WO2015196974A1 - 一种针对csi反馈系统的发射加权方法及装置 - Google Patents

一种针对csi反馈系统的发射加权方法及装置 Download PDF

Info

Publication number
WO2015196974A1
WO2015196974A1 PCT/CN2015/082090 CN2015082090W WO2015196974A1 WO 2015196974 A1 WO2015196974 A1 WO 2015196974A1 CN 2015082090 W CN2015082090 W CN 2015082090W WO 2015196974 A1 WO2015196974 A1 WO 2015196974A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
real
vector
feedback information
observed
Prior art date
Application number
PCT/CN2015/082090
Other languages
English (en)
French (fr)
Inventor
徐剑标
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015196974A1 publication Critical patent/WO2015196974A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a transmission weighting method and apparatus for a CSI feedback system.
  • the UE In the FDD (Frequency Division Duplexing) system, the UE (User Equipment) reports the CSI (Channel State Information) to the network side, and the network side performs the UE according to the CSI reported by the UE.
  • the corresponding downlink channel performs operations such as transmission weighting and adaptive modulation coding. That is, the network side sends a pilot signal to the UE, for example, the network side of the LTE (Long Term Evolution) system sends a CSI-RS (Channel State Information-Reference Signal) to the UE, and the UE The CSI is estimated by the UE, and then the UE reports the CSI quantization information to the network side through the reverse channel.
  • CSI-RS Channel State Information-Reference Signal
  • the CSI quantization information is, for example, a PMI (Precoding Matrix Indicator) and a CQI (Channel Quality Indicator).
  • the RI Rank Indicator
  • the network side performs operations such as transmission weighting and adaptive modulation coding of the downlink channel corresponding to the UE according to the report information of the UE.
  • the UE feeds back the CSI to the network side, there is feedback overhead, that is, it occupies a certain uplink channel system capacity. Therefore, the feedback information generally requires a sufficiently small quantization bit. Therefore, the UE quantizes the obtained CSI. Then feedback, so that the network side obtains the quantized information, and there is a certain error between the real information and the real information, that is, the CSI obtained by the network side is inaccurate with respect to the real CSI.
  • the network side performs the transmission weighting and adaptive modulation and coding operations of the downlink channel according to the quantized CSI, and the operation result may be inaccurate, thereby causing interference in the user equipment, intensifying interference between user equipments, and adaptive modulation and coding mismatch.
  • MIMO Multiple Input Multiple-Output
  • the embodiment of the invention provides a transmission weighting method and device for a CSI feedback system, which is used to solve the technical problem that the operation result of the network side is not accurate due to the error of the reported information.
  • a first aspect of the present invention provides a transmission weighting method for a channel state information CSI feedback system, including:
  • the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI;
  • the real CSI is a matrix obtained according to the downlink real channel matrix
  • the method further includes: obtaining the observed CSI according to the feedback information.
  • the method before, during or after obtaining the observed CSI according to the feedback information, the method further includes: according to the downlink The true channel matrix and the conjugate transpose of the downlink real channel matrix yield the true CSI.
  • the feedback information is corrected according to the statistical characteristics of the feedback information.
  • Pre-processing obtaining an estimated value of the real CSI, comprising: a statistical covariance matrix according to the observed CSI vector, and a statistical covariance vector between the observed CSI vector and the element of the real CSI, and obtaining the first moment of the observed CSI a filtered weight vector; wherein the observed CSI vector is a vector formed by the jth element in the observed CSI within a specific time domain length; and the observed CSI vector is filtered and weighted according to the filtered weight vector Obtain an estimated value of the real CSI corresponding to the lth time.
  • the fourth possible implementation in the first aspect In the current mode, after obtaining the observed CSI according to the feedback information, the method further includes:
  • the method further includes: obtaining, by using a prior statistical method A statistical covariance vector between the observed CSI vector and the elements of the real CSI.
  • a transmission weighting apparatus for a CSI feedback system comprising:
  • a receiving module configured to receive feedback information reported by the user equipment UE, where the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI;
  • a processing module configured to perform a modified pre-processing on the feedback information according to a statistical characteristic of the feedback information, to obtain an estimated value of a real CSI;
  • the real CSI is a matrix obtained according to a downlink real channel matrix;
  • a sending module configured to obtain a beamforming matrix according to the estimated value of the real CSI, process the transmit signal by using the beamforming matrix, and send the processed transmit signal to the receiving end.
  • the processing module is further configured to: obtain an observed CSI according to the feedback information.
  • the processing module is further configured to: according to the downlink real channel matrix and the downlink real channel matrix The conjugate transposes to obtain the true CSI.
  • the processing module is specifically configured to: perform statistical association according to the observed CSI vector a variance matrix, and a statistical covariance vector between the observed CSI vector and the element of the real CSI, to obtain a filtered weight vector for the observed CSI 1st moment; wherein the observed CSI vector is in the observed CSI a vector formed by the jth element in a specific time domain length; filtering and weighting the observed CSI vector according to the filtered weight vector to obtain a corresponding time The estimated value of the true CSI.
  • the receiving module is further configured to: obtain an uplink channel matrix
  • the processing module is further configured to: obtain a statistical covariance vector between the observed CSI vector and an element of the real CSI according to the uplink channel matrix and the principle of statistical reciprocity of uplink and downlink channels.
  • the processing module is further configured to: obtain the observed CSI vector and the real state by using a prior statistical method The statistical covariance vector between the elements of the CSI.
  • a transmission weighting apparatus for a CSI feedback system including:
  • a memory for storing instructions
  • a receiver configured to receive feedback information reported by the user equipment UE, where the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI;
  • a processor configured to perform the instruction on the feedback information according to the statistical characteristics of the feedback information, to obtain an estimated value of the real CSI;
  • the real CSI is a matrix obtained according to the downlink real channel matrix;
  • the estimated value of the real CSI is obtained as a beamforming matrix, and the transmitted signal is processed by using the beamforming matrix;
  • the processor is further configured to: execute the instruction, and obtain an observed CSI according to the feedback information.
  • the processor is further configured to: execute the instruction, according to the downlink real channel matrix, and the The conjugate transpose of the downlink real channel matrix yields the true CSI.
  • the processor is specifically configured to: execute the instruction, according to the observation a statistical covariance matrix of the CSI vector, and a statistical covariance vector between the observed CSI vector and the element of the real CSI, to obtain a filtered weight vector for the observed CSI first time; wherein the observed CSI vector is The jth element in the observed CSI is constructed within a specific time domain length The vector is obtained by performing filtering weighting on the observed CSI vector according to the filtered weight vector to obtain an estimated value of the real CSI corresponding to the first time.
  • the receiver is further configured to: obtain an uplink channel matrix
  • the processor is further configured to: execute the instruction, and obtain a statistical covariance vector between the observed CSI vector and an element of a real CSI according to the uplink channel matrix and the principle of statistical reciprocity of uplink and downlink channels.
  • the processor is further configured to: execute the instruction, obtain the foregoing by using a prior statistical method Observe the statistical covariance vector between the CSI vector and the elements of the real CSI.
  • the network side device after obtaining the feedback information reported by the UE, performing pre-processing on the feedback information to obtain an estimated value of the real CSI, where the estimated value of the real CSI is relative to the feedback information.
  • the error between the real information and the real information is reduced, and the network side device performs the operation of performing transmission weighting and adaptive modulation and coding of the downlink channel according to the estimated value of the real CSI, and directly transmitting the downlink channel according to the feedback information.
  • Weighted and adaptive modulation and coding operations the results are more accurate, can avoid interference within the user equipment, increased interference between user equipment and adaptive modulation and coding mismatch, and maximize the channel capacity potential of the MIMO system.
  • 1 is a main flowchart of a method for transmitting weights for a CSI feedback system according to an embodiment of the present invention
  • FIG. 2 is a main structural block diagram of a transmission weighting apparatus for a CSI feedback system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of main structures of a transmission weighting apparatus for a CSI feedback system according to an embodiment of the present invention.
  • the method for transmitting weights for the CSI feedback system in the embodiment of the present invention may include: receiving feedback information reported by the user equipment UE, where the feedback information includes a precoding matrix indicating PMI, and channel quality. At least one of a quantity indicator CQI and a rank indication RI; performing correction correction on the feedback information according to a statistical characteristic of the feedback information to obtain an estimated value of a real CSI; the real CSI is obtained according to a downlink real channel matrix a matrix; obtaining a beamforming matrix according to the estimated value of the real CSI, processing the transmitted signal by using the beamforming matrix, and transmitting the processed transmit signal to the receiving end.
  • the network side device after obtaining the feedback information reported by the UE, performing pre-processing on the feedback information to obtain an estimated value of the real CSI, where the estimated value of the real CSI is relative to the feedback information.
