WO2021037200A1 - 信道测量的方法和通信装置 - Google Patents

信道测量的方法和通信装置 Download PDF

Info

Publication number
WO2021037200A1
WO2021037200A1 PCT/CN2020/112072 CN2020112072W WO2021037200A1 WO 2021037200 A1 WO2021037200 A1 WO 2021037200A1 CN 2020112072 W CN2020112072 W CN 2020112072W WO 2021037200 A1 WO2021037200 A1 WO 2021037200A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
parameter
weighting coefficients
measurement
terminal device
Prior art date
Application number
PCT/CN2020/112072
Other languages
English (en)
French (fr)
Inventor
任翔
葛士斌
金黄平
王潇涵
尚鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20857075.4A priority Critical patent/EP4020854B1/en
Publication of WO2021037200A1 publication Critical patent/WO2021037200A1/zh
Priority to US17/681,281 priority patent/US20220182122A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3913Predictive models, e.g. based on neural network models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0258Channel estimation using zero-forcing criteria

Definitions

  • This application relates to the field of communication, and more specifically, to a method and communication device for channel measurement.
  • Massive MIMO massive multiple-input multiple output
  • MIMO massive multiple-input multiple output
  • CSI channel state information
  • the accuracy of the CSI is very important to the performance of the system.
  • the present application provides a method and communication device for channel measurement, which can not only reduce the overhead of CSI feedback by the terminal device, but also enable the network device to have a more comprehensive understanding of the state of the channel and improve the communication performance.
  • a method for channel measurement is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: determining L weighting coefficients, the L weighting coefficients can be used to determine K time channels through M time channels, where L, M, and K are all integers greater than 1 or equal to 1. ; Send the information of the L weighting coefficients.
  • the weighting coefficient may represent a coefficient related to the time domain of the channel, and the weighting coefficient may also be referred to as a time domain coefficient for short.
  • the weighting coefficient can characterize the time-varying characteristics of the channel.
  • the time-varying characteristics of the channel that is, the changing characteristics of the channel in the time domain or the changing characteristics of the time-varying channel in the time domain.
  • L weighting coefficients can be used to determine channels at K times through channels at M times. In other words, through the channels at M times and L weighting coefficients, the channels at K times can be obtained.
  • M time instants may be located before K time instants, or M time instants may also be located after K time instants, or M time instants may also partially overlap K time instants, which is not limited.
  • the terminal device can report L weighting coefficients, and by using the weighting coefficients and the channels at M times, the channels at K times can be determined. Therefore, the network device can not only obtain the information of the unknown channel based on the L weighting coefficients, but also determine the channel change in the time domain, so as to have a more comprehensive understanding of the channel status and make more reasonable decisions for downlink scheduling.
  • the method further includes: sending information about T measurement channels, where the T measurement channels are any of the following: any T of the N channel measurements Measurement channels, the first T measurement channels in the N channel measurements, and the last T measurement channels in the N channel measurements; where N and T are both integers greater than or equal to 1, and T is greater than Or equal to L.
  • the first T measurement channels in the N channel measurements may represent the first T continuous measurement channels in the N channel measurements.
  • the last T measurement channels in the N channel measurements may represent the last T continuous measurement channels in the N channel measurements.
  • Any T measurement channels in the N channel measurements may represent any continuous T measurement channels in the N channel measurement, or may also represent any discontinuous T measurement channels in the N channel measurement.
  • the time intervals of any discrete T measurement channels are the same.
  • the terminal device can report part of the measured channels, or in other words, the terminal device can report the measured channels at a part of the time without reporting all the measured channels, thereby reducing the reporting overhead.
  • the network device can not only predict the channel at a future time in combination with the measurement channel and the weighting coefficient reported by the terminal device, but also obtain the channel that the terminal device has measured but not reported.
  • the determining L weighting coefficients includes: calculating the L weighting coefficients based on P measurement channels; where P is greater than 1 or equal to 1. An integer, and P is greater than or equal to L.
  • the network device may pre-configure the value of the parameter P, or the protocol may pre-define the value of the parameter P.
  • the network device or the protocol may predefine the values of multiple sets of parameters P, and the terminal device determines the number of measurement channels actually used for calculating the weighting coefficient according to actual needs.
  • P may be equal to (O+L).
  • O is an integer greater than or equal to 1.
  • O can represent the number of equations used to calculate L weighting coefficients.
  • the terminal device can calculate L weighting coefficients through O groups of channels.
  • the P measurement channels may be historically measured channels, for example.
  • the terminal device can calculate the weighting coefficient based on the previously measured channel.
  • the P measurement channels for example, may also be channels currently measured by the terminal device.
  • the terminal device can perform channel measurement first, and calculate the weighting coefficient according to the result of the channel measurement.
  • the measurement channel used by the terminal device to calculate the weighting coefficient may be a partial channel measured by the terminal device.
  • the time interval of the P measurement channels is the same as the time interval of at least L of the T measurement channels.
  • the time interval of the measurement channel used to calculate the weighting coefficient is consistent with the time interval of at least L of the T measurement channels reported by the terminal device, so that the network device can use the L measurement channels and the L measurement channels.
  • the weighting coefficient can obtain more accurate channel information to ensure communication performance.
  • the method further includes: obtaining information about a parameter L and a parameter O; and the determining L weighting coefficients includes: based on the parameter L and the parameter O. Calculate L'weighting coefficients through the O group of channels, where O and L'are integers greater than 1 or equal to 1, and L'is less than or equal to L; the sending the information of the L weighting coefficients includes : Send the information of the L'weighting coefficients.
  • the parameter L and/or the parameter O may be pre-defined by the protocol, and the terminal device determines the parameter L and the parameter O according to actual needs.
  • the network device may pre-configure the parameter L and/or the parameter O, and the terminal device determines the parameter L and the parameter O according to actual needs.
  • the number of weighting coefficients calculated by the terminal device can be less than L.
  • the weighting factor reported by the terminal device can be less than L.
  • the terminal device may choose to calculate the number of weighting coefficients to be less than L according to the actual situation.
  • the acquiring information of the parameter L and the parameter O includes: determining the target ⁇ L,O ⁇ from one or more sets of ⁇ L,O ⁇ ; based on The target ⁇ L, O ⁇ determines the values of the parameter L and the parameter O.
  • the network device is pre-configured with multiple sets of ⁇ L, O ⁇ parameter value combinations, or the protocol predefines multiple sets of ⁇ L, O ⁇ parameter value combinations.
  • multiple groups of ⁇ L, O ⁇ may be some dynamically configured values.
  • the network device dynamically configures multiple groups ⁇ L,O ⁇ for the terminal device according to the actual situation.
  • multiple sets of ⁇ L,O ⁇ can also be fixed values.
  • ⁇ L,O ⁇ parameters can have ⁇ 4,3 ⁇ , ⁇ 3,2 ⁇ 4,2 ⁇ , etc. There is no restriction on this.
  • multiple sets of ⁇ L,O ⁇ are pre-configured through network equipment, or the protocol can predefine multiple sets of ⁇ L,O ⁇ , and an appropriate set of ⁇ L,O ⁇ can be selected according to the actual situation to improve prediction Accuracy.
  • each group ⁇ L, O ⁇ in the one or more groups ⁇ L, O ⁇ corresponds to one or more of the following information: measurement duration, guide Frequency and time domain density, number of pilot transmissions, pilot transmission period, and moving speed.
  • the network equipment is pre-configured with multiple groups ⁇ L,O ⁇ , or the protocol pre-prescribes multiple groups ⁇ L,O ⁇ , and ⁇ L,O ⁇ can be related to the measurement period, the number of pilot transmissions, and the pilot time domain Density binding, thereby saving signaling overhead.
  • ⁇ L,O ⁇ can be bound to the moving speed, so that the calculation accuracy of the weighting coefficient can be improved and the signaling overhead can be reduced.
  • the method further includes: sending instruction information, where the instruction information is used to indicate the index of the target ⁇ L, O ⁇ .
  • a channel measurement method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method may include: receiving information of L weighting coefficients, the L weighting coefficients can be used to determine the channels at K times through the channels at M times, where L, M, and K are all greater than 1 or equal to 1. An integer of; determine the L weighting coefficients.
  • the network device can determine the L weighting coefficients through the information of the L weighting coefficients reported by the terminal device. Through the weighting coefficient and the channels at M times, the channels at K times can be determined. Therefore, the network device can not only obtain the information of the unknown channel based on the L weighting coefficients, but also determine the change of the channel in the time domain, so as to have a more comprehensive understanding of the channel state and make more reasonable decisions for downlink scheduling.
  • the method further includes: receiving information of T measurement channels, where the T measurement channels are any of the following: any T of the N channel measurements Measurement channels, the first T measurement channels in the N channel measurements, and the last T measurement channels in the N channel measurements; where N and T are both integers greater than or equal to 1, and T is greater than Or equal to L.
  • the network equipment combined with the measurement channel and weighting coefficient reported by the terminal device can not only predict the channel at a future time, but also obtain the channel that the terminal device has measured but not reported.
  • the method further includes: sending information indicating a parameter O and a parameter L; the receiving information of L weighting coefficients includes: receiving L'weighting coefficients , The L'weighting coefficients are calculated based on the parameter O and the parameter L through O groups of channels, where O and L'are both integers greater than 1 or equal to 1, and L' Less than or equal to L.
  • the network device may pre-configure the parameter L and/or the parameter O, and the terminal device determines the parameter L and the parameter O according to actual needs.
  • the sending the information indicating the parameter O and the parameter L includes: sending the information indicating one or more sets of ⁇ L, O ⁇ , and the one or more sets of ⁇ L, O ⁇ are sent. Multiple sets of ⁇ L, O ⁇ are used to determine the values of the parameter L and the parameter O.
  • the network device is pre-configured with multiple sets of ⁇ L, O ⁇ parameter value combinations, or the protocol predefines multiple sets of ⁇ L, O ⁇ parameter value combinations.
  • multiple groups of ⁇ L, O ⁇ may be some dynamically configured values.
  • the network device dynamically configures multiple groups ⁇ L,O ⁇ for the terminal device according to the actual situation.
  • multiple sets of ⁇ L,O ⁇ can also be fixed values.
  • ⁇ L,O ⁇ parameters can have ⁇ 4,3 ⁇ , ⁇ 3,2 ⁇ 4,2 ⁇ , etc. There is no restriction on this.
  • the network device may indicate a certain set of ⁇ L, O ⁇ for calculating the weighting coefficient to the terminal device, or the terminal device may also determine a specific set of ⁇ L, O ⁇ for calculating the weighting coefficient by itself.
  • each group ⁇ L,O ⁇ in the one or more groups ⁇ L,O ⁇ corresponds to one or more of the following information: measurement duration, guide Frequency and time domain density, number of pilot transmissions, pilot transmission period, and moving speed.
  • the method further includes: receiving indication information, where the indication information is used to indicate the index of the target ⁇ L, O ⁇ .
  • a communication device configured to execute the communication method provided in the foregoing first aspect.
  • the communication device may include a module for executing the communication method provided in the first aspect.
  • a communication device is provided, and the communication device is configured to execute the communication method provided in the second aspect.
  • the communication device may include a module for executing the communication method provided in the second aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the communication method in any one of the possible implementation manners of the first aspect in the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface
  • the processor is coupled with the communication interface
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the above-mentioned second aspect and the communication method in any one of the possible implementation manners of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface
  • the processor is coupled with the communication interface
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device in a seventh aspect, includes a processor and an interface.
  • the processor is coupled to a memory through the interface.
  • the processor executes a computer program or instruction in the memory, the first aspect and the first aspect The method in any one of the possible implementations is executed.
  • a communication device in an eighth aspect, includes a processor and an interface.
  • the processor is coupled to a memory through the interface.
  • the processor executes a computer program or instruction in the memory, the second aspect and the second aspect The method in any one of the possible implementations is executed
  • a chip including: a processor and an interface, used to call and run the computer program stored in the memory from the memory, and execute the first aspect and any one of the possible implementations of the first aspect method.
  • a chip including: a processor and an interface, used to call and run a computer program stored in the memory from a memory, and execute the second aspect and any one of the possible implementation manners of the second aspect method.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first aspect and any possible aspect of the first aspect.
  • the communication method in the implementation mode.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the second aspect and any possible aspect of the second aspect.
  • the communication method in the implementation mode.
  • a computer program product containing instructions which when executed by a computer causes a communication device to implement the communication method provided in the first aspect.
  • a computer program product containing instructions which when executed by a computer causes a communication device to implement the communication method provided in the second aspect.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 and Fig. 2 are schematic diagrams of communication systems applicable to embodiments of the present application;
  • FIG. 3 is a schematic flowchart of CSI feedback performed by a terminal device
  • Fig. 4 is a schematic diagram of a channel measurement method according to an embodiment of the present application.
  • FIGS. 5 and 6 are schematic diagrams of channel measurement methods applicable to embodiments of the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS time division duplex
  • 5G mobile communication system fifth generation mobile communication system
  • NR new radio
  • the 5G mobile communication system may include non-standalone (NSA) and/or standalone (SA).
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth-generation mobile communication system.
  • the communication system may also be a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an Internet of things (IoT) network or other networks.
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as V2X (X stands for anything).
  • the V2X communication includes: vehicle-to-vehicle (V2V) communication, vehicle to roadside infrastructure (V2I) ) Communication, vehicle to pedestrian (V2P) or vehicle to network (V2N) communication, etc.
  • the terminal equipment in the embodiments of this application may also be referred to as: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • a handheld device with a wireless connection function for example, a vehicle-mounted device, and so on.
  • some examples of terminals are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality.
  • Wireless terminals in transportation safety transportation safety
  • wireless terminals in smart city smart city
  • wireless terminals in smart home smart home
  • cellular phones cordless phones
  • session initiation protocol session initiation protocol
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • handheld device with wireless communication function computing device or other processing device connected to wireless modem
  • vehicle Devices wearable devices
  • terminal devices in a 5G network or terminal devices in a public land mobile network (PLMN) that will evolve in the future, etc., which are not limited in the embodiment of the present application.
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device can also be a terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology to realize man-machine Interconnection, an intelligent network of interconnection of things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (narrowband) NB technology.
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network device in the embodiment of the present application may be a device used to communicate with terminal devices.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access
  • the base station (transceiver station, BTS) in CDMA) can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station in the LTE system (evolved NodeB, eNB or eNodeB), it can also be a wireless controller in the cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, or a wearable device
  • the embodiment of the present application is not limited.
  • the network device in the embodiment of the present application may be a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN radio access network
  • some examples of RAN nodes are: base station, next-generation base station gNB, transmission reception point (TRP), evolved Node B (eNB), home base station, baseband unit (BBU) , Or the access point (AP) in the WiFi system.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node (CU-UP node) and RAN equipment of DU node.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIGS. 1 and 2 In order to facilitate the understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIGS. 1 and 2.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1, and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in FIG. To terminal equipment 123. Both network equipment and terminal equipment can be configured with multiple antennas, and the network equipment and terminal equipment can communicate using multiple antenna technology.
  • the network device when a network device communicates with a terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in a cell.
  • the network device 111 and the terminal device 121 to the terminal device 123 form a single-cell communication system.
  • the cell is denoted as cell #1.
  • the network device 111 may be a network device in the cell #1, or in other words, the network device 111 may serve a terminal device (for example, the terminal device 121) in the cell #1.
  • a cell can be understood as an area covered by a wireless signal of a network device.
  • FIG. 2 is another schematic diagram of a wireless communication system 200 applicable to an embodiment of the present application. As shown in Figure 2, the technical solutions of the embodiments of the present application can also be applied to D2D communication.
  • the wireless communication system 200 includes a plurality of terminal devices, such as the terminal device 124 to the terminal device 126 in FIG. 2.
  • the terminal device 124 to the terminal device 126 can directly communicate with each other.
  • the terminal device 124 and the terminal device 125 may send data to the terminal device 126 separately or at the same time.
  • FIG. 1 and FIG. 2 are only exemplary illustrations, and the present application is not limited thereto.
  • the embodiments of the present application can be applied to any communication system, as long as there are at least two devices in the communication system, one device needs to send instruction information to indicate the transmission direction; the other device receives the instruction information and can The indication information determines the transmission direction within a certain period of time.
  • the sending device (such as network equipment) can process the signal to be sent with the aid of a precoding matrix that matches the channel status when the channel status is known, so that the precoded signal to be sent and the channel Adaptation, thereby reducing the complexity of the receiving device (such as the terminal device) in eliminating the influence between channels. Therefore, through the precoding processing of the signal to be transmitted, the quality of the received signal (for example, the signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, the use of precoding technology can realize the transmission on the same time-frequency resource between the sending device and multiple receiving devices, that is, realizing multiple user multiple input multiple output (MU-MIMO).
  • MU-MIMO multiple user multiple input multiple output
  • the sending device may also perform precoding in other ways. For example, when channel information (such as but not limited to a channel matrix) cannot be obtained, precoding is performed using a preset precoding matrix or a weighting processing method. For the sake of brevity, its specific content will not be repeated in this article.
  • the network device can predict the state of the unknown channel based on the known channel, and can further process the signal to be transmitted with the help of a precoding matrix matching the predicted channel state, so that the precoded signal to be transmitted Adapt to the channel.
