信息;
所述接收模块,还用于接收所述基站发送的确认所述终端设备参 与校准的通知消息。
33、 如权利要求 31所述的终端设备, 其特征在于, 所述接收模 块, 还用于:
接收所述基站发送的触发所述终端设备进行校准测量或反馈的 下行物理层控制信令;
其中, 当所述终端设备接收到的所述基站预先配置的信息为进行 一个频带的测量时,所述下行物理层控制信令中通过 1个比特来指示 是否进行校准测量和反馈, 当所述终端设备接收到的所述基站预先配 置的信息为进行多个频带的测量时,所述下行物理层控制信令中通过 多个比特来指示是否进行校准测量和反馈。
34、 如权利要求 31所述的终端设备, 其特征在于, 所述接收模 块, 还用于:
接收所述基站通过高层信令,或物理层控制信令发送的校准测量 的频带参数;
其中, 所述校准测量的频带参数, 具体为一个频带的频带参数, 或多个频带的频带参数。
35、 如权利要求 31所述的终端设备, 其特征在于, 所述测量时 间参数和反馈时间参数, 具体为:
所述基站和所述终端设备预先约定的固定值,或所述终端设备根 据接收到的所述基站发送的配置消息, 所确定的相应的参数信息; 其中,在所述接收模块接收到所述基站发送的多个频带的频带参 数之前,所述基站和所述终端设备分别预先约定多个固定值作为各频 带所对应的测量时间参数和反馈时间参数,或所述接收模块通过接收 所述基站发送的配置消息,分别确定各频带所对应的测量时间参数和 反馈时间参数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110231334.6A CN102237908B (zh) | 2011-08-12 | 2011-08-12 | 数据传输方法和设备 |
CN201110231334.6 | 2011-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013023534A1 true WO2013023534A1 (zh) | 2013-02-21 |
Family
ID=44888194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/079647 WO2013023534A1 (zh) | 2011-08-12 | 2012-08-03 | 数据传输方法和设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102237908B (zh) |
WO (1) | WO2013023534A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102237908B (zh) * | 2011-08-12 | 2014-12-17 | 电信科学技术研究院 | 数据传输方法和设备 |
CN103298119B (zh) * | 2012-02-29 | 2016-04-06 | 电信科学技术研究院 | 一种时频资源的指示及确认方法和装置 |
CN106413107B (zh) * | 2015-07-28 | 2019-10-18 | 华为技术有限公司 | 一种控制信号发送、接收方法及设备 |
CN107124753B (zh) * | 2017-07-01 | 2020-06-02 | 国仪行云(合肥)教育科技有限公司 | 一种无线终端双向通信方法 |
CN109429338B (zh) * | 2017-08-24 | 2024-03-05 | 株式会社电装 | 频带指示方法、频带确定方法、发射端设备和接收端设备 |
CN111917492B (zh) * | 2019-05-09 | 2023-03-28 | 中国移动通信有限公司研究院 | 一种校准方法、网络设备及终端设备 |
EP4145741A4 (en) * | 2020-04-30 | 2024-01-24 | Beijing Xiaomi Mobile Software Co., Ltd. | METHOD AND DEVICE FOR DATA TRANSMISSION PROCESSING, COMMUNICATION DEVICE AND STORAGE MEDIUM |
CN115918010A (zh) * | 2020-06-24 | 2023-04-04 | 瑞典爱立信有限公司 | 用于天线校准的方法和装置 |
EP4236116A4 (en) | 2020-10-22 | 2023-11-29 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | TERMINAL CALIBRATION METHOD, APPARATUS, APPARATUS AND STORAGE MEDIUM |
CN113950084A (zh) * | 2021-10-20 | 2022-01-18 | 国网北京市电力公司 | 基站的校准方法及其装置、计算机可读存储介质及处理器 |
CN116132006A (zh) * | 2021-11-15 | 2023-05-16 | 大唐移动通信设备有限公司 | 天线校准方法、设备、装置及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101120520A (zh) * | 2005-02-15 | 2008-02-06 | 三洋电机株式会社 | 校准方法和利用了它的基站装置、终端装置及无线装置 |
GB2467773A (en) * | 2009-02-13 | 2010-08-18 | Socowave Technologies Ltd | Communication system, network elements and methods for antenna array calibration |
CN102075298A (zh) * | 2009-11-19 | 2011-05-25 | 华为技术有限公司 | 一种用户设备ue发送探测信号的方法、用户设备、基站 |
CN102149123A (zh) * | 2011-04-15 | 2011-08-10 | 北京邮电大学 | 一种CoMP系统中基站间天线校准方案和校准装置及基站 |
CN102237908A (zh) * | 2011-08-12 | 2011-11-09 | 电信科学技术研究院 | 数据传输方法和设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE509782C2 (sv) * | 1997-07-29 | 1999-03-08 | Ericsson Telefon Ab L M | Förfarande och anordning vid antennkalibrering samt användning av dessa i ett radiokommunikationssystem |