  • the error between the real information and the real information is reduced, and the network side device performs the operation of performing transmission weighting and adaptive modulation and coding of the downlink channel according to the estimated value of the real CSI, and directly transmitting the downlink channel according to the feedback information.
  • Weighted and adaptive modulation and coding operations the results are more accurate, can avoid interference within the user equipment, increased interference between user equipment and adaptive modulation and coding mismatch, and maximize the channel capacity potential of the MIMO system.
  • GSM Global System for Mobile communications
  • Code Division Multiple Access Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • FDMA Frequency Division Multiple Addressing
  • OFDMA orthogonal frequency Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the user equipment may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network, such as a RAN (Radio Access Network), and the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone).
  • a computer having a mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a network side device may refer to a base station.
  • a base station e.g., an access point
  • the base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station in LTE
  • LTE NodeB or eNB or e-NodeB, evolutional Node B
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three Kind of situation.
  • the character "/" in this article unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • an embodiment of the present invention provides a transmission weighting method for a CSI feedback system, where the method can be applied to a network side device.
  • the main flow of the method is described below.
  • Step 101 Receive feedback information reported by the user equipment UE, where the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI.
  • the UE reports the feedback information to the network side device.
  • the UE may report the PMI, the CQI, and the RI to the network side device, and may report the information at the same time.
  • h(i, j, k, l) represents the defined i-th receive antenna, the j-th transmit antenna, the k-th sub-carrier, and the channel coefficient corresponding to the l-th time
  • H(k, l) represents the defined
  • the downlink real channel matrix that is, the complex matrix form representing the h(i, j, k, l) spatial domain dimension signal
  • N R represents the number of transmitting antennas on the network side
  • N T represents the number of receiving antennas on the UE side.
  • the network side device may refer to a base station, and the network side may refer to a base station side.
  • the formula (1) only defines the downlink real channel matrix, that is, only refers to the real channel, and does not mean that the network side device can accurately know the real channel.
  • the method before, at the same time as, or after obtaining the observed CSI according to the feedback information, the method further includes: conjugate transpose according to the downlink real channel matrix and the downlink real channel matrix Obtaining the real CSI, wherein the real CSI is represented by R HH (k, l).
  • the real CSI is presented in a matrix form, and the real CSI may also be referred to as an instantaneous transmit correlation matrix of the downlink real channel matrix.
  • H H (k, l) represents a conjugate transposed matrix of H(k, l).
  • the (i, j)th elements of the matrix R HH (k, l) are represented by x(i, j, k, l).
  • H(k, l) and R HH (k, l) merely represent the reference to the real matrix information, and do not represent that the network side device can accurately obtain the information of the real channel.
  • the method after receiving the feedback information reported by the UE, the method further includes: obtaining the observed CSI according to the feedback information.
  • the obtaining the observed CSI according to the feedback information may include: obtaining the observed CSI according to the PMI, the CQI, and the Rank reported by the UE.
  • the observed CSI is presented in a matrix form.
  • the network side device calculates according to the feedback formula according to the following formula
  • the quantized codebook matrix corresponding to the (k, l) time-frequency resource can be obtained by using a PMI index defined by the protocol.
  • the equivalent signal-to-noise ratio (SNR) of the (i, k)th time-frequency resource, the i-th layer spatially multiplexed signal can be mapped by the CQI and the MCS (Modulation and Coding Scheme) defined by the protocol.
  • the corresponding demodulation threshold ie, signal to noise ratio
  • N L represents the number of spatial division multiplexing layers, corresponding to the value of Rank.
  • the granularity of (k, l) is consistent with the granularity of the feedback information.
  • Express Conjugate transposed matrix. Diag() means extracting diagonal elements.
  • Step 102 Perform correction on the feedback information according to the statistical characteristics of the feedback information.
  • the real CSI is a matrix obtained from the downlink real channel matrix.
  • the feedback information is modified and preprocessed according to the statistical characteristics of the feedback information, and the estimated value of the real CSI is obtained, including: a statistical covariance matrix according to the observed CSI vector, and Observing a statistical covariance vector between the CSI vector and the element of the real CSI, and obtaining a filtered weight vector for the observed CSI first time; wherein the observed CSI vector is the jth in the observed CSI And a vector formed by the element in a specific time domain length; performing weighting and weighting on the observed CSI vector according to the filtering weight vector to obtain an estimated value of the real CSI corresponding to the first time.
  • the statistical characteristics between the observed CSI, the real CSI and the observation error are used, and the filtering algorithm is designed with appropriate optimization criteria, and the filtering weight vector is calculated by the filtering algorithm, and is applied to the observed CSI to obtain the real CSI.
  • An estimated value, the estimated value of the real CSI can effectively reduce the observation error compared to the feedback information, and the transmit precoding of the FDD MIMO system based on the estimated value of the real CSI can improve the accuracy of the channel information feature vector, thereby Effectively reduce interference within user equipment and interference between user equipment, and improve system capacity.
  • the statistical characteristics between the observed CSI, the real CSI and the observation error include but are not limited to the time domain statistical characteristics, the frequency domain statistical characteristics and the spatial domain statistical characteristics.
  • the optimization criteria that can be considered include but are not limited to the minimum mean square error (MMSE), filter algorithms that may be considered include, but are not limited to, Winner filtering, Kalman filtering, and other filtering methods.
  • the statistical characteristics, the optimization criteria, and the filtering method can be arbitrarily combined. Specifically, the combination mode can be selected according to actual conditions.
  • y(i, j, k, l) represents a matrix
  • the first (i, j) element will The jth element in the frame constitutes an observed CSI vector within a specific time domain length, and the observed CSI vector is represented by y l (i, j, k). among them, The jth element in the Any of the elements.
  • y l (i, j, k ) [y (i, j, k, lL), y (i, j, k, l + 1-L), ..., y (i, j, k, l )] T (4)
  • L is, for example, the specific time domain length, and the value of L can be appropriately selected according to a priori information such as channel coherence time.
  • the method further includes: obtaining a statistical covariance matrix of the observed CSI vector according to the observed CSI vector.
  • the statistical covariance matrix of the observed CSI vector can be obtained by using a priori statistics, or based on an adaptive calculation update of an observation sample, or by means of uplink and downlink channel reciprocity, etc., and the following uses an observation sample for adaptive calculation and update.
  • a priori statistics or based on an adaptive calculation update of an observation sample, or by means of uplink and downlink channel reciprocity, etc., and the following uses an observation sample for adaptive calculation and update.
  • the method may further include: obtaining an uplink channel matrix; and obtaining, according to the uplink channel matrix, and the principle of statistical reciprocity of uplink and downlink channels, A statistical covariance vector between the CSI vector and the elements of the real CSI is observed.
  • the method may include: obtaining, by using a priori statistical method, a statistical covariance vector between the observed CSI vector and an element of the real CSI.
  • the statistical covariance vector between the observed CSI vector and the element of the real CSI may be obtained by using a priori statistics or uplink and downlink channel reciprocity.
  • the element of the real CSI is an element in the real CSI. The following is obtained by using the upper and lower channel statistics reciprocity To give an example:
  • the network side device receives an uplink SRS (Sounding Reference Signal) pilot signal, and obtains an uplink channel matrix by using channel estimation or the like, and is represented by H ul (k, l).
  • SRS Sounding Reference Signal
  • denotes the time domain Alpha filter coefficient, Indicates that the observed CSI vector is removed from the mean, Express The instantaneous estimate at time l, Express Historical estimate at time l.
  • the filter weight vector is represented by w l (i, j, k):
  • the statistical characteristic is a time domain statistical characteristic. Therefore, the time domain statistical covariance matrix or the time domain statistical covariance vector is involved in the calculation. If other statistical characteristics are used, the participation in the calculation may be Statistical covariance matrix or statistical covariance vector under other statistical properties.
  • y l (i, j, k) is weighted by filtering, and the estimated value of the real CSI corresponding to the first time is obtained.
  • the filtering weighting method is as follows:
  • An estimated value of an element in the real CSI corresponding to the time l which is, for example, any element in the real CSI corresponding to the time l, Represents the time domain statistical mean of x(i, j, k, l).
  • the use of a priori statistics, or based on observations for adaptive calculation updates, or through the uplink and downlink channel reciprocity, etc. can be calculated The following calculation is based on the method of adaptive calculation based on observation samples. For example, the details are as follows:
  • denotes the time domain Alpha (a filtering method) filter coefficient, which can be selected according to the time domain statistical property
  • K represents the number of observation samples available in the frequency domain dimension
  • y(i, j, k, l) represents the matrix.
  • An estimated value of the real CSI may be obtained according to an estimated value of each element in the real CSI corresponding to the first time.
  • the estimated value of the real CSI is also in a matrix form.
  • the estimated value of the real CSI can be obtained, Said that The (i, j)th element is