  • Reference signal reference signal
  • RS reference signal
  • the reference signal may include a non-precoded reference signal (non-precoded RS) and a precoded reference signal.
  • the precoded reference signal may also be referred to as a beamformed reference signal (beamformed RS), or may also be referred to as a precoding reference signal for short.
  • beamformed RS beamformed reference signal
  • the meanings expressed by the precoded reference signal, the precoded reference signal, and the beamformed reference signal are the same.
  • a reference signal when referring to a reference signal in the following, sometimes it only refers to a reference signal that has not been precoded, sometimes only refers to a precoded reference signal, and sometimes includes a reference signal that has not been precoded and a precoding reference signal. Those skilled in the art can understand its meaning in different scenarios.
  • the reference signal that has not undergone precoding processing may be similar to the Class A reference signal defined in the LTE or NR protocol.
  • the beamforming reference signal may be similar to the Class B reference signal in the LTE protocol.
  • the reference signal involved in the embodiment of the present application may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (channel state information reference signal, CSI-RS) or a sounding reference signal (sounding reference signal, SRS).
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • Time domain vector It can be used to indicate the change of the channel in the time domain. Each time domain vector can represent a changing law of the channel over time.
  • the wireless channel is a time-varying channel and will suffer from attenuation loss from different channels.
  • the frequency-selective fading caused by multipath delay spread and the time-frequency dual-selective fading channel jointly affected by the time-selective fading caused by Doppler frequency shift is a typical time-varying channel.
  • Doppler shift can refer to the frequency shift between the transmitting frequency and the receiving frequency caused by the relative movement between the terminal equipment and the network equipment.
  • the difference between the receiving frequency and the transmitting frequency is called Doppler Frequency shift.
  • v is the moving speed of the terminal device
  • f c is the carrier frequency
  • the incident angle of the multipath signal
  • c is the speed of light.
  • the angle of incidence of different transmission paths can be considered for ⁇ . Since the ⁇ of the multipath is different, different transmission paths will correspond to different Doppler shifts, which will cause Doppler spread.
  • the size of the Doppler frequency shift indicates the influence of the moving speed on the speed of the channel time domain change.
  • time domain vector is only defined to facilitate the distinction from the space domain vector and the frequency domain vector described later, and should not constitute any limitation to this application. This application does not exclude the possibility of defining other names for time domain vectors in future agreements to express the same or similar meanings.
  • the time domain vector is one or more of a Discrete Fourier Transform (DFT) vector, an oversampled DFT vector, a wavelet transform (wavelet transform, WT) vector, or an oversampled WT vector.
  • DFT Discrete Fourier Transform
  • WT wavelet transform
  • WT oversampled WT vector
  • Spatial domain vector or beam vector, angle vector, etc.
  • Each element in the spatial vector may represent the weight of each antenna port (antenna port). Based on the weight of each antenna port represented by each element in the space vector, the signals of each antenna port are linearly superimposed to form a strong signal area in a certain direction in space.
  • Precoding the reference signal based on the spatial vector can make the transmitted reference signal have a certain spatial directivity. Therefore, the process of precoding the reference signal based on the spatial domain vector can also be regarded as the process of spatial domain (or abbreviated, spatial domain) precoding.
  • the length of the space vector can be the number of transmitting antenna ports in a polarization direction N s , N s ⁇ 1, and N s is an integer.
  • the spatial vector can be, for example, a column vector or a row vector with a length of N s. This application does not limit this.
  • the spatial vector is taken from the DFT matrix.
  • Each column vector in the DFT matrix can be called a DFT vector.
  • the spatial vector can be a DFT vector.
  • the spatial vector may also be, for example, the two-dimensional (2 dimensions, 2D)-discrete Fourier transform (Discrete Fourier Transform) defined in the Type II (type II) codebook in the NR protocol TS 38.214 version 15 (release 15, R15), DFT) vector or oversampled 2D-DFT vector.
  • 2D two-dimensional
  • Frequency domain vector (frequency domain vector): or delay vector, etc.
  • Each frequency domain vector can represent a change law. Since the signal is transmitted through the wireless channel, it can reach the receiving antenna through multiple paths from the transmitting antenna. Multipath time delay causes frequency selective fading, which is the change of frequency domain channel. Therefore, different frequency domain vectors can be used to represent the changing law of the channel in the frequency domain caused by the delay on different transmission paths. Since the phase change of the channel in each frequency domain unit is related to the time delay, it can be known from the Fourier transform that the time delay of the signal in the time domain can be equivalent to the phase gradual change in the frequency domain. Therefore, the frequency domain vector can also be called a delay vector. In other words, the frequency domain vector can also be used to express the delay characteristics of the channel.
  • Precoding the reference signal based on the frequency domain vector can essentially refer to the phase rotation of each frequency domain unit in the frequency domain based on the elements in the frequency domain vector, so as to pre-encode the reference signal to pre-encode the frequency domain caused by the multipath delay.
  • Select features for pre-compensation. Therefore, the process of precoding the reference signal based on the frequency domain vector can be regarded as the process of frequency domain precoding.
  • the frequency domain vector may be used to construct a combination of multiple space domain vectors and frequency domain vectors, or simply a space-frequency vector pair, with the above-mentioned spatial domain vector to construct a precoding vector.
  • the length of the frequency domain vector can be denoted as N 3 , N 3 ⁇ 1, and N 3 is an integer.
  • Space-frequency vector pair a space-domain vector and a frequency-domain vector can be combined to obtain a space-frequency vector pair.
  • a space-frequency vector pair may include a space-domain vector and a frequency-domain vector.
  • a space-frequency component matrix can be obtained from the space-domain vector and the frequency-domain vector in a space-frequency vector pair.
  • At least one of the space vector and the frequency vector included in any two space-frequency vector pairs is different.
  • the space-frequency component matrices constructed by any two space-frequency vector pairs are also different.
  • Space frequency matrix It can be understood as an intermediate quantity used to determine the precoding matrix corresponding to each frequency domain unit.
  • the space-frequency matrix can be determined by the precoding matrix or the channel matrix corresponding to each frequency domain unit.
  • the space-frequency matrix may be obtained by the weighted sum of multiple space-frequency component matrices, so as to recover the downlink channel or precoding matrix.
  • the space frequency matrix can be denoted as H, Where w 1 to Is N 3 column vectors corresponding to N 3 frequency domain units, each column vector may be a precoding matrix corresponding to each frequency domain unit, and the length of each column vector may be N s .
  • the N 3 column vectors respectively correspond to precoding vectors of N 3 frequency domain units. That is, the space-frequency matrix can be regarded as a joint matrix formed by combining the precoding vectors corresponding to N 3 frequency domain units.
  • the space-frequency matrix is only an expression form used to determine the intermediate quantity of the precoding matrix, and should not constitute any limitation in this application.
  • a vector of length N s ⁇ N 3 can also be obtained. This vector can be called Space frequency vector.
  • the dimensions of the space-frequency matrix and the space-frequency vector shown above are only examples, and should not constitute any limitation to this application.
  • the space-frequency matrix may also be a matrix with a dimension of N 3 ⁇ N s .
  • each row vector may correspond to a frequency domain unit for determining the precoding vector of the corresponding frequency domain unit.
  • the dimension of the space-frequency matrix can be further expanded.
  • the dimension of the space-frequency matrix may be 2N s ⁇ N 3 or N 3 ⁇ 2N s . It should be understood that this application does not limit the number of polarization directions of the transmitting antenna.
  • the space-frequency matrix in the embodiment of the present application is not limited in the embodiment of the present application.
  • the space-frequency matrix may be determined based on each receiving antenna, or may be determined based on each transmission layer.
  • Pilot transmission period the interval between two adjacent pilot transmissions.
  • Pilot frequency time domain density the number of times the reference signal is transmitted in a predefined time unit, or the ratio of the time domain resources used for this transmission of the reference signal to the time unit.
  • One time unit may include, for example, one or more pilot transmission periods, and the corresponding pilot time domain density may be, for example, 1 or greater than 1.
  • the terminal device can perform channel measurement within a certain period of time according to the instructions of the network device. This period can be referred to as the measurement duration.
  • the length of this period of time may be indicated by the network equipment through signaling, for example, through high-level signaling (such as radio resource control (Radio Resource Control, RRC) messages, etc.).
  • the measurement duration can also be predefined, such as protocol definition. This application does not limit this.
  • the network device can notify the terminal device to start channel measurement through signaling. For example, the network device may notify the terminal device of the start time and/or duration of the period through signaling, or the network device may trigger the terminal device to start channel measurement through signaling.
  • the terminal device can receive multiple reference signals used for channel measurement within the measurement duration, and can perform channel measurement based on the multiple received reference signals, so as to feed back the time-varying characteristics of the channel to the network device.
  • the network device notifies the terminal device to start channel measurement through signaling, which does not mean that the terminal device has been performing channel measurement since the start time or trigger time indicated by the network device.
  • the network device only informs the terminal device through signaling that it can perform channel measurement, and the terminal device can perform channel measurement based on the received reference signal within a time window from the start time or the trigger time.
  • the size of the time window is also the measurement duration.
  • the feedback mentioned here refers to the feedback of the terminal device on the time-varying characteristics of the channel, but it does not mean that the terminal device does not provide other feedback besides this.
  • the terminal device may feedback based on the feedback mode of dual-domain compression during this time period, or based on the feedback mode of type II codebook during this time period, and so on.
  • the other feedback made by the terminal device during this period and the feedback on the time-varying characteristics of the channel described in this application are independent processes.
  • the terminal device can receive the reference signal multiple times during the measurement period.
  • the number of times the terminal device receives the reference signal during the measurement duration may be the product of the ratio of the measurement duration and the above-mentioned time unit multiplied by the pilot time domain density.
  • Number of pilot transmissions In the embodiments of this application, the number of pilot transmissions may refer to the total number of times the network device sends reference signals used for channel measurement, or in other words, the total number of reference signals received by terminal equipment for channel measurement. frequency.
  • the number of pilot transmissions may specifically refer to the total number of pilot transmissions in a period of time. When the number of pilot transmissions is greater than 1, the multiple pilot transmissions may be multiple transmissions distributed within this period of time. In other words, the multiple pilot transmissions are transmissions at multiple times.
  • the number of pilot transmissions can be indicated by the network equipment through signaling, such as high-level signaling (such as RRC messages); the number of pilot transmissions can also be predefined, such as protocol definitions. This application does not limit this.
  • Fig. 3 is a schematic flowchart of CSI feedback performed by a terminal device.
  • the network device sends a reference signal at time 1, and the terminal device can perform channel measurement and feedback at time 2 after receiving the reference signal.
  • the reference signal sent by the network device may be periodic, aperiodic or semi-continuous, that is, there may be a period of time between the last time the network device sends the reference signal and the next time the reference signal is sent.
  • the network device sends the next reference signal at time 3, and the terminal device performs channel measurement and feedback based on the reference signal sent next time at time 4.
  • a time interval t1 has passed, and from time 2 to time 4, a time interval t2 has passed.
  • the precoding matrix used by the network device for downlink transmission is determined based on the feedback received at time 2.
  • the channel may have changed during the time interval t2.
  • the precoding matrix determined based on the feedback at time 2 is directly used to precode the subsequent downlink transmission, the precoding matrix may no longer be compatible with the downlink channel.
  • Ground adaptation which may cause a decrease in transmission performance.
  • This situation in which the precoding matrix determined based on feedback cannot match the real channel due to changes in the channel over time is called CSI expiration. In other words, when the channel changes rapidly over time, the CSI expiration may cause a significant decrease in transmission performance.
  • this application provides a method for channel measurement.
  • the channel measurement method provided in this application is based on the results of multiple channel measurements by the terminal device and feeds back the weighting coefficients so that the network device can predict the time-varying trend of the channel based on the weighting coefficients, thereby not only improving the accuracy of feedback, but also reducing feedback overhead. Improve system performance.
  • FIG. 4 is a schematic interaction diagram of a method 400 for channel measurement according to an embodiment of the present application.
  • the method 400 may include the following steps.
  • the terminal device determines L weighting coefficients, and the L weighting coefficients can be used to determine channels at K times through channels at M times, where L, M, and K are all integers greater than or equal to 1.
  • the weighting coefficient may represent a coefficient related to the time domain of the channel, and the weighting coefficient may also be referred to as a time domain coefficient for short.
  • the weighting coefficient can characterize the time-varying characteristics of the channel.
  • the time-varying characteristics of the channel that is, the changing characteristics of the channel in the time domain or the changing characteristics of the time-varying channel in the time domain.
  • weighting coefficient is only defined for ease of distinction, and should not constitute any limitation in this application. This application does not limit the specific naming of the weighting factor, and this application does not exclude the possibility of defining other names for the weighting factor in future agreements to indicate the same or similar meaning. For example, it can also be called a Doppler correlation coefficient. The following is a unified expression of weighting coefficients.
  • L weighting coefficients can be used to determine channels at K times through channels at M times.
  • the M moments may be located before K moments, or the M moments may also be located after K moments, or the M moments may partially overlap with the K moments, which is not limited.
  • the channels at K times can be obtained. It can be understood that the information of the unknown channel can be predicted through the known channel and the weighting coefficient.
  • a known channel means a channel that has been learned.
  • the terminal device measures one or more channels, and reports the one or more channels to the network device, so that the network device can learn the status of the one or more channels.
  • the unknown channel means an unlearned channel.
  • the terminal device measures one or more channels, and reports some of the one or more channels to the network device, so that the network device can learn the status of this part of the channel, and the remaining unreported channels or channels in the future are that It is an unknown channel.
  • the network device can determine the unknown channel through the known channel and the weighting coefficient.
  • the terminal device sends information about L weighting coefficients to the network device.
  • the network device receives the information of the L weighting coefficients.
  • the change characteristics of the channel in the time domain can be expressed as a weighted superposition of multiple slowly varying Doppler frequencies. Due to the gradual change of the Doppler frequency, the channel change in the coherence time of the channel is correlated.
  • the channel at the nth moment can be approximately expressed as the weighted superposition of the historical channels at the previous L moments, namely Among them, y(n) represents the channel at the nth moment, and a l is the weighting coefficient.
  • AR autoregressive
  • the network device can obtain the channels that the terminal device has measured but not reported according to the L weighting coefficients.
  • the terminal device can report part of the channels obtained by measurement, and does not need to report all the channels obtained by the measurement.
  • the network device can obtain unreported channels according to the L weighting coefficients and the reported partial channels.
  • the network device may also predict the channel at a future time according to the L weighting coefficients.
  • the terminal device can report some or all of the measured channels, and the network device can predict the channel at a future time based on the L weighting coefficients and the reported channel. Thereby, performance loss caused by CSI expiration can be reduced, CSI reporting overhead can be reduced, and system performance can be improved.
  • the terminal device can determine multiple space-frequency vector pairs.
  • the figure shows three space-frequency vector pairs (that is, the three space-frequency vector pairs shown in the figure). Small squares).
  • the terminal equipment measures the channels at 5 moments, such as the channels of time slot 1, time slot 4, time slot 7, time slot 10, and time slot 13.
  • the terminal device may report the channel at the 5 moments to the network device, or the terminal device may also report the channel at some moments. It is assumed that the terminal equipment reports the channels of 4 moments to the network equipment, such as reporting the channels of time slot 1, time slot 4, time slot 7, and time slot 10.
  • time interval is 3 time slots. It should be understood that the embodiment of the present application does not limit the time interval.
  • the time interval may also be 5 time slots or 20 time slots or 40 time slots, etc., which is not limited.
  • the network device can obtain the channel not reported by the terminal device based on the channel and the weighting coefficient that the terminal device has reported. As shown in b) in Figure 5, the network device can obtain the channel at the fifth time, that is, the channel at time slot 13, based on the channels of time slot 1, time slot 4, time slot 7, and time slot 10. And according to the channel at the 5 moments, the change of the channel with time can be estimated, and the change is indicated by a curve. You can refer to Figure 5 in b).
  • the change of the channel at the future time can be predicted, as shown in c) of Fig. 5.
  • the curve in the dashed box in c) in Fig. 5 is the prediction of the channel at the future time.
  • c(O+L+1) a simple calculation method
  • c(O+L+1) a 1 c(O+1)+...+a L c(O+L ).
  • ⁇ a 1 ,..., a L ⁇ are L weighting coefficients
  • c(O+1) to c(O+L) are all known sampling channels.
  • the network equipment predicts the channel at 3 moments in the future.
  • the channel at the future time can be illustrated by the curve in the dashed frame. The three dots on the curve represent the channel at the next 3 time predicted by the network device.
  • the network equipment can predict the channel at a future time based on the L weighting coefficients reported by the terminal equipment.
  • the terminal device may calculate the weighting coefficient based on the results of multiple channel measurements.
  • the terminal device can calculate the weighting coefficient based on the channel at multiple times.
  • the terminal device can measure the channel at multiple times, and calculate the weighting coefficient according to the measured channel.
  • the terminal device can perform channel measurement based on reference signals received at multiple different moments.
  • the aforementioned weighting coefficient may be determined by the terminal device based on reference signals received at multiple times.
  • the aforementioned weighting coefficient may be determined by the terminal device based on the reference signal received multiple times.
  • the terminal device may calculate the weighting coefficient based on the reference signal received in the measurement window (or called the measurement window in the time domain).
  • the measurement duration of the measurement window may be relatively short, for example, it may be defined in units of time slots (slot) or milliseconds (ms).
  • the measurement duration of the measurement window is 20 time slots or 5ms or 10ms or 20ms.
  • the measurement duration of the measurement window can also be longer, for example, it can be defined in seconds.