CN101500248B (zh) * | 2008-01-31 | 2011-02-02 | 大唐移动通信设备有限公司 | 一种天线校准方法及装置 |
-
2011
- 2011-08-12 CN CN201110231334.6A patent/CN102237908B/zh active Active
-
2012
- 2012-08-03 WO PCT/CN2012/079647 patent/WO2013023534A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101120520A (zh) * | 2005-02-15 | 2008-02-06 | 三洋电机株式会社 | 校准方法和利用了它的基站装置、终端装置及无线装置 |
GB2467773A (en) * | 2009-02-13 | 2010-08-18 | Socowave Technologies Ltd | Communication system, network elements and methods for antenna array calibration |
CN102075298A (zh) * | 2009-11-19 | 2011-05-25 | 华为技术有限公司 | 一种用户设备ue发送探测信号的方法、用户设备、基站 |
CN102149123A (zh) * | 2011-04-15 | 2011-08-10 | 北京邮电大学 | 一种CoMP系统中基站间天线校准方案和校准装置及基站 |
CN102237908A (zh) * | 2011-08-12 | 2011-11-09 | 电信科学技术研究院 | 数据传输方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
CN102237908B (zh) | 2014-12-17 |
CN102237908A (zh) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013023534A1 (zh) | 数据传输方法和设备 | |
US11296766B2 (en) | Method for reporting channel state information in wireless communication system and device therefor | |
JP7121022B2 (ja) | 無線システムにおけるチャネル状態情報報告方法及びこのための装置 | |
WO2013023535A1 (zh) | 天线校准方法和设备 | |
EP2816739B1 (en) | Aerial calibration method, system and device | |
EP2975778B1 (en) | Method and device for reporting channel state information in wireless communication system | |
EP2866358B1 (en) | Method and apparatus for reporting channel state information in wireless communication system | |
JP6019502B2 (ja) | 協調マルチポイント送信のためのチャネルフィードバック | |
EP3573273B1 (en) | Method and apparatus for wireless communication | |
EP3644522A1 (en) | Methods and apparatuses for providing antenna port related information in a communications network | |
WO2016047409A1 (ja) | 基地局及びユーザ装置 | |
US20220264318A1 (en) | Reporting for mu-mimo using beam management | |
US20200287677A1 (en) | User equipment and transmission and reception point | |
US11811484B2 (en) | Apparatuses and methods for multi-user transmissions | |
CN115836492A (zh) | 辅助增强nr类型ii csi反馈的信令传输 | |
WO2020164723A1 (en) | Apparatuses and methods for multi-user transmissions | |
WO2018175738A1 (en) | Codebook implementation in a user equipment and base station system | |
US20200195332A1 (en) | Method of performing beam reporting and user equipment | |
WO2012171387A1 (zh) | 一种信道信息获取和反馈方法、系统及装置 | |
CN107078993B (zh) | 一种获取下行信道信息的方法、装置以及网络侧设备 | |
CN105207723B (zh) | 通道校正方法、基站、用户设备和通信系统 | |
CN107534883B (zh) | 下行信道状态信息的获取方法和装置 | |
WO2016145952A1 (zh) | 信道状态测量导频的处理方法及装置 | |
WO2023148704A1 (en) | Csi-rs reception for high mobility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12824476 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12824476 Country of ref document: EP Kind code of ref document: A1 |