  • Step 103 Obtain a beamforming matrix according to the estimated value of the real CSI, process the transmit signal by using the beamforming matrix, and send the processed transmit signal to the receiving end.
  • the network side device may be configured according to Perform operations such as precoding weighting of the transmitting end of the FDD MIMO system. Correct Examples of possible uses are as follows (including but not limited to):
  • a channel feature vector corresponding to the (k, l) time-frequency resource also referred to as the beamforming matrix
  • the output weighting method of the output includes, but is not limited to, EZF-BF (Eigenvector zero-force beamforming).
  • Multiplying the transmit signal causes the transmit signal to transition to a signal beam suitable for the current channel transmission.
  • the UE is then subjected to power allocation. Since the transmit power is often limited for the UE, the maximum power utilization has the same practical significance as the spectrum utilization is maximized. Under the condition that the total transmit power is limited, the power is adaptively allocated to each UE on the MIMO channel, so that the system parameters can be optimized as much as possible.
  • the modulation scheme can be selected for different channels. Because, if each channel uses the same modulation scheme, it is beneficial to achieve, but it reduces system performance. Therefore, after obtaining the equivalent gain and the allocated power on the channel, adaptive modulation can be performed at the transmitting end, and the system performance can be optimized as much as possible while satisfying the system service quality. After that, the processed transmission signal is sent to the receiving end.
  • the observed CSI can be used as a linear superposition of the downlink real channel matrix and the observation error, and the following relationship is established:
  • n(i, j, k, l) represents the observation error between y(i, j, k, l) and x(i, j, k, l), especially for feedback feedback based on LTE FDD systems.
  • MIMO precoding n(i, j, k, l) reflects quantization error or quantization noise due to quantization of R HH (k, l).
  • the network side device directly uses the feedback information as a beamforming matrix, and the beamforming matrix is multiplied by the transmission signal to convert the transmission signal into a signal beam suitable for the current channel transmission. Then, the UE is allocated power. After power allocation, the modulation scheme can be selected for different channels, and then the processed transmission signal is sent to the receiving end.
  • the embodiment of the present invention performs the feedback information reported by the UE. a series of processes, the estimated value of the obtained real CSI is minimized The result of the observation error is small, and the transmission weighting is performed according to the estimated value of the real CSI, which is obviously more accurate than the transmission weighting result obtained in the prior art.
  • the statistical characteristics (cross-correlation/autocorrelation/average, etc.) between the real CSI, the observed CSI, and the observation error are fully applied to the In the filtered weight vector
  • the observed CSI vector is compared according to the filtered weight vector compared to the observed error (quantization error) existing in the originally isolated CSI observation, ie, n(i, j, k, l)
  • the observed error quantization error
  • Performing filtering weighting to obtain an estimated value of the real CSI, and combining the plurality of observed CSIs by using their inherent statistical correlations and weight adjustment methods as the estimated value of the real CSI may be reduced statistically Estimation error with real CSI to improve the accuracy of precoding.
  • an embodiment of the present invention provides a transmission weighting apparatus for a CSI feedback system, where the apparatus may be a network side device as described above.
  • the apparatus may include a receiving module 201, a processing module 202, and a transmitting module 203.
  • the receiving module 201 is configured to receive feedback information reported by the user equipment UE, where the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI;
  • the processing module 202 is configured to perform pre-processing on the feedback information according to the statistical characteristics of the feedback information to obtain an estimated value of the real CSI;
  • the real CSI is a matrix obtained according to the downlink real channel matrix;
  • the sending module 203 is configured to obtain a beamforming matrix according to the estimated value of the real CSI, process the transmit signal by using the beamforming matrix, and send the processed transmit signal to the receiving end.
  • the processing module 202 is further configured to: after receiving the feedback information reported by the UE, the receiving module 201 obtains an observed CSI according to the feedback information.
  • the processing module 202 is further configured to: before, after, or after obtaining the observed CSI according to the feedback information, according to the downlink real channel matrix and the downlink real channel matrix.
  • the conjugate transposes to obtain the true CSI.
  • the processing module 202 is specifically configured to: according to the observed CSI vector a statistical covariance matrix, and a statistical covariance vector between the observed CSI vector and the element of the real CSI, to obtain a filtered weight vector for the observed CSI at time l; wherein the observed CSI vector is Observing a vector formed by the jth element in the CSI in a specific time domain length; performing filtering weighting on the observed CSI vector according to the filtering weight vector to obtain an estimated value of the real CSI corresponding to the first time.
  • the processing module 202 is further configured to: after obtaining the observed CSI according to the feedback information, obtain a statistical covariance matrix of the observed CSI vector according to the observed CSI vector.
  • the receiving module 201 is further configured to: after the processing module 202 obtains the observed CSI according to the feedback information, obtain an uplink channel matrix; the processing module 202 is further configured to: according to the uplink channel The matrix, and the principle of statistical reciprocity of the uplink and downlink channels, obtain a statistical covariance vector between the observed CSI vector and the elements of the real CSI.
  • the processing module 202 is further configured to: after obtaining the observed CSI according to the feedback information, obtain a method between the observed CSI vector and the real CSI by using a prior statistical method. Statistical covariance vector.
  • an embodiment of the present invention provides a transmission weighting apparatus for a CSI feedback system, where the apparatus may be a network side device as described above.
  • the apparatus includes a bus 330, and a memory 310, a receiver 320, a processor 340, and a transmitter 350 connected to the bus 330.
  • the memory 310 is used to store instructions.
  • the receiver 320 is configured to receive feedback information reported by the user equipment UE, where the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI.
  • the processor 340 is configured to read an instruction stored in the memory 310, and execute the instruction, and perform correction preprocessing on the feedback information according to a statistical characteristic of the feedback information to obtain an estimated value of a real CSI;
  • the real CSI is a matrix obtained from the downlink real channel matrix;
  • a beamforming matrix is obtained according to the estimated value of the real CSI, and the transmitted signal is processed by the beamforming matrix.
  • the transmitter 350 is configured to transmit the processed signal processed by the processor 340 to the receiving end.
  • the processor 340 is further configured to: execute the instruction, according to the The feedback information is obtained by observing the CSI.
  • the processor 340 is further configured to: execute the instruction, and obtain the real CSI according to the downlink real channel matrix and the conjugate transposition of the downlink real channel matrix.
  • the processor 340 is specifically configured to: execute the instruction, perform a statistical covariance matrix according to the observed CSI vector, and observe a statistical covariance vector between the CSI vector and the element of the real CSI. Obtaining a filter weight vector for the first time of the observed CSI; wherein the observed CSI vector is a vector formed by the jth element in the observed CSI within a specific time domain length; according to the filtering weight The vector performs filtering weighting on the observed CSI vector to obtain an estimated value of the real CSI corresponding to the first time.
  • the processor 340 is further configured to: execute the instruction, and obtain a statistical covariance matrix of the observed CSI vector according to the observed CSI vector.
  • the receiver 320 is further configured to obtain an uplink channel matrix
  • the processor 340 is further configured to: execute the instruction, according to the uplink channel matrix, and the principle of statistical reciprocity of uplink and downlink channels, A statistical covariance vector between the observed CSI vector and the elements of the real CSI is obtained.
  • the processor 340 is further configured to: execute the instruction, and obtain a statistical covariance vector between the observed CSI vector and an element of the real CSI by using a prior statistical method.
  • the transmission weighting method for the CSI feedback system in the embodiment of the present invention may include: receiving feedback information reported by the user equipment UE, where the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI. And correcting the feedback information according to the statistical characteristics of the feedback information to obtain an estimated value of the real CSI; the real CSI is a matrix obtained according to the downlink real channel matrix; and obtaining the beam according to the estimated value of the real CSI; Forming a matrix, processing the transmitted signal by using the beamforming matrix, and transmitting the processed transmit signal to the receiving end.
  • the feedback information includes at least one of a precoding matrix indication PMI, a channel quality indicator CQI, and a rank indication RI.
  • the feedback information is required.
  • Performing a modified pre-processing to obtain an estimated value of the real CSI where the estimated value of the real CSI is reduced relative to the feedback information, and the network side device is estimated according to the real CSI.
  • operations such as transmission weighting and adaptive modulation coding of the downlink channel, and directly performing downlink weighting and adaptive modulation and coding operations on the downlink channel according to the feedback information, the result is more accurate, and the user equipment interference can be avoided as much as possible. Intensified interference between devices and adaptive modulation and coding mismatch, try to give full play to the channel capacity potential of MIMO systems.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold as a standalone product Or when used, it can be stored in a computer readable storage medium.
  • the technical solution of the present application in essence or the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种针对CSI反馈系统的发射加权方法,用于提高发射端预编码的准确性。所述方法包括:接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。本发明还公开了相应的装置。

