WO2015096102A1 - 一种基站间互易性校正的方法及装置 - Google Patents

一种基站间互易性校正的方法及装置 Download PDF

Info

Publication number
WO2015096102A1
WO2015096102A1 PCT/CN2013/090587 CN2013090587W WO2015096102A1 WO 2015096102 A1 WO2015096102 A1 WO 2015096102A1 CN 2013090587 W CN2013090587 W CN 2013090587W WO 2015096102 A1 WO2015096102 A1 WO 2015096102A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
correction
subcarrier
matrix
corrected
Prior art date
Application number
PCT/CN2013/090587
Other languages
English (en)
French (fr)
Inventor
戎璐
陈大庚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/090587 priority Critical patent/WO2015096102A1/zh
Priority to CN201380080288.1A priority patent/CN105637775B/zh
Publication of WO2015096102A1 publication Critical patent/WO2015096102A1/zh
Priority to US15/192,596 priority patent/US10164720B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for reciprocity correction between base stations.
  • CoMP Coordinated Multiple Access
  • CoMP Coordinated Multiple Access
  • a user equipment is selected, and the user equipment can transmit pilot signals to each base station by using an air interface channel existing between the user equipment and each base station. And causing the base station to estimate a corresponding uplink channel estimation matrix according to the pilot signal, and then the user equipment estimates a downlink channel estimation matrix corresponding to each base station according to the pilot signals sent by each base station, and uses a downlink channel corresponding to each base station. The estimation matrix is fed back to each base station. In this way, each base station can obtain the correction matrix corresponding to each base station by using its corresponding uplink and downlink channel estimation matrix information, and then perform reciprocity correction between the base stations with respect to the user equipment.
  • the inventors found that when performing inter-base station reciprocity error correction, because the distance between the base stations is relatively long, the air interface channel quality of the user equipment to each base station is poor, which is The accuracy of the obtained channel estimation matrix is too low, resulting in the accuracy of the reciprocity correction between the base stations being too low, thereby causing excessive system performance loss.
  • Embodiments of the present invention provide a method and apparatus for reciprocity correction between base stations, which can improve the accuracy of reciprocity correction between base stations, thereby improving system performance.
  • a method for reciprocity correction between base stations is disclosed, which is applied to at least two base stations, including: each base station calculates and obtains a precoding vector corresponding to a selected subcarrier in the base station;
  • Each of the base stations sends, by using the selected subcarriers in the local base station, a downlink user-specific reference signal that is orthogonal to each other, and the downlink user-specific reference signal is used by each base station according to the precoding.
  • the vector is obtained by performing multi-antenna weighting calculation in the base station; the base stations obtain inter-base station correction compensation coefficients of the selected sub-carriers in the base station; and the base stations adjust the inter-base station correction compensation coefficient according to the selected sub-carriers in the base station.
  • a self-correcting matrix of selected subcarriers is obtained by performing multi-antenna weighting calculation in the base station; the base stations obtain inter-base station correction compensation coefficients of the selected sub-carriers in the base station; and the base stations adjust the inter-base station correction compensation coefficient according to the selected sub-carriers in the base station.
  • the receiving, by the base station, the inter-base station correction compensation coefficient of the selected sub-carriers in the base station includes: the each base station correspondingly receiving the UE according to the downlink user
  • the channel reference information corresponding to the selected subcarriers in each base station is calculated by using the dedicated reference signal; the base stations calculate the inter-base station correction compensation coefficients of the selected subcarriers in the base stations according to the channel matrix information corresponding to the corrected subcarriers.
  • a method for reciprocity correction between base stations is disclosed, which is applied to a UE, where: the UE receives a downlink user-specific reference between cells corresponding to each base station sent by each base station by using a selected subcarrier.
  • a communication system including at least two base stations, and a calculation unit of each base station is configured to calculate and obtain a precoding vector corresponding to a selected subcarrier in the base station; a transmitting unit of each base station, configured to send, by using the selected subcarriers in the local base station, a downlink user-specific reference signal that is orthogonal to each other, and the downlink user-specific reference signal is determined by each base station according to the base station.
  • the precoding vector is obtained by performing multi-antenna weighting calculation in the base station; the calculating unit of each base station is further configured to: calculate an inter-base station correction compensation coefficient of the selected subcarrier in the base station; The self-correction matrix of the selected subcarrier is adjusted according to an inter-base station correction compensation coefficient of the selected subcarrier in the base station.
  • a receiving unit of each base station is configured to receive channel matrix information corresponding to selected subcarriers in each base station that is obtained by the UE according to the downlink user-specific reference signal
  • the calculating unit of each base station is specifically configured to calculate, according to channel matrix information corresponding to the corrected subcarrier, an inter-base station correction compensation coefficient of the selected subcarriers in each base station.
  • a user equipment UE including: a receiving unit, configured to receive a downlink user-specific reference signal that is orthogonal to each other by a base station that is sent by each base station by using a selected sub-carrier; Obtaining channel matrix information corresponding to the selected subcarriers of each base station according to the downlink user-specific reference signal received by the receiving unit, and sending unit, configured to select the selected subcarriers of each base station The corresponding channel matrix information is sent to the serving base station of the UE.
  • the embodiment of the invention provides a method and a device for reciprocity correction between base stations.
  • the base station performs multi-antenna weighting on the precoding vector corresponding to the selected subcarrier to obtain a downlink user-specific reference signal, and sends the selected subcarrier to the UE through the selected subcarrier. And the downlink user-specific reference signal, so that the UE calculates a channel matrix according to the downlink user-specific reference signal. And obtaining, by the base station, an inter-base station correction compensation coefficient of the selected subcarrier according to the channel matrix, so that the base station adjusts a self-correction matrix of the selected subcarrier.
  • the multi-antenna weighted beam gain can be used to obtain a more accurate channel matrix, improve the system performance of the channel, thereby improving the accuracy of the air interface correction and improving the accuracy of the reciprocity correction between the base stations.
  • DRAWINGS 1 is a schematic flowchart of a method for reciprocity correction between base stations according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of another method for reciprocity correction between base stations according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a method for reciprocity correction between base stations according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of a pilot position according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic flowchart of another method for reciprocity correction between base stations according to Embodiment 3 of the present invention
  • FIG. 7 is a structural block diagram of a base station in a communication system according to Embodiment 4 of the present invention
  • FIG. 8 is a structural block diagram of a user equipment UE according to Embodiment 4 of the present invention
  • FIG. 9 is a communication system according to Embodiment 5 of the present invention
  • FIG. 10 is a structural block diagram of a user equipment UE according to Embodiment 5 of the present invention.
  • Embodiment 1 The embodiment of the present invention provides a method for reciprocity correction between base stations, which is applied to at least two base stations. As shown in FIG. 1, the method includes:
  • Each base station calculates and obtains a precoding vector corresponding to the selected subcarrier in the base station.
  • one base station covers multiple cells, and when performing inter-base station reciprocity correction, the reciprocity correction is performed on the cell corresponding to each base station. For example, when reciprocity correction is performed on two base stations, a small one is selected in each of the cells covered by the two base stations. The area is then corrected for the reciprocity of the two base stations on the two cells. Therefore, the base station sends the downlink user-specific reference signals orthogonal to each other between the cells corresponding to the base stations to the UE by using the selected subcarriers.
  • the UE is a corrected UE according to the embodiments of the present invention, and the selected subcarrier is a corrected subcarrier corresponding to the corrected UE.
  • the following steps are performed to obtain the downlink user-specific reference signal, including: first, the base station performs self-correction, and obtains corresponding to each subcarrier on the base station. Self-correcting matrix. And receiving an uplink reference signal sent by each reference UE by using a reference subcarrier, and calculating, according to the uplink reference signal, an uplink channel estimation matrix on the reference subcarrier. Selecting, according to the uplink channel estimation matrix on the reference subcarrier, the corrected UE of the base station and the syndrome corresponding to the corrected UE from the reference UE and the reference subcarrier corresponding to the reference UE Carrier.
  • the uplink channel estimation matrix on the syndrome carrier corresponding to the corrected UE can be obtained.
  • the precoding vector corresponding to the corrected subcarrier of the base station is obtained according to the uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE.
  • the base station performs multi-antenna weighting on the precoding vector corresponding to the corrected subcarrier to obtain the downlink user-specific reference signal.
  • the respective base stations send, by using the selected subcarriers in the local base station, downlink user-specific reference signals orthogonal to each other between the cells corresponding to the base stations.
  • the UE is a corrected UE
  • the selected subcarrier is a Chiang Zheng subcarrier corresponding to the corrected UE
  • the mutual orthogonality includes frequency division orthogonal, time division orthogonal, code division orthogonal, time-frequency orthogonal , time code orthogonal, frequency code orthogonal or time-frequency code orthogonal.
  • the downlink user-specific reference signal is obtained after each base station performs multi-antenna weighting on the precoding vector corresponding to the syndrome carrier. In this way, after the correction UE receives the downlink user-specific reference signal, it can calculate more accurate channel matrix information according to the downlink user-specific reference signal calculation, so that the base station obtains a more accurate correction result.
  • each of the base stations simultaneously sends the downlink user-specific reference signal of the cell corresponding to each base station to the UE, or the base station sends the corresponding base station to the UE according to a preset time interval.
  • the downlink user-specific reference signal of the cell wherein, the preset time is shorter than a period in which the phase of each transceiver and the transceiver of the UE drifts.
  • the base stations obtain an inter-base station correction compensation coefficient of the selected subcarriers in the base station.
  • each base station first receives channel matrix information corresponding to the selected subcarriers in each base station calculated by the corresponding corrected UE according to the downlink user-specific reference signal. After that, according to The channel matrix information corresponding to the selected subcarrier is calculated to obtain an inter-base station correction compensation coefficient of the selected subcarriers in each base station.
  • the UE here is a corrected UE, and the selected subcarrier is a corrected subcarrier corresponding to the corrected UE.
  • the base station adjusts a self-correction matrix of the selected subcarrier according to an inter-base station correction compensation coefficient of the selected subcarrier in the base station.
  • the self-correction matrix of the syndrome carrier includes a transmit channel self-correction matrix and a receive channel self-correction matrix, so that the base station needs to adjust the self-correction matrix according to the inter-base station correction compensation coefficient. Both the correction matrix and the self-correction matrix of the receive channel are adjusted.
  • the specific method for adjusting the self-correction matrix by using the compensation coefficient is: dividing the transmission channel self-correction matrix by the inter-base station correction compensation coefficient; or, the receiving channel self-correction matrix multiplied by the inter-base station correction compensation coefficient; or The transmission channel is self-corrected by dividing the correction matrix by ⁇ and the reception channel is multiplied by ⁇ from the correction matrix, wherein the product of ⁇ and ⁇ is equal to the inter-base station correction compensation coefficient.
  • the embodiment of the present invention further provides a method for reciprocity correction between base stations, where the main body is a UE, as shown in FIG. 2, the method includes the following steps:
  • the UE receives downlink user-specific reference signals that are mutually orthogonal between cells corresponding to the base stations that are sent by each base station by using the selected sub-carriers.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE.
  • the UE calculates, according to the downlink user-specific reference signal, channel matrix information corresponding to the selected subcarriers of the base stations.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE.
  • the correction UE calculates the channel matrix information corresponding to the corrected subcarriers of the base stations, and the correction UE calculates the correction of the base stations according to the downlink user-specific reference signals.
  • the downlink channel estimation matrix L corresponding to the subcarriers.
  • the correcting UE first calculates a downlink reference channel estimation matrix corresponding to the corrected subcarriers of each base station, and then calculates and obtains the correction of the base station for each base station except the serving base station of the corrected UE.
  • the matrix, in particular, the relative matrix of the serving base station of the corrected UE is a constant r.
  • the h2 is the downlink channel estimation matrix of the reference base station selected by the UE.
  • the corrected UE selects its corresponding serving base station as the reference base station. Of course, the correction may also be selected.
  • the other base station to be corrected corresponding to the UE is the reference base station.
  • the UE sends channel matrix information corresponding to the selected subcarriers of each base station to a serving base station of the UE.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE.
  • An embodiment of the present invention provides a method for reciprocity correction between base stations, where a base station performs multi-antenna weighting on a precoding vector corresponding to a selected subcarrier to obtain a downlink user-specific reference signal, and sends the selected subcarrier to the UE by using the selected subcarrier. And downlinking the user-specific reference signal, so that the UE calculates the channel matrix according to the downlink user-specific reference signal. And obtaining, by the base station, an inter-base station correction compensation coefficient of the selected subcarrier according to the channel matrix, so that the base station adjusts a self-correction matrix of the selected subcarrier.
  • multi-antenna weighted beam gain can be used to obtain a more accurate channel matrix, improve channel system performance, thereby improving the accuracy of air interface correction and improving the accuracy of reciprocity correction between base stations.
  • Embodiment 2 An embodiment of the present invention provides a method for reciprocity correction between base stations.
  • the execution subject is a base station. As shown in FIG. 3, the method includes the following steps:
  • the base station performs self-correction to obtain a self-correcting matrix corresponding to each sub-carrier on the base station.
  • the method for obtaining a self-correction matrix of the base station includes: the base station selects an antenna in the base station as a correction antenna.
  • the correction antenna sends a reference signal to other antennas in the base station, and other antennas in the base station receive and detect the reference signal, thereby obtaining a channel correction matrix of the base station; and other antennas in the base station send another reference signal to the antenna.
  • a correction antenna is received, and the correction antenna receives and detects the another reference signal, thereby obtaining a transmission channel correction matrix of the base station. In this way, the base station obtains the base station
  • the self-correction matrix is the channel correction matrix and the channel correction matrix.
  • the base station receives an uplink reference signal that is sent by the reference user equipment UE by using a reference subcarrier, and obtains an uplink channel estimation matrix on the reference subcarrier according to the uplink reference signal.
  • the RB radio link bearer
  • the RB (radio link bearer) exists between the base station and the UE, and is used to carry the subcarrier that the UE interacts with the base station, and the reference subcarrier is also carried on the RB.
  • the reference UE may send an uplink reference signal to the base station through an antenna, or may send an uplink reference signal to the base station through multiple antennas.
  • the serving base station sends a first indication message to the reference UE before receiving the uplink reference signal sent by the reference UE by using the reference subcarrier.
  • the first indication message indicates that the reference UE sends the uplink reference signal to the base station to be corrected on the designated reference subcarrier.
  • the reference subcarrier is carried on the reference RB, that is, the serving base station instructs the reference UE to send the uplink reference signal on the reference subcarrier received on the reference RB.
  • the base station selects, according to an uplink channel estimation matrix on the reference subcarrier, a corrected UE corresponding to the base station and the corrected UE from the reference UE and the reference subcarrier corresponding to the reference UE.
  • the correcting subcarrier obtains an uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE.
  • the reference UEs may send an uplink reference signal to the base station by using a reference subcarrier, and the base station selects a correction U from all reference UEs. And if the reference UE sends an uplink reference signal to the base station by using an antenna, the base station calculates, according to the uplink channel estimation matrix, an uplink channel quality on the reference subcarrier, and selects an uplink on the reference subcarrier.
  • the reference subcarrier whose channel quality exceeds the preset threshold is used as the corrected subcarrier, and the UE corresponding to the corrected subcarrier serves as the corrected UE of the base station.
  • the base station If the reference UE transmits an uplink reference signal to the base station through multiple antenna transmissions, the base station also needs to select a correction antenna.
  • the base station calculates an uplink channel quality on the reference subcarrier according to the uplink channel estimation matrix, and selects a reference subcarrier whose uplink channel quality exceeds a preset threshold on the reference subcarrier as a syndrome carrier.
  • the UE corresponding to the corrected subcarrier is used as the corrected UE of the base station; and the antenna corresponding to the corrected subcarrier is used as the corrected antenna of the base station.
  • the base station may obtain an uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE.
  • the corrected subcarriers and their corresponding corrected UEs may be determined here, and no selection is made.
  • the correcting subcarrier corresponds to the uplink channel estimation matrix, but the corrected UE sends the uplink channel reference signal to the base station again, so that the base station calculates a more accurate uplink channel estimation matrix.
  • step 303 is performed.
  • the base station calculates, according to the uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE, a precoding vector corresponding to the corrected subcarrier of the base station.
  • the present invention provides a method for reciprocity correction between two base stations.
  • the base station calculates a precoding vector P corresponding to the corrected subcarrier of the base station, and includes two formulas: P - L II LI ⁇ Said / 1 ⁇ 2 is the uplink channel estimation matrix corresponding to the syndrome carrier, or
  • the base station performs multi-antenna weighting according to the precoding vector corresponding to the corrected subcarrier to obtain a downlink user-specific reference signal, and sends a downlink user-specific reference signal of the cell corresponding to each base station to the UE through the corrected subcarrier.
  • a single base station covers multiple cells.
  • the reciprocity correction is actually performed on the cell corresponding to each base station. For example, when reciprocity correction is performed on two base stations, first, each cell is selected in the cells covered by the two base stations, and then the reciprocity of the two base stations is corrected on the two base stations, so The base station sends a downlink user-specific reference signal of the cell corresponding to each base station to the UE by using the calibration subcarrier.
  • the base station performs multi-antenna weighting on the pre-coding vector corresponding to the corrected sub-carrier obtained in step 304 to obtain a downlink user-specific reference signal, and sends the downlink user-specific reference signal of the cell corresponding to each base station to the corrected UE, In this way, the correcting UE may calculate channel matrix information corresponding to the corrected subcarrier of the base station according to the downlink user-specific reference signal.
  • the downlink user-specific reference signals of the cells corresponding to the base stations are orthogonal to each other, including frequency division orthogonal, time division orthogonal, code division orthogonal, time-frequency orthogonal, time-code orthogonal, and frequency code orthogonal or temporal.
  • the frequency code is orthogonal.
  • the base station sends second indication information to the corrected UE, where the second indication information is used to indicate that the corrected UE receives the downlink user-specific The correction subcarrier required for the reference signal; or the indication information is used to indicate the correction subcarrier and the correction antenna required for the correction UE to receive the downlink user-specific reference signal.
  • the base station may send the corresponding location of each base station to the UE simultaneously with other base stations.
  • the downlink user-specific reference signal is sent to the UE, and the downlink user-specific reference signal corresponding to each base station is sent to the UE by a predetermined time interval, where the preset time is smaller than the base station and the corrected UE. The period in which the transceiver phase drifts.
  • the base station receives and calculates, according to channel matrix information corresponding to the syndrome carrier, an inter-base station correction compensation coefficient of the syndrome carrier.
  • the calculation of the inter-base station correction compensation coefficient of the syndrome carrier is also corresponding to two cases.
  • the precoding vector /i/i the base station according to the uplink channel estimation matrix on the syndrome carrier, the calculated precoding vector p corresponding to the corrected subcarrier, and the corrected subcarrier corresponding to the corrected UE feedback
  • the downlink channel estimation matrix ⁇ , the inter-base station correction compensation coefficient is calculated: / ⁇ ).
  • the corrected UE calculates channel matrix information corresponding to the corrected subcarrier of the base station according to the received downlink reference signal (that is, the downlink channel estimation matrix ⁇ ), and then feeds back the channel matrix to the The base station, such that the base station obtains the downlink channel estimation matrix ⁇ .
  • the correcting UE calculates channel matrix information corresponding to the corrected subcarrier of the base station according to the received downlink reference signal, and then feeds back the channel matrix h r to the base station, so that the base station obtains the Channel matrix
  • the base station adjusts a self-correction matrix of the syndrome carrier according to an inter-base station correction compensation coefficient of the syndrome carrier.
  • the base station adjusts the self-correction matrix according to the inter-base station correction compensation coefficient, including multiple cases:
  • the transmission channel self-correction matrix is divided by the inter-base station correction compensation coefficient.
  • the receive channel self-correction matrix is multiplied by the inter-base station correction compensation coefficient.