  • the measurement duration is 10 seconds.
  • the measurement window can be predefined, such as protocol definition.
  • the measurement window may also be pre-configured by the network device, for example, the network device indicates the start time and the measurement duration of the measurement through signaling. This application does not limit this.
  • the terminal device may receive the reference signal based on the number of pilot transmissions, and calculate the weighting coefficient based on the received reference signal.
  • the number of pilot transmissions can be predefined, such as protocol definition.
  • the number of pilot transmission times may also be pre-configured by the network equipment, for example, the network equipment indicates the number of pilot transmission times through signaling. This application does not limit this.
  • the terminal device may receive the reference signal based on the measurement window or the number of pilot transmissions to perform channel measurement. Regardless of whether the terminal device receives the reference signal based on the measurement window or the number of pilot transmissions, the terminal device can perform channel measurement based on the reference signal received multiple times to determine the weighting coefficient used to characterize the time-varying characteristics of the channel.
  • N times may be the number of reference signals received within the measurement window, that is, N is the number of reference signals received based on the measurement window.
  • N times may also be the number of pilot transmissions, that is, N is the number of received reference signals based on the number of pilot transmissions. This application does not limit this.
  • the terminal device may calculate the weighting coefficient according to P measurement channels.
  • P measurement channels may represent channels measured by terminal equipment at P times, or channels obtained by terminal equipment sampling at P times.
  • P is an integer greater than or equal to 1.
  • the P measurement channels may be historically measured channels, for example.
  • the terminal device can calculate the weighting coefficient based on the previously measured channel.
  • the P measurement channels may also be channels currently measured by the terminal device, for example.
  • the terminal device can perform channel measurement first, and calculate the weighting coefficient according to the result of the channel measurement.
  • the measurement channel used by the terminal device to calculate the weighting coefficient may be a part of the channel measured by the terminal device, that is, N is greater than or equal to P.
  • the terminal device measures channels N times, and the terminal device can select (O+L) measurement channels among the N times to calculate L weighting coefficients, namely ⁇ a 1 ,..., a L ⁇ .
  • P measurement channels may include: c(1), c(2),...,c(O+L).
  • the P measurement channels used for the terminal device to calculate the weighting coefficient may be the result of historical measurement by the terminal device or the result of the current measurement by the terminal device, which is not limited.
  • the following description mainly takes P measurement channels as the channels currently measured by the terminal device as an example.
  • P may be equal to (O+L).
  • O is an integer greater than or equal to 1.
  • O can represent the number of equations used to calculate L weighting coefficients.
  • the terminal device can calculate L weighting coefficients through O groups of channels.
  • O can be greater than or equal to L, or O can also be less than L, which is not limited.
  • the terminal device calculates L weighting coefficients through O groups of channels.
  • the network device sends a reference signal, such as CSI-RS, to the terminal device.
  • a reference signal such as CSI-RS
  • the network device configures the CSI-RS measurement times and/or measurement window for the terminal device, and sends a reference signal, such as CSI-RS, to the terminal device.
  • a reference signal such as CSI-RS
  • the terminal device performs channel estimation in the measurement window and obtains the space-frequency matrix at (O+L) moments, for example, denoted as: H(1), H(2),..., H(O+L).
  • the terminal device performs channel measurement based on the reference signal received at the nth time among the N times, and can obtain a space-frequency matrix H(n), where n is an integer greater than or equal to 1, and n is less than or equal to N.
  • the space-frequency matrix can be understood as a way to characterize the channel.
  • H(n) can be a matrix with dimensions of N s ⁇ N 3 , N s can be the number of network device transmitting antennas, and N 3 can be the frequency domain granularity, such as the number of subbands or the number of subcarriers.
  • C(n) can also be understood as a way to characterize the channel.
  • S is a set of spatial basis vectors
  • F is a set of frequency domain basis vectors.
  • S can be a DFT matrix of N s ⁇ N s
  • F can be a DFT matrix of N 3 ⁇ N 3
  • C(n) can be an N s ⁇ N 3- dimensional matrix.
  • the superscript H denotes the conjugate transpose, such as, S H denotes a matrix (or vector) S conjugate transpose.
  • S H denotes a matrix (or vector) S conjugate transpose.
  • characterization of the channel by the space-frequency matrix H(n), or the characterization of the channel by the space-frequency coefficient matrix C(n) is only an exemplary description, and the embodiment of the present application is not limited thereto. Other ways of characterizing the channel are all It falls into the protection scope of the embodiments of the present application.
  • the terminal device calculates the weighting coefficient.
  • Implementation mode 1 The terminal device calculates the weighting coefficient according to C(n).
  • ⁇ a 1 ,..., a L ⁇ are L weighting coefficients
  • c(1) to c(O+L) are all known measurement channels (or sampling channels).
  • O equations are used to make the weighting coefficient ⁇ a 1 ,..., a L ⁇ more robust.
  • Implementation mode 2 The terminal device calculates the weighting coefficient according to H(n).
  • ⁇ a 1 ,..., a L ⁇ are L weighting coefficients
  • H(1) to H(O+L) are all known measurement channels (or sampling channels, that is, the space-frequency matrix obtained through channel measurement) ).
  • the starting position of each row may be independent, as long as the spacing between H and H of each row is aligned, that is, the time interval is the same.
  • the starting position of the first row can be H(1), for example, the first row can be: H(1), H(2), H(3); the starting position of the second row It can be H(4), for example, the second line can be: H(4), H(5), H(6); the starting position of the third line can be H(2), for example, the third line can be: H(2), H(3), H(4).
  • a may be the least square solution of the above equation.
  • the receiving antenna is not limited in the embodiment of the present application.
  • the embodiments of the present application mainly take one receiving antenna as an example for description. When there are multiple receiving antennas, at least the following situations may be included.
  • each receiving antenna may correspond to a set of weighting coefficients.
  • the space-frequency matrix corresponding to each receiving antenna can be used to calculate a set of weighting coefficients.
  • the space-frequency coefficient matrix corresponding to each receiving antenna (that is, the space-frequency coefficient matrix obtained by projecting the space-frequency matrix to the space-frequency domain) can be used to calculate a set of weighting coefficients.
  • multiple receiving antennas may correspond to the same set of weighting coefficients.
  • a set of weighting coefficients may be calculated for any one of the receiving antennas, and the set of weighting coefficients may be used for the multiple receiving antennas.
  • a space-frequency matrix corresponding to a receiving antenna can be selected to calculate a set of weighting coefficients.
  • an optional space-frequency coefficient matrix corresponding to a receiving antenna that is, a space-frequency coefficient matrix obtained by projecting the space-frequency matrix to the space-frequency domain
  • multiple space-frequency coefficients can be obtained. From the multiple space-frequency coefficients, some of the space-frequency coefficients are randomly selected to calculate a set of weighting coefficients, and the set of weighting coefficients can be used for the multiple receiving antennas.
  • the D1 space-frequency coefficients and L weighting coefficients form an O1 equation
  • taking D2 space-frequency coefficients from the second receiving antenna, the D2 space-frequency coefficients And L weighting coefficients form O2 equations
  • take D3 space-frequency coefficients from the third receiving antenna, the D3 space-frequency coefficients and L weighting coefficients form O3 equations
  • ... take Dr from the r-th receiving antenna Space-frequency coefficients, the Dr space-frequency coefficients and L weighting coefficients form Or equations.
  • r represents the number of receiving antennas.
  • D1, D2, D3, ..., Dr are integers greater than or equal to 1, and D1, D2, D3, ..., Dr represent the number of space-frequency coefficients taken from different receiving antennas.
  • O1, O2, O3,..., Or are all integers greater than or equal to 1, and O1, O2, O3,..., Or all represent the number of equations.
  • O1, O2, O3, ..., Or are equal.
  • space-frequency coefficients are taken from different receiving antennas are not limited in the embodiment of the present application.
  • first receiving antenna, the second receiving antenna, and the third receiving antenna are only names for distinguishing different receiving antennas, and do not limit the protection scope of the embodiments of the present application.
  • singular value decomposition may be performed on multiple space-frequency coefficients corresponding to multiple receiving antennas, or partial space-frequency coefficients of multiple space-frequency coefficients corresponding to multiple receiving antennas, Then take the feature vector and use it to calculate the weighting coefficient.
  • the space-frequency coefficients or part of the space-frequency coefficients corresponding to multiple receiving antennas are combined into a matrix, the matrix is subjected to singular value decomposition, and then the eigenvector is taken to calculate the weighting coefficient.
  • multiple space-frequency matrices can be obtained. Perform SVD on the multiple spatial frequency matrices or part of the multiple spatial frequency matrices, and then take the eigenvectors to calculate the weighting coefficients. For example, multiple space-frequency matrices or parts of multiple space-frequency matrices corresponding to multiple receiving antennas are synthesized into a matrix, singular value decomposition is performed on the matrix, and then the eigenvector is removed to calculate the weighting coefficient.
  • the terminal device After the terminal device calculates the L weighting coefficients, it can report the L weighting coefficients to the network device.
  • the terminal device may also report the information of the T measurement channels to the network device.
  • T is an integer greater than or equal to 1.
  • the terminal equipment reports T measurement channels and L weighting coefficients.
  • the specific reporting quantification method is not limited in the embodiment of this application.
  • the information of the L weighting coefficients and the T measurement channels may be in one piece of information.
  • the terminal device may report the information of the L weighting coefficients and the T measurement channels through an uplink control information (UCI).
  • UCI uplink control information
  • the information of the L weighting coefficients and the T measurement channels may also be reported separately.
  • the terminal device may report the information of the L weighting coefficients and the T measurement channels respectively. There is no restriction on this.
  • the terminal device reports the information of T measurement channels, and T is greater than or equal to L, so that the network device can obtain the information of the unknown channel through the L measurement channels among the T measurement channels and the L weighting coefficients reported by the terminal device.
  • the information of the measurement channel may include channel information and/or a sequence number in time.
  • the sequence number in time may indicate the time when the channel was measured, or it may indicate how many times the channel was measured, or it may indicate the sequence number of the measurement channel.
  • the terminal device reports the channel measured at time 1 to the network device, and the time at which the terminal device can report the channel to the network device is time 1.
  • the terminal device reports the channel obtained by the nth measurement in the measurement window to the network device, and the time at which the terminal device can report the channel to the network device is the nth time.
  • the sequence of the measurement channel is described below.
  • the information of the measurement channel may also include other information, which is not limited.
  • T can be equal to N.
  • the terminal device can report the channel measured at each moment to the network device.
  • the network device can predict the channel at a future time in combination with the measurement channel and the weighting coefficient reported by the terminal device.
  • T can be less than N.
  • the terminal device can report some of the channels obtained by measurement, or in other words, the terminal device can report the channels obtained by the measurement at some moments, instead of reporting all the channels obtained by the measurement, so that the reporting overhead can be reduced.
  • the network device can not only predict the channel at a future time in combination with the measurement channel and the weighting coefficient reported by the terminal device, but also obtain the channel that the terminal device has measured but not reported.
  • the terminal equipment measures the channels at 5 moments, such as the channels of time slot 1, time slot 4, time slot 7, time slot 10, and time slot 13.
  • the terminal device can also report the channel at some moments. Take the terminal device reporting the channel at 4 moments to the network device as an example.
  • L weighting coefficients can be used to determine channels at K time through channels at M time, and M time can be located before K time.
  • the terminal equipment can report the channels measured in time slot 1, time slot 4, time slot 7, and time slot 10.
  • the network device can obtain the channel measured in time slot 13 according to the weighting coefficient reported by the terminal device and the channels measured in time slot 1, time slot 4, time slot 7, and time slot 10.
  • the channels at M times may include: timeslot 1, timeslot 4, timeslot 7, and timeslot 10
  • the channels at K times may include timeslot 13 channels.
  • the terminal equipment can report the channels measured in time slot 1, time slot 4, time slot 7, and time slot 10. Based on the weighting coefficients reported by the terminal equipment and the channels measured in time slot 1, time slot 4, time slot 7, and time slot 10, the network equipment can not only obtain the channel measured in time slot 13, but also predict the channel in time slot 13.
  • the channels at M times may include: timeslot 1, timeslot 4, timeslot 7, and timeslot 10.
  • the channels at K times may include timeslot 13 channels and the channels after timeslot 13.
  • the L weighting coefficients can be used to determine the channel at K time through the channel at M time, and the M time may be located after K time.
  • the terminal equipment can report the channels measured in time slot 4, time slot 7, time slot 10, and time slot 13.
  • the network equipment can obtain the channel measured in time slot 1 according to the weighting coefficient reported by the terminal equipment and the channels measured in time slot 4, time slot 7, time slot 10, and time slot 13.
  • the channels at M times may include: timeslot 4, timeslot 7, timeslot 10, and timeslot 13, and the channels at K times may include timeslot 1 channels.
  • T can be greater than L.
  • the time interval of at least L measurement channels among the T measurement channels is the same as the time interval of the measurement channels used to calculate the L weighting coefficients.
  • the terminal device calculates L weighting coefficients through (O+L) channels, and it is assumed that the time intervals of the (O+L) channels are all x, and x is greater than zero. For example, the terminal device measures c(1) at time t1, the terminal device measures c(2) at time (t1+x), and the terminal device measures c(3) at time (t1+2x), and so on. Then, among the T measurement channels reported by the terminal device, the time interval of at least L measurement channels is x, so that the network device can use the L measurement channels and L weighting coefficients to obtain more accurate channel information and ensure communication performance.
  • T can be equal to L.
  • the terminal device can report L measurement channels and L weighting coefficients: a 1 ,..., a L.
  • the L measurement channels reported by the terminal device may be any L measurement channels used to calculate the L weighting coefficients.
  • the terminal device calculates the weighting coefficient through the foregoing implementation manner 1.
  • the terminal device can report any group of L measurement channels.
  • the terminal device can report the first L measurement channels: c(1), c(2),...,c(L).
  • the terminal device can report the last L measurement channels: c(O+1), c(O+2),...,c(O+L).
  • the terminal device can report any L measurement channels in the middle.
  • the arbitrary L measurement channels in the middle may be any continuous measurement channels or discontinuous measurement channels, as long as the interval between the arbitrary L measurement channels and the P measurement channels used to calculate the weighting coefficient is the same. If the terminal device passes: c(1), c(3), c(5),..., calculate the weighting coefficient, then the L measurement channels reported by the terminal device can be: c(1), c(3), c( 5),..., or, it can also be: c(2),c(4),c(6),...
  • each angle delay pair may correspond to a set of weighting coefficients, that is, each angle delay pair has an independent weighting coefficient.
  • the terminal device can respectively report a set of weighting coefficients corresponding to each angle delay pair.
  • the terminal device reports multiple sets of weighting coefficients, and each set of weighting coefficients corresponds to an angle delay pair.
  • the number of weighting coefficients in each group may be equal or unequal, which is not limited.
  • multiple angle delay pairs correspond to the same weighting coefficient.
  • the terminal device may report a set of weighting coefficients corresponding to the multiple angle delay pairs.
  • the terminal device reports a set of weighting coefficients, and the set of weighting coefficients corresponds to multiple angle delay pairs.
  • multiple angle delay pairs correspond to multiple sets of weighting coefficients.
  • the terminal device can report the W2 group of weighting coefficients, and W1 and W2 are all integers greater than 2 or equal to 2.
  • each group of weighting coefficients corresponds to multiple angle delay pairs; or, the weighting coefficients of some groups in the W2 group correspond to multiple angle delay pairs, and the weighting coefficients of some groups correspond to one angle delay pair.
  • multiple angle delay pairs may correspond to one or more sets of weighting coefficients, which are not limited in the embodiment of the present application.
  • the terminal device when the terminal device reports the information of the measurement channel, it may report the sequence number of the measurement channel.
  • the serial number of the measurement channel, or the subscript of the measurement channel is a name for distinguishing different measurement channels, or a name for distinguishing different measurement moments.
  • the terminal device uses P measurement channels to calculate the weighting coefficient, then the sequence numbers or subscripts of the P measurement channels can be named in sequence according to the time sequence of the measurement: 1, 2, ..., P.
  • the terminal device may report the subscripts of L measurement channels. For example, when the terminal device reports the last L measurement channels, the terminal device can report: O+1, O+2,..., O+L. For another example, when the terminal device reports the first L measurement channels, the terminal device can report: 1, 2, ..., L.
  • the terminal device may report the group sequence number of the measurement channel. For example, when the terminal device reports the last L measurement channels, the terminal device may report O (O corresponds to the 0th group). For another example, when the terminal device reports the first L measurement channels, the terminal device may report 1 (1 corresponds to: group 1).
  • the terminal device may report the subscript of the first measurement channel. For example, when the terminal device reports the last L measurement channels, the terminal device may report O (O corresponds to: O to O+L). For another example, when the terminal device reports the first L measurement channels, the terminal device may report 1 (1 corresponds to: 1 to L). For another example, when the terminal device reports any L measurement channels in the middle, the terminal device can report y (y corresponds to: y to y+L), y is an integer greater than or equal to 1, and y is less than or equal to zero.
  • the terminal device may report the subscript of the last measurement channel. For example, when the terminal device reports the last L measurement channels, the terminal device may report O+L (O+L corresponds: O to O+L). For another example, when the terminal device reports the first L measurement channels, the terminal device can report L (L corresponds to: 1 to L). For another example, when the terminal device reports any L measurement channels in the middle, the terminal device can report y+L (corresponding to y+L: y to y+L).
  • the overhead of the terminal equipment feedback measurement channel can be saved.
  • the terminal device can report part of the measurement channel to the network device, thereby saving feedback signaling overhead.
  • the network device can also reconstruct the time-varying channel according to the weighting coefficient and the measurement channel reported by the terminal device, predict the future channel change trend, reduce the loss caused by the CSI expiration, and improve the system performance.
  • the terminal device can calculate L weighting coefficients through O groups of channels.
  • the terminal device may first obtain the information of the parameter L and the parameter O, and based on the parameter L and the parameter O, calculate L'weighting coefficients through the O group of channels, where L'is an integer greater than or equal to 1, and L'is less than or equal to L.
  • the terminal device learns the value of the parameter L
  • the number of weighting coefficients calculated by the terminal device can be less than L.
  • the weighting factor reported by the terminal device can be less than L.
  • the terminal device may calculate L'weighting coefficients, and report the calculated L'weighting coefficients.