Description

一种针对CSI反馈系统的发射加权方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种针对CSI反馈系统的发射加权方法及装置。
背景技术
在FDD(Frequency Division Duplexing,频分双工)系统中,UE(User Equipment,用户设备)会向网络侧上报CSI(Channel State Information,信道状态信息),网络侧根据UE上报的CSI,对该UE对应的下行信道进行发射加权及自适应调制编码等操作。即,网络侧下发导频信号给UE,例如LTE(Long Term Evolution,长期演进)系统中网络侧下发CSI-RS(Channel State Information-Reference Signal,信道状态信息测量导频)给UE,UE据此估计得到CSI,之后UE通过反向信道向网络侧上报CSI量化信息,该CSI的量化信息例如是PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI(Channel Quality Indicator,信道质量指示符)及RI(Rank Indicator,秩指示),网络侧根据UE的上报信息做该UE对应的下行信道的发射加权及自适应调制编码等操作。
在实际应用中,UE给网络侧反馈CSI时是有反馈开销的,即会占用一定的上行信道系统容量,所以一般要求反馈信息对应足够小的量化比特,因此,UE会对得到的CSI进行量化后再反馈,这样,网络侧获得的是量化后的信息,与真实信息之间具有一定的误差,即网络侧得到的CSI相对于真实CSI来说是有误差的。网络侧根据量化后的CSI来进行下行信道的发射加权及自适应调制编码等操作,操作结果很可能不准确,从而导致用户设备内干扰、用户设备间干扰加剧及自适应调制编码失配,无法充分发挥MIMO(Multiple-Input Multiple-Output,多输入多输出)系统的信道容量潜力,已成为制约FDD MIMO系统预编码性能的关键瓶颈。
发明内容
本发明实施例提供一种针对CSI反馈系统的发射加权方法及装置,用以解决网络侧因获得的上报信息有误差而导致的操作结果不够准确的技术问题。
本发明的第一方面,提供一种针对信道状态信息CSI反馈系统的发射加权方法,包括:
接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;
根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;
根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
结合第一方面,在第一方面的第一种可能的实现方式中,在接收用户设备UE上报的反馈信息之后,还包括:根据所述反馈信息获得观测CSI。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,在根据所述反馈信息获得观测CSI的之前、同时或之后,还包括:根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI。
结合第一方面的第一种可能的实现方式或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值,包括:根据观测CSI向量的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应的所述真实CSI的估计值。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实 现方式中,在根据所述反馈信息获得观测CSI之后,还包括:
获得上行信道矩阵;
根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,在根据所述反馈信息获得观测CSI之后,还包括:利用先验统计的方法,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
本发明的第二方面,提供一种针对CSI反馈系统的发射加权装置,包括:
接收模块,用于接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;
处理模块,用于根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;
发送模块,用于根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
结合第二方面,在第二方面的第一种可能的实现方式中,所述处理模块还用于:根据所述反馈信息获得观测CSI。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述处理模块还用于:根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI。
结合第二方面的第一种可能的实现方式或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述处理模块具体用于:根据观测CSI向量的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应 的所述真实CSI的估计值。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述接收模块还用于:获得上行信道矩阵;
所述处理模块还用于:根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中,所述处理模块还用于:利用先验统计的方法,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
本发明的第三方面,提供一种针对CSI反馈系统的发射加权装置,包括:
存储器,用于存储指令;
接收器,用于接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;
处理器,用于执行所述指令,根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理;
发射器,用于将处理完毕的发射信号发送给接收端。
结合第三方面,在第三方面的第一种可能的实现方式中,所述处理器还用于:执行所述指令,根据所述反馈信息获得观测CSI。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述处理器还用于:执行所述指令,根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI。
结合第三方面的第一种可能的实现方式或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述处理器具体用于:执行所述指令,根据观测CSI向量的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构 成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应的所述真实CSI的估计值。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述接收器还用于:获得上行信道矩阵;
所述处理器还用于:执行所述指令,根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实现方式中,所述处理器还用于:执行所述指令,利用先验统计的方法,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
本发明实施例中,在获得UE上报的所述反馈信息后,要对所述反馈信息进行修正预处理,得到所述真实CSI的估计值,所述真实CSI的估计值相对于所述反馈信息,减小了与真实信息之间的误差,网络侧设备根据所述真实CSI的估计值进行下行信道的发射加权及自适应调制编码等操作,相对于根据所述反馈信息直接进行下行信道的发射加权及自适应调制编码等操作,结果更为准确,能够尽量避免用户设备内干扰、用户设备间干扰加剧及自适应调制编码失配,尽量充分发挥MIMO系统的信道容量潜力。
附图说明
图1为本发明实施例中针对CSI反馈系统的发射加权方法的主要流程图;
图2为本发明实施例中针对CSI反馈系统的发射加权装置的主要结构框图;
图3为本发明实施例中针对CSI反馈系统的发射加权装置的主要结构示意图。
具体实施方式
本发明实施例中的针对CSI反馈系统的发射加权方法可以包括:接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质 量指示符CQI及秩指示RI中的至少一个;根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
本发明实施例中,在获得UE上报的所述反馈信息后,要对所述反馈信息进行修正预处理,得到所述真实CSI的估计值,所述真实CSI的估计值相对于所述反馈信息,减小了与真实信息之间的误差,网络侧设备根据所述真实CSI的估计值进行下行信道的发射加权及自适应调制编码等操作,相对于根据所述反馈信息直接进行下行信道的发射加权及自适应调制编码等操作,结果更为准确,能够尽量避免用户设备内干扰、用户设备间干扰加剧及自适应调制编码失配,尽量充分发挥MIMO系统的信道容量潜力。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中描述的技术可用于各种通信系统,例如当前2G,3G通信系统和下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,以及其他此类通信系统。
本文中结合用户设备和/或网络侧设备来描述各种方面。
用户设备,可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网与一个或多个核心网进行通信,无线接入网例如为RAN(Radio Access Network),无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
网络侧设备,例如可以是指基站。基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本申请并不限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三 种情况。另外,本文中字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
下面结合说明书附图对本发明实施例作进一步详细描述。
请参见图1,本发明实施例提供一种针对CSI反馈系统的发射加权方法,所述方法可以应用于网络侧设备。所述方法的主要流程描述如下。
步骤101:接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个。
