WO2019140665A1 - 功率控制的方法、终端设备和网络设备 - Google Patents

功率控制的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019140665A1
WO2019140665A1 PCT/CN2018/073518 CN2018073518W WO2019140665A1 WO 2019140665 A1 WO2019140665 A1 WO 2019140665A1 CN 2018073518 W CN2018073518 W CN 2018073518W WO 2019140665 A1 WO2019140665 A1 WO 2019140665A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
reference signal
terminal device
pusch
control parameter
Prior art date
Application number
PCT/CN2018/073518
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201911295963.8A priority Critical patent/CN111010728B/zh
Priority to PCT/CN2018/073518 priority patent/WO2019140665A1/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to AU2018403275A priority patent/AU2018403275A1/en
Priority to EP18901012.7A priority patent/EP3570598B1/en
Priority to CN201880023541.2A priority patent/CN110476461B/zh
Priority to CA3055624A priority patent/CA3055624C/en
Priority to RU2019134996A priority patent/RU2748616C1/ru
Priority to JP2019549560A priority patent/JP7348068B2/ja
Priority to DK18901012.7T priority patent/DK3570598T3/da
Priority to ES18901012T priority patent/ES2870155T3/es
Priority to BR112019021143-8A priority patent/BR112019021143A2/pt
Priority to KR1020197026290A priority patent/KR102380345B1/ko
Priority to SG11201908352S priority patent/SG11201908352SA/en
Priority to MX2019013366A priority patent/MX2019013366A/es
Priority to EP21150290.1A priority patent/EP3826374A1/en
Publication of WO2019140665A1 publication Critical patent/WO2019140665A1/zh
Priority to US16/535,688 priority patent/US10939383B2/en
Priority to IL269195A priority patent/IL269195B/en
Priority to ZA2019/06012A priority patent/ZA201906012B/en
Priority to PH12019502081A priority patent/PH12019502081A1/en
Priority to US17/161,172 priority patent/US11368914B2/en
Priority to JP2022190317A priority patent/JP2023025128A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method, a terminal device, and a network device for power control.
  • a terminal device may have multiple antenna array panels for uplink transmission, a panel containing a set of physical antennas, and each panel may have a separate RF channel.
  • the terminal device can transmit data on multiple panels at the same time.
  • different panels need to adopt different transmission parameters, such as transmission power, according to respective channel information.
  • SRS Sounding Reference Signal
  • one panel can correspond to one SRS resource set, and the network side can pass SRS Resource Indicator (SRI). To indicate a collection of SRS resources.
  • SRS Sounding Reference Signal
  • Each SRI information corresponds to a set of power control parameters or a downlink reference signal
  • the terminal device may perform power control of a physical uplink shared channel (PUSCH) according to the power control parameter or the downlink reference signal corresponding to the SRI, but
  • PUSCH physical uplink shared channel
  • the embodiments of the present application provide a method, a terminal device, and a network device for power control, which are beneficial to improving the accuracy of power control.
  • a method for power control comprising: a first open loop power control parameter associated with a first sounding reference signal resource indicating SRI information or a first associated with a first SRI information If the row reference signal is reconfigured, the first closed loop adjustment factor associated with the first SRI information is set to zero, wherein the first open loop power control parameter is used for power control of the physical uplink shared channel PUSCH, The first downlink reference signal is used to measure a path loss value for performing power control on the PUSCH; and the terminal device determines a transmit power of the PUSCH according to the first closed-loop adjustment factor of zeroing.
  • the terminal device may use the first closed-loop adjustment factor corresponding to the first SRI information when the first open-loop power control parameter or the first downlink reference signal corresponding to the first SRI information is reconfigured.
  • the closed-loop accumulation adjustment of the transmission power is re-executed, so that the power control can be performed according to the first closed-loop adjustment factor of zero, so that the accuracy of the power control can be improved.
  • the first SRI information is included in downlink control information DCI for scheduling the PUSCH.
  • the method further includes:
  • the terminal device Receiving, by the terminal device, the first high layer signaling that is sent by the network device, where the first high layer signaling is used to configure an index of an open loop power control parameter or a downlink reference signal corresponding to the multiple SRI information, where the multiple SRIs
  • the information includes the first SRI information
  • the open loop power control parameter includes the first open loop power control parameter
  • an index of the downlink reference signal includes an index of the first downlink reference signal.