  • the transmission channel is divided by the correction matrix by ⁇ and the reception channel is multiplied by ⁇ from the correction matrix, wherein the product of ⁇ and ⁇ is equal to the inter-base station correction compensation coefficient.
  • An embodiment of the present invention provides a method for reciprocity correction between base stations, where a base station performs multi-antenna weighting on a precoding vector corresponding to a selected subcarrier to obtain a downlink user-specific reference signal, and And transmitting, by the selected subcarrier, the downlink user-specific reference signal to the UE, so that the UE calculates the channel matrix according to the downlink user-specific reference signal. And the base station calculates, according to the channel matrix, an inter-base station correction compensation coefficient of the selected subcarrier, so that the base station adjusts a self-correction matrix of the selected subcarrier.
  • the multi-antenna weighted beam gain can be used to obtain a more accurate channel matrix, improve the system performance of the channel, thereby improving the accuracy of the air interface correction and improving the accuracy of the reciprocity correction between the base stations.
  • Embodiment 3 The embodiment of the present invention further provides a method for reciprocity correction between base stations. As shown in FIG. 4, the method includes the following steps:
  • the base station performs self-correction to obtain a self-correction matrix corresponding to each sub-carrier on the base station. For each base station, when performing inter-base station reciprocity correction, it is necessary to perform self-correction of sub-carriers in the base station to obtain a self-correction matrix of each sub-carrier.
  • the method for obtaining a self-correction matrix of the base station includes: the base station selects an antenna in the base station as a correction antenna.
  • the correction antenna sends a reference signal to other antennas in the base station, and other antennas in the base station receive and detect the reference signal, thereby obtaining a channel correction matrix of the base station; and other antennas in the base station send another reference signal to the antenna.
  • a correction antenna is received, and the correction antenna receives and detects the another reference signal, thereby obtaining a transmission channel correction matrix of the base station.
  • the base station obtains the self-correction matrix of the base station, that is, the transmit channel correction matrix and the channel correction matrix.
  • the reference UE sends an uplink reference signal to the base station by using the reference subcarrier.
  • the reference UE sends an uplink reference signal to each base station to be corrected by using a reference subcarrier, and may send an uplink reference signal to each base station to be corrected through one or more antennas.
  • the antenna simultaneously transmits different uplink reference signals.
  • the uplink reference signal may be an SRS (Sound Measured Signal) signal, and the standard SRS signal is on one RB carrying 12 subcarriers, and one pilot per one subcarrier. The following description will be made by taking the above reference signal as an SRS as an example.
  • the serving base station of the reference UE may send a first indication message to the reference base station, to indicate that the reference UE sends the SRS signal by using a reference subcarrier on a designated RB. Therefore, if some base stations need to perform self-correction matrix of subcarriers on some RBs If the adjustment is performed, the serving base station of the reference UE may instruct the reference UE to send an SRS signal to each reference base station by using the subcarriers on the RBs.
  • the base station receives an uplink reference signal that is sent by the reference UE by using the reference subcarrier, and obtains an uplink channel estimation matrix on the reference subcarrier according to the uplink reference signal. For example, if the base station occupies 4 RBs by using the uplink reference signal SRS received by the reference subcarrier, the base station has 8 antennas. As shown in Figure 5 (a), there are 6 pilot positions (shaded in Figure 5 (a)) on each RB occupied by the uplink reference signal SRS, and each reference position carries a reference subcarrier. The base station performs uplink channel estimation on the reference subcarriers at 6 pilot positions on each RB on the 4 RBs to obtain an uplink channel estimation matrix on the reference subcarrier.
  • the channel estimation result obtained by the base station can be represented by a matrix of 8 rows and 24 columns, and the uplink channel estimation matrix ⁇ of each reference subcarrier can be represented as a matrix of 8 rows and 1 column.
  • the base station selects, according to the uplink channel estimation matrix on the reference subcarrier, the corrected UE corresponding to the base station and the corrected UE from the reference UE and the reference subcarrier corresponding to the reference UE.
  • the correcting subcarrier obtains an uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE.
  • the base station first calculates an uplink channel quality on the reference subcarrier according to the uplink channel estimation matrix. And selecting a reference subcarrier whose uplink channel quality exceeds a preset threshold on the reference subcarrier as a corrected subcarrier, where the UE corresponding to the corrected subcarrier serves as a corrected UE of the base station.
  • the antenna corresponding to the corrected subcarrier is used as the The correction antenna of the base station. For example, corresponding to the uplink reference signal SRS described in step 403. Calculating the uplink channel quality of the reference subcarrier by referring to each subcarrier, and dividing the upper channel estimation matrix of the reference subcarrier by a cardinality corresponding to an interference noise power, to obtain an uplink channel quality of each reference subcarrier. .
  • the base station selects a reference subcarrier that exceeds a preset threshold as a syndrome in the uplink channel quality corresponding to the 24 reference subcarriers carried on the 6 RBs occupied by the uplink reference signal SRS.
  • Carrier, the UE corresponding to the corrected subcarrier serves as a corrected UE of the base station.
  • the uplink channel estimation matrix on the corrected subcarrier may not be obtained, but indicating that the corrected UE sends the uplink correction reference again by using the corrected subcarrier.
  • the signal is sent to the base station, and the base station may obtain an uplink corrected channel estimation of the corrected subcarrier according to the uplink corrected reference signal, so that the self-correction matrix of the reference subcarrier is more accurately adjusted.
  • the base station calculates, according to the uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE, a precoding vector corresponding to the corrected subcarrier of the base station.
  • the base station After determining the corrected subcarrier and correcting the UE in step 408, since the uplink channel estimation matrix on all reference subcarriers (including the syndrome carrier) is obtained in step 403, the base station obtains the corrected subcarrier. Upstream channel estimation matrix, and then calculate the school
  • the ⁇ ⁇ is an uplink channel estimation matrix corresponding to the corrected subcarrier, and optionally, / ⁇ in the calculation formula of the precoding vector may also be an uplink correction channel obtained by step 4 04, i UL , The self-correction matrix of the reference subcarrier is made more accurately adjusted.
  • the base station performs multi-antenna weighting according to the precoding vector corresponding to the corrected subcarrier to obtain a downlink user-specific reference signal, and sends the downlink user-specific reference signal to the corrected UE by using the corrected subcarrier.
  • the downlink user-specific reference signals of the cells corresponding to the base stations are orthogonal to each other, and may be frequency division orthogonal, time division orthogonal, code division orthogonal, time-frequency orthogonal, time code orthogonal, and frequency code. Orthogonal or time-frequency code orthogonal.
  • the base stations A, B For example, if there is a base station, B wants to correct the self-correction matrix of its sub-carriers, and the base stations A, B select the same reference UE as the corrected UE. For each RB, the pilot position of the corrected reference signal 1 transmitted by the base station A is as shown in FIG. 5(b) (shaded in the figure), and the base station A uses the precoding vector corresponding to its own corrected subcarrier to correct the reference. Signal 1 performs multi-antenna weighting; the pilot position of the corrected reference signal transmitted by base station B is as shown in Fig.
  • base station B uses the precoding vector corresponding to its own corrected subcarrier to correct the Reference signal 2 is used for multi-antenna weighting.
  • the pilot position of the downlink user-specific reference signal received by the correction UE is as shown in FIG. 5(d) (shaded in the figure).
  • the base station sends the downlink user-specific reference signal to the corrected UE by using the calibration subcarrier, if the base station is a serving base station of the corrected UE, the base station further sends a message to the corrected UE.
  • the second indication information is used to indicate that the corrected UE receives the downlink a correction subcarrier required for the user-specific reference signal; or, the indication information is used to indicate the correction subcarrier and the correction antenna required for the correction UE to receive the downlink user-specific reference signal; or to indicate that the calibration UE is specified
  • the downlink user-specific reference signal is received by the syndrome carrier on the RB.
  • the correcting UE receives the downlink user-specific reference signal sent by the base station, and calculates a downlink channel estimation matrix corresponding to the corrected subcarrier of the base station according to the downlink user-specific reference signal, and corrects the The downlink channel estimation matrix corresponding to the subcarrier is fed back to the serving base station of the corrected UE.
  • the correction UE obtains a downlink channel estimation matrix of each syndrome subcarrier of each base station by calculation, and can obtain a downlink channel estimation matrix of each base station.
  • the correcting UE uses the received downlink user-specific reference signal to perform channel estimation in the pilot position (shaded in the figure) in FIG. 5(d), and obtains a downlink channel estimation of one subcarrier of the base station. Matrix / ⁇ . Afterwards, the correcting UE will feed back the downlink channel estimation matrix/ ⁇ to the serving base station of the corrected UE. At this time, if the corrected UE corresponds to the N base stations to be corrected, the serving base station of the corrected UE will N downlink channel estimation matrices are obtained, which in turn sends N downlink channel estimation matrices to the serving base station.
  • the downlink channel estimation matrix is the quantization result of the downlink channel estimation matrix / ⁇ of each syndrome subcarrier corresponding to each base station. For example, if the downlink channel estimation matrix corresponding to each syndrome subcarrier of the base station is a matrix of 1 row and 8 columns, and the base station corresponds to 3 syndromes, the downlink channel estimation matrix of the base station is a row of 3 A matrix of 8 columns.
  • the base station receives the downlink channel estimation matrix h DL fed back by the corrected UE, and forwards the downlink channel estimation matrix h DL to other base stations;
  • the base station is not the serving base station of the corrected UE, and the base station obtains the downlink channel estimation matrix L by receiving the forwarding of the serving base station of the corrected UE.
  • the base station receives and calculates an inter-base station correction compensation coefficient of the corrected subcarrier according to the downlink channel estimation matrix corresponding to the syndrome carrier.
  • the base station according to the uplink channel estimation matrix on the corrected subcarrier, the precoding vector p corresponding to the calculated corrected subcarrier, and the downlink channel estimation matrix h DL corresponding to the corrected subcarrier received by correcting UE feedback Calculate the inter-base station correction compensation coefficient ⁇ Two of them are ⁇ .
  • / ⁇ in the calculation formula may also be the uplink corrected channel estimation h m obtained in step 304, so that the inter-base station correction compensation coefficient obtained in the final calculation is more accurate, improving the performance of the uplink channel estimation, thereby improving
  • the accuracy of the air interface correction improves the accuracy of the reciprocity correction between base stations.
  • the base station adjusts a self-correction matrix of the syndrome carrier according to an inter-base station correction compensation coefficient of the syndrome carrier.
  • the method for adjusting the self-correction matrix of the syndrome carrier includes:
  • An embodiment of the present invention provides a method for reciprocity correction between base stations, where a base station performs multi-antenna weighting on a precoding vector corresponding to a selected subcarrier to obtain a downlink user-specific reference signal, and sends the selected subcarrier to the UE by using the selected subcarrier. And downlinking the user-specific reference signal, so that the UE calculates the channel matrix according to the downlink user-specific reference signal.
  • the embodiment of the invention further provides a method for reciprocity correction between base stations. As shown in FIG. 6, the method includes the following steps:
  • the base station performs self-correction to obtain a self-correction matrix of each sub-carrier on the base station.
  • the method for obtaining a self-correction matrix of the base station includes: the base station selects an antenna in the base station as a correction antenna.
  • the correction antenna sends a reference signal to other antennas in the base station, and other antennas in the base station receive and detect the reference signal, thereby obtaining a channel correction matrix of the base station; and other antennas in the base station send another reference signal to the antenna.
  • a correction antenna is received, and the correction antenna receives and detects the another reference signal, thereby obtaining a transmission channel correction matrix of the base station.
  • the base station obtains the self-correction matrix of the base station, that is, the transmit channel correction matrix and the channel correction matrix. 6 02.
  • the reference UE sends an uplink reference signal to the base station by referring to the subcarrier.
  • the reference UE sends an uplink reference signal to each base station to be corrected by using a reference subcarrier, and may send an uplink reference signal to each base station to be corrected through one or more antennas.
  • the antenna simultaneously transmits different uplink reference signals.
  • the uplink reference signal may be an SRS (Sound I ng Ref er en s s s s s s s s) signal, and the standard SRS signal is on an RB carrying 12 subcarriers, and each subcarrier has one guide. frequency.
  • SRS Sound I ng Ref er en s s s s s s s
  • the serving base station of the reference UE may send a first indication message to the reference base station, to indicate that the reference UE sends the SRS signal by using a reference subcarrier on a designated RB.
  • the serving base station of the reference UE may instruct the reference UE to send an SRS signal on the RBs through the sub-carriers.
  • Each reference base station may instruct the reference UE to send an SRS signal on the RBs through the sub-carriers.
  • the UE receives the uplink reference signal sent by the reference UE through the reference subcarrier, and obtains an uplink channel estimation matrix on the reference subcarrier according to the uplink reference signal. For example, if the base station occupies 4 RBs by using the uplink reference signal SRS received by the reference subcarrier, the base station has 8 antennas. As shown in Figure 5 (a), there are 6 pilot positions (shaded in Figure 5 (a)) on each RB occupied by the uplink reference signal SRS, and each reference position carries a reference subcarrier. The base station performs uplink channel estimation on the reference subcarriers at 6 pilot positions on each RB on the 4 RBs to obtain an uplink channel estimation matrix on the reference subcarrier.
  • the channel estimation result obtained by the base station can be represented by a matrix of 8 rows and 24 columns, and the uplink channel estimation matrix ⁇ of each reference subcarrier can be represented as a matrix of 8 rows and columns.
  • the base station selects the corrected UE of the base station and the corrected UE from the reference UE and the reference subcarrier corresponding to the reference UE according to the uplink channel estimation matrix on the reference subcarrier. And corresponding to the corrected subcarrier, obtaining an uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE.
  • the base station first calculates an uplink channel quality on the reference subcarrier according to the uplink channel estimation matrix. And selecting a reference subcarrier whose uplink channel quality exceeds a preset threshold on the reference subcarrier as a corrected subcarrier, where the UE corresponding to the corrected subcarrier serves as a corrected UE of the base station.
  • the antenna corresponding to the corrected subcarrier is used as the The correction antenna of the base station. For example, corresponding to the uplink reference signal SRS described in step 6 03. Calculating the uplink channel quality of the reference subcarrier by referring to each subcarrier, and dividing the upper channel estimation matrix of the reference subcarrier by a cardinality corresponding to an interference noise power, to obtain an uplink channel quality of each reference subcarrier. .
  • the base station selects a reference subcarrier that exceeds a preset threshold as a syndrome in the uplink channel quality corresponding to the 24 reference subcarriers carried on the 6 RBs occupied by the uplink reference signal SRS.
  • the carrier, the UE corresponding to the corrected subcarrier serves as a corrected UE of the base station.
  • the uplink channel estimation matrix on the corrected subcarrier may not be obtained, but indicating that the corrected UE sends the uplink correction reference again by using the corrected subcarrier.
  • the signal is sent to the base station, and the base station may obtain an uplink corrected channel estimation of the corrected subcarrier according to the uplink corrected reference signal, so that the self-correction matrix of the reference subcarrier is more accurately adjusted.
  • the base station calculates, according to the uplink channel estimation matrix on the corrected subcarrier corresponding to the UE, a precoding vector corresponding to the corrected subcarrier of the base station. After determining the correcting subcarrier and correcting the UE in step 604, since step 6 03 obtains an uplink channel estimation matrix on all reference subcarriers (including the syndrome carrier), the base station obtains the corrected subcarrier. The uplink channel estimation matrix is further calculated to obtain a precoding vector of the syndrome carrier.
  • the precoding vector P c * h u / ⁇ h UL f of the corrected subcarrier, where / / is an uplink channel estimation matrix corresponding to the syndrome carrier, c is a constant, and Each base station c takes the same value.
  • the / ⁇ in the precoding vector calculation formula may also be the uplink correction channel estimation obtained in step 604, so that the self-correction matrix of the reference subcarrier is more accurately adjusted.
  • the base station performs multi-antenna weighting according to the precoding vector corresponding to the syndrome carrier to obtain a downlink user-specific reference signal, and sends the downlink user-specific reference signal to the calibration UE by using the calibration subcarrier.
  • the base station sends the corrected subcarrier to the UE simultaneously with other base stations.
  • the base station and the other base station are configured to send the downlink user-specific reference signal corresponding to each base station to the UE, where the preset time is smaller than the transceiver phase of the base station and the corrected UE. The period of drift.
  • the downlink user-specific reference signals of the cells corresponding to the base stations are orthogonal to each other, and may be frequency division orthogonal, time division orthogonal, code division orthogonal, time-frequency orthogonal, time code orthogonal, and frequency. Code orthogonal or time-frequency code orthogonal.
  • the base stations B wants to correct the self-correction matrix of its sub-carriers, and the base stations A, B select the same reference UE as the corrected UE.
  • the pilot position of the corrected reference signal 1 transmitted by the base station A is as shown in FIG. 5(b) (shaded in the figure), and the base station A uses the precoding vector corresponding to its own corrected subcarrier to correct the reference.
  • Signal 1 performs multi-antenna weighting
  • the pilot position of the corrected reference signal transmitted by base station B is as shown in Fig. 5 (c) (shaded in the figure)
  • base station B uses the precoding vector corresponding to its own corrected subcarrier to correct the Reference signal 2 is used for multi-antenna weighting.
  • the pilot position of the downlink user-specific reference signal received by the correction UE is as shown in Fig. 5(d) (shaded in the figure).
  • the base station sends the downlink user-specific reference signal to the corrected UE by using the calibration subcarrier
  • the base station if the base station is a serving base station of the corrected UE, the base station further sends a message to the corrected UE.
  • the second indication information is used to indicate the corrected subcarrier required by the corrected UE to receive the downlink user-specific reference signal.
  • the indication information is further used to indicate that the corrected UE receives the corrected subcarrier and the correction antenna required for the downlink user-specific reference signal, or that the corrected UE receives the corrected subcarrier on the designated RB.
  • Downstream user-specific reference signal is used to indicate that the corrected UE receives the corrected subcarrier and the correction antenna required for the downlink user-specific reference signal, or that the corrected UE receives the corrected subcarrier on the designated RB.
  • the second indication information needs to carry an indication about the relative channel, so that the corrected UE feeds back the relative channel information between all the base stations to be corrected corresponding to the base station to the base station.
  • the correction UE is instructed to have two base stations to be corrected, and the correction UE is instructed to feed back the relative channel information between the two different base stations to be corrected.
  • the calibration UE receives the downlink user-specific reference signal sent by the base station, and calculates, according to the downlink user-specific reference signal, a downlink channel estimation matrix corresponding to the corrected subcarrier of the base station.
  • the correcting UE uses the received downlink user-specific reference signal to perform channel estimation in the pilot position (shaded in the figure) in FIG. 5( d ), and obtains a downlink corresponding to each syndrome subcarrier of the base station. Channel estimation matrix. 608.
  • the correcting UE calculates a relative matrix corresponding to the corrected subcarrier of the base station according to the downlink channel estimation matrix corresponding to the corrected subcarrier of the base station, and feeds back the relative matrix to the serving base station of the corrected UE. .
  • the corrected UE first selects one base station as a reference base station among its corresponding base stations to be corrected (assuming that the downlink channel estimation matrix of the reference base station is h2), and then uses the downlink channel of the base station on each subcarrier.
  • the r is a constant and can be used to adjust the range of values of the relative channels between different reference base stations.
  • the corrected UE obtains N downlink channel estimation matrices, and further sends N-1 downlink channel estimation matrices to the serving base station of the corrected UE.
  • the reference base station is the serving base station of the corrected UE, the reference base station receives the relative matrix sent by the corrected UE, and then forwards the downlink channel estimation matrix to other to-be-corrected base stations corresponding to the corrected UE;
  • the reference base station is not the serving base station of the corrected UE, and the serving base station forwards the downlink channel estimation matrix to each base station except the reference base station in the corrected base station corresponding to the corrected UE.
  • the base station receives and calculates an inter-base station correction compensation coefficient of the corrected subcarrier according to a relative matrix corresponding to the corrected subcarrier.
  • the base station adjusts a self-correction matrix of the syndrome carrier according to an inter-base station correction compensation coefficient of the syndrome carrier.
  • the method for adjusting the self-correction matrix of the syndrome carrier includes:
  • An embodiment of the present invention provides a method for reciprocity correction between base stations, where a base station performs multi-antenna weighting on a precoding vector corresponding to a selected subcarrier to obtain a downlink user-specific reference signal, and sends the selected subcarrier to the UE by using the selected subcarrier. And downlinking the user-specific reference signal, so that the UE calculates the channel matrix according to the downlink user-specific reference signal.
  • the base station Determining, by the base station, an inter-base station correction compensation coefficient of the selected subcarrier according to the channel matrix, so that the base The station adjusts the self-correcting matrix of the selected subcarriers.
  • the multi-antenna weighted beam gain can be used to obtain a more accurate channel matrix, improve the system performance of the channel, thereby improving the accuracy of the air interface correction and improving the accuracy of the reciprocity correction between the base stations.
  • each base station includes: a sending unit 701, a self-correcting unit 702, a receiving unit 703, a calculating unit 704, and a selecting unit 705.