所述UE会向所述网络侧设备上报所述反馈信息。其中,所述UE可以向所述网络侧设备上报PMI、CQI及RI,可以是同时上报,或者也可以是分别上报。
首先定义下行真实信道矩阵:
Figure PCTCN2015082090-appb-000001
其中,h(i,j,k,l)表示定义的第i根收天线、第j根发天线、第k个子载波、第l个时刻对应的信道系数,H(k,l)表示定义的下行真实信道矩阵,即表示h(i,j,k,l)空域维度信号的复数矩阵形式,NR表示网络侧的发射天线数,NT表示UE侧的接收天线数。本发明实施例中,所述网络侧设备例如可以是指基站,则网络侧可以是指基站侧。其中,公式(1)只是定义下行真实信道矩阵,即只是对真实信道的指代,并不表示所述网络侧设备可以准确获知真实信道。
可选的,本发明实施例中,在根据所述反馈信息获得所述观测CSI的之前、同时或之后,还包括:根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI,其中,所述真实CSI用RHH(k,l)表示。本发明实施例中,所述真实CSI是以矩阵形式呈现,所述真实CSI也可以称为下行真实信道矩阵的瞬时发相关阵。
定义真实CSI:
RHH(k,l)=HH(k,l)H(k,l)  (2)
其中,HH(k,l)表示H(k,l)的共轭转置矩阵。本发明实施例中,以x(i,j,k,l)表示矩阵RHH(k,l)的第(i,j)个元素。
本发明实施例中,H(k,l)和RHH(k,l)只是表示对真实矩阵信息的指代,并不代表所述网络侧设备能够准确获得真实信道的信息。
可选的,本发明实施例中,在接收UE上报的所述反馈信息之后,还包括:根据所述反馈信息获得观测CSI。
可选的,本发明实施例中,根据所述反馈信息获得所述观测CSI,可以包括:根据所述UE上报的PMI、CQI及Rank,获得所述观测CSI。本发明实施例中,所述观测CSI是以矩阵形式呈现。
根据所述UE的所述反馈信息,计算RHH(k,l)的观测信道矩阵,即计算所述观测CSI,所述观测CSI以
Figure PCTCN2015082090-appb-000002
表示,所述观测CSI也可以称为下行观测信道矩阵的瞬时发相关阵。以现有的LTE系统中的协议为例,假设所述UE可反馈PMI、CQI和Rank。所述网络侧设备根据所述反馈信息,根据以下公式计算
Figure PCTCN2015082090-appb-000003
Figure PCTCN2015082090-appb-000004
其中,
Figure PCTCN2015082090-appb-000005
表示第(k,l)个时频资源对应的量化码本矩阵,可通过协议定义的PMI索引得到,
Figure PCTCN2015082090-appb-000006
表示第(k,l)个时频资源第i层空分复用信号可达到的等效信噪比,可通过协议定义的CQI与MCS(Modulation and Coding Scheme,调制与编码策略)的映射关系得到的相对应的解调门限(即信噪比)来确定,NL表示空分复用层数,与Rank的值对应。(k,l)的粒度与所述反馈信息的粒度保持一致。
Figure PCTCN2015082090-appb-000007
表示
Figure PCTCN2015082090-appb-000008
的共轭转置矩阵。diag()表示提取对角元素。
步骤102:根据所述反馈信息的统计特性对所述反馈信息进行修正预处 理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵。
可选的,本发明实施例中,根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到所述真实CSI的估计值,包括:根据观测CSI向量的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应的所述真实CSI的估计值。
本发明实施例中,利用观测CSI、真实CSI及观测误差之间的统计特性,以适当的优化准则设计滤波算法,通过滤波算法计算滤波权值向量,将之施加到观测CSI以获取真实CSI的估计值,该真实CSI的估计值相比所述反馈信息来说能够有效降低观测误差,基于该真实CSI的估计值来作FDD MIMO系统的发射预编码能够提升信道信息特征向量的准确度,从而有效降低用户设备内干扰及用户设备间干扰,提升系统容量。
其中,可考虑的观测CSI、真实CSI及观测误差之间的统计特性包括但不限于时域统计特性、频域统计特性及空域统计特性,可考虑的优化准则包括但不限于最小均方误差(MMSE),可考虑的滤波算法包括但不限于Winner滤波、Kalman滤波及其它滤波方法。统计特性、优化准则及滤波方法之间可以任意进行组合,具体的,可以根据实际情况来选择组合方式。
为阐述方便,以下仅以时域统计特性、MMSE准则及Winner滤波的组合方式为例进行说明,具体如下:
本发明实施例中,y(i,j,k,l)表示矩阵
Figure PCTCN2015082090-appb-000009
的第(i,j)个元素,将
Figure PCTCN2015082090-appb-000010
中的第j个元素在特定时域长度内组成一个观测CSI向量,该观测CSI向量用yl(i,j,k)表示。其中,
Figure PCTCN2015082090-appb-000011
中的第j个元素为
Figure PCTCN2015082090-appb-000012
中的任一个元素。
yl(i,j,k)=[y(i,j,k,l-L),y(i,j,k,l+1-L),...,y(i,j,k,l)]T  (4)
其中,L例如为所述特定时域长度,L的取值可根据信道相干时间等先验信息作适当选取。
可选的,本发明实施例中,在根据所述反馈信息获得观测CSI之后,还可以包括:根据所述观测CSI向量得到所述观测CSI向量的统计协方差矩阵。
其中,利用先验统计、或基于观测样本作自适应计算更新、或通过上下行信道互易等方法均可以获取所述观测CSI向量的统计协方差矩阵,以下以利用观测样本作自适应计算更新的方法来举例说明:
Figure PCTCN2015082090-appb-000013
其中,
Figure PCTCN2015082090-appb-000014
表示yl(i,j,k)的时域统计协方差矩阵,α表示时域Alpha(一种滤波方法)滤波系数,可以根据时域统计特性选取,K表示在频域维度可得的观测量样本数,L根据时域相关性选取,
Figure PCTCN2015082090-appb-000015
表示yl(i,j,k)的时域统计均值。初始时刻l=0时可取
Figure PCTCN2015082090-appb-000016
其中IL×L表示L维单位阵。
Figure PCTCN2015082090-appb-000017
表示所述观测CSI向量中第l时刻的历史估计值,
Figure PCTCN2015082090-appb-000018
表示所述观测CSI向量在第l时刻的瞬时估计值,
Figure PCTCN2015082090-appb-000019
表示去掉均值的观测CSI向量。
可选的,本发明实施例中,在根据所述反馈信息获得观测CSI之后,还可以包括:获得上行信道矩阵;根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与所述真实CSI的元素之间的统计协方差向量。
可选的,本发明实施例中,在根据所述反馈信息获得观测CSI之后,还 可以包括:利用先验统计方法,获得所述观测CSI向量与所述真实CSI的元素之间的统计协方差向量。
其中,利用先验统计或上下行信道互易等方法均可以获取所述观测CSI向量与所述真实CSI的元素之间的统计协方差向量,以
Figure PCTCN2015082090-appb-000020
表示。其中,所述真实CSI的元素是所述真实CSI中的元素。以下以利用上下性信道统计互易性获取
Figure PCTCN2015082090-appb-000021
来进行举例:
所述网络侧设备接收上行SRS(Sounding Reference Signal)导频信号,通过信道估计等方法得到上行信道矩阵,以Hul(k,l)表示。
计算上行信道自相关矩阵,计算方式为
Figure PCTCN2015082090-appb-000022
所述上行信道自相关矩阵的第(i,j)个元素记作xul(i,j,k,l)。
计算所述观测CSI向量与xul(i,j,k,l)的统计协方差,一种可能的计算方法如下:
Figure PCTCN2015082090-appb-000023
利用上下行信道统计互易性,
Figure PCTCN2015082090-appb-000024
近似以
Figure PCTCN2015082090-appb-000025
代替。其中,α表示时域Alpha滤波系数,
Figure PCTCN2015082090-appb-000026
表示去掉均值的观测CSI向量,
Figure PCTCN2015082090-appb-000027
表示
Figure PCTCN2015082090-appb-000028
在第l时刻的瞬时估计值,
Figure PCTCN2015082090-appb-000029
表示
Figure PCTCN2015082090-appb-000030
在第l时刻的历史估计值。
根据统计特性计算第l时刻对应的滤波权值向量,该滤波权值向量用wl(i,j,k)表示:
Figure PCTCN2015082090-appb-000031
其中,
Figure PCTCN2015082090-appb-000032
表示yl(i,j,k)与x(i,j,k,l)间的时域统计协方差向量。因 为本发明实施例中是以统计特性是时域统计特性为例,因此参与计算的都是时域统计协方差矩阵或时域统计协方差向量,如果采用其他统计特性,参与计算的自然可以是其他统计特性下的统计协方差矩阵或统计协方差向量。
根据所述滤波权值向量对yl(i,j,k)作滤波加权,可以得到第l时刻对应的真实CSI的估计值,滤波加权的方法如下:
Figure PCTCN2015082090-appb-000033
其中,
Figure PCTCN2015082090-appb-000034
表示第l时刻对应的真实CSI中一个元素的估计值,该元素例如为第l时刻对应的真实CSI中的任一元素,
Figure PCTCN2015082090-appb-000035
表示x(i,j,k,l)的时域统计均值。
其中,利用先验统计、或基于观测样本作自适应计算更新、或通过上下行信道互易等方法均可以计算
Figure PCTCN2015082090-appb-000036
以下以基于观测样本作自适应计算更新的方式计算
Figure PCTCN2015082090-appb-000037
为例,具体如下:
Figure PCTCN2015082090-appb-000038
其中,α表示时域Alpha(一种滤波方法)滤波系数,可以根据时域统计特性选取,K表示在频域维度可得的观测量样本数,y(i,j,k,l)表示矩阵
Figure PCTCN2015082090-appb-000039