  • the method further includes:
  • the terminal device receives the second high layer signaling sent by the network device, where the second high layer signaling is used to configure an open loop power control parameter or a downlink reference corresponding to multiple SRI information on each bandwidth part BWP of the terminal device.
  • the index of the signal is used to configure an open loop power control parameter or a downlink reference corresponding to multiple SRI information on each bandwidth part BWP of the terminal device.
  • the terminal device Determining, by the terminal device, the first open loop power control parameter associated with the first SRI information or the first downlink reference signal associated with the first SRI information, according to the corresponding relationship on the BWP that transmits the PUSCH.
  • the first open loop power control parameter is a target received power or a path loss factor.
  • the first downlink reference signal is a downlink synchronization signal block SSB or a channel state information reference signal CIS-RS.
  • the method further includes:
  • the first closed-loop adjustment factor associated with the first SRI information is set to zero, including:
  • the terminal device sets the first closed loop adjustment factor to zero when the closed loop power control of the PUSCH turns on the accumulation mode.
  • the determining, by the terminal device, the transmit power of the PUSCH according to the first closed-loop adjustment factor of zeroing includes:
  • the terminal device determines a transmit power of the PUSCH according to the updated first closed-loop adjustment factor.
  • the method further includes: the terminal device transmitting the PUSCH according to the determined transmit power.
  • a method of power control comprising:
  • the network device After the network device reconfigures the first open loop power control parameter associated with the first sounding reference signal resource indicating SRI information or the first downlink reference signal associated with the first SRI information, the network device associates with the first SRI information
  • the first closed loop adjustment factor is set to zero, where the first open loop power control parameter is used for power control of a physical uplink shared channel PUSCH, and the first downlink reference signal is used to measure a path for power control of the PUSCH Loss value.
  • the first SRI information is included in downlink control information DCI for scheduling the PUSCH.
  • the method further includes:
  • the network device sends the first high layer signaling to the terminal device, where the first high layer signaling is used to configure an index of the open loop power control parameter or the downlink reference signal corresponding to the multiple SRI information, where the multiple SRIs
  • the information includes the first SRI information
  • the open loop power control parameter includes the first open loop power control parameter
  • an index of the downlink reference signal includes an index of the first downlink reference signal.
  • the method further includes:
  • the network device sends a second high layer signaling to the terminal device, where the second high layer signaling is used to configure an open loop power control parameter or a downlink reference signal corresponding to multiple SRI information on each bandwidth part BWP of the terminal device. index of.
  • the first open loop power control parameter is a target received power or a path loss factor.
  • the first downlink reference signal is a downlink synchronization signal block SSB or a channel state information reference signal CIS-RS.
  • the method further includes:
  • the network device determines the first closed loop adjustment factor in the closed loop control process according to a closed loop power control process associated with the first SRI information.
  • the network device sets a first closed-loop adjustment factor associated with the first SRI information to zero, including:
  • the network device sets the first closed loop adjustment factor to zero when the closed loop power control of the PUSCH turns on the accumulation mode.
  • the method further includes:
  • the network device determines a subsequent TPC command according to the first closed loop adjustment factor of zeroing.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a computer storage medium for storing the method in any of the above possible implementations of the first aspect or the first aspect, or any possible implementation of the second or second aspect
  • Computer software instructions for use in the method of the present invention including programs designed to perform the various aspects described above.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect, or the second Aspect or method of any alternative implementation of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for power control of an embodiment of the present application.
  • FIG. 3 is another schematic flowchart of a method for power control of an embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 5 shows a schematic block diagram of a network device of an embodiment of the present application.
  • FIG. 6 shows another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 shows another schematic block diagram of a network device of an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SCMA) system, and a low-density signature (Low). Density Signature (LDS) system, etc., of course, the SCMA system and the LDS system may also be referred to as other names in the communication field; further, the technical solution of the embodiment of the present application can be applied to multi-carrier using non-orthogonal multiple access technology.