  • the parameter L and the parameter O can exist in a combined manner, namely ⁇ L, O ⁇ . Or, the parameter L and the parameter O may exist separately. The following describes how the terminal device determines the parameter L and the parameter O.
  • the terminal device may determine the target ⁇ L, O ⁇ from one or more sets of ⁇ L, O ⁇ , and may determine the values of the parameter L and the parameter O based on the target ⁇ L, O ⁇ .
  • Example 1 The network device configures a group of ⁇ L, O ⁇ , and the terminal device determines the values of the parameter L and the parameter O based on the group ⁇ L, O ⁇ configured by the network device.
  • the network device configures a set of ⁇ L, O ⁇ for the terminal device and indicates the configured ⁇ L, O ⁇ to the terminal device.
  • the terminal device can learn the values of L and O according to the group ⁇ L, O ⁇ configured by the network device. Further, the terminal device may calculate L weighting coefficients through O groups of channels.
  • Example 2 The network device is pre-configured with multiple sets of ⁇ L,O ⁇ parameter value combinations, or the protocol pre-prescribes multiple sets of ⁇ L,O ⁇ parameter value combinations, and the terminal device selects a specific set of ⁇ L,O ⁇ , Calculate the weighting factor.
  • Multiple groups of ⁇ L,O ⁇ can be some values dynamically configured.
  • the network device dynamically configures multiple groups ⁇ L,O ⁇ for the terminal device according to the actual situation.
  • ⁇ L,O ⁇ can also be fixed values.
  • ⁇ L,O ⁇ parameters can have ⁇ 4,3 ⁇ , ⁇ 3,2 ⁇ 4,2 ⁇ , etc. There is no restriction on this.
  • Multiple sets of ⁇ L,O ⁇ are pre-configured through the network equipment, or the protocol can predefine multiple sets of ⁇ L,O ⁇ , and a suitable set of ⁇ L,O ⁇ can be selected according to the actual situation, thereby improving the prediction accuracy.
  • each group ⁇ L,O ⁇ in the multiple groups ⁇ L,O ⁇ corresponds to one or more of the following values: measurement duration, pilot frequency time domain density, pilot frequency transmission times, and pilot frequency transmission period .
  • each group ⁇ L, O ⁇ in the multiple groups ⁇ L, O ⁇ corresponds to one or more of the following configurations: measurement duration, pilot time domain density, pilot transmission times, and pilot transmission period.
  • the terminal equipment can determine a corresponding set of ⁇ L, O ⁇ according to one or more of the following: measurement duration, pilot frequency time domain density, pilot frequency transmission times, and pilot frequency transmission period.
  • This application does not limit the specific manner in which the terminal device determines the value of the measurement duration, pilot time domain density, the number of pilot transmissions, and the pilot transmission period.
  • the network device can directly indicate the value of the measurement duration, the pilot time domain density, the number of pilot transmissions, or the pilot transmission period through signaling.
  • the network device may also indicate the configuration related to the value of the measurement duration, the pilot time domain density, the number of pilot transmissions, or the value of the pilot transmission period through signaling.
  • the protocol may predefine the correspondence between multiple configurations and multiple values, and the correspondence may be embodied in a table or other manners, for example.
  • the network device can indicate the value of the measurement duration, the pilot time domain density, the number of pilot transmissions, or the pilot transmission period by indicating the configuration or the index of the configuration corresponding to a certain value.
  • the value of the measurement duration, the pilot time domain density, the number of pilot transmissions, or the pilot transmission period may be predefined, as defined by the protocol.
  • each group ⁇ L, O ⁇ in the multiple groups ⁇ L, O ⁇ corresponds to the value of the moving speed.
  • each group ⁇ L, O ⁇ in the multiple groups ⁇ L, O ⁇ corresponds to the value range of the moving speed.
  • each value range corresponds to a set of ⁇ L,O ⁇ .
  • the terminal device can determine the corresponding set of ⁇ L, O ⁇ according to which value range the moving rate falls into.
  • the network device is pre-configured with multiple groups ⁇ L, O ⁇ , or the protocol pre-prescribes multiple groups ⁇ L, O ⁇ , so that the terminal device can obtain more accurate weighting coefficients.
  • ⁇ L,O ⁇ can be bound with the measurement period, the number of pilot transmissions, and the pilot time domain density, thereby saving signaling overhead.
  • ⁇ L,O ⁇ can be bound to the moving speed, so that the calculation accuracy of the weighting coefficient can be improved and the signaling overhead can be reduced.
  • the terminal device can also report the index of the selected group ⁇ L, O ⁇ .
  • the terminal device can report the index of the target ⁇ L,O ⁇ .
  • the terminal device can report less than L weighting coefficients, and report the actual number of weighting coefficients L'.
  • Example 3 The network device configures multiple ⁇ L,O ⁇ through RRC, and activates one ⁇ L, through media access control control element (MAC CE) or downlink control information (DCI) O ⁇ combination.
  • MAC CE media access control control element
  • DCI downlink control information
  • the network device may indicate to the terminal device the index of the activated ⁇ L, O ⁇ through MAC CE or DCI.
  • Example 4 the network device configures multiple ⁇ L,O ⁇ through RRC, and selects a ⁇ L,O ⁇ combination through the optional ⁇ L,O ⁇ subset of MAC CE and DCI.
  • the network device may indicate the index of ⁇ L, O ⁇ activated to the terminal device through DCI.
  • the above several examples introduced the existence of the parameter L and the parameter O in a combined manner, namely ⁇ L, O ⁇ .
  • the terminal device can select a set of ⁇ L, O ⁇ to determine the values of the parameter L and the parameter O.
  • Example 5 The network device indicates the value of the parameter L to the terminal device, and the terminal device determines the value of the parameter O according to the value of the parameter L.
  • the relationship between the parameter L and the parameter O can be defaulted or pre-defined.
  • the terminal device can determine the value of O according to the value of L and the relationship between the parameter L and the parameter O.
  • the terminal device can determine the value of O according to the value of L.
  • Example 6 the network device indicates the value of the parameter O to the terminal device, and the terminal device determines the value of the parameter L according to the value of the parameter O.
  • the relationship between the parameter L and the parameter O can be defaulted or pre-defined.
  • the terminal device can determine the value of L according to the value of O and the relationship between the parameter L and the parameter O.
  • the terminal device can determine the value of L according to the value of O.
  • Example 7 the network device indicates the value of W to the terminal device, and the terminal device determines the value of the parameter L and the parameter O according to the value of W and the relationship between O and L.
  • (O+L) can exist as a separate parameter. To distinguish, mark it as W, and W is equal to (O+L).
  • the network device can configure one or more Ws for the terminal device, or the protocol predefines one or more Ws.
  • the relationship between O and L can be specified in advance, for example, O and L are equal, or the ratio of O to L is a fixed value.
  • the terminal device can determine the value of O and L according to W and the relationship between O and L.
  • O1, O2, O3, ... Or equations above.
  • the O1, O2, O3, ..., Or can also be used as a set of parameters.
  • the network device may be pre-configured or the protocol may predefine one or more groups of O1, O2, O3, ..., Or values.
  • the terminal device can determine a group of O1, O2, O3, ..., Or by itself.
  • the network device may be pre-configured or the protocol may predefine the value of Oi, and the terminal device may determine the remaining values according to the value of Oi, and Oi is any one of O1, O2, O3, ..., Or.
  • Oi is any one of O1, O2, O3, ..., Or.
  • the network device can be pre-configured or the protocol can pre-define the value of O1, and the terminal device can determine the value of O2, O3, ..., Or according to the value of O1.
  • the terminal device reports the weighting coefficient, so that the network device can reconstruct the time-varying channel and also predict the future channel change trend.
  • the network equipment can not only understand the state of the channel more comprehensively, so as to make more reasonable decisions for downlink scheduling, but also can reduce the performance loss caused by the CSI expiration and improve the system performance.
  • the terminal device can reduce the overhead of CSI reporting and save resources.
  • the terminal device can report part of the measurement channel by reporting the weighting coefficient, that is, report part of the channel obtained by the measurement.
  • the network equipment can learn the measurement channels not reported by the terminal equipment according to the reported weighting coefficients and part of the measurement channels. Thereby, the reporting overhead can be reduced.
  • the network equipment can be pre-configured or the protocol can predefine one or more sets of ⁇ L,O ⁇ value combinations, so that the terminal device can select an appropriate set of ⁇ L,O ⁇ according to the actual situation, and then Can improve prediction accuracy.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device
  • the methods and operations implemented by the network device can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function as an example.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 700 may include a communication unit 710 and a processing unit 720.
  • the communication unit 710 can communicate with the outside, and the processing unit 720 is used for data processing.
  • the communication unit 710 may also be referred to as a communication interface or a transceiving unit.
  • the communication interface is used to input and/or output information, and the information includes at least one of instructions and data.
  • the communication device may be a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device 700 can implement the steps or processes performed by the terminal device corresponding to the above method embodiment.
  • it can be a terminal device, or a chip or circuit or chip configured in the terminal device. system.
  • the communication device 700 may be referred to as a terminal device.
  • the communication unit 710 is configured to perform the transceiving-related operations on the terminal device side in the above method embodiment
  • the processing unit 720 is configured to perform the processing related operations on the terminal device in the above method embodiment.
  • the processing unit 720 is configured to: determine L weighting coefficients, and the L weighting coefficients can be used to determine channels at K times through channels at M times, where L, M, and K are all An integer greater than 1 or equal to 1; the communication unit 710 is used to send the information of the L weighting coefficients.
  • the communication unit 710 is further configured to: send information about T measurement channels, where the T measurement channels are any of the following: any T measurement channels in the N channel measurements, and the first T measurement channels in the N channel measurements. Measurement channel, the last T measurement channels in N channel measurements; where N and T are both integers greater than or equal to 1, and T is greater than or equal to L.
  • the processing unit 720 is specifically configured to: calculate L weighting coefficients based on P measurement channels; where P is an integer greater than or equal to 1, and P is greater than or equal to L.
  • the time interval of the P measurement channels is the same as the time interval of at least L of the T measurement channels.
  • the processing unit 720 is further configured to: obtain information about the parameter L and the parameter O; the processing unit 720 is specifically configured to: calculate L'weighting coefficients through the group O channels based on the parameter L and the parameter O, where O, L 'Is an integer greater than 1 or equal to 1, and L'is less than or equal to L; the communication unit 710 is specifically configured to: send information of L'weighting coefficients.
  • the processing unit 720 is further configured to: determine the target ⁇ L, O ⁇ from one or more sets of ⁇ L, O ⁇ ; and determine the values of the parameter L and the parameter O based on the target ⁇ L, O ⁇ .
  • each group ⁇ L,O ⁇ in one or more groups ⁇ L,O ⁇ corresponds to one or more of the following information: measurement duration, pilot time domain density, number of pilot transmissions, pilot transmission period ,Moving speed.
  • the communication unit 710 is further configured to send instruction information, where the instruction information is used to indicate the index of the target ⁇ L, O ⁇ .
  • the communication device 700 may implement the steps or processes executed by the terminal device in the method 400 according to the embodiment of the present application.
  • the communication device 700 may include a unit for executing the method executed by the terminal device in the method 400 in FIG. 4 .
  • each unit in the communication device 700 and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 4.
  • the communication unit 710 can be used to execute step 420 in the method 400
  • the processing unit 720 can be used to execute step 410 in the method 400.
  • the communication unit 710 in the communication device 700 may be implemented by the transceiver 910 in the terminal device 900 shown in FIG. 9, and the processing unit 720 in the communication device 700 may be implemented by the terminal device shown in FIG.
  • the processor 920 in 900 is implemented.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • the communication unit 710 in the communication device 700 may also be an input/output interface.
  • the communication device 700 can implement the steps or processes executed by the network device corresponding to the above method embodiment.
  • it can be a network device, or a chip or circuit or circuit configured in the network device. Chip system.
  • the communication device 700 may be referred to as a network device.
  • the communication unit 710 is configured to perform the transceiving-related operations on the network device side in the above method embodiment
  • the processing unit 720 is configured to perform the processing related operations on the network device in the above method embodiment.
  • the communication unit 710 is configured to: receive information of L weighting coefficients, and the L weighting coefficients can be used to determine channels at K times through channels at M times, where L, M, and K are all Is an integer greater than 1 or equal to 1, and the processing unit 720 is configured to: determine L weighting coefficients.
  • the communication unit 710 is further configured to: receive information on T measurement channels, where the T measurement channels are any of the following: any T measurement channels in the N channel measurements, and the first T measurement channels in the N channel measurements. Measurement channel, the last T measurement channels in N channel measurements; where N and T are both integers greater than or equal to 1, and T is greater than or equal to L.
  • the communication unit 710 is further configured to: send information indicating the parameter O and the parameter L; the communication unit 710 is specifically configured to: receive information of L'weighting coefficients, and the L'weighting coefficients are: based on the parameter O and the parameter L , Calculated through O group of channels, where O and L'are both integers greater than or equal to 1, and L'is less than or equal to L.
  • the communication unit 710 is further configured to send information indicating one or more sets of ⁇ L, O ⁇ , and one or more sets of ⁇ L, O ⁇ are used to determine the values of the parameter L and the parameter O.
  • each group ⁇ L,O ⁇ in one or more groups ⁇ L,O ⁇ corresponds to one or more of the following information: measurement duration, pilot time domain density, number of pilot transmissions, pilot transmission period ,Moving speed.
  • the communication unit 710 is further configured to: receive indication information, the indication information is used to indicate the index of the target ⁇ L, O ⁇ in one or more sets of ⁇ L, O ⁇ , and the target ⁇ L, O ⁇ is used to determine the parameter L and parameter O.
  • the communication device 700 may implement the steps or processes executed by the network device in the method 400 according to the embodiment of the present application.
  • the communication device 700 may include a unit for executing the method executed by the network device in the method 400 in FIG. 4 .
  • each unit in the communication device 700 and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 4.
  • the communication unit 710 may be used to execute step 420 in the method 400.
  • the communication unit in the communication device 700 may be implemented by the transceiver 1010 in the network device 1000 shown in FIG. 10, and the processing unit 720 in the communication device 700 may be implemented by the network device shown in FIG.
  • the processor 1020 in 1000 is implemented.
  • the communication unit 710 in the communication device 700 may also be an input/output interface.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • FIG. 8 is another schematic block diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 includes a transceiver 810, a processor 820, and a memory 830.
  • the memory 830 stores programs.
  • the processor 820 is used to execute the programs stored in the memory 830 and execute the programs stored in the memory 830. , So that the processor 820 is configured to execute the relevant processing steps in the above method embodiment, and execute the program stored in the memory 830, so that the processor 820 controls the transceiver 810 to perform the transceiving-related steps in the above method embodiment.
  • the communication device 800 is used to execute the actions performed by the terminal device in the above method embodiment.
  • the execution of the program stored in the memory 830 enables the processor 820 to execute the above method embodiment.
  • the processing steps on the terminal device side in the middle execute the program stored in the memory 830, so that the processor 820 controls the transceiver 810 to perform the receiving and sending steps on the terminal device side in the above method embodiment.
  • the communication device 800 is used to perform the actions performed by the network device in the above method embodiment.
  • the execution of the program stored in the memory 830 enables the processor 820 to perform the above method implementation.
  • the processing steps on the network device side execute the programs stored in the memory 830 so that the processor 820 controls the transceiver 810 to perform the receiving and sending steps on the network device side in the above method embodiment.
  • the embodiment of the present application also provides a communication device 900, and the communication device 900 may be a terminal device or a chip.
  • the communication device 900 may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 9 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 9 only one memory and processor are shown in FIG. 9. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory can be set independently of the processor, or integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 910 and a processing unit 920.
  • the transceiving unit 910 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 920 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiving unit 910 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 910 can be regarded as the sending unit, that is, the transceiving unit 910 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 920 is configured to perform step 410 in FIG. 4, and/or the processing unit 920 is further configured to perform other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiving unit 910 is further used to perform step 420 shown in FIG. 4, and/or the transceiving unit 910 is further used to perform other transceiving steps on the terminal device side.
  • FIG. 9 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 9.
  • the chip When the communication device 900 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 1000, and the communication device 1000 may be a network device or a chip.
  • the communication device 1000 can be used to perform actions performed by a network device in the foregoing method embodiments.
  • FIG. 10 shows a simplified schematic diagram of the base station structure.
  • the base station includes 1010 parts and 1020 parts.
  • the 1010 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1020 part is mainly used for baseband processing and control of base stations.
  • the 1010 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1020 part is usually the control center of the base station, and may usually be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1010 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1010 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 1010 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • Part 1020 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit of part 1010 is used to perform the receiving operation on the network device side in step 420 shown in FIG. 4, and/or the transceiver unit of part 1010 is also used to perform the receiving operation in the embodiment of the present application.
  • the processing unit in part 1020 is used to execute the processing steps on the network device side in the embodiment of the present application.
  • FIG. 10 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 10.
  • the chip When the communication device 1000 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example, including AAU, CU node and/or DU node, or BBU and adaptive radio unit (ARU), or BBU; It may also be a customer premises equipment (CPE), or it may be in other forms, which is not limited in this application.
  • AAU CU node and/or DU node
  • BBU and adaptive radio unit
  • ARU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the above-mentioned CU and/or DU can be used to perform the actions described in the previous method embodiment implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiment to send to or receive from the terminal device action.
  • the AAU can be used to perform the network device described in the previous method embodiment to send to or receive from the terminal device action.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the above-mentioned processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, detailed description is omitted here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the steps shown in FIGS. 4 to 6 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 4 to 6 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • the network equipment in the above device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • the functions of specific units refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道测量的方法和通信装置,不仅可以降低终端设备反馈CSI的开销,而且可以使得网络设备更全面地了解信道的状态,提高通信性能。该方法可以包括:终端设备计算L个加权系数,网络设备能够通过该L个加权系数和M个时刻的信道,确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;终端设备向网络设备发送该L个加权系数的信息,网络设备可以根据该L个加权系数,确定未知信道的信息。