  • the obtaining unit 706 and the adjusting unit 707; the calculating unit 704 of each base station is configured to calculate and obtain a precoding vector corresponding to the selected subcarrier in the base station.
  • the transmitting unit 701 of each base station is configured to send, by using the selected subcarriers in the local base station, a downlink user-specific reference signal that is orthogonal to each other, and the downlink user-specific reference signal is each base station.
  • the calculating unit 704 of each base station is further configured to calculate an inter-base station correction compensation coefficient for obtaining selected subcarriers in the base station.
  • the adjusting unit 707 of each base station is configured to adjust a self-correction matrix of the selected sub-carrier according to an inter-base station correction coefficient of the selected sub-carrier in the base station.
  • the mutual orthogonality includes frequency division orthogonal, time division orthogonal, code division orthogonal, time-frequency orthogonal, time code orthogonal, frequency code orthogonal or time-frequency code orthogonal.
  • the receiving unit 703 of each base station is configured to receive channel matrix information corresponding to the selected subcarriers in each base station that is calculated by the UE according to the downlink user-specific reference signal, where the calculating unit 704 of each base station is specifically used according to The channel matrix information corresponding to the selected subcarriers received by the receiving unit 703 is calculated to obtain an inter-base station correction compensation coefficient of the selected subcarriers in the base stations.
  • the sending unit 701 of each base station is specifically configured to: send the downlink user-specific reference signal of the cell corresponding to each base station to the UE at the same time; the sending unit 701 of each base station is specifically configured to: The downlink user-specific reference signal of the cell corresponding to each base station is sent to the UE in sequence; wherein, the preset time is shorter than a period in which the phase of the transceiver of each base station and the UE drifts.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE.
  • the self-correcting unit 702 is configured to perform self-correction and obtain A self-correcting matrix corresponding to each subcarrier on the base station.
  • the receiving unit 703 is configured to receive an uplink reference signal that is sent by the reference user equipment UE by using a reference subcarrier.
  • the calculating unit 704 is configured to obtain, after the receiving unit 703, the uplink reference signal that is sent by the reference user equipment by using the reference subcarrier, obtain the reference subcarrier according to the uplink reference signal received by the receiving unit. Upstream channel estimation matrix.
  • the method is used to select the base station from the reference UE and the reference subcarrier corresponding to the reference UE according to an uplink channel estimation matrix on the reference subcarrier obtained by the calculating unit 704. Correcting the UE and the corrected subcarrier corresponding to the corrected UE. Acquisition unit
  • the selected unit 705 selects the corrected UE of the base station and the corrected subcarrier corresponding to the corrected UE, calculates, by the calculating unit 704, the obtained uplink on the reference subcarrier. Obtaining, in the channel estimation matrix, an uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE.
  • the calculating unit 704 is further configured to: calculate, according to the uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE, a precoding vector corresponding to the corrected subcarrier of the base station.
  • the obtaining unit 706 is further configured to perform multi-antenna weighting according to the precoding vector corresponding to the corrected subcarrier obtained by the calculating unit 704 to obtain the downlink user-specific reference signal.
  • the self-correction matrix of the syndrome carrier includes a transmit channel self-correction matrix and a receive channel self-correction matrix.
  • the adjusting unit 707 is specifically configured to: divide the transmit channel self-correction matrix by the inter-base station correction compensation coefficient, and the adjusting unit 707 is further configured to: multiply the receive channel self-correction matrix by the base station Correcting the compensation coefficient, the adjusting unit 707 is further configured to divide the self-correction matrix by ⁇ by the transmission channel, multiply the ⁇ by the self-correction matrix by the receiving channel, where a product of ⁇ and ⁇ is equal to the inter-base station correction Compensation factor.
  • the calculating unit 704 is further configured to calculate, according to the uplink channel estimation matrix, an uplink channel quality on the reference subcarrier.
  • the selecting unit 705 is specifically configured to: when the reference UE sends an uplink reference signal by using an antenna on the reference UE, select the uplink channel quality on the reference subcarrier obtained by the calculating unit 704.
  • the reference subcarrier that exceeds the preset threshold is used as the correction subcarrier, and the UE corresponding to the corrected subcarrier is selected as the corrected UE of the base station.
  • the selecting unit 705 is specifically configured to: when the reference UE sends an uplink reference signal by using multiple antennas on the reference UE, select the obtained by the calculating unit 704.
  • a reference subcarrier that exceeds a preset threshold in the uplink channel quality of the reference subcarrier is used as a correction subcarrier, and a UE corresponding to the corrected subcarrier is selected as a corrected UE of the base station, and an antenna corresponding to the syndrome carrier is selected.
  • the sending unit 710 is further configured to: before the receiving unit 307 receives the uplink reference signal sent by the reference UE by using the reference subcarrier, to the reference The UE sends a first indication message, where the first indication message indicates that the reference UE sends the uplink reference signal to the base station to be corrected on the designated reference subcarrier.
  • the sending unit 710 is further configured to: before sending the downlink user-specific reference signal to the corrected UE by using the correcting subcarrier, send, to the corrected UE, second indication information, where the second indication information is used by The correction subcarrier required for the correction UE to receive the downlink user-specific reference signal; or the indication information is used to indicate the correction subcarrier required for the correction UE to receive the downlink user-specific reference signal and the correction antenna.
  • the receiving unit 703 is configured to receive, by the correction UE, a downlink channel estimation matrix corresponding to the corrected subcarrier, where the calculating unit is configured to calculate an uplink channel on the syndrome carrier according to the calculation.
  • An estimation matrix, a precoding vector p corresponding to the corrected subcarrier obtained by the calculation, and a downlink channel estimation matrix corresponding to the corrected subcarrier fed back by the receiving unit received by the receiving unit 803, by A h oL ' L )
  • the inter-base station correction compensation coefficient of the corrected subcarrier is obtained.
  • the receiving unit 703 is further configured to: after receiving the channel matrix information corresponding to the corrected subcarrier, receive an uplink correction reference signal that is sent by the corrected UE by using the corrected subcarrier.
  • the calculating unit 704 is configured to calculate, according to the uplink correction reference signal, an uplink corrected channel estimation matrix ⁇ corresponding to the corrected subcarrier.
  • the receiving unit 703 is configured to receive a downlink channel estimation matrix h DL corresponding to the corrected subcarrier fed back by the corrected UE.
  • the calculating unit 704 is further configured to calculate, according to the calculated uplink channel estimation matrix ⁇ on the syndrome carrier, the precoding vector ⁇ corresponding to the obtained corrected subcarrier, and the received by the receiving unit 703
  • the calculating unit 704 is configured to calculate, according to the calculation, the calibration subcarrier corresponding to the upper
  • the row channel estimation matrix calculates the precoding vector ⁇ corresponding to the syndrome carrier by ⁇ ⁇ .
  • the receiving unit 703 is configured to receive a relative matrix corresponding to the corrected subcarrier fed back by the corrected UE, where h r , the r is a constant, and the hi is a downlink corresponding to one subcarrier of the base station a channel estimation matrix, where h2 is a downlink channel estimation matrix of the serving base station corresponding to the corrected UE.
  • the calculating unit 704 is configured to obtain, according to the relative matrix corresponding to the corrected subcarriers fed back by the corrected UE, by the receiving unit 703, obtain an inter-base station correction compensation coefficient of the corrected subcarrier by using a calculation. If the base station is the serving base station of the corrected UE, the receiving unit 703 is configured to receive channel matrix information corresponding to the corrected subcarrier of the serving base station sent by the corrected UE, and a syndrome of other base stations. Channel matrix information corresponding to the carrier. The sending unit 701 is further configured to: after the receiving unit receives the channel matrix information corresponding to the corrected subcarriers of the other base station, forward the channel matrix information corresponding to the corrected subcarriers of the other base station to the Other base stations.
  • the receiving unit 703 is configured to receive channel matrix information corresponding to the corrected subcarrier of the base station that is forwarded by the serving base station of the corrected UE.
  • the embodiment of the present invention further provides a user equipment UE.
  • the UE includes: a receiving unit 801, a calculating unit 802, and a sending unit 803.
  • the receiving unit 801 is configured to receive, by the base station, the downlink user-specific reference signals that are mutually orthogonal between the cells that are sent by the base stations by using the selected sub-carriers, and the calculating unit 802, configured to receive, by the receiving unit 801, the downlink user. Dedicating a reference signal to obtain channel matrix information corresponding to the selected subcarriers of each base station;
  • the sending unit 803 is configured to send the channel matrix information corresponding to the selected subcarriers of the base stations obtained by the calculating unit 802 to the serving base station of the U E.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE
  • the calculating unit 802 is specifically configured to: according to the downlink user-specific reference signal received by the receiving unit 801 Calculating a downlink channel estimation matrix corresponding to the corrected subcarriers of the base stations.
  • the UE is a corrected UE
  • the selected subcarrier is a school corresponding to the corrected UE.
  • the calculating unit 802 configured to calculate, according to the downlink user-specific reference signal received by the receiving unit 801, a downlink channel estimation matrix corresponding to the corrected subcarriers of each base station.
  • An embodiment of the present invention provides a device for reciprocity correction between base stations, where a base station performs multi-antenna weighting on a precoding vector corresponding to a selected subcarrier to obtain a downlink user-specific reference signal, and sends the selected subcarrier to the UE by using the selected subcarrier. And downlinking the user-specific reference signal, so that the UE calculates the channel matrix according to the downlink user-specific reference signal. And the base station calculates, according to the channel matrix, an inter-base station correction compensation coefficient of the selected subcarrier, so that the base station adjusts a self-correction matrix of the selected subcarrier.
  • the multi-antenna weighted beam gain can be used to obtain a more accurate channel matrix, improve the system performance of the channel, thereby improving the accuracy of the air interface correction and improving the accuracy of the reciprocity correction between the base stations.
  • Embodiments of the present invention provide a communication system, including at least two base stations.
  • the sending unit described in FIG. 7 may be a transmitter or a transceiver
  • the receiving unit may be a receiver.
  • a transceiver and the transmitting unit and the receiving unit may be integrated to form a transceiver unit, which is implemented as a transceiver corresponding to hardware.
  • the transmitting unit, the self-correcting unit, the receiving unit, the calculating unit, the selecting unit, the obtaining unit and the adjusting unit may be embedded in the processor of the base station in hardware or software.
  • the processor can be a central processing unit (CPU) or a microcontroller. For one base station in the communication system, as shown in FIG.
  • each base station includes: a transmitter 901, a receiver 902, a memory 903, and a processor 9 connected to the transmitter 901, the receiver 902, and the memory 903, respectively.
  • the base station may further include a common component such as a baseband processing component, a radio frequency processing component, and an input/output device.
  • the embodiment of the present invention does not impose any limitation herein.
  • the memory 903 stores a set of program codes, and the processor 904 is configured to call the program code stored in the memory 903, and the following is performed by the processor 904, where the processor 904 is configured to calculate a pre-corresponding to the selected subcarriers in the base station.
  • the processor 904 is configured to send, by using the transmitter 901, the downlink user-specific reference signals that are mutually orthogonal between the cells corresponding to the base stations, by using the selected subcarriers in the local base station, where the downlink user-specific reference signals are
  • the base station obtains the multi-antenna weighting calculation in the base station according to the precoding vector.
  • the processor 904 is configured to calculate an inter-base station correction compensation coefficient for obtaining a selected subcarrier in the base station;
  • the processor 904 is configured to adjust a self-correction matrix of the selected subcarrier according to an inter-base station correction compensation coefficient of the selected subcarrier in the base station.
  • the mutual orthogonality includes frequency division orthogonal, time division orthogonal, code division orthogonal, time-frequency orthogonal, time code orthogonal, frequency code orthogonal or time-frequency code orthogonal.
  • the processor 904 is configured to receive, by using the receiver 902, channel matrix information corresponding to the selected subcarriers in each base station that is calculated by the UE according to the downlink user-specific reference signal;
  • the processor 904 is specifically configured to calculate, according to the channel matrix information corresponding to the selected subcarrier, an inter-base station correction compensation coefficient of the selected subcarriers in each of the base stations.
  • the processor 904 is configured to send, by using the transmitter 901 of each base station, the downlink user-specific reference signal of the cell corresponding to each base station to the UE.
  • the processor 904 is configured to send, by using the transmitter 901 of each base station, the downlink user-specific reference signal of the cell corresponding to each base station to the UE according to a preset time interval; wherein, the preset The time is less than a period in which the phase of each of the base stations and the transceiver of the UE drifts.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE, and for a base station in the communication system, the processor 904 performs self-correction to obtain each of the base stations.
  • the processor 904 is configured to receive, by the receiver 902, an uplink reference signal that is sent by the reference user equipment UE by using a reference subcarrier.
  • the processor 904 is configured to: after the receiver 902 receives an uplink reference signal that is sent by the reference user equipment, by using the reference subcarrier, obtain the reference subcarrier according to the uplink reference signal received by the receiving unit. Upstream channel estimation matrix.
  • the processor 904 is configured to select the correction of the base station from the reference UE and the reference subcarrier corresponding to the reference UE according to the obtained uplink channel estimation matrix on the reference subcarrier. The UE and the corrected subcarrier corresponding to the corrected UE.
  • the processor 904 is configured to: after selecting the corrected UE of the base station and the corrected subcarrier corresponding to the corrected UE, the obtained reference sub An uplink channel estimation matrix on the corrected subcarrier corresponding to the corrected UE is obtained in an uplink channel estimation matrix on the carrier.
  • the processor 904 is further configured to: calculate, according to the uplink channel estimation matrix on the corrected subcarrier corresponding to the UE, a precoding vector corresponding to the corrected subcarrier of the base station.
  • the processor 94 is further configured to perform multi-antenna weighting according to the obtained precoding vector corresponding to the corrected subcarrier to obtain the downlink user-specific reference signal.
  • the self-correction matrix of the syndrome carrier includes a transmit channel self-correction matrix and a receive channel self-correction matrix.
  • the processor 94 is specifically configured to divide the transmit channel self-correction matrix by the inter-base station correction compensation coefficient, and the processor 94 is further configured to: multiply the receive channel self-correction matrix by the Inter-base station correction compensation coefficient, the processor 94 is further configured to divide the self-correction matrix by ⁇ with the transmission channel, multiply the ⁇ by the self-correction matrix of the reception channel, where the product of ⁇ and ⁇ is equal to the Correction compensation coefficient between base stations.
  • the processor 94 is further configured to calculate, according to the uplink channel estimation matrix, an uplink channel quality on the reference subcarrier.
  • the processor 904 is specifically configured to: when the reference UE sends an uplink reference signal by using an antenna on the reference UE, select the obtained uplink channel quality on the reference subcarrier that exceeds a preset threshold.
  • the reference subcarrier is used as a correction subcarrier, and the UE corresponding to the corrected subcarrier is selected as the corrected UE of the base station.
  • the processor 94 is specifically configured to: when the reference UE sends an uplink reference signal by using multiple antennas on the reference UE, select the obtained uplink channel quality on the reference subcarrier that exceeds a preset threshold.
  • the reference subcarrier is used as the correction subcarrier, and the UE corresponding to the corrected subcarrier is selected as the corrected UE of the base station, and the antenna corresponding to the corrected subcarrier is selected as the corrected antenna of the base station.
  • the processor 94 is further configured to receive, by the transmitter 9 G 1 at the receiver 9 G 2, the reference UE by using the reference subcarrier.
  • the first indication message is sent to the reference UE, where the first indication message indicates that the reference UE sends the uplink reference signal to the base station to be corrected on the designated reference subcarrier.
  • the processor 94 is further configured to: before sending the downlink user-specific reference signal to the corrected UE by using the calibration subcarrier, send second indication information to the corrected UE, where the second indication information is used by The correction subcarrier required for the correction UE to receive the downlink user-specific reference signal; or the indication information is used to indicate the correction subcarrier required for the correction UE to receive the downlink user-specific reference signal and the correction antenna.
  • the processor 9 04 is configured to calculate, according to the calculation, the uplink corresponding to the syndrome carrier
  • the channel estimation matrix calculates a precoding vector p corresponding to the corrected subcarrier by P ⁇ U.
  • the receiver 902 is further configured to: after receiving the channel matrix information corresponding to the syndrome carrier, receive an uplink correction reference signal that is sent by the corrected UE by using the calibration subcarrier.
  • the processor 904 is configured to calculate, according to the uplink correction reference signal, an uplink corrected channel estimation matrix corresponding to the corrected subcarrier.
  • the processor 904 is configured to receive, by using the receiver 902, a downlink channel estimation matrix corresponding to the corrected subcarrier that is fed back by the corrected UE, where the processor 904 is further configured to use the corrected subcarrier obtained according to the calculation.
  • the processor 904 is configured to receive, by the receiver 902, a relative matrix corresponding to the corrected subcarriers fed back by the corrected UE, where r r h h / h 2 , the r is a constant, the hi a downlink channel estimation matrix corresponding to one subcarrier of the base station, where h2 is a downlink channel estimation matrix of the serving base station corresponding to the corrected UE.
  • the processor 904, according to the relative correction matrix 902 received by the receiver UE feedback correction corresponding subcarrier obtained by the inter-base station ⁇ A correction of the subcarrier-correction coefficient calculation.
  • the processor 904 is configured to receive, by using the receiver 902, channel matrix information corresponding to the corrected subcarrier of the serving base station that is sent by the UE. And channel matrix information corresponding to the corrected subcarriers of other base stations.
  • the processor 904 is further configured to: after the receiving unit receives the channel matrix information corresponding to the corrected subcarriers of the other base stations by using the transmitter 901, The channel matrix information corresponding to the syndrome carrier is correspondingly forwarded to the other base station.
  • the processor 904 is configured to receive, by using the receiver 902, a channel matrix corresponding to the corrected subcarrier of the base station that is forwarded by the serving base station of the corrected UE. information.
  • the embodiment of the present invention provides a user equipment UE.
  • the sending unit in FIG. 8 may be a transmitter or a transceiver
  • the receiving unit may be a receiver or a transceiver
  • the sending unit and The receiving units can be integrated to form a transceiver unit, which is implemented as a transceiver corresponding to hardware.
  • the computing unit can be embedded in the processor of the base station in hardware or software.
  • the processor can be a central processing unit (CPU) or a microcontroller.
  • CPU central processing unit
  • each base station includes a transmitter 1001, a receiver 1002, a memory 1003, and a processor 1004 connected to the transmitter 1001, the receiver 1002, and the memory 1003, respectively.
  • the base station may further include a common component such as a baseband processing component, a radio frequency processing component, and an input/output device.
  • a common component such as a baseband processing component, a radio frequency processing component, and an input/output device.
  • the embodiment of the present invention is not limited herein.
  • the memory 1003 stores a set of program codes, and the processor 1004 is configured to call the program code stored in the memory 1003 to perform the following operations:
  • the processor 1004 is configured to receive, by the receiver 1002, a downlink user-specific reference signal that is mutually orthogonal between cells corresponding to each base station that is sent by each base station by using the selected subcarrier.
  • the processor 1004 is configured to use the downlink according to the received
  • the user-specific reference signal calculates channel matrix information corresponding to the selected sub-carriers of the base stations.
  • the processor 1004 is configured to send, by using the transmitter 1001, channel matrix information corresponding to the selected subcarriers of the base stations to a serving base station of the UE.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE
  • the processor 1004 is specifically configured to: according to the downlink user-specific reference signal received by the receiver 1002. Calculating a downlink channel estimation matrix corresponding to the corrected subcarriers of the base stations.
  • the UE is a corrected UE
  • the selected subcarrier is a corrected subcarrier corresponding to the corrected UE
  • the processor 1004 is configured to calculate, according to the downlink user-specific reference signal received by the receiver 1002. Obtaining a downlink channel estimation matrix corresponding to the syndrome carrier of each base station.
  • An embodiment of the present invention provides a device for reciprocity correction between base stations, where a base station performs multi-antenna weighting on a precoding vector corresponding to a selected subcarrier to obtain a downlink user-specific reference signal, and sends the selected subcarrier to the UE by using the selected subcarrier. And downlinking the user-specific reference signal, so that the UE calculates the channel matrix according to the downlink user-specific reference signal. And the base station calculates, according to the channel matrix, an inter-base station correction compensation coefficient of the selected subcarrier, so that the base station adjusts a self-correction matrix of the selected subcarrier.
  • the multi-antenna weighted beam gain can be used to obtain a more accurate channel matrix, improve the system performance of the channel, thereby improving the accuracy of the air interface correction and improving the accuracy of the reciprocity correction between the base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种基站间互易性校正的方法及装置,涉及通信领域。所述方法包括以下步骤:各基站计算获得本基站内选定子载波对应的预编码向量(101);各基站通过所述本基站内的选定子载波,向用户设备(UE)发送各基站对应的小区间相互正交的下行用户专用参考信号(102);各基站获得基站内选定子载波的基站间校正补偿系数(103);各基站根据本基站内选定子载波的基站间校正补偿系数调整所述选定子载波的自校正矩阵(104)。通过应用本发明实施例可以提高基站间互易性校正的精度。