  • SCMA sparse code multiple access
  • LDS Density Signature
  • Orthogonal Frequency Division Multiplexing OFDM
  • Filter Bank Multi-Carrier FBMC
  • General Frequency Division Multiplexing Generalized Frequency Division Multiplexing (OFDM)) Frequency Division Multiplexing (GFDM)
  • Filtered Orthogonal Frequency Division Multiplexing Filtered-OFDM, F-OFDM
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system. And may be an evolved base station (eNB or eNodeB) in the LTE system, or may be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be The embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • CRAN cloud radio access network
  • the embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the communication system of Figure 1 can include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • the terminal device may obtain the power control parameter corresponding to the uplink transmission according to the SRS resource indicated by the SRI or the SRI, thereby obtaining the transmission power for transmitting the uplink data.
  • the transmit power of the PUSCH can be calculated by the following formula:
  • i is the index of the primary PUSCH transmission
  • j is the index of the open loop power control parameter
  • q d is the index of the reference signal (Reference Signal, RS) used for path loss estimation
  • M PUSCH,c (i) is the PUSCH
  • the number of resource blocks (RBs) P CMAX, f, c (i) is the maximum transmit power of the terminal device configured on the subframe i of the serving cell c, P O_PUSCH, f, c (j) and ⁇ f,c (j) is the open loop power control parameter
  • PL f,c (q d ) is the path loss value of the serving cell c measured by the terminal device to the terminal device
  • ⁇ TF,f,c (i) is a value determined by the terminal device according to a ratio of the number of uplink data bits transmitted by the PUSCH to the number of resource units included in the PUSCH
  • f f,c (i,l) is a closed loop power control adjustment
  • FIG. 2 is a schematic flowchart of a method 200 for power control according to an embodiment of the present application. As shown in FIG. 2, the method 200 includes:
  • the terminal device when the first open loop power control parameter associated with the first sounding reference signal resource indicating SRI information or the first downlink reference signal associated with the first SRI information is reconfigured, The first closed loop adjustment factor associated with an SRI information is set to zero, wherein the first open loop power control parameter is used for power control of a physical uplink shared channel PUSCH, and the first downlink reference signal is used to measure the PUSCH. Power loss path loss value
  • the terminal device determines, according to the first closed-loop adjustment factor of zeroing, the transmit power of the PUSCH.
  • the first SRI information may be included in Downlink Control Information (DCI) for scheduling the PUSCH, for example, the first SRI message may be The value of the SRI indicated by the SRI indication field included in the DCI.
  • the first SRI information associates (or corresponds to) the first open loop power control parameter or the first downlink reference signal.
  • the second SRI information may be included in the DCI for scheduling another PUSCH, where the second SRI information associates (or corresponds to) the second open loop power control parameter or the second downlink reference signal, that is, the first An SRI information and the second SRI downlink respectively correspond to independent uplink power control control parameters or downlink reference signals.
  • the first open loop power control parameter of the first SRI association is a target received power (corresponding to P O_PUSCH, c (j) in the formula) or a path loss factor (corresponding to a formula)
  • the ⁇ c (j)), or other parameters for power control, are not limited in this embodiment of the present application.
  • the first downlink reference signal associated with the first SRI may be a Down Synchronous Signal Block (SSB) or a Channel State Information-Reference Signals (Channel State Information-Reference Signals, CSI-RS), or other reference signals for power control, is not limited in this embodiment of the present application.
  • the first downlink reference signal may be used to measure a path loss value of the serving cell to the terminal device.
  • the network device may pre-configure the open loop power control parameter or the index of the downlink reference signal corresponding to the multiple SRI information by using the first high layer signaling, where the multiple The SRI information includes the first SRI information. Therefore, the terminal device may determine corresponding open loop power control parameters according to the value of the first SRI information, and then obtain corresponding transmit power based on the parameters. The terminal device may further determine an index of the corresponding target downlink reference signal according to the value of the first SRI information, and then perform downlink path loss measurement based on the target downlink reference signal indicated by the index, thereby obtaining a path for power control. Loss value.
  • the network device may pre-configure the correspondence between the multiple SRI information and the open loop power control parameter or the index of the downlink reference signal, so that the terminal device may combine the corresponding value according to the current SRI information.