Description

信道测量的方法和通信装置
本申请要求于2019年08月30日提交中国专利局、申请号为201910817870.0、申请名称为“信道测量的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信道测量的方法和通信装置。
背景技术
在一些通信系统中,如第五代(5th generation,5G)通信系统,对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模多输入多输出(massive multiple-input multiple output,Massive MIMO)技术对系统的频谱效率起到至关重要的作用。
采用多输入多输出(massive multiple-input multiple output,MIMO)技术时,网络设备向终端设备发送数据时,需要进行调制编码及信号预编码。网络设备向终端设备如何发送数据,需要依靠终端设备向网络设备反馈的信道状态信息(channel state information,CSI)。
因此,CSI的准确性对系统的性能非常重要。
发明内容
本申请提供一种信道测量的方法和通信装置,不仅可以降低终端设备反馈CSI的开销,而且可以使得网络设备更全面地了解信道的状态,提高通信性能。
第一方面,提供了一种信道测量的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:确定L个加权系数,所述L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;发送所述L个加权系数的信息。
加权系数,可以表示与信道时域相关的系数,该加权系数也可以简称为时域系数。加权系数能够表征信道时变特征。信道的时变特征,即信道在时域的变化特征或者时变信道在时域的变化特征。
L个加权系数能够用于通过M个时刻的信道确定K个时刻的信道。换句话说,通过M个时刻的信道和L个加权系数,可以获得K个时刻的信道。
可选地,M个时刻可以位于K个时刻之前,或者,M个时刻也可以位于K个时刻之后,或者,M个时刻也可以与K个时刻部分重叠,对此不作限定。
基于上述技术方案,终端设备可以上报L个加权系数,通过该加权系数和M个时刻的信道,可以确定K个时刻的信道。因此,网络设备不仅可以基于该L个加权系数,获 得未知信道的信息,而且还可以确定信道在时域的变化,从而能够更全面地了解信道的状态,为下行调度做出更合理的决策。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:发送T个测量信道的信息,所述T个测量信道为以下任意一项:N次信道测量中的任意T个测量信道、所述N次信道测量中的前T个测量信道、所述N次信道测量中的最后T个测量信道;其中,N、T均为大于1或等于1的整数,且T大于或等于L。
N次信道测量中的前T个测量信道,可以表示N次信道测量中前T个连续的测量信道。N次信道测量中的最后T个测量信道,可以表示N次信道测量中最后T个连续的测量信道。N次信道测量中的任意T个测量信道,可以表示N次信道测量中的任意连续的T个测量信道,或者,也可以表示N次信道测量中的任意不连续的T个测量信道。任意不连续的T个测量信道的时间间隔相同。
基于上述技术方案,终端设备可以上报测量得到的部分信道,或者说,终端设备可以上报在部分时刻测量得到的信道,而不需要上报测量得到的全部信道,从而可以减小上报开销。在该情况下,网络设备结合终端设备上报的测量信道以及加权系数,不仅可以预测在未来时刻的信道,而且还可以获得终端设备已测量却未上报的信道。
结合第一方面,在第一方面的某些实现方式中,所述确定L个加权系数,包括:基于P个测量信道,计算所述L个加权系数;其中,P为大于1或等于1的整数,且P大于或等于L。
可选地,网络设备可以预先配置参数P的取值,或者协议预先规定参数P的取值。
可选地,网络设备或者协议可以预先规定多组参数P的取值,终端设备根据实际需要确定实际使用的用于计算加权系数的测量信道的个数。
可选地,P可以等于(O+L)。其中,O为大于1或等于1的整数。O可以表示用于计算L个加权系数的方程个数。换句话说,终端设备可以通过O组信道来计算L个加权系数。
可选地,该P个测量信道,例如可以是历史测量的信道。终端设备可以根据之前测量的信道,计算加权系数。或者,可选地,该P个测量信道,例如也可以是终端设备当前测量的信道。终端设备可以先进行信道测量,并根据信道测量的结果,计算加权系数。终端设备用于计算加权系数的测量信道可以是终端设备测量的部分信道。
结合第一方面,在第一方面的某些实现方式中,所述P个测量信道的时间间隔与所述T个测量信道中的至少L个测量信道的时间间隔相同。
基于上述技术方案,用于计算加权系数的测量信道的时间间隔与终端设备上报的T个测量信道中的至少L个测量信道的时间间隔一致,从而网络设备可以使用该L个测量信道与L个加权系数,获知较准确的信道信息,保证通信性能。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:获取参数L和参数O的信息;所述确定L个加权系数,包括:基于所述参数L和所述参数O,通过O组信道计算L’个加权系数,其中,O、L’均为大于1或等于1的整数,且L’小于或等于L;所述发送所述L个加权系数的信息,包括:发送所述L’个加权系数的信息。
可选地,可以是协议预先规定好参数L和/或参数O,终端设备根据实际需要确定参数L和参数O。
可选地,可以是网络设备预先配置好参数L和/或参数O,终端设备根据实际需要确定参数L和参数O。
基于上述技术方案,终端设备获知参数L的取值后,终端设备计算的加权系数的个数可以小于L,换句话说,终端设备上报的加权系数可以小于L。例如,终端设备可以根据实际情况,选择计算的加权系数的个数小于L。
结合第一方面,在第一方面的某些实现方式中,所述获取参数L和参数O的信息,包括:从一组或多组{L,O}中确定目标{L,O};基于所述目标{L,O},确定所述参数L和所述参数O的取值。
可选地,网络设备预先配置多组{L,O}的参数取值组合,或者协议预先规定多组{L,O}的参数取值组合。
可选地,多组{L,O}可以是动态配置的一些取值。如网络设备根据实际情况,为终端设备动态配置多组{L,O}。或者,多组{L,O}也可以为固定的一些取值。如,{L,O}参数可以有{4,3},{3,2}{4,2}等。对此不作限定。
基于上述技术方案,通过网络设备预先配置多组{L,O},或者,协议可以预先规定多组{L,O},可以根据实际情况选择合适的一组{L,O},从而提高预测精度。
结合第一方面,在第一方面的某些实现方式中,所述一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
基于上述技术方案,网络设备预配置多组{L,O},或者,协议预先规定多组{L,O},且{L,O}可以与测量周期、导频传输次数、导频时域密度绑定,从而节省信令开销。或者,{L,O}可以与移动速度绑定,从而可以提升加权系数计算精度并降低信令开销。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:发送指示信息,所述指示信息用于指示所述目标{L,O}的索引。
第二方面,提供了一种信道测量的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:接收L个加权系数的信息,所述L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;确定所述L个加权系数。
基于上述技术方案,网络设备通过终端设备上报的L个加权系数的信息可以确定该L个加权系数。通过该加权系数和M个时刻的信道,可以确定K个时刻的信道。因此,网络设备不仅可以基于该L个加权系数,获得未知信道的信息,而且还可以确定信道在时域的变化,从而能够更全面地了解信道的状态,为下行调度做出更合理的决策。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收T个测量信道的信息,所述T个测量信道为以下任意一项:N次信道测量中的任意T个测量信道、所述N次信道测量中的前T个测量信道、所述N次信道测量中的最后T个测量信道;其中,N、T均为大于1或等于1的整数,且T大于或等于L。
基于上述技术方案,不仅可以减小上报开销,而且网络设备结合终端设备上报的测量信道以及加权系数,不仅可以预测在未来时刻的信道,而且还可以获得终端设备已测量却未上报的信道。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:发送指示参数O和参数L的信息;所述接收L个加权系数的信息,包括:接收L’个加权系数的信息,所述L’个加权系数是:基于所述参数O以及所述参数L、通过O组信道计算得到的,其中,O、L’均为大于1或等于1的整数,且L’小于或等于L。
可选地,可以是网络设备预先配置好参数L和/或参数O,终端设备根据实际需要确定参数L和参数O。
结合第二方面,在第二方面的某些实现方式中,所述发送指示参数O和参数L的信息,包括:发送指示一组或多组{L,O}的信息,所述一组或多组{L,O}用于确定所述参数L和所述参数O的取值。
可选地,网络设备预先配置多组{L,O}的参数取值组合,或者协议预先规定多组{L,O}的参数取值组合。
可选地,多组{L,O}可以是动态配置的一些取值。如网络设备根据实际情况,为终端设备动态配置多组{L,O}。或者,多组{L,O}也可以为固定的一些取值。如,{L,O}参数可以有{4,3},{3,2}{4,2}等。对此不作限定。
可选地,网络设备可以向终端设备指示用于计算加权系数的某一组{L,O},或者,终端设备也可以自身确定用于计算加权系数的特定的一组{L,O}。
结合第二方面,在第二方面的某些实现方式中,所述一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收指示信息,所述指示信息用于指示所述目标{L,O}的索引。
第三方面,提供一种通信装置,所述通信装置用于执行上述第一方面提供的通信方法。具体地,所述通信装置可以包括用于执行第一方面提供的通信方法的模块。
第四方面,提供一种通信装置,所述通信装置用于执行上述第二方面提供的通信方法。具体地,所述通信装置可以包括用于执行第二方面提供的通信方法的模块。
第五方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以第一方面中任一种可能实现方式中的通信方法。
可选地,该通信装置还包括存储器。
可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的通信方法。
可选地,该通信装置还包括存储器。
可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种通信装置,该通信装置包括处理器和接口,该处理器通过该接口与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第一方面以及第一方面中任一种可能实现方式中的方法被执行。
第八方面,提供一种通信装置,该通信装置包括处理器和接口,该处理器通过该接口与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第二方面以及第二方面中任一种可能实现方式中的方法被执行
第九方面,提供一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行第一方面以及第一方面中任一种可能实现方式中的方法。
第十方面,提供一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行第二方面以及第二方面中任一种可能实现方式中的方法。
第十一方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面,以及第一方面的任一可能的实现方式中的通信方法。
第十二方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面,以及第二方面的任一可能的实现方式中的通信方法。
第十三方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面提供的通信方法。
第十四方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面提供的通信方法。
第十五方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1和图2是适用于本申请实施例的通信系统的示意图;
图3是终端设备进行CSI反馈的一示意性流程图;
图4是根据本申请实施例的信道测量的方法的示意图;
图5和图6是适用于本申请实施例的信道测量的方法的示意图;
图7是本申请实施例提供的通信装置的一示意性框图;
图8是本申请实施例提供的通信装置的又一示意性框图;
图9是本申请实施例提供的终端设备的结构示意图;
图10是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(univeRMal mobile telecommunication system,UMTS)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)等。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是PLMN网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设 备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
另外,本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、发送接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备, 或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如1图所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备111和终端设备121至终端设备123组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备111可以是小区#1中的网络设备,或者说,网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
图2是适用于本申请实施例的无线通信系统200的另一示意图。如2图所示,本申请实施例的技术方案还可以应用于D2D通信。该无线通信系统200包括多个终端设备,例如图2中的终端设备124至终端设备126。终端设备124至终端设备126之间可以直接进行通信。例如,终端设备124和终端设备125可以单独或同时发送数据给终端设备126。
应理解,上述图1和图2仅是示例性说明,本申请并未限定于此。例如,本申请实施例可以应用于任一通信系统中,只要该通信系统中存在至少两个设备,其中,一设备需要发送指示信息以指示传输方向;另一设备接收该指示信息,并可以根据该指示信息确定一定时间内的传输方向。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、预编码技术:发送设备(如网络设备)可以在已知信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备(如终端设备)消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
应理解,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者 加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
在本申请实施例中,网络设备可以根据已知信道预测未知信道的状态,进一步地可以借助与预测的信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配。
2、参考信号(reference signal,RS):也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以包括未经过预编码的参考信号(non-precoded RS)和经过预编码的参考信号。其中,经过预编码的参考信号也可以称为波束赋形的参考信号(beamformed RS),或者,也可以简称为预编码参考信号。下文实施例中,经过预编码的参考信号、预编码参考信号以及波束赋形的参考信号所表达的含义是一致的。
另外,下文中在提及参考信号时,有时仅指未经过预编码的参考信号,有时仅指预编码参考信号,有时包括未经过预编码的参考信号和预编码参考信号。本领域的技术人员可以理解其在不同场景下所表达的含义。
未经过预编码处理的参考信号可以类似于LTE或NR协议中定义的A类(Class A)参考信号。波束赋形的参考信号可以类似于LTE协议中的B类(Class B)参考信号。
应理解,本申请实施例中涉及的参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)或探测参考信号(sounding reference signal,SRS)。应理解,上文列举仅为示例,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
3、时域向量:可用于表示信道在时域的变化。每个时域向量可以表示信道随时间的一种变化规律。无线信道是一种时变信道,会遭遇来自不同途径的衰减损耗。比如,由多径时延扩展造成的频率选择性衰落和由多普勒频移造成时间选择性衰落共同影响的时间-频率双选择性衰落信道即为一种典型的时变信道。
多普勒频移(Doppler shift)可以是指由于终端设备和网络设备之间的相对移动而引发的发射频率和接收频率之间的频率偏移,接收频率与发射频率之差称为多普勒频移。通常来说,多普勒频移f d可以定义为f d=v×f c×cosθ/c。其中,v为终端设备的移动速度,f c为载波频率,θ为多径信号的入射角,c为光速。具体实现时,θ可以考虑不同传输路径的入射角,由于多径的θ不同,则不同传输路径会对应不同的多普勒频移,从而引起多普勒扩展(Doppler spread)。一般来说,多普勒频移的大小表示了移动速度对于信道时域变化快慢的影响。
应理解,时域向量仅为便于与后文所述的空域向量、频域向量区分而定义,不应对本申请构成任何限定。本申请并不排除在未来的协议中对时域向量定义其他的名称以表示与其相同或相似含义的可能。
可选地,时域向量是离散傅里叶变换(Discrete Fourier Transform,DFT)向量、过采样DFT向量、小波变换(wavelet transform,WT)向量或过采样WT向量中的一种或多种。本申请对此不作限定。
4、空域向量(spatial domain vector):或者称波束(beam)向量、角度向量等。空域向量中的各个元素可以表示各个天线端口(antenna port)的权重。基于空域向量中各个元素所表示的各个天线端口的权重,将各个天线端口的信号做线性叠加,可以在空间某一 方向上形成信号较强的区域。基于空域向量对参考信号做预编码,可以使得发射出来的参考信号具有一定的空间指向性。因此,基于空域向量对参考信号做预编码的过程也可以视为是空间域(或简称,空域)预编码的过程。
空域向量的长度可以为一个极化方向上的发射天线端口数N s,N s≥1,且N s为整数。空域向量例如可以为长度为N s的列向量或行向量。本申请对此不作限定。
可选地,空域向量取自DFT矩阵。该DFT矩阵中的每个列向量可以称为一个DFT向量。换句话说,空域向量可以为DFT向量。该空域向量例如也可以是NR协议TS 38.214版本15(release 15,R15)中类型II(type II)码本中定义的二维(2 dimensions,2D)-离散傅里叶变换(Discrete Fourier Transform,DFT)向量或过采样2D-DFT向量。这里为了简洁,不再赘述。
5、频域向量:(frequency domain vector):或者称时延向量等。可用于表示信道在频域的变化规律的向量。每个频域向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。因此,可以通过不同的频域向量来表示不同传输路径上时延导致的信道在频域上的变化规律。而由于信道在各频域单元的相位变化与时延相关,由傅里叶变换可知,信号在时域上的时间延迟,可以等效到频域的相位渐变。故频域向量也可以称为时延向量。换句话说,该频域向量也可用于表示信道的时延特性。
基于频域向量对参考信号进行预编码,实质上可以是指基于频域向量中的元素对频域上各个频域单元进行相位旋转,以通过预编码参考信号来对多径时延造成的频选特性进行预补偿。因此,基于频域向量对参考信号进行预编码的过程可以视为频域预编码的过程。
在本申请实施例中,频域向量可用于和上述空域向量构建多个空域向量和频域向量的组合,或者简称空频向量对,以用于构建预编码向量。
频域向量的长度可以记作N 3,N 3≥1,且N 3为整数。
6、空频向量对:一个空域向量和一个频域向量可以组合得到一个空频向量对。一个空频向量对可以包括一个空域向量和一个频域向量。由一个空频向量对中的空域向量和频域向量可以得到一个空频分量矩阵。
在本申请实施例中,任意两个空频向量对中包含的空域向量和频域向量中至少有一项不同。换句话说,任意两个空频向量对所构建的空频分量矩阵也不同。
7、空频矩阵:可以理解为用于确定每个频域单元对应的预编码矩阵的一个中间量。对于终端设备来说,空频矩阵可以由每个频域单元对应的预编码矩阵或信道矩阵确定。对于网络设备来说,空频矩阵可以是由多个空频分量矩阵的加权和得到,以用于恢复下行信道或预编码矩阵。
例如,空频矩阵可以记作H,
Figure PCTCN2020112072-appb-000001
其中,w 1
Figure PCTCN2020112072-appb-000002
是与N 3个频域单元对应的N 3个列向量,每个列向量可以是每个频域单元对应的预编码矩阵,各列向量的长度均可以为N s。该N 3个列向量分别对应N 3个频域单元的预编码向量。即空频矩阵可以视为将N 3个频域单元对应的预编码向量组合构成的联合矩阵。
应理解,空频矩阵仅为用于确定预编码矩阵的中间量的一种表现形式,不应对本申请构成任何限定。例如,将空频矩阵中的各列向量按从左至右的顺序依次首位相接,或者按照其他预定义的规则排列,也可以得到长度为N s×N 3的向量,该向量可以称为空频向量。
还应理解,上文所示的空频矩阵和空频向量的维度仅为示例,不应对本申请构成任何限定。例如,该空频矩阵也可以是维度为N 3×N s的的矩阵。其中,每个行向量可对应于一个频域单元,以用于确定所对应的频域单元的预编码向量。
此外,当发射天线配置有多个极化方向时,该空频矩阵的维度还可以进一步扩展。如,对于双极化方向的发射天线,该空频矩阵的维度可以为2N s×N 3或N 3×2N s。应理解,本申请对于发射天线的极化方向数不作限定。
应理解,在本申请实施例中,如何确定空频矩阵,本申请实施例不作限定。例如,空频矩阵可以基于每个接收天线确定,也可以基于每个传输层确定。
8、导频传输周期:相邻的两次导频传输之间间隔的时间。
9、导频时域密度:在预定义的一个时间单元内传输参考信号的次数,或者,用于本次传输参考信号的时域资源相对于该时间单元的比值。一个时间单元例如可以包括一个或多个导频传输周期,所对应的导频时域密度例如可以为1或大于1。
10、测量时长:本申请实施例中,终端设备可以根据网络设备的指示,在某一时段内进行信道测量。该时段可以称为测量时长。该时段的时间长度可以由网络设备通过信令指示,如,通过高层信令(如无线资源控制(radio resource control,RRC)消息等)通知。该测量时长也可以是预定义的,如协议定义。本申请对此不作限定。
网络设备可以通过信令通知终端设备开始进行信道测量。例如,网络设备可以通过信令通知终端设备该时段的起始时间和/或持续时间,或者,网络设备可以通过信令触发终端设备开始进行信道测量。终端设备在测量时长内可以接收多次用作信道测量的参考信号,并可以基于多次接收到的参考信号进行信道测量,以将信道的时变特征反馈给网络设备。
应理解,网络设备通过信令通知终端设备开始进行信道测量,并不代表终端设备在网络设备所指示的起始时间或触发时间开始就一直在做信道测量。网络设备只是通过信令通知终端设备可以进行信道测量,终端设备可以在由该起始时间或触发时间往后的一个时间窗内,基于接收到的参考信号进行信道测量。该时间窗的大小也即测量时长。
还应理解,这里所说的反馈是指终端设备对信道的时变特征的反馈,但并不表示终端设备除此之外不作其他的反馈。例如,终端设备可以在该时段内基于双域压缩的反馈方式来反馈,也可以在该时段内基于type II码本的反馈方式来反馈等等。为了简洁,这里不一一列举。需要注意的是,终端设备在此时段内所做的其他反馈与本申请中所述的对信道的时变特征的反馈是相互独立的过程。
在测量时长内终端设备可以多次接收到参考信号。终端设备在测量时长内接收到参考信号的次数可以是测量时长与上述时间单元的比值乘以导频时域密度之积。
11、导频传输次数:本申请实施例中,导频传输次数可以是指,网络设备发送用作信道测量的参考信号的总次数,或者说,终端设备接收用作信道测量的参考信号的总次数。该导频传输次数具体可以是指一段时间内导频传输的总次数。当导频传输次数大于1时,多次导频传输可以是分布在这段时间内的多次传输。或者说,该多次导频传输是多个时刻的传输。
导频传输次数可以由网络设备通过信令指示,如高层信令(如RRC消息);该导频传输次数也可以是预定义的,如协议定义。本申请对此不作限定。
图3是终端设备进行CSI反馈的一示意性流程图。如图3所示,网络设备在时刻1发送参考信号,终端设备在接收到该参考信号之后,可以在时刻2进行信道测量和反馈。由于网络设备发送参考信号可能是周期性、非周期性或半持续的,也就是说,网络设备上一次发送参考信号与下一次发送参考信号之间可能间隔了一段时间。如图3所示,网络设备在时刻3进行下一次参考信号的发送,终端设备在时刻4基于下一次发送的参考信号进行信道测量和反馈。可以看到,从时刻1至时刻2,经历了时间间隔t1,从时刻2至时刻4,经历了时间间隔t2。在时间间隔t2中,网络设备进行下行传输所使用的预编码矩阵都是基于时刻2接收到的反馈而确定的。然而,信道在时间间隔t2可能已经发生了变化,如果直接用基于时刻2的反馈而确定的预编码矩阵来对此后的下行传输做预编码,该预编码矩阵可能已经不能够与下行信道很好地适配,由此可能造成传输性能的下降。这种由于信道随时间发生变化导致基于反馈而确定的预编码矩阵无法与真实的信道匹配的情况称为CSI过期。换句话说,当信道随时间变化较快时,CSI过期可能会引起传输性能的显著下降。
此外,如果为了能够减少CSI过期对系统性能的影响,频繁的进行CSI测量及CSI上报,可能导致下行测量的CSI-RS和上行CSI上报开销的极具增加,大幅度降低频谱效率。
有鉴于此,本申请提供一种信道测量的方法。本申请提供的信道测量的方法基于终端设备测量多次信道的结果,反馈加权系数,以便网络设备可以根据加权系数预测信道时变趋势,从而不仅可以提升反馈的准确性,也可以减少反馈开销,提升系统性能。
下面将结合附图详细说明本申请提供的各个实施例。
图4是本申请实施例提供的一种信道测量的方法400的示意性交互图。方法400可以包括如下步骤。
410,终端设备确定L个加权系数,该L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数。