Description

一种基站间互易性校正的方法及装置 技术领域 本发明涉及通信领域, 尤其涉及一种基站间互易性校正的方法及装 置。
背景技术
CoMP (Coordinated Multiple,协作多点传输)技术是指地理位置上 分离的多个基站, 协同为一个终端的发送数据传输或者联合接收一个终 端发送的数据的一种新技术, 由于其可以有效提升小区边缘用户的服务 质量, 故被广泛应用在各传输系统中。
在应用 CoMP技术的 TD-LTE ( Time Division - Long Term Evolution, 分时长期演进) 系统中, 由于 TD-LTE系统中的上下行信道使用相同的频 带, 故具有信道互易性, 而在实际系统中, 上下行信道互易性并不绝对, 即存在互易性错误, 这将损失 TDD系统性能。 而 CoMP技术的应用需要多个 基站给同一个用户设备发送数据, 故除了要对基站内多个天线之间进行 互易性校准外,还要考虑基站间相对于用户设备的互易性校准。 现有技术中存在一种基站间互易性校正的方法,选定一个用户设备, 利用该用户设备与各个基站之间存在的空口信道, 所述用户设备可以向 各个基站发送导频信号, 以使得所述基站根据所述导频信号估计其对应 的上行信道估计矩阵, 然后所述用户设备根据各个基站发送的导频信号 估计各个基站对应的下行信道估计矩阵, 并将各个基站对应的下行信道 估计矩阵反馈给各个基站。 这样各基站就可以利用自身对应的上下行信 道估计矩阵信息, 获得各个基站对应的校正矩阵, 进而进行基站间相对 于该用户设备的互易性校正。 在实现上述基站间互易性校正的过程中, 发明人发现在进行基站间 互易性误差校正时, 由于基站之间的距离较远, 用户设备到各基站的空 口信道质量较差, 这就使得获得的信道估计矩阵的精度过低, 导致基站 间互易性校正的精度过低, 从而造成系统性能损失过大。
发明内容 本发明的实施例提供了一种基站间互易性校正的方法及装置, 可以 提高基站间互易性校正的精度, 进而提高系统性能。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 公开了一种基站间互易性校正的方法, 应用于至少两个 基站, 包括: 各基站计算获得本基站内选定子载波对应的预编码向量;
所述各基站通过所述本基站内的选定子载波,向 UE发送各基站对应 的小区间相互正交的下行用户专用参考信号, 所述下行用户专用参考信 号是各基站根据所述预编码向量进行基站内的多天线加权计算获得的; 所述各基站获得基站内选定子载波的基站间校正补偿系数; 所述各基站根据本基站内选定子载波的基站间校正补偿系数调整所 述选定子载波的自校正矩阵。
结合第一方面, 在第一种可能的实现方式中, 所述各基站接收获得 基站内选定子载波的基站间校正补偿系数, 包括: 所述各基站对应接收所述 UE 根据所述下行用户专用参考信号计算 获得的各基站内选定子载波对应的信道矩阵信息; 所述各基站根据校正子载波对应的信道矩阵信息计算获得所述各基 站内选定子载波的基站间校正补偿系数。
第二方面, 公开了一种基站间互易性校正的方法, 应用于 UE , 包括: 所述 UE 接收各基站通过选定子载波发送的各基站对应的小区间相 互正交的下行用户专用参考信号;
所述 UE 根据所述下行用户专用参考信号计算获得所述各基站的所 述选定子载波对应的信道矩阵信息;
所述 UE 将所述各基站的所述选定子载波对应的信道矩阵信息发送 给所述 UE的服务基站。 第三方面, 公开了一种通信系统, 包括至少两个基站, 各基站的计算单元, 用于计算获得本基站内选定子载波对应的预编 码向量; 各基站的发送单元, 用于通过所述本基站内的选定子载波, 向 UE发 送各基站对应的小区间相互正交的下行用户专用参考信号, 所述下行用 户专用参考信号是各基站根据所述预编码向量进行基站内的多天线加权 计算获得的; 所述各基站的计算单元还用于, 计算获得基站内选定子载波的基站 间校正补偿系数; 各基站的调整单元, 用于根据本基站内选定子载波的基站间校正补 偿系数调整所述选定子载波的自校正矩阵。
结合第三方面, 在第一种可能的实现方式中, 各基站的接收单元, 用于接收所述 UE根据所述下行用户专用参考信号计算获得的各基站内选 定子载波对应的信道矩阵信息; 所述各基站的计算单元具体用于, 根据校正子载波对应的信道矩阵 信息计算获得所述各基站内选定子载波的基站间校正补偿系数。
第四方面, 公开了一种用户设备 UE , 包括: 接收单元, 用于接收各基站通过选定子载波发送的各基站对应的小 区间相互正交的下行用户专用参考信号; 计算单元, 用于根据所述接收单元接收的所述下行用户专用参考信 号计算获得所述各基站的所述选定子载波对应的信道矩阵信息; 发送单元, 用于将所述各基站的所述选定子载波对应的信道矩阵信 息发送给所述 UE的服务基站。 本发明实施例提供了一种基站间互易性校正的方法及装置, 基站将 选定子载波对应的预编码向量进行多天线加权获得下行用户专用参考信 号, 并通过选定子载波向 UE发送所述下行用户专用参考信号, 以使得所 述 UE根据所述下行用户专用参考信号计算获得信道矩阵。 所述基站根据 所述信道矩阵计算获得所述选定子载波的基站间校正补偿系数, 使得所 述基站调整所述选定子载波的自校正矩阵。 这样利用多天线加权后的波 束增益可以获得更准确的信道矩阵, 改善信道的系统性能, 从而提升空 口校正的精度、 提高了基站间互易性校正的精度。
附图说明 图 1为本发明实施例 1提供的一种基站间互易性校正的方法流程示 意图;
图 2为本发明实施例 1提供的另一种基站间互易性校正的方法流程 示意图;
图 3为本发明实施例 2提供的一种基站间互易性校正的方法流程示 意图;
图 4为本发明实施例 3提供的一种基站间互易性校正的方法流程示 意图;
图 5为本发明实施例 3提供的导频位置示意图; 图 6为本发明实施例 3提供的另一种基站间互易性校正的方法流程 示意图;
图 7为本发明实施例 4提供的通信系统中的一个基站的结构框图; 图 8为本发明实施例 4提供的用户设备 UE的结构框图; 图 9为本发明实施例 5提供的通信系统中的一个基站的结构框图; 图 1 0为本发明实施例 5提供的用户设备 UE的结构框图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。 实施例 1 : 本发明实施例提供了一种基站间互易性校正的方法, 应用于至少两 个基站, 如图 1所示, 所述方法包括:
1 01、 各基站计算获得本基站内选定子载波对应的预编码向量。 通常情况下, 一个基站会覆盖多个小区, 在进行基站间互易性校正 时, 是在各基站对应的小区上进行互易性校正的。 示例的, 在对两个基 站进行互易性校正时, 实际上在这两个基站覆盖的小区中各选择一个小 区, 然后在这两个小区上对这两个基站的互易性进行校正, 因此所述基 站会通过选定子载波向 UE发送各基站对应的小区间相互正交的下行用户 专用参考信号。 另外, 所述 UE为本发明各实施例中所述的校正 UE , 所述 选定子载波为所述校正 UE对应的校正子载波。
各基站在计算获得本基站内选定子载波对应的预编码向量之前, 还 会进行一些步骤以获得下行用户专用参考信号, 包括: 首先基站进行自 校正, 获得所述基站上各子载波对应的自校正矩阵。 接收各参考 UE通过 参考子载波发送的上行参考信号, 并根据所述上行参考信号计算获得所 述参考子载波上的上行信道估计矩阵。 根据所述参考子载波上的上行信 道估计矩阵, 从所述参考 UE及所述参考 UE对应的所述参考子载波中选 定所述基站的所述校正 UE及所述校正 UE对应的校正子载波。 这样, 就 可以以获得所述校正 UE对应的校正子载波上的上行信道估计矩阵。之后, 再根据所述校正 UE对应的校正子载波上的上行信道估计矩阵, 计算获得 所述基站的校正子载波对应的预编码向量。 最后, 所述基站对所述校正 子载波对应的预编码向量进行多天线加权就可以获得所述下行用户专用 参考信号。
1 02、 所述各基站通过所述本基站内的选定子载波, 向 UE发送各基 站对应的小区间相互正交的下行用户专用参考信号。
其中, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的蒋 正子载波, 所述相互正交包括频分正交、 时分正交、 码分正交、 时频正 交、 时码正交、 频码正交或时频码正交。 不同于现有技术中各基站向 UE 发送的参考信号, 所述下行用户专用参考信号是各基站对所述校正子载 波对应的预编码向量进行多天线加权之后获得的。 这样, 校正 UE接收所 述下行用户专用参考信号之后就可以根据所述下行用户专用参考信号计 算获得更准确的信道矩阵信息, 以使得所述基站获得更准确的校正结果。
另外, 所述各基站同时向所述 UE发送所述各基站对应的小区的所述 下行用户专用参考信号; 或者, 所述各基站间隔预设时间依次向所述 UE 发送所述各基站对应的小区的所述下行用户专用参考信号; 其中, 所述 预设时间小于所述各基站与所述 UE的收发机相位发生漂移的周期。
1 03、 所述各基站获得基站内选定子载波的基站间校正补偿系数。 这里,各基站首先接收对应的校正 UE根据所述下行用户专用参考信 号计算获得的各基站内选定子载波对应的信道矩阵信息。 之后, 再根据 所述选定子载波对应的信道矩阵信息计算获得所述各基站内选定子载波 的基站间校正补偿系数。
需要说明的是, 这里的 UE 为校正 UE , 所述选定子载波为所述校正 UE对应的校正子载波。
1 04、所述各基站根据本基站内选定子载波的基站间校正补偿系数调 整所述选定子载波的自校正矩阵。
所述校正子载波的自校正矩阵包括发通道自校正矩阵和收通道自校 正矩阵, 因此所述基站根据所述基站间校正补偿系数调整所述自校正矩 阵实际上需要对所述发通道的自校正矩阵和所述收通道的自校正矩阵都 进行调整。 利用补偿系数调整自校正矩阵的具体方法为: 所述发通道自 校正矩阵除以所述基站间校正补偿系数; 或者, 所述收通道自校正矩阵 乘以所述基站间校正补偿系数; 或者, 所述发通道自校正矩阵除以 β 且 所述收通道自校正矩阵乘以 α , 其中, α 与 β 之积等于所述基站间校 正补偿系数。 本发明实施例还提供了一种基站间互易性校正的方法, 执行主体为 UE,如图 2所示, 所述方法包括以下步骤:
2 01、 所述 UE接收各基站通过选定子载波发送的各基站对应的小区 间相互正交的下行用户专用参考信号。 这里, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校 正子载波。
2 02、 所述 UE根据所述下行用户专用参考信号计算获得所述各基站 的所述选定子载波对应的信道矩阵信息。
这里, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校 正子载波。 这里所述校正 UE计算获得所述各基站的校正子载波对应的信 道矩阵信息有两种情况, 一是, 所述校正 UE根据所述下行用户专用参考 信号计算获得所述各基站的所述校正子载波对应的下行信道估计矩阵 L。
二是,所述校正 UE首先计算获得各基站的所述校正子载波对应的下 行参信道估计矩阵, 然后针对除所述校正 UE的服务基站外的每一个基站 计算获得所述基站的所述校正子载波对应的相对矩阵 , 所述 hr = r - h\/h2 , 其中 r是一个常数, 所述 hi为所述基站的一个子载波对应 的下行信道估计矩阵, 所述 h2为所述校正 UE对应的服务基站的下行信 道估计矩阵, 特别地, 所述校正 UE的所述服务基站的相对矩阵为常数 r。 这里所述 h2是所述校正 UE选定的参考基站的的下行信道估计矩阵, 一 般情况下,所述校正 UE会选择它对应的服务基站为所述参考基站, 当然, 也可以选择所述校正 UE对应的其他待校正基站为所述参考基站。
203、 所述 UE将所述各基站的所述选定子载波对应的信道矩阵信息 发送给所述 UE的服务基站。 同上, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校 正子载波。
本发明实施例提供了一种基站间互易性校正的方法, 基站将选定子 载波对应的预编码向量进行多天线加权获得下行用户专用参考信号, 并 通过选定子载波向 UE 发送所述下行用户专用参考信号, 以使得所述 UE 根据所述下行用户专用参考信号计算获得信道矩阵。 所述基站根据所述 信道矩阵计算获得所述选定子载波的基站间校正补偿系数, 使得所述基 站调整所述选定子载波的自校正矩阵。 这样利用多天线加权后的波束增 益可以获得更准确的信道矩阵, 改善信道的系统性能, 从而提升空口校 正的精度、 提高了基站间互易性校正的精度。
实施例 2 : 本发明实施例提供了一种基站间互易性校正的方法, 执行主体为基 站, 如图 3所示, 所述方法包括以下步骤:
301、 基站进行自校正, 获得所述基站上各子载波对应的自校正矩 阵。
在进行基站间互易性校正时, 需要先进行基站内的自校正, 获得自 校正矩阵。对于一个基站来说,所述基站的自校正矩阵的获得方法包括: 所述基站选取基站内的一根天线作为校正天线。 所述校正天线发送参考 信号给基站内其它天线, 所述基站内其它天线接收并检测所述参考信 号, 由此获得基站的收通道校正矩阵; 所述基站内其它天线发送另一参 考信号给所述校正天线, 所述校正天线接收并检测所述另一参考信号, 由此获得基站的发通道校正矩阵。 这样, 所述基站就获得了所述基站的 自校正矩阵即发通道校正矩阵和接通道校正矩阵。
302、 所述基站接收参考用户设备 UE通过参考子载波发送的上行参 考信号, 并根据所述上行参考信号获得所述参考子载波上的上行信道估 计矩阵。
RB ( Rad i o Bea r , 无线链路承载) 存在于基站与 UE之间, 用来承 载 UE与基站交互的子载波, 所述参考子载波也是所述 RB上承载的。 另外, 所述参考 UE可以通过一根天线向所述基站发送上行参考信号, 也可以通过多根天线向所述基站发送上行参考信号。
需要说明的是, 若所述基站为所述参考 UE的服务基站, 所述服务基 站会在接收参考 UE通过参考子载波发送的上行参考信号之前, 向所述参 考 UE发送第一指示消息, 所述第一指示消息指示所述参考 UE在指定的 参考子载波上发送所述上行参考信号给待校正基站。 这里, 所述参考子 载波是承载在参考 RB上的, 也就是所述服务基站会指示所述参考 UE在 参考 RB上接收参考子载波上发送所述上行参考信号。 、
303、 所述基站根据所述参考子载波上的上行信道估计矩阵, 从所述 参考 UE及所述参考 UE对应的所述参考子载波中选定所述基站的校正 UE 及所述校正 UE对应的校正子载波, 获得所述校正 UE对应的校正子载波 上的上行信道估计矩阵。
在这里需要说明的是, 所述参考 UE有多个, 这些参考 UE可以通过 参考子载波向所述基站发送上行参考信号, 所述基站要从所有参考 UE中 选定校正 U。若所述参考 UE通过一根天线向所述基站发送上行参考信号, 所述基站根据所述上行信道估计矩阵, 计算出所述参考子载波上的上行 信道质量选择所述参考子载波上的上行信道质量超过预设门限的参考子 载波作为校正子载波,所述校正子载波对应的 UE作为所述基站的校正 UE。 若所述参考 UE通过多根天线发送向所述基站发送上行参考信号, 所述基 站还需要选择校正天线。 所述基站根据所述上行信道估计矩阵, 计算出 所述参考子载波上的上行信道质量, 选择所述参考子载波上的上行信道 质量超过预设门限的参考子载波作为校正子载波, 所述校正子载波对应 的 UE作为所述基站的校正 UE ;所述校正子载波对应的天线作为所述基站 的校正天线。 所述基站在确定校正 UE后, 就可以获得所述校正 UE对应 的校正子载波上的上行信道估计矩阵。
可选的, 这里也可以只确定校正子载波及其对应的校正 UE , 不选择 所述校正子载波对应的上行信道估计矩阵, 而是所述校正 UE再次发送上 行信道参考信号给所述基站, 以使得所述基站计算获得更为准确的上行 信道估计矩阵。 在获得所述更为准确的上行信道估计矩阵后, 再进行步 骤 303。
3 04、 所述基站根据所述校正 UE对应的校正子载波上的上行信道估 计矩阵, 计算获得所述基站的校正子载波对应的预编码向量。
本发明提供了两种基站间互易性校正的方法, 对应这两种方法, 所 述基站计算所述基站的校正子载波对应的预编码向量 P 包括两个公式: P - L II L I ^ 所述/ ½为所述校正子载波对应的上行信道估计矩阵, 或者
3 05、所述基站根据校正子载波对应的预编码向量进行多天线加权获 得下行用户专用参考信号, 并通过所述校正子载波向 UE发送各基站对应 的小区的下行用户专用参考信号。
通常情况下, 一个基站下会覆盖多个小区, 在进行基站间互易性校 正时, 实际上是在各基站对应的小区上进行互易性校正的。 示例的, 在 对两个基站进行互易性校正时, 首先在这两个基站覆盖的小区中各选择 一个小区, 然后在这两个小区上对这两个基站的互易性进行校正, 因此 所述基站会通过所述校正子载波向 UE发送各基站对应的小区的下行用户 专用参考信号。
所述基站将步骤 304获得的校正子载波对应的预编码向量, 进行多 天线加权后获得下行用户专用参考信号, 并向所述校正 UE发送各基站对 应的小区的所述下行用户专用参考信号, 这样, 所述校正 UE就可以根据 所述下行用户专用参考信号计算获得所述基站的校正子载波对应的信道 矩阵信息。 各基站对应的小区的所述下行用户专用参考信号之间相互正 交, 包括频分正交、 时分正交、 码分正交、 时频正交、 时码正交、 频码 正交或时频码正交。
另外, 若所述基站是所述校正 UE的服务基站, 则, 所述基站向所述 校正 UE发送第二指示信息, 所述第二指示信息用于指示所述校正 UE接 收所述下行用户专用参考信号所需的校正子载波; 或者, 所述指示信息 用于指示所述校正 UE接收所述下行用户专用参考信号所需的校正子载波 以及校正天线。
这里,所述基站可以与其他基站同时向所述 UE发送各基站对应的所 述下行用户专用参考信号; 也可以与其他基站间隔预设时间向所述 UE发 送各基站对应的所述下行用户专用参考信号, 其中, 所述预设时间小于 所述基站与所述校正 UE的收发机相位发生漂移的周期。
306、所述基站接收并根据所述校正子载波对应的信道矩阵信息计算 获得所述校正子载波的基站间校正补偿系数。
对应步骤 304 所述的本发明实施例提供的两种预编码向量的算法, 在此所述校正子载波的基站间校正补偿系数的计算也对应有两种情况。
第一种情况, 所述预编码向量
Figure imgf000012_0001
/i/ i , 则所述基站根据所述校 正子载波上的上行信道估计矩阵 ^、 计算出的校正子载波对应的预编码 向量 p、 通过校正 UE反馈而接收到的所述校正子载波对应的下行信道估 计矩阵 ^, 计算得到基站间校正补偿系数 : /^ )。 这里, 所述校 正 UE根据接收到的下行参考信号计算得到所述基站的校正子载波对应的 信道矩阵信息 (即就是所述下行信道估计矩阵 ^ ) , 然后会将所述信道 矩阵反馈给所述基站,这样所述基站就获得了所述下行信道估计矩阵 ^。
第二种情况,
Figure imgf000012_0002
所述基站根据通过校 正 UE反馈而接收到的每个子载波对应的相对矩阵 ^ 计算得到基站间校 正补偿系数 l = g A , 其中 = r . W/ /2 , r、 q均为常数, 所述 h i为所述基 站的一个子载波对应的下行信道估计矩阵, 所述 h2为所述校正 UE对应 的服务基站的下行信道估计矩阵。 这里, 所述校正 UE根据接收到的下行 参考信号计算得到所述基站的校正子载波对应的信道矩阵信息 然后会 将所述信道矩阵 hr反馈给所述基站,这样所述基站就获得了所述信道矩阵
307、所述基站根据所述校正子载波的基站间校正补偿系数调整所述 校正子载波的自校正矩阵。
这里, 由于所述校正子载波的自校正矩阵包括发通道自校正矩阵和 收通道自校正矩阵, 因此所述基站根据所述基站间校正补偿系数调整所 述自校正矩阵包括多种情况: 所述发通道自校正矩阵除以所述基站间校 正补偿系数。 或者, 所述收通道自校正矩阵乘以所述基站间校正补偿系 数。 或者, 所述发通道自校正矩阵除以 β 且所述收通道自校正矩阵乘以 α , 其中, α 与 β 之积等于所述基站间校正补偿系数。
本发明实施例提供了一种基站间互易性校正的方法, 基站将选定子 载波对应的预编码向量进行多天线加权获得下行用户专用参考信号, 并 通过选定子载波向 UE 发送所述下行用户专用参考信号, 以使得所述 UE 根据所述下行用户专用参考信号计算获得信道矩阵。 所述基站根据所述 信道矩阵计算获得所述选定子载波的基站间校正补偿系数, 使得所述基 站调整所述选定子载波的自校正矩阵。 这样利用多天线加权后的波束增 益可以获得更准确的信道矩阵, 改善信道的系统性能, 从而提升空口校 正的精度、 提高了基站间互易性校正的精度。
实施例 3 : 本发明实施例还提供了一种基站间互易性校正的方法,如图 4所示, 所述方法包括以下步骤:
401、 基站进行自校正, 获得基站上各子载波对应的自校正矩阵。 对于每一个基站来说, 在进行基站间互易性校正时, 需要先进行基 站内子载波的自校正, 获得各子载波的自校正矩阵。 所述基站的自校正 矩阵的获得方法包括: 所述基站选取基站内的一根天线作为校正天线。 所述校正天线发送参考信号给基站内其它天线, 所述基站内其它天线接 收并检测所述参考信号, 由此获得基站的收通道校正矩阵; 所述基站内 其它天线发送另一参考信号给所述校正天线, 所述校正天线接收并检测 所述另一参考信号, 由此获得基站的发通道校正矩阵。 这样, 所述基站 就获得了所述基站的自校正矩阵即发通道校正矩阵和接通道校正矩阵。
402、 参考 UE通过参考子载波向基站发送上行参考信号。 这里,所述参考 UE通过参考子载波向各个待校正基站发送上行参考 信号, 可以通过一根或多根天线向各个待校正的基站发送上行参考信号。 在所述参考 UE通过多根天线向各个待校正的基站发送上行参考信号时, 天线同时发送不同的上行参考信号。 所述上行参考信号可以为 SRS ( Sound i ng Ref erence S i gna l , 测量参考信号) 信号, 标准的 SRS信号 在一个承载 1 2个子载波的 RB上, 每间隔一个子载波有一个导频。 以下 所述都以上行参考信号为 SRS为例进行说明。 在这里,所述参考 UE的服务基站可以发送第一指示消息给所述参考 基站,用于指示所述参考 UE在指定的 RB上通过参考子载波发送 所述 SRS 信号。 因此, 如果某些基站需要在某些 RB上对子载波的自校正矩阵进行 调整, 则所述参考 UE的服务基站就可以指示所述参考 UE在这些 RB上通 过所述子载波发送 SRS信号给各个参考基站。
403、 基站接收参考 UE通过参考子载波发送的上行参考信号, 并根 据所述上行参考信号获得所述参考子载波上的上行信道估计矩阵。 示例的, 若所述基站通过参考子载波接收到的上行参考信号 SRS 占 用 4个 RB , 所述基站有 8根天线。 如图 5 ( a ) 所示, 上行参考信号 SRS 所占用的每个 RB上有 6个导频位置(图 5 ( a ) 中的阴影部分) , 每个导 频位置上承载一个参考子载波。 所述基站在这 4 个 RB上, 针对每个 RB 上的 6 个导频位置上的所述参考子载波进行上行信道估计, 获得所述参 考子载波上的上行信道估计矩阵。 则, 所述基站会获得这 4个 RB上承载 的 24 ( 6 *4=24 ) 个参考子载波上的上行信道估计矩阵。 该基站得到的信 道估计结果可以用一个 8行 24列的矩阵来表示, 而每个参考子载波的上 行信道估计矩阵 ^都可以表示为一个 8行 1列的矩阵。
404、 所述基站根据所述参考子载波上的上行信道估计矩阵, 从所述 参考 UE及所述参考 UE对应的所述参考子载波中选定所述基站的校正 UE 及所述校正 UE对应的校正子载波, 获得所述校正 UE对应的校正子载波 上的上行信道估计矩阵。
若所述参考 UE通过一根天线发送所述上行参考信号,所述基站首先 根据所述上行信道估计矩阵, 计算出所述参考子载波上的上行信道质量。 选择所述参考子载波上的上行信道质量超过预设门限的参考子载波作为 校正子载波, 所述校正子载波对应的 UE作为所述基站的校正 UE。
若所述参考 UE发送的上行参考信号通过所述参考 UE上的多根天线 发送的, 所述基站按照上述方法选定校正子载波以及校正 UE后, 将所述 校正子载波对应的天线作为所述基站的校正天线。 示例的, 对应步骤 403 所述的上行参考信号 SRS。 针对参考每个子 载波来计算所述参考子载波的上行信道质量, 可以将该参考子载波的上 想信道估计矩阵 除以一个干扰噪声功率所对应的基数, 得到每个参考 子载波的上行信道质量。这样基站就会在所述上行参考信号 SRS 占用的 6 个 RB上承载的 24个参考子载波对应的上行信道质量中, 选择超过预设 门限的参考子载波作为校正子。 载波, 所述校正子载波对应的 UE作为所 述基站的校正 UE。 可选的, 在所述基站确定校正子载波及校正 UE后, 可以不获得所述 校正子载波上的上行信道估计矩阵, 而是指示所述校正 UE通过所述校正 子载波再次发送上行校正参考信号给所述基站, 所述基站就可以根据所 述上行校正参考信号获得所述校正子载波的上行校正信道估计 进而 使得所述参考子载波的自校正矩阵得到更准确的调整。
4 05、 所述基站根据所述校正 UE对应的校正子载波上的上行信道估 计矩阵, 计算获得所述基站的校正子载波对应的预编码向量。
在步骤 4 04中确定了校正子载波及校正 UE后, 由于步骤 4 03会获得 所有参考子载波 (包括校正子载波) 上的上行信道估计矩阵, 故所述基 站就获得所述校正子载波上的上行信道估计矩阵, 进而计算获得所述校
Figure imgf000015_0001
其中, 所述/ ^为所述校正子载波对应的上行信道估计矩阵, 可选的, 所 述预编码向量计算公式中的/ ^也可以为步骤 4 04获得的上行校正信道估 i UL , 以使得所述参考子载波的自校正矩阵得到更准确的调整。
4 06、所述基站根据所述校正子载波对应的预编码向量进行多天线加 权获得下行用户专用参考信号, 并通过所述校正子载波向所述校正 UE发 送所述下行用户专用参考信号。 这里, 所述各基站对应的小区的所述下行用户专用参考信号之间相 互正交, 可以频分正交、 时分正交、 码分正交、 时频正交、 时码正交、 频码正交或时频码正交。
示例的, 若有基站 、 B要对其子载波的自校正矩阵进行校正, 且所 述基站 A、 B选定了同一个参考 UE作为校正 UE。 针对每个 RB , 基站 A发 送的校正参考信号 1的导频位置如图 5 ( b ) (图中阴影)所示, 基站 A釆 用自己的校正子载波对应的预编码向量 对所述校正参考信号 1进行多 天线加权;基站 B发送的校正参考信号的导频位置如图 5 ( c ) (图中阴影) 所示, 基站 B 釆用自己的校正子载波对应的预编码向量 对所述校正参 考信号 2进行多天线加权。 这样, 所述校正 UE接收到的下行用户专用参 考信号的导频位置如图 5 ( d ) (图中阴影) 所示。 在所述基站通过所述校正子载波向所述校正 UE 发送所述下行用户 专用参考信号时, 若所述基站是所述校正 UE的服务基站, 所述基站还会 向所述校正 UE发送第二指示信息, 用于指示所述校正 UE接收所述下行 用户专用参考信号所需的校正子载波; 或者, 所述指示信息用于指示所 述校正 UE接收所述下行用户专用参考信号所需的校正子载波以及校正天 线; 或指示所述校正 UE在指定的 RB上通过校正子载波收所述下行用户 专用参考信号。
4 07、 所述校正 UE接收所述基站发送的所述下行用户专用参考信号 并根据所述下行用户专用参考信号计算获得所述基站的校正子载波对应 的下行信道估计矩阵, 并将所述校正子载波对应的下行信道估计矩阵反 馈给所述校正 UE的服务基站。 所述校正 UE 通过计算获得每个基站的各个校正子载波的下行信道 估计矩阵, 就可以获得每个基站的下行信道估计矩阵。
示例的, 所述校正 UE使用接收到的下行用户专用参考信号, 在图 5 ( d ) 中的导频位置 (图中阴影) 进行信道估计, 计算获得所述基站的一 个子载波的下行信道估计矩阵/ ^。 之后, 所述校正 UE会将所述下行信道 估计矩阵/ ^反馈给所述校正 UE的服务基站, 此时, 若所述校正 UE对应 N个待校正基站, 则所述校正 UE的服务基站会获得 N个下行信道估计矩 阵, 进而会向所述服务基站发送 N 个下行信道估计矩阵。 这里的下行信 道估计矩阵时是每个基站对应的各个校正子载波的下行信道估计矩阵/ ^ 的量化结果。 例如, 若所述基站的各个校正子载波对应的下行信道估计 矩阵/ ^为 1行 8列的矩阵, 所述基站对应 3个校正子载波, 则所述基站 的下行信道估计矩阵为一个 3行 8列的矩阵。
这里, 如果所述基站是所述校正 UE的服务基站, 则所述基站接收所 述校正 UE反馈的下行信道估计矩阵 hDL,并将所述下行信道估计矩阵 hDL转 发给其他基站; 如果所述基站不是所述校正 UE的服务基站, 则所述基站 通过接收所述校正 UE 的服务基站的转发来获得所述下行信道估计矩阵 L。
4 08、所述基站接收并根据所述校正子载波对应的下行信道估计矩阵 计算获得所述校正子载波的基站间校正补偿系数。
所述基站根据所述校正子载波上的上行信道估计矩阵 、 计算出的 校正子载波对应的预编码向量 p、 通过校正 UE反馈而接收到的所述校正 子载波对应的下行信道估计矩阵 hDL , 计算得到基站间校正补偿系数 Λ , 其中 二 /^ 、。 这里, 所述 的计算公式中的/ ^也可以是步骤 304 中获得的上行校正信道估计 hm , 这样最终计算获得的基站间校正补偿系 数也就更加精确, 改善上行信道估计的性能, 从而提升空口校正的精度、 提高了基站间互易性校正的精度。
409、所述基站根据所述校正子载波的基站间校正补偿系数调整所述 校正子载波的自校正矩阵。 调整所述校正子载波的自校正矩阵的方法包括:
可以对所述基站的发通道校正矩阵除以 λ ; 或者对所述基站的收通 道校正矩阵乘以 λ;或者对所述发通道校正矩阵除以 β 并对所述基站的 收通道校正矩阵乘以 α , 使得 α X β = λ 。 本发明实施例提供了一种基站间互易性校正的方法, 基站将选定子 载波对应的预编码向量进行多天线加权获得下行用户专用参考信号, 并 通过选定子载波向 UE 发送所述下行用户专用参考信号, 以使得所述 UE 根据所述下行用户专用参考信号计算获得信道矩阵。 所述基站根据所述 信道矩阵计算获得所述选定子载波的基站间校正补偿系数, 使得所述基 站调整所述选定子载波的自校正矩阵。 这样利用多天线加权后的波束增 益可以获得更准确的信道矩阵, 改善信道的系统性能, 从而提升空口校 正的精度、 提高了基站间互易性校正的精度。 本发明实施例还提供了一种基站间互易性校正的方法,如图 6所示, 所述方法包括以下步骤:
601、 基站进行自校正, 获得基站上各子载波的自校正矩阵。
对于每一个基站来说, 在进行基站间互易性校正时, 需要先进行基 站内各子载波的自校正, 获得各子载波的自校正矩阵。 所述基站的自校 正矩阵的获得方法包括: 所述基站选取基站内的一根天线作为校正天 线。 所述校正天线发送参考信号给基站内其它天线, 所述基站内其它天 线接收并检测所述参考信号, 由此获得基站的收通道校正矩阵; 所述基 站内其它天线发送另一参考信号给所述校正天线, 所述校正天线接收并 检测所述另一参考信号, 由此获得基站的发通道校正矩阵。 这样, 所述 基站就获得了所述基站的自校正矩阵即发通道校正矩阵和接通道校正 矩阵。 6 02、 参考 UE通过参考子载波向基站发送上行参考信号。 这里,所述参考 UE通过参考子载波向各个待校正基站发送上行参考 信号, 可以通过一根或多根天线向各个待校正的基站发送上行参考信号。 在所述参考 UE通过多根天线向各个待校正的基站发送上行参考信号时, 天线同时发送不同的上行参考信号。 所述上行参考信号可以为 SRS ( Sound i ng Ref e r enc e S i gna l , 测量参考信号) 信号, 标准的 SRS信号 在一个承载 1 2个子载波的 RB上, 每间隔一个子载波有一个导频。 以下 所述都以上行参考信号为 SRS为例进行说明。 在这里,所述参考 UE的服务基站可以发送第一指示消息给所述参考 基站 ,用于指示所述参考 UE在指定的 RB上通过参考子载波发送 所述 SRS 信号。 因此, 如果某些基站需要在某些 RB上对子载波的自校正矩阵进行 调整, 则所述参考 UE的服务基站就可以指示所述参考 UE在这些 RB上通 过所述子载波发送 SRS信号给各个参考基站。
6 0 3、 基站接收参考 UE通过参考子载波发送的上行参考信号, 并根 据所述上行参考信号获得所述参考子载波上的上行信道估计矩阵。 示例的, 若所述基站通过参考子载波接收到的上行参考信号 SRS 占 用 4个 RB , 所述基站有 8根天线。 如图 5 ( a ) 所示, 上行参考信号 SRS 所占用的每个 RB上有 6个导频位置(图 5 ( a ) 中的阴影部分) , 每个导 频位置上承载一个参考子载波。 所述基站在这 4 个 RB上, 针对每个 RB 上的 6 个导频位置上的所述参考子载波进行上行信道估计, 获得所述参 考子载波上的上行信道估计矩阵。 则, 所述基站会获得这 4个 RB上承载 的 24 ( 6 * 4=24 ) 个参考子载波上的上行信道估计矩阵。 该基站得到的信 道估计结果可以用一个 8行 24列的矩阵来表示, 而每个参考子载波的上 行信道估计矩阵 ^都可以表示为一个 8行列的矩阵。
6 04、 所述基站根据所述参考子载波上的上行信道估计矩阵, 从所述 参考 UE及所述参考 UE对应的所述参考子载波中选定所述基站的校正 UE 及所述校正 UE对应的校正子载波, 获得所述校正 UE对应的校正子载波 上的上行信道估计矩阵。
若所述参考 UE通过一根天线发送所述上行参考信号,所述基站首先 根据所述上行信道估计矩阵, 计算出所述参考子载波上的上行信道质量。 选择所述参考子载波上的上行信道质量超过预设门限的参考子载波作为 校正子载波, 所述校正子载波对应的 UE作为所述基站的校正 UE。
若所述参考 UE发送的上行参考信号通过所述参考 UE上的多根天线 发送的, 所述基站按照上述方法选定校正子载波以及校正 UE后, 将所述 校正子载波对应的天线作为所述基站的校正天线。 示例的, 对应步骤 6 03 所述的上行参考信号 SRS。 针对参考每个子 载波来计算所述参考子载波的上行信道质量, 可以将该参考子载波的上 想信道估计矩阵 除以一个干扰噪声功率所对应的基数, 得到每个参考 子载波的上行信道质量。这样基站就会在所述上行参考信号 SRS 占用的 6 个 RB上承载的 24个参考子载波对应的上行信道质量中, 选择超过预设 门限的参考子载波作为校正子。 载波, 所述校正子载波对应的 UE作为所 述基站的校正 UE。
可选的, 在所述基站确定校正子载波及校正 UE后, 可以不获得所述 校正子载波上的上行信道估计矩阵, 而是指示所述校正 UE通过所述校正 子载波再次发送上行校正参考信号给所述基站, 所述基站就可以根据所 述上行校正参考信号获得所述校正子载波的上行校正信道估计 进而 使得所述参考子载波的自校正矩阵得到更准确的调整。
6 05、 所述基站根据所述校正 UE对应的校正子载波上的上行信道估 计矩阵, 计算获得所述基站的校正子载波对应的预编码向量。 在步骤 6 04中确定了校正子载波及校正 UE后, 由于步骤 6 03会获得 所有参考子载波 (包括校正子载波) 上的上行信道估计矩阵, 故所述基 站就获得所述校正子载波上的上行信道估计矩阵, 进而计算获得所述校 正子载波的预编码向量。 这里, 所述校正子载波的预编码向量 P = c * hu /\\hUL f , 其中, 所述/ ^为所述校正子载波对应的上行信道估计矩 阵, c是一个常数, 且对于每个基站 c取值相同。 可选的, 所述预编码向 量计算公式中的/ ^也可以为步骤 6 04获得的上行校正信道估计 ^ ,以使 得所述参考子载波的自校正矩阵得到更准确的调整。
6 06、所述基站根据所述校正子载波对应的预编码向量进行多天线加 权获得下行用户专用参考信号, 并通过所述校正子载波向所述校正 UE发 送所述下行用户专用参考信号。
这里,所述基站与其他基站同时通过所述校正子载波向所述 UE发送 各基站对应的所述下行用户专用参考信号。 或者, 所述基站与其他基站 间隔预设时间向所述 UE发送各基站对应的所述下行用户专用参考信号, 其中, 所述预设时间小于所述基站与所述校正 UE的收发机相位发生漂移 的周期。 另外, 所述各基站对应的小区的所述下行用户专用参考信号之 间相互正交, 可以是频分正交、 时分正交、 码分正交、 时频正交、 时码 正交、 频码正交或时频码正交。
示例的, 若有基站 、 B要对其子载波的自校正矩阵进行校正, 且所 述基站 A、 B选定了同一个参考 UE作为校正 UE。 针对每个 RB , 基站 A发 送的校正参考信号 1的导频位置如图 5 ( b ) (图中阴影)所示, 基站 A釆 用自己的校正子载波对应的预编码向量 对所述校正参考信号 1进行多 天线加权;基站 B发送的校正参考信号的导频位置如图 5 ( c ) (图中阴影) 所示, 基站 B 釆用自己的校正子载波对应的预编码向量 对所述校正参 考信号 2进行多天线加权。 这样, 所述校正 UE接收到的下行用户专用参 考信号的导频位置如图 5 ( d ) (图中阴影) 所示。 在所述基站通过所述校正子载波向所述校正 UE 发送所述下行用户 专用参考信号时, 若所述基站是所述校正 UE的服务基站, 所述基站还会 向所述校正 UE发送第二指示信息, 用于指示所述校正 UE接收所述下行 用户专用参考信号所需的校正子载波。 或者, 所述指示信息还用于指示 所述校正 UE接收所述下行用户专用参考信号所需的校正子载波以及校正 天线, 或指示所述校正 UE在指定的 RB上通过校正子载波收所述下行用 户专用参考信号。 另外, 所述第二指示信息中需携带关于相对信道的指 示, 使得所述校正 UE将自身对应的所有待校正基站间的相对信道信息反 馈给所述基站。 例如, 通过所述关于相对信道的指示, 指示所述校正 UE 对应有 2个待校正基站, 并指示所述校正 UE反馈这两个不同的待校正基 站之间的相对信道信息。
607、 所述校正 UE接收所述基站发送的所述下行用户专用参考信号 并根据所述下行用户专用参考信号计算获得所述基站的校正子载波对应 的下行信道估计矩阵。
示例的, 所述校正 UE使用接收到的下行用户专用参考信号, 在图 5 ( d ) 中的导频位置 (图中阴影) 进行信道估计, 计算获得所述基站的各 个校正子载波对应的下行信道估计矩阵。 608、 所述校正 UE根据所述基站的校正子载波对应的下行信道估计 矩阵, 计算获得所述基站的校正子载波对应的相对矩阵, 并将所述相对 矩阵反馈给所述校正 UE的服务基站。
这里,所述校正 UE首先会在其对应的待校正基站中选择一个基站作 为参考基站 (假设所述参考基站的下行信道估计矩阵为 h2 ) , 然后在每 个子载波上用所述基站的下行信道估计矩阵 h i除以所述参考基站的下行 信道估计矩阵 h2 再乘以一个常数,得到所述基站的相对矩阵 即 hr = r - Wi 。 所述 r为一个常数, 可以用来调节不同参考基站间的相对信 道的取值范围。 这里, 若所述校正 UE对应 N个带校正基站, 则所述校正 UE会获得 N个下行信道估计矩阵, 进而发送 N- 1个下行信道估计矩阵给 所述校正 UE的服务基站。 若所述参考基站是所述校正 UE的服务基站, 则所述参考基站接收所述校正 UE发送的相对矩阵后向所述校正 UE对应 的其他待校正基站转发所述下行信道估计矩阵; 若所述参考基站不是所 述校正 UE的服务基站, 则所述服务基站向所述校正 UE对应的带校正基 站中除了所述参考基站外的各个基站转发所述下行信道估计矩阵。
6 09、所述基站接收并根据所述校正子载波对应的相对矩阵计算获得 所述校正子载波的基站间校正补偿系数。
所述基站根据通过校正 UE 反馈而接收到的每个子载波对应的相对 矩阵 计算得到基站间校正补偿系数 1 = , 其中, q是一个常数, 也 可以是复数, 用来调节校正补偿系数的取值范围。
61 0、所述基站根据所述校正子载波的基站间校正补偿系数调整所述 校正子载波的自校正矩阵。 调整所述校正子载波的自校正矩阵的方法包括:
可以对所述基站的发通道校正矩阵除以 λ ; 或者对所述基站的收通 道校正矩阵乘以 λ;或者对所述发通道校正矩阵除以 β 并对所述基站的 收通道校正矩阵乘以 α , 使得 α X β = λ 。 本发明实施例提供了一种基站间互易性校正的方法, 基站将选定子 载波对应的预编码向量进行多天线加权获得下行用户专用参考信号, 并 通过选定子载波向 UE 发送所述下行用户专用参考信号, 以使得所述 UE 根据所述下行用户专用参考信号计算获得信道矩阵。 所述基站根据所述 信道矩阵计算获得所述选定子载波的基站间校正补偿系数, 使得所述基 站调整所述选定子载波的自校正矩阵。 这样利用多天线加权后的波束增 益可以获得更准确的信道矩阵, 改善信道的系统性能, 从而提升空口校 正的精度、 提高了基站间互易性校正的精度。
实施例 4 :
本发明实施例还提供了一种通信系统, 包括至少两个基站, 如图 7 所示, 各基站包括: 发送单元 701、 自校正单元 702、 接收单元 703、 计 算单元 704、 选定单元 705、 获得单元 706和调整单元 707 ; 各基站的计算单元 704 , 用于计算获得本基站内选定子载波对应的 预编码向量。 各基站的发送单元 701 , 用于通过所述本基站内的选定子载波, 向 UE发送各基站对应的小区间相互正交的下行用户专用参考信号, 所述下 行用户专用参考信号是各基站根据所述预编码向量进行基站内的多天线 加权计算获得的。 所述各基站的计算单元 704还用于, 计算获得基站内选定子载波的 基站间校正补偿系数。 各基站的调整单元 707 , 用于根据本基站内选定子载波的基站间校 正补偿系数调整所述选定子载波的自校正矩阵。 其中, 所述相互正交包括频分正交、 时分正交、 码分正交、 时频正 交、 时码正交、 频码正交或时频码正交。 各基站的接收单元 703 , 用于接收所述 UE根据所述下行用户专用参 考信号计算获得的各基站内选定子载波对应的信道矩阵信息; 所述各基站的计算单元 704具体用于, 根据所述接收单元 703接收 的所述选定子载波对应的信道矩阵信息计算获得所述各基站内选定子载 波的基站间校正补偿系数。