  • the relationship is determined by determining an open loop power control parameter or an index of the downlink reference signal corresponding to the SRI information.
  • the SRI indication field may be a 2-bit indication field, which is an example and not limited.
  • the 2-bit indication field takes a value of 00 corresponding to the open loop power control parameter 1 and the downlink reference signal index 1, and the value is 01 corresponding to the open loop.
  • the power control parameter 2 and the downlink reference signal index 2 have a value of 10 corresponding to the open loop power control parameter 2 and the downlink reference signal index 1, and the value 11 corresponds to the open loop power control parameter 1 and the downlink reference signal index 2.
  • the terminal device may obtain an index of the corresponding open loop power control parameter or the downlink reference signal according to the value of the first SRI information, for example, if the value of the first SRI information is 10, The terminal device may determine the corresponding open loop power control parameter 2 and the downlink reference signal index 1. Further, the power control may be performed according to the open loop power control parameter 2 and the downlink reference signal index 1.
  • the network device may directly configure an open loop power control parameter or an index of the downlink reference signal associated with the first SRI information, in which case, the first open loop power control parameter is reconfigured.
  • the terminal device may detect that the network device reconfigures the open loop power control parameter associated with the first SRI information by using the first high layer signaling, for example, the first SRI information is originally associated with the open loop power control parameter 1, and the network device is re
  • the first SRI message is associated with the open loop power control parameter 2
  • the terminal device may set the first closed loop adjustment factor associated with the first SRI information to zero. Further, the terminal device may be set to zero according to the zero
  • the first closed-loop adjustment factor determines the transmit power of the PUSCH, so that the accuracy of the power control can be improved.
  • the network device may pre-configure an index corresponding to the open loop power control parameter (eg, P O_PUSCH, f, c (j) or ⁇ f, c (j)) (eg, in the formula j), that is, the correspondence between the open loop power control parameters and the index (indicated as the first correspondence), for example, the network device may configure P O_PUSCH, f, c (j) or ⁇ f corresponding to the values of different j , c (j), further, the network device may further configure a correspondence between an index of the open loop power control parameter and the SRI information (referred to as a second correspondence), such that the terminal device may be according to the first SRI The information, and the second corresponding relationship, the index of the open loop power control parameter is determined.
  • the open loop power control parameter eg, P O_PUSCH, f, c (j) or ⁇ f, c (j)
  • the network device may further configure a correspondence between an index of the open loop power control parameter
  • the index corresponding to the open loop power control parameter may be determined according to the index of the open loop power control parameter and the first correspondence.
  • Loop power control parameters In this case, the first open loop power control parameter associated with the first SRI information is reconfigured, and the terminal device detects that the network device reconfigures the open loop power control corresponding to the first SRI by using the first high layer signaling.
  • the index of the parameter that is, the second correspondence is reconfigured
  • the open loop power control parameter corresponding to the open loop power control parameter index is reconfigured (ie, the first correspondence is reconfigured).
  • the network device may pre-configure the correspondence between the plurality of downlink reference signals and the index (eg, q d ) of the corresponding downlink reference signal by using the first high layer signaling (referred to as a third correspondence). Further, the network device may configure an index (referred to as a fourth correspondence relationship) of the target downlink reference signal associated with the first SRI information, so that the terminal device may be based on the first SRI information, and the first And determining, by the four correspondences, an index of the target downlink reference signal; and combining the index of the target downlink signal and the third correspondence, determining a target downlink reference signal associated with the first SRI information.
  • an index referred to as a fourth correspondence relationship
  • the first downlink reference signal associated with the first SRI information is reconfigured, and the network device may reconfigure the index of the downlink reference signal associated with the first SRI information by using the first high layer signaling (ie, Reconfiguring the fourth correspondence relationship, or the network device reconfiguring the downlink reference signal corresponding to the downlink reference signal index (it may be understood that the third correspondence relationship changes).
  • the network device originally configured the first SRI information to be associated with the downlink reference signal index 0, and the network device reconfigures the first SRI information to be associated with the downlink reference signal index 1; or the network device originally configures the downlink reference signal index 0 and CSI-RS0.