加权系数,可以表示与信道时域相关的系数,该加权系数也可以简称为时域系数。加权系数能够表征信道时变特征。信道的时变特征,即信道在时域的变化特征或者时变信道在时域的变化特征。
应理解,加权系数仅为便于区分而定义,不应对本申请构成任何限定。本申请对于加权系数的具体命名不做限定,本申请并不排除在未来的协议中对加权系数定义其他的名称以表示与其相同或相似含义的可能。例如,也可以称为多普勒相关系数。下文统一用加权系数表述。
L个加权系数能够用于通过M个时刻的信道确定K个时刻的信道。M个时刻可以位于K个时刻之前,或者,M个时刻也可以位于K个时刻之后,或者,M个时刻也可以与K个时刻部分重叠,对此不作限定。
换句话说,通过M个时刻的信道和L个加权系数,可以获得K个时刻的信道。可以理解,通过已知信道和加权系数,可以预测未知信道的信息。
对于网络设备,已知信道表示已经获知的信道。例如,终端设备测量一个或多个信道,并将该一个或多个信道上报给网络设备,进而网络设备可以获知该一个或多个信道的状态。
对于网络设备,未知信道表示未获知的信道。例如,终端设备测量一个或多个信道,并将该一个或多个信道中的部分信道上报给网络设备,进而网络设备可以获知该部分信道的状态,其余未上报的信道或者未来时刻的信道即为未知信道。
应理解,已知信道和未知信道仅是为便于理解作的描述,并不对本申请实施例的保护范围造成限定。基于本申请,网络设备可以通过已知信道和加权系数,确定未知信道。
下文详细介绍如何确定加权系数,以及如何根据已知信道和加权系数预测未知信道。
420,终端设备向网络设备发送L个加权系数的信息。
相应地,网络设备接收该L个加权系数的信息。
通常来说,信道在时域的变化特征可以表示为多个缓变的多普勒频率的加权叠加。由于多普勒频率的缓变,信道在相干时间内的信道变化存在相关性,第n个时刻的信道可以近似表示为前L个时刻历史信道的加权叠加,即
Figure PCTCN2020112072-appb-000003
其中,y(n)表示第n个时刻的信道,a l为加权系数。可以发现时变信道服从自回归(autoregressive,AR)模型。本申请中主要利用该特性,终端设备上报L个加权系数,使得网络设备可以基于该L个加权系数预测信道时变,即预测未知信道。
示例地,网络设备可以根据该L个加权系数,获得终端设备已测量却未上报的信道。
终端设备可以上报测量得到的部分信道,不需要上报测量得到的全部信道。网络设备根据L个加权系数以及上报的部分信道,可以获得未上报的信道。
示例地,网络设备还可以根据该L个加权系数,预测未来时刻的信道。
终端设备可以上报测量得到的部分信道或者全部信道,网络设备根据L个加权系数以及上报的信道,可以预测未来时刻的信道。从而可以降低CSI过期造成的性能损失、降低CSI上报开销、提升系统性能。
下面结合图5示例性说明。
如图5中的a)所示,在空域和频域组成的平面内,终端设备可以确定多个空频向量对,图中示出了3个空频向量对(即图中示出的三个小方块)。假设终端设备测量了5个时刻的信道,如时隙(slot)1、时隙4、时隙7、时隙10、时隙13的信道。终端设备可以向网络设备上报该5个时刻的信道,或者,终端设备也可以上报部分时刻的信道。假设终端设备向网络设备上报4个时刻的信道,如上报时隙1、时隙4、时隙7、时隙10的信道。
上述以时间间隔为3个示例为例进行了说明,即时隙1、时隙4、时隙7、时隙10、时隙13的时间间隔为3个时隙。应理解,本申请实施例对时间间隔并不做限定。例如,时间间隔也可以为5个时隙或20个时隙或40个时隙等等,对此不作限定。
网络设备可以基于终端设备已上报的信道以及加权系数,获得终端设备未上报的信道。如图5中的b)所示,网络设备基于时隙1、时隙4、时隙7、时隙10的信道,可以获得第5个时刻的信道,即时隙13的信道。且根据该5个时刻的信道,可以估计信道随时间的变化,通过将该变化由曲线表示来进行示意。可以参看图5中的b)所示。
基于对信道在时域的变化,结合加权系数可以预测信道在未来时刻的变化,如图5中的c)所示。图5中的c)中虚线方框内的曲线是对未来时刻的信道的预测。
假设未来时刻的信道记为c(O+L+1),一种简单的计算方式,c(O+L+1)=a 1c(O+1)+…+a Lc(O+L)。其中{a 1,…,a L}为L个加权系数,c(O+1)至c(O+L)均为已知的采样信道。如图5中的c)所示,网络设备预测出未来3个时刻的信道。如图5中的c)中的,未来时刻的 信道可以由虚线框内的曲线来进行示意,曲线上的三个圆点,表示网络设备预测出的未来3个时刻的信道。
可以看出,网络设备基于终端设备上报的L个加权系数,可以预测未来时刻的信道。
下面详细介绍终端设备计算加权系数的方式。
可选地,终端设备可以基于多次信道测量的结果,计算加权系数。
换句话说,终端设备可以基于多个时刻的信道,计算加权系数。或者说,终端设备可以在多个时刻测量信道,并根据测量的信道,计算加权系数。
由于信道的时变特性,终端设备可以基于在多个不同的时刻接收到的参考信号进行信道测量。换句话说,上述加权系数可以是终端设备基于多个时刻接收到的参考信号确定的。或者说,上述加权系数可以是终端设备基于多次接收到的参考信号确定。
在一种实现方式中,终端设备可以基于测量窗口(或者称时域上的测量窗口)内接收到的参考信号,计算加权系数。应理解,该测量窗口的测量时长可以较短,例如可以以时隙(slot)或者毫秒(ms)为单位来定义。如,该测量窗口的测量时长为20个时隙或者5ms或10ms或20ms。或者,该测量窗口的测量时长也可以较长,例如可以以秒为单位来定义。如,该测量时长为10秒。
该测量窗口可以是预定义的,如协议定义。该测量窗口也可以是网络设备预配置的,如网络设备通过信令指示测量的起始时间和测量时长。本申请对此不作限定。
在另一种实现方式中,终端设备可以基于导频传输次数接收参考信号,并基于接收到的参考信号计算加权系数。
该导频传输次数可以是预定义的,如协议定义。该导频传输次数也可以是网络设备预配置的,如网络设备通过信令指示导频传输次数。本申请对此不做限定。
由于上文中已经详细说明了测量窗口和导频传输次数,为了简洁,这里不再赘述。
需要说明的是,在本申请实施例中,终端设备可以基于测量窗口或导频传输次数接收参考信号,以进行信道测量。无论终端设备是基于测量窗口接收参考信号,还是基于导频传输次数接收参考信号,终端设备均可以基于多次接收到的参考信号进行信道测量,以确定用于表征信道时变特征的加权系数。
下文中为方便说明,假设终端设备基于N次接收到的参考信号确定上述L个加权系数,其中,N为大于1或等于1的整数,且N大于或等于L。其中,N次可以是在测量窗口内接收到的参考信号的次数,即N为基于测量窗口接收到的参考信号的次数。或者,N次也可以是导频传输次数,即N为基于导频传输次数接收到的参考信号的次数。本申请对此不作限定。
示例地,终端设备可以根据P个测量信道计算加权系数。
P个测量信道,或者称P个采样信道,可以表示终端设备在P个时刻测量得到的信道,或者说终端设备在P个时刻采样得到的信道。其中,P为大于1或等于1的整数。
该P个测量信道,例如可以是历史测量的信道。终端设备可以根据之前测量的信道,计算加权系数。
该P个测量信道,例如也可以是终端设备当前测量的信道。终端设备可以先进行信道测量,并根据信道测量的结果,计算加权系数。终端设备用于计算加权系数的测量信道可以是终端设备测量的部分信道,即N大于或等于P。以图5为例,终端设备测量N次信 道,终端设备可以选择该N次中的(O+L)个测量信道来计算L个加权系数,即{a 1,…,a L}。如图5所示,P个测量信道可以包括:c(1),c(2),…,c(O+L)。
应理解,用于终端设备计算加权系数的P个测量信道,可以是终端设备历史测量的结果,也可以是终端设备当前测量的结果,对此不作限定。下文为便于理解,主要以P个测量信道为终端设备当前测量的信道为例进行说明。
可选地,P可以等于(O+L)。其中,O为大于1或等于1的整数。
O可以表示用于计算L个加权系数的方程个数。换句话说,终端设备可以通过O组信道来计算L个加权系数。O可以大于或等于L,或者,O也可以小于L,对此不作限定。
下文为便于理解,结合图6,以P为(O+L)为例说明,终端设备通过O组信道来计算L个加权系数的方式。
(1)网络设备向终端设备发送参考信号,如CSI-RS。
可选地,网络设备为终端设备配置CSI-RS测量次数和/或测量窗口,并向终端设备发送参考信号,如CSI-RS。例如,终端设备在该测量窗口内进行信道估计并获得(O+L)个时刻的空频矩阵,例如记作:H(1),H(2),…,H(O+L)。
终端设备基于N次中的第n次接收到的参考信号进行信道测量,可以得到空频矩阵H(n),其中,n为大于1或等于1整数,且n小于或等于N。空频矩阵可以理解是对信道的一种表征方式。
H(n)可以为一个N s×N 3维度的矩阵,N s可以为网络设备发送天线个数,N 3可以为频域颗粒度,如子带个数或子载波数。
可选地,将H(n)投影至空频域,可以得到对应的空频系数矩阵C(n),即C(n)=S H H(n)F。C(n)也可以理解是对信道的一种表征方式。其中S为空域基底向量集合,F为频域基底向量集合。例如,S可以为N s×N s的DFT矩阵,F可以为N 3×N 3的DFT矩阵。C(n)可以为一个N s×N 3维度的矩阵。
在本申请中,上角标H表示共轭转置,如,S H表示矩阵(或向量)S的共轭转置。后文中为了简洁,省略对相同或相似情况的说明。
应理解,通过空频矩阵H(n)表征信道,或者通过空频系数矩阵C(n)表征信道,仅是示例性说明,本申请实施例并未限定于此,其他可以表征信道的方式都落入本申请实施例的保护范围。
(2)终端设备计算加权系数。
以下为便于理解和说明,以一个角度时延对举例。
实现方式1,终端设备根据C(n)计算加权系数。
终端设备对于某个空频对(s,f),可以获得多个时刻测量的该空频对的空频系数的时域向量,即C s,f=[c(1),c(2),…,c(O+L)],其中,C s,f可以为一个1×(O+L)的向量,c(1),c(2),…,c(O+L)属于C(n)中的元素。
对于该空频系数的时域向量[c(1),c(2),…,c(O+L)],可以表示为L个未知数的方程,并求得L个加权系数a={a 1,…,a L}。
假设,在(O+L)个时刻的测量信道(或者说采样信道)为:c(1),c(2),…,c(O+L),基于AR模型,可以表示如下方程:
Figure PCTCN2020112072-appb-000004
其中,{a 1,…,a L}为L个加权系数,c(1)至c(O+L)均为已知的测量信道(或者说采样信道)。
该方程可以简单理解为,任意第L+1个信道可以表示为前L个信道的加权系数{a 1,…,a L}的加权叠加。
通过a=X -1Y,可以计算得到a。其中,X为:
Figure PCTCN2020112072-appb-000005
Y为:
Figure PCTCN2020112072-appb-000006
a为:
Figure PCTCN2020112072-appb-000007
根据O个方程(或者说O组测量信道)可以计算出L个加权系数a={a 1,…,a L}。其中使用了O个方程使得加权系数{a 1,…,a L}可以更加鲁棒。
应理解,上述公式仅是示例性说明,本申请实施例并未限定于此,任何属于该公式的变形公式都落入本申请实施例的保护范围。
实现方式2,终端设备根据H(n)计算加权系数。
假设,在(O+L)个时刻的测量得到的空频矩阵为:H(1),H(2),…,H(O+L),基于AR模型,可以表示如下方程:
Figure PCTCN2020112072-appb-000008
其中,{a 1,…,a L}为L个加权系数,H(1)至H(O+L)均为已知的测量信道(或者说采样信道,即通过信道测量获得的空频矩阵)。
应理解,上述公式中,每行的起始位置可以是独立的,只要每行的H与H之间的间距对齐即可,即时间间隔相同即可。例如,以三行为例,第一行的起始位置可以为H(1),如第一行可以为:H(1),H(2),H(3);第二行的起始位置可以为H(4),如第二行可以为:H(4),H(5),H(6);第三行的起始位置可以为H(2),如第三行可以为:H(2),H(3),H(4)。
通过a=X -1Y,可以计算得到a。其中,X为:
Figure PCTCN2020112072-appb-000009
Y为:
Figure PCTCN2020112072-appb-000010
a为:
Figure PCTCN2020112072-appb-000011
示例性地,a可以为上述方程的最小二乘解。
应理解,上述公式仅是示例性说明,本申请实施例并未限定于此,任何属于该公式的变形公式都落入本申请实施例的保护范围。
还应理解,上述以C(n)和H(n)为例进行了示例性说明,本申请实施例并未限定于此。任何可以表征信道的方式都落入本申请实施例的保护范围。
还应理解,本申请实施例中对接收天线不作限定。本申请实施例主要以一个接收天线为例进行说明,当多个接收天线时,至少可以包括以下几种情况。
1、针对每个接收天线计算一组加权系数。
可以理解,每个接收天线可以对应一组加权系数。
例如,与每个接收天线对应的空频矩阵均可以用来计算一组加权系数。又如,与每个接收天线对应的空频系数矩阵(即将空频矩阵投影至空频域得到的空频系数矩阵)可以用来计算一组加权系数。
2、针对多个接收天线,计算一组加权系数,该组加权系数可以用于该多个接收天线。
可以理解,多个接收天线可以对应同一组加权系数。
一示例,可以针对其中任意一个接收天线计算一组加权系数,该组加权系数可以用于该多个接收天线。
又一示例,可以任选一个接收天线对应的空频矩阵来计算一组加权系数。或者,可以任选一个接收天线对应的空频系数矩阵(即将空频矩阵投影至空频域得到的空频系数矩阵)可以用来计算一组加权系数。
又一示例,针对多个接收天线,可以得到多个空频系数。从该多个空频系数中,任取部分空频系数来计算一组加权系数,该组加权系数可以用于该多个接收天线。
例如,从第一接收天线中取D1个空频系数,该D1个空频系数和L个加权系数组成O1个方程;从第二接收天线中取D2个空频系数,该D2个空频系数和L个加权系数组成O2个方程;从第三接收天线中取D3个空频系数,该D3个空频系数和L个加权系数组成O3个方程;……;从第r接收天线中取Dr个空频系数,该Dr个空频系数和L个加权系数组成Or个方程。
其中,r表示接收天线的个数。D1、D2、D3、……、Dr均为大于1或等于1的整数,D1、D2、D3、……、Dr表示从不同接收天线中取的空频系数的个数。O1、O2、O3、……、Or均为大于1或等于1的整数,O1、O2、O3、……、Or均表示方程个数。可选地,O1、O2、O3、……、Or相等。
通过O1个方程、O2个方程、O3个方程、……、Or个方程组成的方程组,可以计算出L个加权系数。
关于空频系数和L个加权系数组成方程,可以参考上述实现方式1中的描述,此处不再赘述。
应理解,从不同接收天线中取哪些空频系数,本申请实施例不作限定。
还应理解,第一接收天线、第二接收天线、第三接收天线仅是为区分不同接收天线做的命名,并不对本申请实施例的保护范围造成限定。
又如,可以对多个接收天线对应的多个空频系数,或者,对多个接收天线对应的多个空频系数中的部分空频系数,进行奇异值分解(singular value decomposition,SVD),然后取特征向量,用于计算加权系数。如,将多个接收天线对应的空频系数或者部分空频系数,合成一个矩阵,对该矩阵进行奇异值分解,然后取特征向量,用于计算加权系数。
又一示例,针对多个接收天线,可以得到多个空频矩阵。对该多个空频矩阵或者多个 空频矩阵中的部分空频矩阵进行SVD,然后取特征向量,用于计算加权系数。如,将多个接收天线对应的多个空频矩阵或者多个空频矩阵的部分,合成一个矩阵,对该矩阵进行奇异值分解,然后去特征向量,用于计算加权系数。
应理解,针对多个接收天线对应的同一组加权系数可以有多种实现方式,上述仅是示例性地提供了两种可能的方式,本申请实施例并未限定于此。
还应理解,上述针对多个接收天线的两种情况仅是示例性说明,本申请实施例并未限定于此。
还应理解,本申请实施例对接收天线的数目不作限定。
终端设备计算出L个加权系数后,可以向网络设备上报该L个加权系数。
可选地,终端设备还可以向网络设备上报T个测量信道的信息。其中,T为大于1或等于1的整数。
(3)终端设备上报T个测量信道和L个加权系数。
关于具体上报的量化方式本申请实施例不作限定。L个加权系数和T个测量信道的信息可以在一个信息中,如终端设备可以通过一个上行控制信息(uplink control information,UCI),上报L个加权系数和T个测量信道的信息。或者,L个加权系数和T个测量信道的信息也可以分别上报,如终端设备可以分别上报L个加权系数和T个测量信道的信息。对此不作限定。
终端设备上报T个测量信道的信息,且T大于或等于L,从而便于网络设备通过该T个测量信道中的L个测量信道,以及终端设备上报的L个加权系数,获得未知信道的信息。
其中,测量信道的信息可以包括信道信息和/或时间上的序号。
时间上的序号,可以表示测量该信道的时间,或者也可以表示第几次测量该信道,或者也可以表示测量信道的序号。例如,终端设备向网络设备上报在时刻1测量得到的信道,并且终端设备可以向网络设备上报该信道的时间为时刻1。又如,终端设备向网络设备上报在测量窗口内第n次测量得到的信道,并且终端设备可以向网络设备上报该信道的时间为第n次。关于测量信道的序列,下文描述。
应理解,测量信道的信息还可以包括其他信息,对此不作限定。
下面结合几种不同的情况说明终端设备上报的T个测量信道。
情况1,T可以等于N。
也就是说,终端设备可以向网络设备上报在每个时刻测量得到的信道。在该情况下,网络设备可以结合终端设备上报的测量信道以及加权系数,预测在未来时刻的信道。
情况2,T可以小于N。
也就是说,终端设备可以上报测量得到的部分信道,或者说,终端设备可以上报在部分时刻测量得到的信道,而不需要上报测量得到的全部信道,从而可以减小上报开销。在该情况下,网络设备结合终端设备上报的测量信道以及加权系数,不仅可以预测在未来时刻的信道,而且还可以获得终端设备已测量却未上报的信道。
假设终端设备测量了5个时刻的信道,如时隙1、时隙4、时隙7、时隙10、时隙13的信道。终端设备也可以上报部分时刻的信道。以终端设备向网络设备上报4个时刻的信道为例。
一示例,如步骤410所述,L个加权系数能够用于通过M个时刻的信道确定K个时 刻的信道,M个时刻可以位于K个时刻之前。
如,终端设备可以上报在时隙1、时隙4、时隙7、时隙10测量得到的信道。网络设备根据终端设备上报的加权系数以及在时隙1、时隙4、时隙7、时隙10测量得到的信道,可以获得在时隙13测量得到的信道。其中,M个时刻的信道可以包括:时隙1、时隙4、时隙7、时隙10的信道,K个时刻的信道可以包括时隙13的信道。
又如,终端设备可以上报在时隙1、时隙4、时隙7、时隙10测量得到的信道。网络设备根据终端设备上报的加权系数以及在时隙1、时隙4、时隙7、时隙10测量得到的信道,不仅可以获得在时隙13测量得到的信道,还可以预测在时隙13之后的信道。其中,M个时刻的信道可以包括:时隙1、时隙4、时隙7、时隙10的信道,K个时刻的信道可以包括时隙13的信道以及时隙13之后的信道。
又一示例,如步骤410所述,L个加权系数能够用于通过M个时刻的信道确定K个时刻的信道,M个时刻可以位于K个时刻之后。
如,终端设备可以上报在时隙4、时隙7、时隙10、时隙13测量得到的信道。网络设备根据终端设备上报的加权系数以及在时隙4、时隙7、时隙10、时隙13测量得到的信道,可以获得在时隙1测量得到的信道。其中,M个时刻的信道可以包括:时隙4、时隙7、时隙10、时隙13的信道,K个时刻的信道可以包括时隙1的信道。
情况1和情况2,通过比较N和T,即终端设备测量信道的个数(N)和终端设备上报的测量信道的个数(T),介绍了终端设备上报的测量信道的个数可以小于终端设备实际测量的信道的个数,从而可以减小上报开销。
下面,结合情况3和情况4,比较L和T,即终端设备计算的加权系数的个数(L)和终端设备上报的测量信道的个数(T)。
情况3,T可以大于L。
在该情况下,T个测量信道中的至少L个测量信道的时间间隔,与用于计算L个加权系数的测量信道的时间间隔相同。
以上述实现方式1为例,终端设备通过(O+L)个信道计算L个加权系数,假设该(O+L)个信道的时间间隔都为x,x大于0。如终端设备在t1时刻测量得到c(1),终端设备在(t1+x)时刻测量得到c(2),终端设备在(t1+2x)时刻测量得到c(3),等等。那么终端设备上报的T个测量信道中,至少L个测量信道的时间间隔为x,这样网络设备可以使用该L个测量信道与L个加权系数,获知较准确的信道信息,保证通信性能。
情况4,T可以等于L。
也就是说,终端设备可以上报L个测量信道和L个加权系数:a 1,…,a L。在该情况下,终端设备上报的L个测量信道,可以是用于计算L个加权系数时的任意L个测量信道。
以一个角度时延对为例。
假设终端设备通过上述实现方式1计算加权系数。
可选地,终端设备可以上报任意一组L个测量信道。
例如,终端设备可以上报前L个测量信道:c(1),c(2),…,c(L)。
又如,终端设备可以上报最后L个测量信道:c(O+1),c(O+2),…,c(O+L)。
又如,终端设备可以上报中间任意L个测量信道。
该中间任意L个测量信道可以是任意连续的测量信道,也可以是不连续的测量信道, 只要该中间任意L个测量信道与用于计算加权系数的P个测量信道的时间间隔相同即可。如终端设备通过:c(1),c(3),c(5),…,计算加权系数,那么终端设备上报的L个测量信道可以是:c(1),c(3),c(5),…,或者,也可以是:c(2),c(4),c(6),…。
以多个角度时延对为例。
例如,每个角度时延对可以分别对应一组加权系数,也就是说,每个角度时延对都有独立的加权系数。终端设备可以分别上报各个角度时延对所对应的一组加权系数。换句话说,终端设备上报多组加权系数,每组加权系数对应一个角度时延对。其中,每组加权系数的个数可以相等也可以不等,对此不作限定。
又如,多个角度时延对对应相同的加权系数。终端设备可以上报该多个角度时延对所对应的一组加权系数。换句话说,终端设备上报一组加权系数,该组加权系数对应多个角度时延对。
又如,多个角度时延对对应多组加权系数。以W1个角度时延对为例,终端设备可以上报W2组加权系数,W1、W2均为大于2或等于2的整数。其中,每组加权系数对应多个角度时延对;或者,W2组中部分组的加权系数对应多个角度时延对,部分组的加权系数对应一个角度时延对。
应理解,上述仅是示例性说明,多个角度时延对可以对应一组或多组加权系数,本申请实施例并不做限定。
可选地,终端设备上报测量信道的信息时,可以上报测量信道的序号。
测量信道的序号,或者称测量信道的下标,是为区分不同的测量信道做的命名,或者说为区分不同测量时刻做的命名。例如,以终端设备在测量窗口内进行信道估计并获得(O+L)个时刻的信道为例,如可以记为:H(1),H(2),…,H(O+L),那么对于信道H(1)的序号或者下标可以记为1,H(2)的序号或者下标可以记为2,等等。又如,终端设备使用P个测量信道计算加权系数,那么该P个测量信道的序号或者下标可以按照测量的时间顺序依次命名:1、2、……、P。一示例,终端设备可以上报L个测量信道的下标。例如,终端设备上报最后L个测量信道时,终端设备可以上报:O+1,O+2,…,O+L。又如,终端设备上报前L个测量信道时,终端设备可以上报:1,2,…,L。
又一示例,终端设备可以上报测量信道的组序号。例如,终端设备上报最后L个测量信道时,终端设备可以上报O(O对应:第O组)。又如,终端设备上报前L个测量信道时,终端设备可以上报1(1对应:第1组)。
又一示例,终端设备可以上报第一个测量信道的下标。例如,终端设备上报最后L个测量信道时,终端设备可以上报O(O对应:O到O+L)。又如,终端设备上报前L个测量信道时,终端设备可以上报1(1对应:1到L)。又如,终端设备上报中间任意L个测量信道时,终端设备可以上报y(y对应:y到y+L),y为大于1或等于1的整数,且y小于或等于O。
又一示例,终端设备可以上报最后一个测量信道的下标。例如,终端设备上报最后L个测量信道时,终端设备可以上报O+L(O+L对应:O到O+L)。又如,终端设备上报前L个测量信道时,终端设备可以上报L(L对应:1到L)。又如,终端设备上报中间任意L个测量信道时,终端设备可以上报y+L(y+L对应:y到y+L)。
通过上述上报方式,可以节省终端设备反馈测量信道的开销。
上文示例地介绍了终端设备上报的测量信道的几种可能情况。通过本申请,终端设备可以向网络设备上报部分测量信道,从而可以节省反馈信令开销。此外,网络设备还可以根据终端设备上报的加权系数以及测量信道,重构信道时变,预测未来信道变化趋势,降低CSI过期造成的损失,提升系统性能。
从上文可知,终端设备可以通过O组信道来计算L个加权系数。
可选地,终端设备可以先获取参数L和参数O的信息,并基于参数L和参数O,通过O组信道计算L’个加权系数,其中,L’为大于1或等于1的整数,且L’小于或等于L。
也就是说,终端设备获知参数L的取值后,终端设备计算的加权系数的个数可以小于L,换句话说,终端设备上报的加权系数可以小于L。可选地,终端设备可以计算L’个加权系数,并上报计算得到的该L’个加权系数。
参数L和参数O,可以以组合的方式存在,即{L,O}。或者,参数L和参数O,也可以单独存在。下面介绍终端设备确定参数L和参数O的方式。
可选地,终端设备可以从一组或多组{L,O}中确定目标{L,O},并且可以基于目标{L,O},确定参数L和参数O的取值。
示例1,网络设备配置一组{L,O},终端设备基于网络设备配置的该组{L,O},确定参数L和参数O的取值。
可以理解,网络设备为终端设备配置一组{L,O},并向终端设备指示配置的{L,O}。终端设备根据网络设备配置的该组{L,O},可以获知L和O的取值。进一步地,终端设备可以通过O组信道来计算L个加权系数。
示例2,网络设备预先配置多组{L,O}的参数取值组合,或者协议预先规定多组{L,O}的参数取值组合,终端设备选择特定的一组{L,O},计算加权系数。
多组{L,O}可以是动态配置的一些取值。如网络设备根据实际情况,为终端设备动态配置多组{L,O}。
或者,多组{L,O}也可以为固定的一些取值。如,{L,O}参数可以有{4,3},{3,2}{4,2}等。对此不作限定。
通过网络设备预先配置多组{L,O},或者,协议可以预先规定多组{L,O},可以根据实际情况选择合适的一组{L,O},从而提高预测精度。
可选地,多组{L,O}中的每组{L,O}与以下一项或多项的取值对应:测量时长,导频时域密度,导频传输次数和导频传输周期。或者说,多组{L,O}中的每组{L,O}与以下一项或多项的配置对应:测量时长,导频时域密度,导频传输次数和导频传输周期。
终端设备可以根据以下一项或多项确定对应的一组{L,O}:测量时长,导频时域密度,导频传输次数和导频传输周期。
本申请对于终端设备确定测量时长、导频时域密度、导频传输次数和导频传输周期的取值的具体方式不作限定。
在一种实现方式中,网络设备可以通过信令直接指示测量时长、导频时域密度、导频传输次数或导频传输周期的取值。
在另一种实现方式中,网络设备也可以通过信令指示与测量时长、导频时域密度、导频传输次数或导频传输周期的取值相关的配置。例如,协议可以预定义多种配置与多种取值的对应关系,该对应关系例如可以通过表格或其他方式来体现。网络设备可以通过指示 与某一取值对应的配置或配置的索引来指示测量时长、导频时域密度、导频传输次数或导频传输周期的取值。
在又一种实现方式中,测量时长、导频时域密度、导频传输次数或导频传输周期的取值可以是预定义的,如协议定义。
上文列举了几种确定测量时长、导频时域密度、导频传输次数或导频传输周期的取值的具体实现方式,但这不应对本申请构成任何限定。