的第(i,j)个元素,初始时刻l=0时可取
Figure PCTCN2015082090-appb-000040
表示观测CSI在第l时刻的瞬时估计值,以及
Figure PCTCN2015082090-appb-000041
表示观测CSI在第l时刻的历史估计值,
Figure PCTCN2015082090-appb-000042
表示y(i,j,k,l)的时域统计均值。
可以根据所述第l时刻对应的真实CSI中的各元素的估计值得到真实CSI的估计值。本发明实施例中,因为所述真实CSI为矩阵形式,因此,所述真实CSI的估计值也是矩阵形式。
例如,将
Figure PCTCN2015082090-appb-000043
按照空域维度进行排列,可以得到所述真实CSI的估计值,以
Figure PCTCN2015082090-appb-000044
表示,其中
Figure PCTCN2015082090-appb-000045
的第(i,j)个元素即为
Figure PCTCN2015082090-appb-000046
关于根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到所述真实CSI的估计值的方式,以上介绍的均为从时域方面实现的具体方式。但以上介绍仅是为了解释本发明而给出的具体实施例,本发明不限于只包括以上方式,例如,还可以从频域、空域等方面去实现,具体方式本领域技术人员根据以上介绍的时域方式自然知道应如何相应变型,本发明对此不做限制。
步骤103:根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
Figure PCTCN2015082090-appb-000047
作为RHH(k,l)的估计值,即以
Figure PCTCN2015082090-appb-000048
作为所述网络侧设备根据所述反馈信息最终得到的信息,所述网络侧设备可以根据
Figure PCTCN2015082090-appb-000049
进行FDD MIMO系统的发射端预编码加权等操作。对
Figure PCTCN2015082090-appb-000050
的可能使用示例如下(包括但不限于):
A、对
Figure PCTCN2015082090-appb-000051
作特征分解:
Figure PCTCN2015082090-appb-000052
其中,
Figure PCTCN2015082090-appb-000053
表示第(k,l)个时频资源对应的信道特征向量,也称为所述波束成形矩阵,
Figure PCTCN2015082090-appb-000054
表示第(k,l)个时频资源对应的信道特征值,
Figure PCTCN2015082090-appb-000055
表示非零特征值数。
B、根据
Figure PCTCN2015082090-appb-000056
等参数,可设计各种具体的SU-MIMO(Single User-Multiple-Input Multiple-Output,单用户多输入多输出)及MU-MIMO(Multi User-Multiple-Input Multiple-Output,多用户多输入多输出)的发射加权方法,包括但不限于EZF-BF(Eigenvector zero-force beamforming,特征向量迫零波束成形)等。
例如,根据
Figure PCTCN2015082090-appb-000057
进行发射加权,一种可能的方法为:令
Figure PCTCN2015082090-appb-000058
乘以所述发射信号,使所述发射信号转变为适合当前信道传输的信号波束。之后对所述UE进行功率分配。因为对于UE来说,其发射功率往往是受限的,因此功率利用率最大化与频谱利用率最大化具有同样的实际意义。在总发射功率受限的条件下,在MIMO信道上自适应地为各UE分配功率,可以使系统参数尽量达到最优。在进行功率分配后,可以为不同的信道选择调制方案。因为,如果每个信道都选用同样的调制方案,固然有利于实现,但却降低了系统性能。因此,在得到了信道上的等效增益和所分配的功率后,可以在发射端进行自适应调制,在满足系统服务质量的前提下,能够尽量使系统性能达到最优。之后,将处理得到的发射信号发送给接收端。
本发明实施例中,可以将所述观测CSI作为下行真实信道矩阵与观测误差的线性叠加,建立如下关系式:
y(i,j,k,l)=x(i,j,k,l)+n(i,j,k,l)  (11)
其中,n(i,j,k,l)表示y(i,j,k,l)与x(i,j,k,l)之间的观测误差,特别地对于LTE FDD系统基于反馈信息的MIMO预编码,n(i,j,k,l)反映由于对RHH(k,l)作量化带来的量化误差或量化噪声。
可以看到,下行信道的真实信息与所述UE上报的所述反馈信息之间是存在观测误差的。现有技术中,UE在上报反馈信息后,网络侧设备直接利用该反馈信息作为波束成形矩阵,令该波束成形矩阵乘以发射信号,使发射信号转变为适合当前信道传输的信号波束。之后对所述UE进行功率分配,在进行功率分配后,可以为不同的信道选择调制方案,然后将处理后的发射信号发送给接收端。
即,现有技术中是直接使用了与真实信息误差较大的、UE上报的反馈信息作为波束成形矩阵对发射信号进行处理,而本发明实施例是对所述UE上报的所述反馈信息进行了一系列处理,得到的所述真实CSI的估计值是尽量减 小了所述观测误差的结果,根据所述真实CSI的估计值进行发射加权,显然比现有技术中得到的发射加权结果更为准确。
通过本发明实施例中的处理方式,根据所述滤波权值向量的计算方法,将真实CSI、观测CSI及观测误差之间的统计特性(互相关性/自相关/均值等)充分作用到所述滤波权值向量中,相比原本孤立的CSI观测值中存在的观测误差(量化误差),即n(i,j,k,l),根据所述滤波权值向量对所述观测CSI向量进行滤波加权得到所述真实CSI的估计值,可将多个观测CSI通过其固有的统计关联性,以权值调整的方法合并在一起作为所述真实CSI的估计值,可以在统计意义上降低与真实CSI之间的估计误差,从而提高预编码的准确性。
请参见图2,基于同一发明构思,本发明实施例提供一种针对CSI反馈系统的发射加权装置,所述装置可以是如前所述的网络侧设备。所述装置可以包括接收模块201、处理模块202和发送模块203。
接收模块201用于接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;
处理模块202用于根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;
发送模块203用于根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
可选的,本发明实施例中,处理模块202还用于:在接收模块201接收所述UE上报的所述反馈信息之后,根据所述反馈信息获得观测CSI。
可选的,本发明实施例中,处理模块202还用于:在根据所述反馈信息获得所述观测CSI的之前、同时或之后,根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI。
可选的,本发明实施例中,处理模块202具体用于:根据观测CSI向量 的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应的所述真实CSI的估计值。
可选的,本发明实施例中,处理模块202还用于:在根据所述反馈信息获得所述观测CSI之后,根据所述观测CSI向量得到所述观测CSI向量的统计协方差矩阵。
可选的,本发明实施例中,接收模块201还用于:在处理模块202根据所述反馈信息获得所述观测CSI之后,获得上行信道矩阵;处理模块202还用于:根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
可选的,本发明实施例中,处理模块202还用于:在根据所述反馈信息获得所述观测CSI之后,利用先验统计的方法,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
请参见图3,基于同一发明构思,本发明实施例提供一种针对CSI反馈系统的发射加权装置,所述装置可以是如前所述的网络侧设备。所述装置包括:总线330,以及连接到总线330的存储器310、接收器320、处理器340和发射器350。其中存储器310用于存储指令。接收器320用于接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个。处理器340用于读取存储器310中存储的指令,并执行所述指令,根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理。发射器350用于将处理器340处理完毕的发射信号发送给接收端。
可选的,本发明实施例中,处理器340还用于:执行所述指令,根据所 述反馈信息获得观测CSI。
可选的,本发明实施例中,处理器340还用于:执行所述指令,根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI。
可选的,本发明实施例中,处理器340具体用于:执行所述指令,根据观测CSI向量的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应的所述真实CSI的估计值。
可选的,本发明实施例中,处理器340还用于:执行所述指令,根据所述观测CSI向量得到所述观测CSI向量的统计协方差矩阵。
可选的,本发明实施例中,接收器320还用于获得上行信道矩阵;处理器340还用于:执行所述指令,根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
可选的,本发明实施例中,处理器340还用于:执行所述指令,利用先验统计的方法,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
本发明实施例中的针对CSI反馈系统的发射加权方法可以包括:接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
本发明实施例中,在获得UE上报的所述反馈信息后,要对所述反馈信息 进行修正预处理,得到所述真实CSI的估计值,所述真实CSI的估计值相对于所述反馈信息,减小了与真实信息之间的误差,网络侧设备根据所述真实CSI的估计值进行下行信道的发射加权及自适应调制编码等操作,相对于根据所述反馈信息直接进行下行信道的发射加权及自适应调制编码等操作,结果更为准确,能够尽量避免用户设备内干扰、用户设备间干扰加剧及自适应调制编码失配,尽量充分发挥MIMO系统的信道容量潜力。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本申请的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解为对本发明的限制。本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (12)