  • Association, network device reconfiguration downlink reference signal index 0 is associated with CSI-RS1.
  • the method 200 may further include:
  • the terminal device receives the second high layer signaling sent by the network device, where the second high layer signaling is used to configure an open loop power control parameter or a downlink reference corresponding to multiple SRI information on each bandwidth part BWP of the terminal device.
  • the index of the signal is used to configure an open loop power control parameter or a downlink reference corresponding to multiple SRI information on each bandwidth part BWP of the terminal device.
  • the terminal device Determining, by the terminal device, the first open loop power control parameter associated with the first SRI information or the first downlink reference signal associated with the first SRI information, according to the corresponding relationship on the BWP that transmits the PUSCH.
  • the network device may configure, by using the second high-layer signaling, an open-loop power control parameter or an index of the downlink reference signal corresponding to multiple SRI information on each bandwidth portion (BWP), which is recorded as a fifth correspondence relationship, That is, each BWP may have a fifth correspondence relationship, so that the terminal device may transmit the fifth correspondence relationship on the BWP of the PUSCH, and determine the first open loop power control parameter associated with the first information or The first downlink reference signal associated with the first SRI information.
  • BWP bandwidth portion
  • the first high layer signaling and the second high layer signaling may be the same high layer signaling, or different high layer signaling, which is not limited in this embodiment of the present application.
  • the terminal device when the first open loop power control parameter or the first downlink reference signal corresponding to the first SRI information is reconfigured, if the terminal device is still based on the first obtained before reconfiguration The closed-loop adjustment factor adjusts the re-configured transmit power, which may reduce the accuracy of the power control. In this case, the terminal device may reset the first closed-loop adjustment factor corresponding to the first SRI information to zero. The closed-loop accumulation adjustment of the transmission power, so that the power control can be performed according to the first closed-loop adjustment factor of zeroing, so that the accuracy of the power control can be improved.
  • the first closed-loop adjustment factor corresponding to the first SRI information may correspond to f c (i, l), and the first closed-loop adjustment associated with the first SRI information Setting the factor to zero may include zeroing the historical value of the first closed-loop adjustment factor, for example, setting f f,c (i-1,l) to zero, or setting the current value of the first closed-loop adjustment factor Zero, for example, sets f f,c (i,l) to zero.
  • reconfiguration occurs when the first SRI information is associated with the power control control parameter or the downlink reference signal, and the terminal device only reconfigures the first closed-loop adjustment factor associated with the first SRI information. That is, only the first closed-loop adjustment factor associated with the first SRI information is set to zero, and the closed-loop adjustment factor associated with other SRI information needs to be adjusted, for example, the second closed-loop adjustment factor associated with the second SRI information does not need to be zeroed. .
  • the method 200 may further include:
  • the network device may further pre-configure an index of an index (for example, l in the formula) of the closed-loop power control process associated with the first SRI information, so that the terminal device may control the process according to the closed-loop power.
  • the index determines the value of the corresponding closed loop adjustment factor (eg, f f,c (i,l) in the formula), which may further be taken as the first closed loop adjustment factor associated with the first SRI indication.
  • the terminal device may reset the first closed loop adjustment factor, for example, the first association with the first SRI information may be
  • the historical value of a closed loop adjustment factor eg, f f,c (i-1,l)
  • the current value eg, f f,c (i,l)
  • S210 may specifically include:
  • the terminal device sets the first closed loop adjustment factor to zero when the closed loop power control of the PUSCH turns on the accumulation mode.
  • the accumulation mode may be for all closed loop power control processes, in which case the terminal device may be in an open loop power control parameter or a downlink reference associated with the first SRI information.
  • the first closed loop adjustment factor corresponding to the first SRI information is set to zero; or the network device may be configured separately for each closed loop power control process.
  • Accumulating mode in which case the terminal device may reconfigure an open loop power control parameter or a downlink reference signal associated with the first SRI information, and a closed loop power control process corresponding to the first SRI information
  • the first closed-loop adjustment factor corresponding to the first SRI information is set to zero.
  • the terminal device may also set the first closed-loop adjustment factor to zero when the accumulation mode of the closed-loop power control is enabled on the BWP that transmits the PUSCH.