所述各基站的发送单元 701具体用于, 同时向所述 UE发送所述各基 站对应的小区的所述下行用户专用参考信号; 所述各基站的发送单元 701具体用于, 间隔预设时间依次向所述 UE 发送所述各基站对应的小区的所述下行用户专用参考信号; 其中, 所述 预设时间小于所述各基站与所述 UE的收发机相位发生漂移的周期。 这里, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校 正子载波, 针对所述通信系统中的一个基站, 所述自校正单元 702 , 用于 进行自校正, 获得所述基站上各子载波对应的自校正矩阵。 所述接收单 元 703 ,用于接收参考用户设备 UE通过参考子载波发送的上行参考信号。 所述计算单元 704 , 用于在所述接收单元 703接收参考用户设备 UE通过 参考子载波发送的上行参考信号后, 根据所述接收单元接收的所述上行 参考信号获得所述参考子载波上的上行信道估计矩阵。 所述选定单元
705 , 用于根据所述计算单元 704获得的所述参考子载波上的上行信道估 计矩阵, 从所述参考 UE及所述参考 UE对应的所述参考子载波中选定所 述基站的所述校正 UE及所述校正 UE对应的校正子载波。 所述获得单元
706 , 用于在所述选定单元 705选定所述基站的所述校正 UE及所述校正 UE对应的校正子载波之后, 在所述计算单元 704计算获得的所述参考子 载波上的上行信道估计矩阵中获得所述校正 UE对应的校正子载波上的上 行信道估计矩阵。 所述计算单元 704还用于, 根据所述校正 UE对应的校 正子载波上的上行信道估计矩阵, 计算获得所述基站的校正子载波对应 的预编码向量。 所述获得单元 706还用于, 根据所述计算单元 704获得 的所述校正子载波对应的预编码向量进行多天线加权获得所述下行用户 专用参考信号。 需要说明的是, 所述校正子载波的自校正矩阵包括发通道自校正矩 阵和收通道自校正矩阵。 所述调整单元 707 具体用于, 用所述发通道自 校正矩阵除以所述基站间校正补偿系数, 所述调整单元 707 还用于, 用 所述收通道自校正矩阵乘以所述基站间校正补偿系数,所述调整单元 707 还用于, 用所述发通道自校正矩阵除以 β , 用所述收通道自校正矩阵乘 以 α , 其中, α 与 β 之积等于所述基站间校正补偿系数。 所述计算单元 704还用于, 根据所述上行信道估计矩阵, 计算出所 述参考子载波上的上行信道质量。 所述选定单元 705 具体用于, 在所述 参考 UE通过所述参考 UE上的一根天线发送上行参考信号时, 选择所述 计算单元 704 获得的所述参考子载波上的上行信道质量中超过预设门限 的参考子载波作为校正子载波, 选择所述校正子载波对应的 UE作为所述 基站的校正 UE。 所述选定单元 705具体用于, 在所述参考 UE通过所述参 考 UE上的多根天线发送上行参考信号时, 选择所述计算单元 704获得的 所述参考子载波上的上行信道质量中超过预设门限的参考子载波作为校 正子载波, 选择所述校正子载波对应的 UE作为所述基站的校正 UE , 选择 所述校正子载波对应的天线作为所述基站的校正天线。 若所述基站为所述校正 UE的服务基站, 则, 所述发送单元 7 01还用 于, 在所述接收单元 7 03接收参考 UE通过参考子载波发送的上行参考信 号之前, 向所述参考 UE发送第一指示消息, 所述第一指示消息指示所述 参考 UE在指定的参考子载波上发送所述上行参考信号给待校正基站。 所 述发送单元 7 01还用于, 在通过所述校正子载波向所述校正 UE发送所述 下行用户专用参考信号之前, 向所述校正 UE发送第二指示信息, 所述第 二指示信息用于指示所述校正 UE接收所述下行用户专用参考信号所需的 校正子载波; 或者, 所述指示信息用于指示所述校正 UE接收所述下行用 户专用参考信号所需的校正子载波以及校正天线。
所述计算单元 7 04 , 用于 据计算获得的所述校正子载波对应的上 行信道估计矩阵 ^ , 通过 P = h^ U计算所述校正子载波对应的预编码 向量 p。 所述接收单元 7 03 , 用于接收所述校正 UE反馈的所述校正子载 波对应的下行信道估计矩阵 ^ 所述计算单元 7 04 , 用于根据计算获得 的所述校正子载波上的上行信道估计矩阵 、 计算获得的校正子载波对 应的预编码向量 p、 所述接收单元 7 03接收的所述 正 UE反馈的所述校 正子载波对应的下行信道估计矩阵 , 通过 A = hoL ' L )计算获得所述 校正子载波的基站间校正补偿系数。
所述接收单元 7 03还用于, 在接收到所述校正子载波对应的信道矩 阵信息之后, 接收所述校正 UE通过所述校正子载波发送的上行校正参考 信号。 所述计算单元 7 04 用于, 根据所述上行校正参考信号计算获得所 述校正子载波对应的上行校正信道估计矩阵 Λ。 所述接收单元 7 0 3 , 用 于接收所述校正 UE反馈的所述校正子载波对应的下行信道估计矩阵 h DL。 所述计算单元 7 04 还用于, 根据计算获得的所述校正子载波上的上行信 道估计矩阵 Λ、 计算获得的校正子载波对应的预编码向量 ρ、 所述接收 单元 7 03接收的所述 正 UE反馈的所述校正子载波对应的下行信道估计 矩阵 , 通过 A = hoL ' L )计算获得所述校正子载波的基站间校正补偿 系数。
所述计算单元 7 04 , 用于根据计算获得的所述校正子载波对应的上 行信道估计矩阵 通过 ^^Ί Ι计算所述校正子载波对应的预编 码向量 Ρ。 所述接收单元 703, 用于接收所述校正 UE反馈的所述校正子 载波对应的相对矩阵 其中, hr , 所述 r为一个常数, 所述 hi 为所述基站的一个子载波对应的下行信道估计矩阵, 所述 h2为所述校正 UE 对应的服务基站的下行信道估计矩阵。 所述计算单元 704, 用于根据 所述接收单元 703接收的所述校正 UE反馈的所述校正子载波对应的相对 矩阵 , 通过 = 计算获得所述校正子载波的基站间校正补偿系数。 若所述基站为所述校正 UE的服务基站, 则, 所述接收单元 703, 用 于接收所述校正 UE发送的所述服务基站的校正子载波对应的信道矩阵信 息, 以及其他基站的校正子载波对应的信道矩阵信息。 所述发送单元 701 还用于, 在所述接收单元接收到所述其他基站的校正子载波对应的信道 矩阵信息之后, 将所述其他基站的校正子载波对应的信道矩阵信息对应 转发给所述其他基站。
若所述基站不是所述校正 UE的服务基站, 则, 所述接收单元 703, 用于接收所述校正 UE的服务基站转发的所述基站的校正子载波对应的信 道矩阵信息。
本发明实施例还提供了一种用户设备 UE, 如图 8所示, 所述 UE 包 括: 接收单元 801、 计算单元 802和发送单元 803。 接收单元 801, 用于接收各基站通过选定子载波发送的各基站对应 的小区间相互正交的下行用户专用参考信号; 计算单元 802, 用于根据所述接收单元 801接收的所述下行用户专 用参考信号计算获得所述各基站的所述选定子载波对应的信道矩阵信 息;
发送单元 803, 用于将计算单元 802 获得的所述各基站的所述选定 子载波对应的信道矩阵信息发送给所述 U E的服务基站。 这里, 所述 UE为校正 UE, 所述选定子载波为所述校正 UE对应的校 正子载波, 所述计算单元 802具体用于, 根据所述接收单元 801接收的 所述下行用户专用参考信号计算获得所述各基站的所述校正子载波对应 的下行信道估计矩阵 。
同上, 所述 UE为校正 UE, 所述选定子载波为所述校正 UE对应的校 正子载波, 所述计算单元 802 , 用于根据所述接收单元 801接收的所述下 行用户专用参考信号计算获得所述各基站的所述校正子载波对应的下行 信道估计矩阵。 所述计算单元 802还用于, 针对除所述校正 UE的服务基 站外的每一个基站, 根据计算获得的所述各基站的所述校正子载波对应 的下行信道估计矩阵, 通过 = r ' W 2计算获得所述基站的所述校正子载 波对应的相对矩阵 其中 r是一个常数, 所述 h i为所述基站的一个子 载波对应的下行信道估计矩阵, 所述 h2为所述校正 UE对应的服务基站 的下行信道估计矩阵。 本发明实施例提供了一种基站间互易性校正的装置, 基站将选定子 载波对应的预编码向量进行多天线加权获得下行用户专用参考信号, 并 通过选定子载波向 UE 发送所述下行用户专用参考信号, 以使得所述 UE 根据所述下行用户专用参考信号计算获得信道矩阵。 所述基站根据所述 信道矩阵计算获得所述选定子载波的基站间校正补偿系数, 使得所述基 站调整所述选定子载波的自校正矩阵。 这样利用多天线加权后的波束增 益可以获得更准确的信道矩阵, 改善信道的系统性能, 从而提升空口校 正的精度、 提高了基站间互易性校正的精度。
实施例 5 : 本发明实施例提供了一种通信系统, 包括至少两个基站, 在硬件实 现上, 图 7 中所述的发送单元可以为发射器或收发机, 所述接收单元可 以为接收器或收发机, 且该发送单元和接收单元可以集成在一起构成收 发单元, 对应于硬件实现为收发机。 所述发送单元、 自校正单元、 接收 单元、 计算单元、 选定单元、 获得单元和调整单元可以以硬件形式或软 件形式内嵌于基站的处理器中。 该处理器可以为中央处理单元 (CPU ) , 也可以单片机。 针对所述通信系统中的一个基站, 如图 9 所示, 各基站 包括: 发射器 901、 接收器 9 02、 存储器 903以及分别与发射器 901、 接 收器 9 02和存储器 903连接的处理器 9 04。 当然, 所述基站还可以包括基 带处理部件、 中射频处理部件、 输入输出装置等通用部件, 本发明实施 例在此不做任何限制。 其中, 存储器 903 中存储一组程序代码, 且处理 器 904用于调用存储器 903中存储的程序代码, 用于执行以下操作: 处理器 904 , 用于计算获得本基站内选定子载波对应的预编码向量; 处理器 904 , 用于通过发射器 901通过所述本基站内的选定子载波, 向 UE发送各基站对应的小区间相互正交的下行用户专用参考信号, 所述 下行用户专用参考信号是各基站根据所述预编码向量进行基站内的多天 线加权计算获得的。 处理器 904 , 用于计算获得基站内选定子载波的基站间校正补偿系 数;
处理器 904 , 用于根据本基站内选定子载波的基站间校正补偿系数 调整所述选定子载波的自校正矩阵。 其中, 所述相互正交包括频分正交、 时分正交、 码分正交、 时频正 交、 时码正交、 频码正交或时频码正交。 处理器 904 , 用于通过接收器 902接收所述 UE根据所述下行用户专 用参考信号计算获得的各基站内选定子载波对应的信道矩阵信息;
处理器 904具体用于, 根据所述选定子载波对应的信道矩阵信息计 算获得所述各基站内选定子载波的基站间校正补偿系数。
所述处理器 904 , 用于通过所述各基站的发射器 901 , 同时向所述 UE发送所述各基站对应的小区的所述下行用户专用参考信号。 所述处理 器 904 , 用于通过所述各基站的发射器 901 , 间隔预设时间依次向所述 UE 发送所述各基站对应的小区的所述下行用户专用参考信号; 其中, 所述 预设时间小于所述各基站与所述 UE的收发机相位发生漂移的周期。 这里, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校 正子载波, 针对所述通信系统中的一个基站, 处理器 904 , 进行自校正, 获得所述基站上各子载波对应的自校正矩阵。 所述处理器 904 , 用于通过 接收器 902接收参考用户设备 UE通过参考子载波发送的上行参考信号。 所述处理器 904 , 用于在所述接收器 902接收参考用户设备 UE通过参考 子载波发送的上行参考信号后, 根据所述接收单元接收的所述上行参考 信号获得所述参考子载波上的上行信道估计矩阵。 所述处理器 904 , 用于 根据获得的所述参考子载波上的上行信道估计矩阵, 从所述参考 UE及所 述参考 UE对应的所述参考子载波中选定所述基站的所述校正 UE及所述 校正 UE对应的校正子载波。 所述处理器 904 , 用于在选定所述基站的所 述校正 UE及所述校正 UE对应的校正子载波之后, 在获得的所述参考子 载波上的上行信道估计矩阵中获得所述校正 UE对应的校正子载波上的上 行信道估计矩阵。 所述处理器 9 04还用于, 根据所述校正 UE对应的校正 子载波上的上行信道估计矩阵, 计算获得所述基站的校正子载波对应的 预编码向量。 所述处理器 9 04 还用于, 根据获得的所述校正子载波对应 的预编码向量进行多天线加权获得所述下行用户专用参考信号。 需要说明的是, 所述校正子载波的自校正矩阵包括发通道自校正矩 阵和收通道自校正矩阵。 所述处理器 9 04 具体用于, 用所述发通道自校 正矩阵除以所述基站间校正补偿系数, 所述处理器 9 04 还用于, 用所述 收通道自校正矩阵乘以所述基站间校正补偿系数, 所述处理器 9 04 还用 于,用所述发通道自校正矩阵除以 β ,用所述收通道自校正矩阵乘以 α , 其中, α 与 β 之积等于所述基站间校正补偿系数。 所述处理器 9 04还用于, 根据所述上行信道估计矩阵, 计算出所述 参考子载波上的上行信道质量。 所述处理器 9 04 具体用于, 在所述参考 UE通过所述参考 UE上的一根天线发送上行参考信号时,选择获得的所述 参考子载波上的上行信道质量中超过预设门限的参考子载波作为校正子 载波, 选择所述校正子载波对应的 UE作为所述基站的校正 UE。 所述处理 器 9 04具体用于, 在所述参考 UE通过所述参考 UE上的多根天线发送上 行参考信号时, 选择获得的所述参考子载波上的上行信道质量中超过预 设门限的参考子载波作为校正子载波, 选择所述校正子载波对应的 UE作 为所述基站的校正 UE , 选择所述校正子载波对应的天线作为所述基站的 校正天线。 若所述基站为所述校正 UE的服务基站,则,所述处理器 9 04还用于, 通过所述发射器 9 G 1在所述接收器 9 G 2接收参考 UE通过参考子载波发送 的上行参考信号之前, 向所述参考 UE发送第一指示消息, 所述第一指示 消息指示所述参考 UE在指定的参考子载波上发送所述上行参考信号给待 校正基站。 所述处理器 9 04 还用于, 在通过所述校正子载波向所述校正 UE发送所述下行用户专用参考信号之前,向所述校正 UE发送第二指示信 息, 所述第二指示信息用于指示所述校正 UE接收所述下行用户专用参考 信号所需的校正子载波; 或者, 所述指示信息用于指示所述校正 UE接收 所述下行用户专用参考信号所需的校正子载波以及校正天线。
所述处理器 9 04 , 用于根据计算获得的所述校正子载波对应的上行 信道估计矩阵 通过 P ^^U计算所述校正子载波对应的预编码向 量 p。 所述接收器 902 , 用于接收所述校正 UE反馈的所述校正子载波对 应的下行信道估计矩阵 所述处理器 904 , 用于根据计算获得的所述 校正子载波上的上行信道估计矩阵 、 计算获得的校正子载波对应的预 编码向量 p、 所述接收器 902接收的所述 正 UE反馈的所述校正子载波 对应的下行信道估计矩阵 , 通过 A = hoL ^υ )计算获得所述校正子载 波的基站间校正补偿系数。 所述接收器 902还用于, 在接收到所述校正子载波对应的信道矩阵 信息之后, 接收所述校正 UE通过所述校正子载波发送的上行校正参考信 号。 所述处理器 904 用于, 根据所述上行校正参考信号计算获得所述校 正子载波对应的上行校正信道估计矩阵 。 所述处理器 904 , 用于通过 所述接收器 902接收所述校正 UE反馈的所述校正子载波对应的下行信道 估计矩阵 所述处理器 904还用于, 根据计算获得的所述校正子载波 上的上行信道估计矩阵 Λ、计算获得的校正子载波对应的预编码向量 ρ、 所述接收器 902接收的所述校正 UE反馈的所述校正子载波对应的下行信 道估计矩阵 , 通过 A = hoL ^ 计算获得所述校正子载波的基站间校 正补偿系数。
所述处理器 904 , 用于根据计算获得的所述校正子载波对应的上行 信道估计矩阵 ^, 通过 = e ^ U2计算所述校正子载波对应的预编码 向量 p。 所述处理器 904 , 用于通过所述接收器 902接收所述校正 UE反 馈的所述校正子载波对应的相对矩阵 其中, = r ' h\ / h2 , 所述 r为一 个常数, 所述 hi为所述基站的一个子载波对应的下行信道估计矩阵, 所 述 h2为所述校正 UE对应的服务基站的下行信道估计矩阵。 所述处理器 904 , 用于根据所述接收器 902接收的所述校正 UE反馈的所述校正子载 波对应的相对矩阵 通过 Α = A计算获得所述校正子载波的基站间校 正补偿系数。
若所述基站为所述校正 UE的服务基站, 则, 所述处理器 904 , 用于 通过所述接收器 902接收所述校正 UE发送的所述服务基站的校正子载波 对应的信道矩阵信息, 以及其他基站的校正子载波对应的信道矩阵信息。 所述处理器 904还用于, 通过所述发射器 901在所述接收单元接收到所 述其他基站的校正子载波对应的信道矩阵信息之后, 将所述其他基站的 校正子载波对应的信道矩阵信息对应转发给所述其他基站。
若所述基站不是所述校正 UE的服务基站, 则, 所述处理器 904, 用 于通过所述接收器 902接收所述校正 UE的服务基站转发的所述基站的校 正子载波对应的信道矩阵信息。
本发明实施例提供了一种用户设备 UE, 在硬件实现上, 图 8中所述 的发送单元可以为发射器或收发机, 所述接收单元可以为接收器或收发 机, 且该发送单元和接收单元可以集成在一起构成收发单元, 对应于硬 件实现为收发机。 所述计算单元可以以硬件形式或软件形式内嵌于基站 的处理器中。 该处理器可以为中央处理单元 (CPU) , 也可以单片机。 针 对所述通信系统中的一个基站,如图 10所示,各基站包括:发射器 1001、 接收器 1002、 存储器 1003以及分别与发射器 1001、 接收器 1002和存储 器 1003连接的处理器 1004。 当然, 所述基站还可以包括基带处理部件、 中射频处理部件、 输入输出装置等通用部件, 本发明实施例在此不做任 何限制。 其中, 存储器 1003 中存储一组程序代码, 且处理器 1004用于 调用存储器 1003中存储的程序代码, 用于执行以下操作:
处理器 1004, 用于通过接收器 1002接收各基站通过选定子载波发 送的各基站对应的小区间相互正交的下行用户专用参考信号.处理器 1004, 用于根据所述接收的所述下行用户专用参考信号计算获得所述各 基站的所述选定子载波对应的信道矩阵信息。 所述处理器 1004, 用于通 过发送器 1001将所述各基站的所述选定子载波对应的信道矩阵信息发送 给所述 UE的服务基站。
这里, 所述 UE为校正 UE, 所述选定子载波为所述校正 UE对应的校 正子载波, 所述处理器 1004具体用于, 根据所述接收器 1002接收的所 述下行用户专用参考信号计算获得所述各基站的所述校正子载波对应的 下行信道估计矩阵 。
同上, 所述 UE为校正 UE, 所述选定子载波为所述校正 UE对应的校 正子载波, 所述处理器 1004, 用于根据所述接收器 1002接收的所述下行 用户专用参考信号计算获得所述各基站的所述校正子载波对应的下行信 道估计矩阵。 所述处理器 1004还用于, 针对除所述校正 UE的服务基站 外的每一个基站, 根据计算获得的所述各基站的所述校正子载波对应的 下行信道估计矩阵, 通过 =r'W/ 计算获得所述基站的所述校正子载波 对应的相对矩阵 其中 r是一个常数, 所述 hi为所述基站的一个子载 波对应的下行信道估计矩阵, 所述 h2为所述校正 UE对应的服务基站的 下行信道估计矩阵。 本发明实施例提供了一种基站间互易性校正的装置, 基站将选定子 载波对应的预编码向量进行多天线加权获得下行用户专用参考信号, 并 通过选定子载波向 UE 发送所述下行用户专用参考信号, 以使得所述 UE 根据所述下行用户专用参考信号计算获得信道矩阵。 所述基站根据所述 信道矩阵计算获得所述选定子载波的基站间校正补偿系数, 使得所述基 站调整所述选定子载波的自校正矩阵。 这样利用多天线加权后的波束增 益可以获得更准确的信道矩阵, 改善信道的系统性能, 从而提升空口校 正的精度、 提高了基站间互易性校正的精度。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计 算机可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的 步骤; 而前述的存储介质包括: ROM、 RAM , 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种基站间互易性校正的方法, 其特征在于, 应用于至少两个基 站, 所述方法包括:
各基站计算获得本基站内选定子载波对应的预编码向量;
所述各基站通过所述本基站内的选定子载波, 向 UE发送各基站对应 的小区间相互正交的下行用户专用参考信号, 所述下行用户专用参考信 号是各基站根据所述预编码向量进行基站内的多天线加权计算获得的; 所述各基站获得基站内选定子载波的基站间校正补偿系数; 所述各基站根据本基站内选定子载波的基站间校正补偿系数调整所 述选定子载波的自校正矩阵。
2、 根据权利要求 1所述的方法, 其特征在于,
所述相互正交包括频分正交、 时分正交、 码分正交、 时频正交、 时 码正交、 频码正交或时频码正交。
3、 根据权利要求 1所述的方法, 其特征在于, 所述各基站接收获得 基站内选定子载波的基站间校正补偿系数, 包括:
所述各基站对应接收所述 UE根据所述下行用户专用参考信号计算获 得的各基站内选定子载波对应的信道矩阵信息;
所述各基站根据所述选定子载波对应的信道矩阵信息计算获得所述 各基站内选定子载波的基站间校正补偿系数。
4、 根据权利要求 1所述的方法, 其特征在于, 所述各基站通过选定 子载波向 UE 发送各基站对应的小区间相互正交的下行用户专用参考信 号, 包括:
所述各基站同时向所述 UE发送所述各基站对应的小区的所述下行用 户专用参考信号;
或者, 所述各基站间隔预设时间依次向所述 UE发送所述各基站对应 的小区的所述下行用户专用参考信号; 其中, 所述预设时间小于所述各 基站与所述 UE的收发机相位发生漂移的周期。
5、 根据权利要求 1 -4任一项所述的方法, 其特征在于, 所述 UE为 校正 UE , 所述选定子载波为所述校正 UE对应的校正子载波, 针对一个基 站, 在所述各基站计算获得本基站内选定子载波对应的预编码向量之前, 所述方法还包括:
所述基站进行自校正, 获得所述基站上各子载波对应的自校正矩阵; 所述基站接收参考用户设备 UE 通过参考子载波发送的上行参考信 号, 并根据所述上行参考信号获得所述参考子载波上的上行信道估计矩 阵;
所述基站根据所述参考子载波上的上行信道估计矩阵, 从所述参考 UE及所述参考 UE对应的所述参考子载波中选定所述基站的所述校正 UE 及所述校正 UE对应的校正子载波, 获得所述校正 UE对应的校正子载波 上的上行信道估计矩阵;
所述基站根据所述校正 UE 对应的校正子载波上的上行信道估计矩 阵, 计算获得所述基站的校正子载波对应的预编码向量;
所述基站根据所述校正子载波对应的预编码向量进行多天线加权获 得所述下行用户专用参考信号。
6、 根据权利要求 5所述的方法, 其特征在于, 所述校正子载波的自 校正矩阵包括发通道自校正矩阵和收通道自校正矩阵;
则, 所述基站根据所述基站间校正补偿系数调整所述自校正矩阵, 包括:
所述发通道自校正矩阵除以所述基站间校正补偿系数;
或者, 所述收通道自校正矩阵乘以所述基站间校正补偿系数; 或者, 所述发通道自校正矩阵除以 β 且所述收通道自校正矩阵乘以 α , 其中, α 与 β 之积等于所述基站间校正补偿系数。
7、 根据权利要求 5或 6所述的方法, 其特征在于,
若所述参考 UE发送的上行参考信号是通过所述参考 UE上的一根天 线发送的, 则, 所述基站根据所述参考子载波上的上行信道估计矩阵, 从所述参考 UE及所述参考 UE对应的所述参考子载波中选定所述基站的 校正 UE及所述校正 UE对应的校正子载波, 包括:
所述基站根据所述上行信道估计矩阵, 计算出所述参考子载波上的 上行信道质量;
选择所述参考子载波上的上行信道质量超过预设门限的参考子载波 作为校正子载波, 所述校正子载波对应的 UE作为所述基站的校正 UE ; 若所述参考 UE发送的上行参考信号是通过所述参考 UE上的多根天 线发送的, 则, 所述基站根据所述参考子载波上的上行信道估计矩阵, 从所述参考 UE及所述参考 UE对应的所述参考子载波中选定所述基站的 校正 UE及所述校正 UE对应的校正子载波, 包括: 所述基站根据所述上行信道估计矩阵, 计算出所述参考子载波上的 上行信道质量;
选择所述参考子载波上的上行信道质量超过预设门限的参考子载波 作为校正子载波, 所述校正子载波对应的 UE作为所述基站的校正 UE ; 所 述校正子载波对应的天线作为所述基站的校正天线。
8、 根据权利要求 7所述的方法, 其特征在于, 所述基站为所述参考 UE的服务基站时,在所述基站接收参考 UE通过参考子载波发送的上行参 考信号之前, 所述方法还包括:
所述服务基站向所述参考 UE发送第一指示消息, 所述第一指示消息 指示所述参考 UE在指定的参考子载波上发送所述上行参考信号给待校正 基站;
在通过所述校正子载波向所述校正 UE发送所述下行用户专用参考信 号之前, 所述方法还包括:
所述基站向所述校正 UE发送第二指示信息, 所述第二指示信息用于 指示所述校正 UE接收所述下行用户专用参考信号所需的校正子载波; 或 者, 所述指示信息用于指示所述校正 UE接收所述下行用户专用参考信号 所需的校正子载波以及校正天线。
9、 根据权利要求 5所述的方法, 其特征在于, 所述校正子载波对应 的预编码向量的计算公式包括:
P - hUL f /\\hUL\\ , 其中, 所述/ ^为所述校正子载波对应的上行信道估计 矩阵; 贝' J , 所述各基站根据校正子载波对应的信道矩阵信息计算获得所述 各基站内选定子载波的基站间校正补偿系数, 包括:
所述基站根据所述校正子载波上的上行信道估计矩阵 、 计算出的 校正子载波对应的预编码向量 p、 通过校正 UE反馈而接收到的所述校正 子载波对应的下行信道估计矩阵 hDL , 计算得到基站间校正补偿系数 , 其中 l = hDL /{pT'hUL ) .
1 0、 根据权利要求 9 所述的方法, 其特征在于, 所述基站在接收到 所述校正子载波对应的信道矩阵信息之后, 所述方法还包括:
所述基站接收所述校正 UE通过所述校正子载波发送的上行校正参考 信号, 并根据所述上行校正参考信号获得所述校正子载波对应的上行校 正信道估计矩阵;
贝' J , 所述各基站根据校正子载波对应的信道矩阵信息计算获得所述 各基站内选定子载波的基站间校正补偿系数, 包括:
所述基站根据所述校正子载波上的上行校正信道估计矩阵 h 、计算 出的校正子载波对应的预编码向量 p、 通过校正 UE反馈而接收到的所述 校正子载波对应的下行信道估计矩阵 hDL , 计算得到基站间校正补偿系数 , 其中 l =
Figure imgf000035_0001
1 1、 根据权利要求 5 所述的方法, 其特征在于, 所述校正子载波对 应的预编码向量的计算公式包括:
p =
Figure imgf000035_0002
其中, 所述 c是一个常数, 所述/ ^为所述校正子载 波对应的上行信道估计矩阵;
贝' J , 所述各基站根据校正子载波对应的信道矩阵信息计算获得所述 各基站内选定子载波的基站间校正补偿系数, 包括:
所述基站根据通过校正 UE反馈而接收到的每个子载波对应的相对矩 阵 , 计算得到基站间校正补偿系数 Α = ^ Α , 其中, q 是一个常数, hr = r - hl/ h2 , 所述 r为一个常数, 所述 hi 为所述基站的一个子载波对应 的下行信道估计矩阵, 所述 h2为所述校正 UE对应的服务基站的下行信 道估计矩阵。
1 2、 根据权利要求 9-1 1任意一项所述的方法, 其特征在于, 若所述基站为所述校正 UE的服务基站,则所述基站接收所述校正 UE 通过所述校正子载波对应的信道矩阵信息, 具体包括: 接收所述校正 UE 发送的所述服务基站的校正子载波对应的信道矩阵信息, 以及其他基站 的校正子载波对应的信道矩阵信息; 则, 所述基站在接收到所述其他基 站的校正子载波对应的信道矩阵信息之后, 所述方法还包括: 将所述其 他基站的校正子载波对应的信道矩阵信息对应转发给所述其他基站; 若所述基站不是所述校正 UE的服务基站, 则所述基站接收所述校正 UE通过所述校正子载波对应的所述信道矩阵, 具体包括: 接收所述校正 UE的服务基站转发的所述基站的校正子载波对应的信道矩阵信息。
1 3、 一种基站间互易性校正的方法, 其特征在于, 应用于 UE , 所述 方法包括:
所述 UE接收各基站通过选定子载波发送的各基站对应的小区间相互 正交的下行用户专用参考信号; 所述 UE根据所述下行用户专用参考信号计算获得所述各基站的所述 选定子载波对应的信道矩阵信息;
所述 UE将所述各基站的所述选定子载波对应的信道矩阵信息发送给 所述 UE的服务基站。
1 4、 根据权利要求 1 3所述的方法, 其特征在于, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校正子载波, 所述 UE根据所述下 行用户专用参考信号计算获得所述各基站的所述选定子载波对应的信道 矩阵信息, 包括:
所述校正 UE根据所述下行用户专用参考信号计算获得所述各基站的 所述校正子载波对应的下行信道估计矩阵 hDL
1 5、 根据权利要求 1 3所述的方法, 其特征在于, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校正子载波, 所述 UE根据所述下 行用户专用参考信号计算获得所述各基站的所述选定子载波对应的信道 矩阵信息, 包括:
所述校正 UE计算获得各基站的所述校正子载波对应的下行参信道估 计矩阵;
针对除所述校正 UE的服务基站外的每一个基站, 所述校正 UE计算 获得所述基站的所述校正子载波对应的相对矩阵 所逸 = r ' hl / h2 , 其 中 r是一个常数, 所述 h i为所述基站的一个子载波对应的下行信道估计 矩阵, 所述 h2为所述校正 UE对应的服务基站的下行信道估计矩阵。
1 6、 一种通信系统, 其特征在于, 包括至少两个基站,
各基站的计算单元, 用于计算获得本基站内选定子载波对应的预编 码向量;
各基站的发送单元, 用于通过所述本基站内的选定子载波, 向 UE发 送各基站对应的小区间相互正交的下行用户专用参考信号, 所述下行用 户专用参考信号是各基站根据所述预编码向量进行基站内的多天线加权 计算获得的;
所述各基站的计算单元还用于, 计算获得基站内选定子载波的基站 间校正补偿系数;
各基站的调整单元, 用于根据本基站内选定子载波的基站间校正补 偿系数调整所述选定子载波的自校正矩阵。
1 7、 根据权利要求 1 6所述的通信系统, 其特征在于, 所述相互正交包括频分正交、 时分正交、 码分正交、 时频正交、 时 码正交、 频码正交或时频码正交。
1 8、 根据权利要求 1 6所述的通信系统, 其特征在于,
各基站的接收单元, 用于接收所述 UE根据所述下行用户专用参考信 号计算获得的各基站内选定子载波对应的信道矩阵信息;
所述各基站的计算单元具体用于, 根据所述选定子载波对应的信道 矩阵信息计算获得所述各基站内选定子载波的基站间校正补偿系数。
1 9、 根据权利要求 1 6所述的通信系统, 其特征在于,
所述各基站的发送单元具体用于, 同时向所述 UE发送所述各基站对 应的小区的所述下行用户专用参考信号;
所述各基站的发送单元具体用于, 间隔预设时间依次向所述 U E发送 所述各基站对应的小区的所述下行用户专用参考信号; 其中, 所述预设 时间小于所述各基站与所述 UE的收发机相位发生漂移的周期。
2 0、 根据权利要求 1 6- 1 9任一项所述的通信系统, 其特征在于, 所 述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校正子载波, 针 对所述通信系统中的一个基站, 所述基站包括: 发送单元、 自校正单元、 接收单元、 计算单元、 选定单元、 获得单元和调整单元;
所述自校正单元, 用于进行自校正, 获得所述基站上各子载波对应 的自校正矩阵;
所述接收单元, 用于接收参考用户设备 UE通过参考子载波发送的上 行参考信号;
所述计算单元, 用于在所述接收单元接收参考用户设备 UE通过参考 子载波发送的上行参考信号后, 根据所述接收单元接收的所述上行参考 信号获得所述参考子载波上的上行信道估计矩阵;
所述选定单元, 用于根据所述计算单元获得的所述参考子载波上的 上行信道估计矩阵, 从所述参考 UE及所述参考 UE对应的所述参考子载 波中选定所述基站的所述校正 UE及所述校正 UE对应的校正子载波;
所述获得单元, 用于在所述选定单元选定所述基站的所述校正 UE及 所述校正 UE对应的校正子载波之后, 在所述计算单元计算获得的所述参 考子载波上的上行信道估计矩阵中获得所述校正 UE对应的校正子载波上 的上行信道估计矩阵;
所述计算单元还用于, 根据所述校正 UE对应的校正子载波上的上行 信道估计矩阵, 计算获得所述基站的校正子载波对应的预编码向量; 所述获得单元还用于, 根据所述计算单元获得的所述校正子载波对 应的预编码向量进行多天线加权获得所述下行用户专用参考信号。
2 1、 根据权利要求 2 0所述的通信系统, 其特征在于, 所述校正子载 波的自校正矩阵包括发通道自校正矩阵和收通道自校正矩阵;
所述调整单元具体用于, 用所述发通道自校正矩阵除以所述基站间 校正补偿系数;
所述调整单元还用于, 用所述收通道自校正矩阵乘以所述基站间校 正补偿系数;
所述调整单元还用于, 用所述发通道自校正矩阵除以 β , 用所述收 通道自校正矩阵乘以 α , 其中, α 与 β 之积等于所述基站间校正补偿 系数。
22、 根据权利要求 2 0或 2 1所述的通信系统, 其特征在于, 所述计算单元还用于, 根据所述上行信道估计矩阵, 计算出所述参 考子载波上的上行信道质量;
所述选定单元具体用于, 在所述参考 UE通过所述参考 UE上的一根 天线发送上行参考信号时, 选择所述计算单元获得的所述参考子载波上 的上行信道质量中超过预设门限的参考子载波作为校正子载波, 选择所 述校正子载波对应的 UE作为所述基站的校正 UE ;
所述选定单元具体用于, 在所述参考 UE通过所述参考 UE上的多根 天线发送上行参考信号时, 选择所述计算单元获得的所述参考子载波上 的上行信道质量中超过预设门限的参考子载波作为校正子载波, 选择所 述校正子载波对应的 UE作为所述基站的校正 UE ,选择所述校正子载波对 应的天线作为所述基站的校正天线。
2 3、 根据权利要求 22所述的通信系统, 其特征在于, 若所述基站为 所述校正 UE的服务基站,
1 J , 所述发送单元还用于, 在所述接收单元接收参考 UE通过参考子 载波发送的上行参考信号之前, 向所述参考 UE发送第一指示消息, 所述 第一指示消息指示所述参考 UE在指定的参考子载波上发送所述上行参考 信号给待校正基站;
所述发送单元还用于, 在通过所述校正子载波向所述校正 UE发送所 述下行用户专用参考信号之前, 向所述校正 UE发送第二指示信息, 所述 第二指示信息用于指示所述校正 UE接收所述下行用户专用参考信号所需 的校正子载波; 或者, 所述指示信息用于指示所述校正 UE接收所述下行 用户专用参考信号所需的校正子载波以及校正天线。
24、 根据权利要求 2 0所述的通信系统, 其特征在于,
所述计算单元, 用于根据计算获得的所述校正子载波对应的上行信 道估计矩阵 通过
Figure imgf000039_0001
/i/ i计算所述校正子载波对应的预编码向量 p;
所述接收单元, 用于接收所述校正 UE反馈的所述校正子载波对应的 下行信道估计矩阵 U
所述计算单元, 用于根据计算获得的所述校正子载波上的上行信道 估计矩阵 ^、 计算获得的校正子载波对应的预编码向量 p、 所述接收单 元接收的所述校正 UE 反馈的所述校正子载波对应的下行信道估计矩阵 hDL , 通过 = hDL /{pT'hUL )计算获得所述校正子载波的基站间校正补偿系数。
25、 根据权利要求 24所述通信系统, 其特征在于,
所述接收单元还用于, 在接收到所述校正子载波对应的信道矩阵信 息之后,接收所述校正 UE通过所述校正子载波发送的上行校正参考信号; 所述计算单元用于, 根据所述上行校正参考信号计算获得所述校正 子载波对应的上行校正信道估计矩阵 hm
所述接收单元, 用于接收所述校正 UE反馈的所述校正子载波对应的 下行信道估计矩阵 U
所述计算单元还用于, 根据计算获得的所述校正子载波上的上行信 道估计矩阵 ^ 、 计算获得的校正子载波对应的预编码向量 p、 所述接收 单元接收的所述校正 UE反馈的所述校正子载波对应的下行信道估计矩阵 ,通过 = hDL l[pTfhm )计算获得所述校正子载波的基站间校正补偿系数。
26、 根据权利要求 2 0所述的通信系统, 其特征在于,
所述计算单元, 用于根据计算获得的所述校正子载波对应的上行信 道估计矩阵 , 通过 ^
Figure imgf000039_0002
^2计算所述校正子载波对应的预编码向 量 ;
所述接收单元, 用于接收所述校正 UE反馈的所述校正子载波对应的 相对矩阵/ , 其中, hr = r - h\l hl , 所述 r为一个常数, 所述 hi 为所述基 站的一个子载波对应的下行信道估计矩阵, 所述 h2为所述校正 UE对应 的服务基站的下行信道估计矩阵;
所述计算单元, 用于根据所述接收单元接收的所述校正 UE反馈的所 述校正子载波对应的相对矩阵/ , 通过 A = 计算获得所述校正子载波 的基站间校正补偿系数。
2 7、 根据权利要求 24-26任意一项所述的通信系统, 其特征在于, 若所述基站为所述校正 UE的服务基站, 则, 所述接收单元, 用于接 收所述校正 UE发送的所述服务基站的校正子载波对应的信道矩阵信息, 以及其他基站的校正子载波对应的信道矩阵信息;
所述发送单元还用于, 在所述接收单元接收到所述其他基站的校正 子载波对应的信道矩阵信息之后, 将所述其他基站的校正子载波对应的 信道矩阵信息对应转发给所述其他基站;
若所述基站不是所述校正 UE的服务基站, 则, 所述接收单元, 用于 接收所述校正 UE的服务基站转发的所述基站的校正子载波对应的信道矩 阵信息。
2 8、 一种用户设备 UE , 其特征在于, 包括:
接收单元, 用于接收各基站通过选定子载波发送的各基站对应的小 区间相互正交的下行用户专用参考信号;
计算单元, 用于根据所述接收单元接收的所述下行用户专用参考信 号计算获得所述各基站的所述选定子载波对应的信道矩阵信息;
发送单元, 用于将所述各基站的所述选定子载波对应的信道矩阵信 息发送给所述 UE的服务基站。
2 9、 根据权利要求 2 8所述的 UE , 其特征在于, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校正子载波, 所述计算单元具体用于, 根据所述接收单元接收的所述下行用户专 用参考信号计算获得所述各基站的所述校正子载波对应的下行信道估计 矩阵 ^。
3 0、 根据权利要求 2 8所述的 UE , 其特征在于, 所述 UE为校正 UE , 所述选定子载波为所述校正 UE对应的校正子载波, 所述计算单元, 用于根据所述接收单元接收的所述下行用户专用参 考信号计算获得所述各基站的所述校正子载波对应的下行信道估计矩 阵; 所述计算单元还用于, 针对除所述校正 UE的服务基站外的每一个基 站, 根据计算获得的所述各基站的所述校正子载波对应的下行信道估计 矩阵, 通过 = r 'W/ 计算获得所述基站的所述校正子载波对应的相对矩 阵 , 其中 r是一个常数, 所述 hi为所述基站的一个子载波对应的下行 信道估计矩阵, 所述 h2为所述校正 UE对应的服务基站的下行信道估计 矩阵。
PCT/CN2013/090587 2013-12-26 2013-12-26 一种基站间互易性校正的方法及装置 WO2015096102A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/090587 WO2015096102A1 (zh) 2013-12-26 2013-12-26 一种基站间互易性校正的方法及装置
CN201380080288.1A CN105637775B (zh) 2013-12-26 2013-12-26 一种基站间互易性校正的方法及装置
US15/192,596 US10164720B2 (en) 2013-12-26 2016-06-24 Method and apparatus for reciprocity calibration between base stations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090587 WO2015096102A1 (zh) 2013-12-26 2013-12-26 一种基站间互易性校正的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/192,596 Continuation US10164720B2 (en) 2013-12-26 2016-06-24 Method and apparatus for reciprocity calibration between base stations