  1. 一种针对信道状态信息CSI反馈系统的发射加权方法,其特征在于,包括:
    接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;
    根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;
    根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
  2. 如权利要求1所述的方法,其特征在于,在接收用户设备UE上报的反馈信息之后,还包括:根据所述反馈信息获得观测CSI。
  3. 如权利要求2所述的方法,其特征在于,在根据所述反馈信息获得观测CSI的之前、同时或之后,还包括:根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI。
  4. 如权利要求2或3所述的方法,其特征在于,根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值,包括:根据观测CSI向量的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应的所述真实CSI的估计值。
  5. 如权利要求4所述的方法,其特征在于,在根据所述反馈信息获得观测CSI之后,还包括:
    获得上行信道矩阵;
    根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
  6. 如权利要求4所述的方法,其特征在于,在根据所述反馈信息获得观测CSI之后,还包括:利用先验统计的方法,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
  7. 一种针对CSI反馈系统的发射加权装置,其特征在于,包括:
    接收模块,用于接收用户设备UE上报的反馈信息,所述反馈信息包括预编码矩阵指示PMI、信道质量指示符CQI及秩指示RI中的至少一个;
    处理模块,用于根据所述反馈信息的统计特性对所述反馈信息进行修正预处理,得到真实CSI的估计值;所述真实CSI为根据下行真实信道矩阵得到的矩阵;
    发送模块,用于根据所述真实CSI的估计值得到波束成形矩阵,利用所述波束成形矩阵对发射信号进行处理,并将处理完毕的发射信号发送给接收端。
  8. 如权利要求7所述的装置,其特征在于,所述处理模块还用于:根据所述反馈信息获得观测CSI。
  9. 如权利要求8所述的装置,其特征在于,所述处理模块还用于:根据所述下行真实信道矩阵以及所述下行真实信道矩阵的共轭转置,得到所述真实CSI。
  10. 如权利要求8或9所述的装置,其特征在于,所述处理模块具体用于:根据观测CSI向量的统计协方差矩阵,以及观测CSI向量与所述真实CSI的元素之间的统计协方差向量,得到针对所述观测CSI第l时刻的滤波权值向量;其中,所述观测CSI向量为所述观测CSI中的第j个元素在特定时域长度内构成的向量;根据所述滤波权值向量对所述观测CSI向量进行滤波加权,得到第l时刻对应的所述真实CSI的估计值。
  11. 如权利要求10所述的装置,其特征在于,所述接收模块还用于:获得上行信道矩阵;
    所述处理模块还用于:根据所述上行信道矩阵,及上下行信道统计互易性原理,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
  12. 如权利要求10所述的装置,其特征在于,所述处理模块还用于:利用先验统计的方法,获得所述观测CSI向量与真实CSI的元素之间的统计协方差向量。
PCT/CN2015/082090 2014-06-24 2015-06-23 一种针对csi反馈系统的发射加权方法及装置 WO2015196974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410289791.4 2014-06-24
CN201410289791.4A CN105337683B (zh) 2014-06-24 2014-06-24 一种针对csi反馈系统的发射加权方法及装置