可选地,多组{L,O}中的每组{L,O}与移动速度的取值对应。或者说,多组{L,O}中的每组{L,O}与移动速度的取值范围对应。
例如,针对移动速度假设4个取值范围,分别记为第一取值范围、第二取值范围、第三取值范围、第四取值范围。每个取值范围对应一组{L,O}。
终端设备可以根据移动速率落入哪个取值范围,确定其对应的一组{L,O}。
网络设备预配置多组{L,O},或者,协议预先规定多组{L,O},可以使得终端设备获得更精确的加权系数。此外,{L,O}可以与测量周期、导频传输次数、导频时域密度绑定,从而节省信令开销。或者,{L,O}可以与移动速度绑定,从而可以提升加权系数计算精度并降低信令开销。
可选地,终端设备还可以上报所选一组{L,O}的索引。也就是说,终端设备可以上报目标{L,O}的索引。
此外,如前所述,终端设备可以上报小于L个加权系数,并上报实际上报的加权系数个数L’。
示例3,网络设备通过RRC配置多组{L,O},并通过媒体接入控制控制元素(media access control control element,MAC CE)或下行控制信息(downlink control information,DCI)激活一个{L,O}组合。
例如,网络设备可以通过MAC CE或DCI向终端设备指示激活的{L,O}的索引。
示例4,网络设备通过RRC配置多组{L,O},并通过MAC CE可选的{L,O}子集,通过DCI选择一个{L,O}组合。
例如,网络设备可以通过DCI向终端设备指示激活的{L,O}的索引。
上述几种示例,介绍了参数L和参数O以组合的方式存在,即{L,O}。终端设备可以选择一组{L,O},确定参数L和参数O的取值。
下面结合几种示例说明,参数L和参数O单独存在的情况。
示例5,网络设备向终端设备指示参数L的值,终端设备根据参数L的值确定参数O的值。
可以默认或者预先规定参数L和参数O的关系,如L与O的比值。终端设备根据L的取值、以及参数L和参数O的关系,可以确定O的取值。
例如,L与O的取值相等,那么终端设备根据L的取值可以确定O的取值。
示例6,网络设备向终端设备指示参数O的值,终端设备根据参数O的值确定参数L的值。
可以默认或者预先规定参数L和参数O的关系,如L与O的比值。终端设备根据O的取值、以及参数L和参数O的关系,可以确定L的取值。
例如,L与O的取值相等,那么终端设备根据O的取值可以确定L的取值。
示例7,网络设备向终端设备指示W的值,终端设备根据W的值、以及O与L的关系,确定参数L和参数O的值。
在该示例下,(O+L)可以作为一个单独的参数存在。为区分,记为W,W等于(O+L)。也就是说,网络设备可以为终端设备配置一个或多个W,或者协议预先规定一个或多个W。
在该示例下,可以预先规定O与L的关系,例如O与L相等,或者,O与L的比值为一固定值。终端设备根据W以及O与L的关系,可以确定O与L的取值。
上述示例性地介绍了终端设备获得参数L和参数O的几种方式,本申请实施例并未限定于此。
例如,针对上文中取O1、O2、O3、……、Or个方程的情况。该O1、O2、O3、……、Or也可以作为一组参数。
示例性地,网络设备可以预先配置或者协议可以预先规定一组或多组O1、O2、O3、……、Or的值。例如,终端设备可以自身确定一组O1、O2、O3、……、Or。
示例性地,网络设备可以预先配置或者协议可以预先规定Oi的值,终端设备根据Oi的值可以确定其余的值,Oi为O1、O2、O3、……、Or中的任意一个。例如,假设O1、O2、O3、……、Or相等,那么网络设备可以预先配置或者协议可以预先规定O1的值,终端设备根据O1的值可以确定O2、O3、……、Or的值。
本申请中,终端设备上报加权系数,使得网络设备可以重构信道时变,也可以预测未来信道变化趋势。网络设备不仅能够更全面地了解信道的状态,从而为下行调度做出更合理的决策,而且,也可以降低CSI过期造成的性能损失,提升系统性能。终端设备通过上报加权系数,可以降低CSI上报开销,节省资源。
此外,本申请中,终端设备通过上报加权系数,可以上报部分测量信道,即上报测量得到的部分信道。网络设备可以根据上报的加权系数以及部分测量信道,获知终端设备未上报的测量信道。从而可以降低上报开销。
此外,本申请中,网络设备可以预先配置或者协议可以预先规定一组或多组{L,O}的取值组合,从而终端设备可以根据实际情况选择合适的一组{L,O},进而可以提升预测精度。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图4至图6详细说明了本申请实施例提供的方法。以下,结合图7至图10详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中 所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图7是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置700可以包括通信单元710和处理单元720。通信单元710可以与外部进行通信,处理单元720用于进行数据处理。通信单元710还可以称为通信接口或收发单元。通信接口用于输入和/或输出信息,信息包括指令和数据中的至少一项。可选地,该通信装置可以为芯片或芯片系统。当该通信装置为芯片或芯片系统时,通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在一种可能的设计中,该通信装置700可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路或芯片系统。这时,该通信装置700可以称为终端设备。通信单元710用于执行上文方法实施例中终端设备侧的收发相关操作,处理单元720用于执行上文方法实施例中终端设备的处理相关操作。
一种可能的实现方式,处理单元720用于:确定L个加权系数,该L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;通信单元710用于:发送该L个加权系数的信息。
可选地,通信单元710还用于:发送T个测量信道的信息,T个测量信道为以下任意一项:N次信道测量中的任意T个测量信道、N次信道测量中的前T个测量信道、N次信道测量中的最后T个测量信道;其中,N、T均为大于1或等于1的整数,且T大于或等于L。
可选地,处理单元720具体用于:基于P个测量信道,计算L个加权系数;其中,P为大于1或等于1的整数,且P大于或等于L。
可选地,P个测量信道的时间间隔与T个测量信道中的至少L个测量信道的时间间隔相同。
可选地,处理单元720还用于:获取参数L和参数O的信息;处理单元720具体用于:基于参数L和参数O,通过O组信道计算L’个加权系数,其中,O、L’均为大于1或等于1的整数,且L’小于或等于L;通信单元710具体用于:发送L’个加权系数的信息。
可选地,处理单元720还用于:从一组或多组{L,O}中确定目标{L,O};基于目标{L,O},确定参数L和参数O的取值。
可选地,一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
可选地,通信单元710还用于:发送指示信息,指示信息用于指示目标{L,O}的索引。
该通信装置700可实现对应于根据本申请实施例的方法400中的终端设备执行的步骤或者流程,该通信装置700可以包括用于执行图4中的方法400中的终端设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400的相应流程。
其中,当该通信装置700用于执行图4中的方法400时,通信单元710可用于执行方法400中的步骤420,处理单元720可用于执行方法400中的步骤410。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置700中的通信单元710可通过图9中示出的终端设备900中的收发器910实现,该通信装置700中的处理单元720可通过图9中示出的终端设备900中的处理器920实现。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
还应理解,该通信装置700中的通信单元710也可以为输入/输出接口。
在另一种可能的设计中,该通信装置700可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路或芯片系统。这时,该通信装置700可以称为网络设备。通信单元710用于执行上文方法实施例中网络设备侧的收发相关操作,处理单元720用于执行上文方法实施例中网络设备的处理相关操作。
一种可能的实现方式,通信单元710用于:接收L个加权系数的信息,L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;处理单元720用于:确定L个加权系数。
可选地,通信单元710还用于:接收T个测量信道的信息,T个测量信道为以下任意一项:N次信道测量中的任意T个测量信道、N次信道测量中的前T个测量信道、N次信道测量中的最后T个测量信道;其中,N、T均为大于1或等于1的整数,且T大于或等于L。
可选地,通信单元710还用于:发送指示参数O和参数L的信息;通信单元710具体用于:接收L’个加权系数的信息,L’个加权系数是:基于参数O以及参数L、通过O组信道计算得到的,其中,O、L’均为大于1或等于1的整数,且L’小于或等于L。
可选地,通信单元710还用于:发送指示一组或多组{L,O}的信息,一组或多组{L,O}用于确定参数L和参数O的取值。
可选地,一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
可选地,通信单元710还用于:接收指示信息,指示信息用于指示一组或多组{L,O}中目标{L,O}的索引,目标{L,O}用于确定参数L和参数O。
该通信装置700可实现对应于根据本申请实施例的方法400中的网络设备执行的步骤或者流程,该通信装置700可以包括用于执行图4中的方法400中的网络设备执行的方法 的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400的相应流程。
其中,当该通信装置700用于执行图4中的方法400时,通信单元710可用于执行方法400中的步骤420。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置700中的通信单元为可通过图10中示出的网络设备1000中的收发器1010实现,该通信装置700中的处理单元720可通过图10中示出的网络设备1000中的处理器1020实现。
还应理解,该通信装置700中的通信单元710也可以为输入/输出接口。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
图8是本申请实施例提供的通信装置800的又一示意性框图。如图所示,通信装置800包括收发器810、处理器820、和存储器830,存储器830中存储有程序,处理器820用于执行存储器830中存储的程序,对存储器830中存储的程序的执行,使得处理器820用于执行上文方法实施例中的相关处理步骤,对存储器830中存储的程序的执行,使得处理器820控制收发器810执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信装置800用于执行上文方法实施例中终端设备所执行的动作,这时,对存储器830中存储的程序的执行,使得处理器820用于执行上文方法实施例中终端设备侧的处理步骤,对存储器830中存储的程序的执行,使得处理器820控制收发器810执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该通信装置800用于执行上文方法实施例中网络设备所执行的动作,这时,对存储器830中存储的程序的执行,使得处理器820用于执行上文方法实施例中网络设备侧的处理步骤,对存储器830中存储的程序的执行,使得处理器820控制收发器810执行上文方法实施例中网络设备侧的接收和发送步骤。
本申请实施例还提供一种通信装置900,该通信装置900可以是终端设备也可以是芯片。该通信装置900可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置900为终端设备时,图9示出了一种简化的终端设备的结构示意图。如图9所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存 储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图9所示,终端设备包括收发单元910和处理单元920。收发单元910也可以称为收发器、收发机、收发装置等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元920,用于执行图4中的步骤410,和/或,处理单元920还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元910还用于执行图4中所示的步骤420,和/或收发单元910还用于执行终端设备侧的其他收发步骤。
应理解,图9仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图9所示的结构。
当该通信设备900为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1000,该通信装置1000可以是网络设备也可以是芯片。该通信装置1000可以用于执行上述方法实施例中由网络设备所执行的动作。
当该通信装置1000为网络设备时,例如为基站。图10示出了一种简化的基站结构示意图。基站包括1010部分以及1020部分。1010部分主要用于射频信号的收发以及射频信号与基带信号的转换;1020部分主要用于基带处理,对基站进行控制等。1010部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1020部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1010部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将1010部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1010部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1020部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1010部分的收发单元用于执行图4中所示的步骤420中网络设备侧的接收操作,和/或1010部分的收发单元还用于执行本申请实施例中网络设备 侧的其他收发步骤。1020部分的处理单元用于执行本申请实施例中网络设备侧的处理步骤。
应理解,图10仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图10所示的结构。
当该通信装置1000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括AAU,还可以包括CU节点和/或DU节点,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
上述CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限 于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种信道测量的方法,其特征在于,包括:
    确定L个加权系数,所述L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;
    发送所述L个加权系数的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    发送T个测量信道的信息,所述T个测量信道为以下任意一项:
    N次信道测量中的任意T个测量信道、所述N次信道测量中的前T个测量信道、所述N次信道测量中的最后T个测量信道;
    其中,N、T均为大于1或等于1的整数,且T大于或等于L。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述确定L个加权系数,包括:
    基于P个测量信道,计算所述L个加权系数;
    其中,P为大于1或等于1的整数,且P大于或等于L。
  4. 根据权利要求3所述的方法,其特征在于,
    所述P个测量信道的时间间隔与所述T个测量信道中的至少L个测量信道的时间间隔相同。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    获取参数L和参数O的信息;
    所述确定L个加权系数,包括:
    基于所述参数L和所述参数O,通过O组信道计算L’个加权系数,其中,O、L’均为大于1或等于1的整数,且L’小于或等于L;
    所述发送所述L个加权系数的信息,包括:
    发送所述L’个加权系数的信息。
  6. 根据权利要求5所述的方法,其特征在于,
    所述获取参数L和参数O的信息,包括:
    从一组或多组{L,O}中确定目标{L,O};
    基于所述目标{L,O},确定所述参数L和所述参数O的取值。
  7. 根据权利要求6所述的方法,其特征在于,所述一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:
    测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示所述目标{L,O}的索引。
  9. 一种信道测量的方法,其特征在于,包括:
    接收L个加权系数的信息,所述L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;
    确定所述L个加权系数。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收T个测量信道的信息,所述T个测量信道为以下任意一项:
    N次信道测量中的任意T个测量信道、所述N次信道测量中的前T个测量信道、所述N次信道测量中的最后T个测量信道;
    其中,N、T均为大于1或等于1的整数,且T大于或等于L。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    发送指示参数O和参数L的信息;
    所述接收L个加权系数的信息,包括:
    接收L’个加权系数的信息,所述L’个加权系数是:基于所述参数O以及所述参数L、通过O组信道计算得到的,
    其中,O、L’均为大于1或等于1的整数,且L’小于或等于L。
  12. 根据权利要求11所述的方法,其特征在于,所述发送指示参数O和参数L的信息,包括:
    发送指示一组或多组{L,O}的信息,所述一组或多组{L,O}用于确定所述参数L和所述参数O的取值。
  13. 根据权利要求12所述的方法,其特征在于,所述一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:
    测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示所述一组或多组{L,O}中目标{L,O}的索引,所述目标{L,O}用于确定所述参数L和所述参数O。
  15. 一种通信装置,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于:确定L个加权系数,所述L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;
    所述通信单元用于:发送所述L个加权系数的信息。
  16. 根据权利要求15所述的通信装置,其特征在于,
    所述通信单元还用于:发送T个测量信道的信息,
    所述T个测量信道为以下任意一项:
    N次信道测量中的任意T个测量信道、所述N次信道测量中的前T个测量信道、所述N次信道测量中的最后T个测量信道;
    其中,N、T均为大于1或等于1的整数,且T大于或等于L。
  17. 根据权利要求15或16所述的通信装置,其特征在于,
    所述处理单元具体用于:
    基于P个测量信道,计算所述L个加权系数;
    其中,P为大于1或等于1的整数,且P大于或等于L。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述P个测量信道的时间间隔与所述T个测量信道中的至少L个测量信道的时间间隔相同。
  19. 根据权利要求15至18中任一项所述的通信装置,其特征在于,
    所述处理单元还用于:获取参数L和参数O的信息;
    所述处理单元具体用于:基于所述参数L和所述参数O,通过O组信道计算L’个加权系数,
    其中,O、L’均为大于1或等于1的整数,且L’小于或等于L;
    所述通信单元具体用于:发送所述L’个加权系数的信息。
  20. 根据权利要求19所述的通信装置,其特征在于,
    所述处理单元还用于:
    从一组或多组{L,O}中确定目标{L,O};
    基于所述目标{L,O},确定所述参数L和所述参数O的取值。
  21. 根据权利要求20所述的通信装置,其特征在于,所述一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:
    测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述通信单元还用于:
    发送指示信息,所述指示信息用于指示所述目标{L,O}的索引。
  23. 根据权利要求15至22中任一项所述的通信装置,其特征在于,
    所述处理单元为处理器,所述通信单元为收发器。
  24. 根据权利要求15至23中任一项所述的通信装置,其特征在于,所述通信装置为以下任一项:终端设备、芯片或芯片系统。
  25. 一种通信装置,其特征在于,包括:处理单元和通信单元,
    所述通信单元用于:接收L个加权系数的信息,所述L个加权系数能够用于:通过M个时刻的信道确定K个时刻的信道,其中,L、M、K均为大于1或等于1的整数;
    所述处理单元用于:确定所述L个加权系数。
  26. 根据权利要求25所述的通信装置,其特征在于,
    所述通信单元还用于:接收T个测量信道的信息,
    所述T个测量信道为以下任意一项:
    N次信道测量中的任意T个测量信道、所述N次信道测量中的前T个测量信道、所述N次信道测量中的最后T个测量信道;
    其中,N、T均为大于1或等于1的整数,且T大于或等于L。
  27. 根据权利要求25或26所述的通信装置,其特征在于,
    所述通信单元还用于:发送指示参数O和参数L的信息;
    所述通信单元具体用于:接收L’个加权系数的信息,所述L’个加权系数是:基于所述参数O以及所述参数L、通过O组信道计算得到的,
    其中,O、L’均为大于1或等于1的整数,且L’小于或等于L。
  28. 根据权利要求27所述的通信装置,其特征在于,所述通信单元还用于:
    发送指示一组或多组{L,O}的信息,所述一组或多组{L,O}用于确定所述参数L和所述参数O的取值。
  29. 根据权利要求28所述的通信装置,其特征在于,
    所述一组或多组{L,O}中每组{L,O}与以下一项或多项信息对应:
    测量时长、导频时域密度、导频传输次数、导频传输周期、移动速度。
  30. 根据权利要求28或29所述的通信装置,其特征在于,所述通信单元还用于:
    接收指示信息,所述指示信息用于指示所述一组或多组{L,O}中目标{L,O}的索引,所述目标{L,O}用于确定所述参数L和所述参数O。
  31. 根据权利要求25至30中任一项所述的通信装置,其特征在于,
    所述处理单元为处理器,所述通信单元为收发器。
  32. 根据权利要求25至31中任一项所述的通信装置,其特征在于,所述通信装置为以下任一项:网络设备、芯片或芯片系统。
  33. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至8中任一项所述的方法。
  34. 一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行如权利要求9至14中任一项所述的方法。
  35. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至8中任一项所述的方法。
  36. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求9至14中任一项所述的方法。
  37. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求1至8中任一项所述的方法。
  38. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求9至14中任一项所述的方法。
  39. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至8中任一项所述的方法。
  40. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求9至14中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求9至14中任一项所述的方法。
  43. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
  44. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求9至14中任一项所述的方法。
PCT/CN2020/112072 2019-08-30 2020-08-28 信道测量的方法和通信装置 WO2021037200A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20857075.4A EP4020854B1 (en) 2019-08-30 2020-08-28 Channel measurement method and communication apparatus
US17/681,281 US20220182122A1 (en) 2019-08-30 2022-02-25 Channel measurement method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910817870.0A CN112448743B (zh) 2019-08-30 2019-08-30 信道测量的方法和通信装置
CN201910817870.0 2019-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/681,281 Continuation US20220182122A1 (en) 2019-08-30 2022-02-25 Channel measurement method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021037200A1 true WO2021037200A1 (zh) 2021-03-04