Publications (1)

Publication Number Publication Date
WO2015096102A1 true WO2015096102A1 (zh) 2015-07-02

Family

ID=53477374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090587 WO2015096102A1 (zh) 2013-12-26 2013-12-26 一种基站间互易性校正的方法及装置

Country Status (3)

Country Link
US (1) US10164720B2 (zh)
CN (1) CN105637775B (zh)
WO (1) WO2015096102A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644400A (zh) * 2016-09-02 2019-04-16 高通股份有限公司 用于实现针对多天线无线通信系统的本地操作的信令机制

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10171265B2 (en) * 2015-11-10 2019-01-01 Qualcomm Incorporated Uplink channel information
CN107395256B (zh) * 2016-05-12 2021-02-09 华为技术有限公司 一种信道状态信息反馈方法、设备及系统
WO2017206080A1 (zh) * 2016-05-31 2017-12-07 华为技术有限公司 射频拉远单元rru间通道校正方法及装置
US10447352B2 (en) * 2016-08-11 2019-10-15 National Instruments Corporation UE-aided channel reciprocity compensation for radio access in MIMO wireless communication systems
US10201020B2 (en) * 2016-09-19 2019-02-05 National Instruments Corporation Multi-user random access procedures for massive MIMO wireless communication systems
US10033558B2 (en) * 2016-10-04 2018-07-24 Qualcomm Incorporated Inter-eNB over-the-air calibration for reciprocity-based coordinated multipoint communications
CN110800224B (zh) * 2017-01-09 2023-03-07 高通股份有限公司 针对基于互易性的ul mimo传输的空中校准
US10644812B2 (en) * 2017-03-22 2020-05-05 Qualcomm Incorporated User equipment antenna calibration with assistance from other devices
US10326538B2 (en) * 2017-04-05 2019-06-18 Cisco Technology, Inc. Remote radio head reciprocity calibration
US10312978B2 (en) 2017-07-18 2019-06-04 National Instruments Corporation Wireless transceiver station with performs multi-path reciprocity calibration with multiple reference antennas
TWI646793B (zh) 2017-10-30 2019-01-01 財團法人工業技術研究院 達成通道互惠的校準方法及無線通訊裝置
EP3526908B1 (en) * 2017-11-08 2021-06-16 Telefonaktiebolaget LM Ericsson (PUBL) Relative uplink channel estimation
TWI639314B (zh) 2017-12-12 2018-10-21 財團法人工業技術研究院 多天線系統及預編碼方法
TWI717736B (zh) 2019-05-15 2021-02-01 財團法人工業技術研究院 多天線系統及其通道校正方法
KR20210037240A (ko) 2019-09-27 2021-04-06 삼성전자주식회사 무선 통신 시스템에서 하향링크 채널을 복원하기 위한 장치 및 방법
CN115242320A (zh) * 2021-04-23 2022-10-25 上海华为技术有限公司 一种数据传输的方法及其设备
CN113395093B (zh) * 2021-06-11 2022-12-30 中国科学技术大学 非线性系统的互易性失配校准方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148552A1 (zh) * 2009-06-23 2010-12-29 上海贝尔股份有限公司 Tdd系统中校准上下行互逆误差的方法及其装置
CN102149123A (zh) * 2011-04-15 2011-08-10 北京邮电大学 一种CoMP系统中基站间天线校准方案和校准装置及基站
CN102326337A (zh) * 2011-05-04 2012-01-18 华为技术有限公司 多天线基站的通道校正方法和基站
CN103259581A (zh) * 2012-02-16 2013-08-21 电信科学技术研究院 一种进行天线校准的方法、系统和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552126B1 (ko) 2009-06-01 2015-09-10 삼성전자주식회사 무선통신 시스템에서 협력 다중 입출력을 위한 캘리브레이션 장치 및 방법
KR101676675B1 (ko) * 2009-10-30 2016-11-29 삼성전자주식회사 다중안테나 시스템에서 다중 셀 다중 입출력 전송을 위한 캘리브레이션 장치 및 방법
JP5375716B2 (ja) * 2010-03-31 2013-12-25 ソニー株式会社 基地局、通信システムおよび通信方法
JP5540836B2 (ja) * 2010-03-31 2014-07-02 ソニー株式会社 基地局、通信システム、および通信方法
US8271042B2 (en) * 2010-04-21 2012-09-18 Telefonaktiebolaget L M Ericsson (Publ) Self-calibrating multi-antenna wireless communication system
CN102340339B (zh) * 2010-07-16 2014-03-26 上海贝尔股份有限公司 在无线网络的基站中用于校准天线互易性的方法及装置
WO2014141068A1 (en) * 2013-03-15 2014-09-18 Celeno Communications (Israel) Ltd. Self-calibration techniques for implicit beamforming
US8891598B1 (en) * 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148552A1 (zh) * 2009-06-23 2010-12-29 上海贝尔股份有限公司 Tdd系统中校准上下行互逆误差的方法及其装置
CN102149123A (zh) * 2011-04-15 2011-08-10 北京邮电大学 一种CoMP系统中基站间天线校准方案和校准装置及基站
CN102326337A (zh) * 2011-05-04 2012-01-18 华为技术有限公司 多天线基站的通道校正方法和基站
CN103259581A (zh) * 2012-02-16 2013-08-21 电信科学技术研究院 一种进行天线校准的方法、系统和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644400A (zh) * 2016-09-02 2019-04-16 高通股份有限公司 用于实现针对多天线无线通信系统的本地操作的信令机制
CN109644400B (zh) * 2016-09-02 2022-03-22 高通股份有限公司 用于实现针对多天线无线通信系统的本地操作的信令机制

Also Published As

Publication number Publication date
US20160308624A1 (en) 2016-10-20
CN105637775B (zh) 2019-05-28
US10164720B2 (en) 2018-12-25
CN105637775A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2015096102A1 (zh) 一种基站间互易性校正的方法及装置
CN109151969B (zh) 发送功率的确定方法及装置、终端
CN111213325B (zh) 在无线通信系统中报告信道状态信息的方法及其装置
CN110249561B (zh) 在无线通信系统中确定调制和编码方案的方法及其装置
JP4671749B2 (ja) 送受信機、移動通信システム及び送受信方法
WO2018121482A1 (en) Path loss estimation methods and devices
US10313160B2 (en) Channel estimation enhancements
US20240121841A1 (en) Method of and apparatus for transmitting data based on channel state in device-to-device communication
US9843427B2 (en) Base station, processor, communication control method and user terminal
US20100303015A1 (en) Apparatus and method for calibration for cooperative multiple input multiple output in a wireless communication system
WO2013133645A1 (ko) 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
EP2813005A1 (en) Gain normalization correction of pmi and cqi feedback for base station with antenna array
WO2015046949A1 (ko) 무선 통신 시스템에서 피드백 정보 보고 방법 및 장치
US9531453B2 (en) Communication control method, user terminal, and base station
US10015816B2 (en) Network apparatus and user terminal
WO2011075058A1 (en) Channel quality handling for precoder override
WO2012171387A1 (zh) 一种信道信息获取和反馈方法、系统及装置
WO2018161299A1 (zh) 无线通信的方法、控制设备、节点和终端设备
US20170195011A1 (en) Communication control method, base station, and processor
JP7196902B2 (ja) 基地局、方法、プログラム、及び記録媒体
US9397742B2 (en) Receiver circuit and method performed by such receiver circuit
US20130273973A1 (en) Radio base station and communication control method
JP6163083B2 (ja) 通信装置及び送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900193

Country of ref document: EP

Kind code of ref document: A1