  • the terminal device may calculate, according to the first power adjustment factor after zeroing, a transmit power of the PUSCH according to the formula described above.
  • the first closed loop may be used.
  • the adjustment factor is added to the transmit power obtained according to the open loop power control parameter, so that the transmit power of the PUSCH is obtained, and details are not described herein again.
  • S220 may specifically include:
  • the terminal device determines a transmit power of the PUSCH according to the updated first closed-loop adjustment factor.
  • the terminal device determines the updated first closed-loop adjustment factor according to the first closed-loop adjustment factor after zeroing and the recently received Transmit Power Control (TPC) command, and further, the terminal The device may determine the transmit power of the PUSCH according to the updated first closed loop adjustment factor.
  • TPC Transmit Power Control
  • the TPC command may be indicated to the terminal device by using a downlink DCI, for example, by indicating a TPC indication field in the DCI of the PUSCH, to the terminal device, that is, The terminal device can learn the adjustment value of the closed loop power configured by the network device through the TPC indication field in the DCI, that is, ⁇ PUSCH, f, c (iK PUSCH , l).
  • the method 200 may further include:
  • the terminal device sends the PUSCH according to the determined transmit power.
  • the transmit power determined by the terminal device may be used to send the PUSCH.
  • the transmit power may not be used to send a PUSCH.
  • the terminal device may calculate a current according to the determined transmit power.
  • the power headroom report (PHR) of the PUSCH is reported to the network device, or the transmission power of the other uplink signals may be calculated according to the determined transmit power.
  • the device terminal may determine the power value obtained by adding the determined transmission power to a certain offset value as the transmission power of the SRS, and the like, and the application scenario of the sending power is not limited in this embodiment of the present application.
  • FIG. 2 a method for transmitting information according to an embodiment of the present application is described in detail from the perspective of a terminal device.
  • a method for transmitting information according to another embodiment of the present application is described in detail from the perspective of a network device in conjunction with FIG.
  • the description on the network device side and the description on the terminal device side correspond to each other.
  • the description on the network device side and the description on the terminal device side correspond to each other.
  • FIG. 3 shows a schematic block diagram of a method 300 of power control in accordance with an embodiment of the present application. As shown in FIG. 3, the method 300 includes some or all of the following:
  • the network device and the first SRI information After reconfiguring the first open loop power control parameter associated with the first sounding reference signal resource indication SRI information or the first downlink reference signal associated with the first SRI information, the network device and the first SRI information The associated first closed loop adjustment factor is set to zero, wherein the first open loop power control parameter is used for power control of a physical uplink shared channel PUSCH, and the first downlink reference signal is used to measure power control of the PUSCH Road damage value.
  • the first SRI information is included in downlink control information DCI for scheduling the PUSCH.
  • the method 300 may further include:
  • the network device sends the first high layer signaling to the terminal device, where the first high layer signaling is used to configure an index of the open loop power control parameter or the downlink reference signal corresponding to the multiple SRI information, where the multiple SRIs
  • the information includes the first SRI information
  • the open loop power control parameter includes the first open loop power control parameter
  • an index of the downlink reference signal includes an index of the first downlink reference signal.
  • the first open loop power control parameter is a target received power or a path loss factor.
  • the first downlink reference signal is a downlink synchronization signal block SSB or a channel state information reference signal CIS-RS.
  • the method 300 may further include:
  • the network device determines the first closed loop adjustment factor in the closed loop control process according to a closed loop power control process associated with the first SRI information.
  • the first closed loop adjustment factor associated with the first SRI information is set to zero, including:
  • the network device sets the first closed loop adjustment factor to zero when the closed loop power control of the PUSCH turns on the accumulation mode.
  • the method 300 may further include:
  • the network device determines a subsequent TPC command according to the first closed loop adjustment factor of zeroing.
  • the embodiment of the method of the present application is described in detail below with reference to FIG. 2 to FIG. 3 .