Family

ID=74684634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112072 WO2021037200A1 (zh) 2019-08-30 2020-08-28 信道测量的方法和通信装置

Country Status (4)

Country Link
US (1) US20220182122A1 (zh)
EP (1) EP4020854B1 (zh)
CN (1) CN112448743B (zh)
WO (1) WO2021037200A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941006A (zh) * 2021-08-05 2023-04-07 华为技术有限公司 通信处理方法和通信处理装置
WO2023133771A1 (zh) * 2022-01-13 2023-07-20 Oppo广东移动通信有限公司 一种信息传输方法及装置、终端设备、网络设备
WO2024011543A1 (zh) * 2022-07-14 2024-01-18 北京小米移动软件有限公司 基向量的选择指示上报方法和装置
CN117955535A (zh) * 2022-10-31 2024-04-30 华为技术有限公司 一种下行信道状态信息上报方法及装置
CN117956618A (zh) * 2022-10-31 2024-04-30 华为技术有限公司 一种资源配置的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834814A (zh) * 2010-05-21 2010-09-15 西安电子科技大学 基于信道预测的时变tdd-mimo通信信道互易性补偿方法
CN102165715A (zh) * 2005-01-21 2011-08-24 英特尔公司 管理信道预测的技术
CN108111200A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 一种信道状态信息反馈的方法和装置
US10348388B1 (en) * 2018-04-30 2019-07-09 Khalifa University of Science and Technology Direct data detection for MIMO communications systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213368B2 (en) * 2007-07-13 2012-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive compression of channel feedback based on second order channel statistics
WO2012051058A1 (en) * 2010-10-11 2012-04-19 Media Tek Singapore Pte. Ltd. Mimo channel matrix feedback in ofdm systems
US9420511B2 (en) * 2012-11-01 2016-08-16 Intel Corporation Signaling QoS requirements and UE power preference in LTE-A networks
CN107888236B (zh) * 2016-09-30 2021-06-29 华为技术有限公司 一种用于数据传输的方法和装置
CN108809369B (zh) * 2017-05-05 2023-11-03 华为技术有限公司 无线通信的方法、网络设备和终端设备
CN110071749B (zh) * 2018-01-22 2021-08-31 华为技术有限公司 一种天线选择指示方法、装置和系统
EP4018687A4 (en) * 2019-08-23 2023-05-31 Qualcomm Incorporated MAPPING AND SKIPTING CSI WITH TD COMPRESSION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102165715A (zh) * 2005-01-21 2011-08-24 英特尔公司 管理信道预测的技术
CN101834814A (zh) * 2010-05-21 2010-09-15 西安电子科技大学 基于信道预测的时变tdd-mimo通信信道互易性补偿方法
CN108111200A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 一种信道状态信息反馈的方法和装置
US10348388B1 (en) * 2018-04-30 2019-07-09 Khalifa University of Science and Technology Direct data detection for MIMO communications systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4020854A4

Also Published As

Publication number Publication date
EP4020854A1 (en) 2022-06-29
CN112448743B (zh) 2022-06-14
EP4020854A4 (en) 2022-10-26
US20220182122A1 (en) 2022-06-09
EP4020854B1 (en) 2024-03-20
CN112448743A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2021037200A1 (zh) 信道测量的方法和通信装置
WO2020244368A1 (zh) 一种信道测量方法和通信装置
CN112751592B (zh) 上报信道状态信息的方法和通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
WO2021063178A1 (zh) 信道测量方法和通信装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
CN112312464A (zh) 上报信道状态信息的方法和通信装置
WO2021203373A1 (zh) 一种信道测量方法和通信装置
WO2020244496A1 (zh) 一种信道测量方法和通信装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
WO2024027394A1 (zh) 一种通信方法及装置
WO2023165458A1 (zh) 信道状态信息的反馈方法和通信装置
US11784853B2 (en) Channel measurement method and communication apparatus
WO2021189302A1 (zh) 更新的方法和通信装置
WO2021081964A1 (zh) 一种下行参考信号的发送端口的配置方法和通信装置
CN114070436A (zh) 一种信道测量方法和通信装置
CN112398516A (zh) 一种码本子集限制的方法和通信装置
CN115088224A (zh) 一种信道状态信息反馈方法及通信装置
WO2022227976A1 (zh) 通信方法和通信装置
WO2021063210A1 (zh) 接收指示的方法、发送指示的方法和通信装置
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
WO2021146938A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2021146961A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857075

Country of ref document: EP

Effective date: 20220323