Publications (1)

Publication Number Publication Date
WO2015196974A1 true WO2015196974A1 (zh) 2015-12-30

Family

ID=54936831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082090 WO2015196974A1 (zh) 2014-06-24 2015-06-23 一种针对csi反馈系统的发射加权方法及装置

Country Status (2)

Country Link
CN (1) CN105337683B (zh)
WO (1) WO2015196974A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781101A (zh) * 2016-03-11 2018-11-09 华为技术加拿大有限公司 用于降低无线资源中自干扰的系统和方法
CN111800177A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 信道状态信息csi反馈方法、装置、设备及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2778435T3 (es) 2016-03-11 2020-08-10 Huawei Tech Co Ltd Método y aparato para medir el índice de calidad de canal
CN109995457A (zh) * 2017-12-29 2019-07-09 维沃移动通信有限公司 一种干扰处理方法、用户终端和网络侧设备
CN115913300A (zh) * 2021-08-25 2023-04-04 华为技术有限公司 一种数据传输方法以及装置
CN113872651B (zh) * 2021-10-12 2022-12-27 京信网络系统股份有限公司 预编码矩阵的获取方法、装置、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101498A1 (en) * 2006-11-01 2008-05-01 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving feedback information in a wireless packet data communication system
CN101741508A (zh) * 2008-11-11 2010-06-16 中兴通讯股份有限公司 Lte发射模式7下cqi获取及使用的方法
CN101753787A (zh) * 2008-12-22 2010-06-23 康佳集团股份有限公司 一种机顶盒的对机升级软件的方法
CN101753187A (zh) * 2008-12-18 2010-06-23 大唐移动通信设备有限公司 多流波束赋形传输时cqi估计方法、系统及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729131B (zh) * 2008-11-03 2014-06-04 夏普株式会社 无线通信系统及预编码方法
CN103840869A (zh) * 2012-11-26 2014-06-04 株式会社Ntt都科摩 基于干扰对齐的预编码方法,发射机和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101498A1 (en) * 2006-11-01 2008-05-01 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving feedback information in a wireless packet data communication system
CN101741508A (zh) * 2008-11-11 2010-06-16 中兴通讯股份有限公司 Lte发射模式7下cqi获取及使用的方法
CN101753187A (zh) * 2008-12-18 2010-06-23 大唐移动通信设备有限公司 多流波束赋形传输时cqi估计方法、系统及装置
CN101753787A (zh) * 2008-12-22 2010-06-23 康佳集团股份有限公司 一种机顶盒的对机升级软件的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781101A (zh) * 2016-03-11 2018-11-09 华为技术加拿大有限公司 用于降低无线资源中自干扰的系统和方法
CN108781101B (zh) * 2016-03-11 2021-09-14 华为技术加拿大有限公司 用于降低无线资源中自干扰的系统和方法
CN111800177A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 信道状态信息csi反馈方法、装置、设备及介质
CN111800177B (zh) * 2019-08-16 2023-07-25 维沃移动通信有限公司 信道状态信息csi反馈方法、装置、设备及介质

Also Published As

Publication number Publication date
CN105337683B (zh) 2018-11-06
CN105337683A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2015196974A1 (zh) 一种针对csi反馈系统的发射加权方法及装置
CN110034797B (zh) 一种预编码矩阵指示的反馈方法及装置
WO2020221582A1 (en) Methods and apparatuses for csi reporting in a wireless communication system
WO2022002079A1 (zh) 预编码矩阵确定方法及装置
WO2018137235A1 (zh) 用于反馈信道状态信息的方法、终端设备和网络设备
WO2010003095A1 (en) System and method for quantization of channel state information
WO2017124827A1 (zh) 多天线数据传输的方法、网络设备、终端设备及系统
US10505779B2 (en) Method and apparatus for obtaining downlink channel information and network side device
US9401830B2 (en) Channel reconfiguration method, precoding method and apparatus therefor
CN106452544B (zh) 一种无线通信方法、基站及终端
WO2011050674A1 (zh) 获取信道状态信息的方法和设备
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
US11888564B2 (en) Method for quantization of combination coefficients associated with frequency domain compression
WO2017127987A1 (zh) 下行信道状态信息的获取方法和装置
CN109787727B (zh) 一种用于无线通信的用户设备、基站中的方法和装置
CN108667490B (zh) 一种信道状态信息反馈方法及装置
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
CN106817720B (zh) 一种获取信道信息的方法及装置
CN114499608B (zh) 用信号发送端口信息
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
CN118054820A (zh) 确定波束赋形中的组合系数的方法、终端及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811609

Country of ref document: EP

Kind code of ref document: A1