  • the device embodiment of the present application is described in detail below with reference to FIG. 4 to FIG. 7 . It should be understood that the device embodiment and the method embodiment correspond to each other, similarly. The description of the method can be referred to the method embodiment.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application, where the terminal device 400 includes:
  • the adjusting module 410 is configured to: when the first open loop power control parameter associated with the first sounding reference signal resource indicating SRI information or the first downlink reference signal associated with the first SRI information is reconfigured, The first closed loop adjustment factor associated with the first SRI information is set to zero, wherein the first open loop power control parameter is used for power control of a physical uplink shared channel PUSCH, and the first downlink reference signal is used for measuring The path loss value of the power control of the PUSCH;
  • the terminal device 400 may correspond to (for example, may be configured or be itself) the terminal device described in the foregoing method 200, and each module or unit in the terminal device 400 is used to execute the terminal in the foregoing method 200, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application, where the network device 500 includes:
  • the adjusting module 510 is configured to, after reconfiguring the first open loop power control parameter associated with the first sounding reference signal resource indication SRI information or the first downlink reference signal associated with the first SRI information, The first closed loop adjustment factor associated with the SRI information is set to zero, wherein the first open loop power control parameter is used for power control of a physical uplink shared channel PUSCH, and the first downlink reference signal is used to measure the PUSCH.
  • the path loss value of the power control is configured to, after reconfiguring the first open loop power control parameter associated with the first sounding reference signal resource indication SRI information or the first downlink reference signal associated with the first SRI information.
  • the network device 500 may correspond to (for example, may be configured or be itself) the network device described in the foregoing method 300, and each module or unit in the network device 500 is used to perform the network in the foregoing method 300, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the embodiment of the present application further provides a terminal device 600, which may be the terminal device 400 in FIG. 4, which can be used to execute the content of the terminal device corresponding to the method 200 in FIG. .
  • the terminal device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 630 may be a central processing unit (CPU), and the processor 630 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the adjustment module 410 and the determination module 420 in the terminal device 400 can be implemented by the processor 630 in FIG. 6, and the communication module of the terminal device 400 can be implemented by the output interface 620 and the input interface 610 in FIG. .
  • the embodiment of the present application further provides a network device 700, which may be the network device 500 in FIG. 5, which can be used to execute the content of the network device corresponding to the method 300 in FIG. .
  • the network device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740.
  • the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
  • the memory 740 is for storing programs, instructions or code.
  • the processor 730 is configured to execute a program, an instruction or a code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to transmit a signal, and complete the operations in the foregoing method embodiments.
  • the processor 730 may be a central processing unit (CPU), and the processor 730 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and combines its hardware to perform the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the adjustment module 510 and the determination module in the network device 500 are implemented by the processor 730 in FIG. 7, and the communication module in the network device 500 can be implemented by the input interface 710 and the output interface 720 in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种功率控制的方法、终端设备和网络设备,该方法包括:终端设备在与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号发生重配置的情况下,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值;所述终端设备根据置零的所述第一闭环调整因子,确定所述PUSCH的发送功率。

Description

功率控制的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及功率控制的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,终端设备可以有多个天线阵列块(panel)用于上行传输,一个panel包含一组物理天线,每个panel可以有独立的射频通道。终端设备可以同时在多个panel上传输数据,但由于不同panel对应的信道条件是不同的,不同的panel需要根据各自的信道信息采用不同的传输参数,例如发送功率。为了得到这些传输参数,需要为不同的panel配置不同的探测参考信号(Sounding Reference Signal,SRS)资源,例如一个panel可以对应一个SRS资源集合,网络侧可以通过SRS资源指示(SRS Resource Indicator,SRI)来指示一个SRS资源集合。其中,每个SRI信息对应一组功率控制参数或下行参考信号,终端设备可以根据SRI对应的功率控制参数或下行参考信号进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的功率控制,但是,当SRI信息对应的功率控制参数或下行参考信号发生重配置时,如何进行PUSCH的发送功率的控制以提高功率控制的准确度是一项亟需解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种功率控制的方法、终端设备和网络设备,有利于提高功率控制的准确度。
第一方面,提供了一种功率控制的方法,该方法包括:终端设备在与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号发生重配置的情况下,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值;所述终端设备根据置零的所述第一闭环调整因子,确定所述PUSCH的发送功率。
因此,终端设备可以在第一SRI信息对应的第一开环功率控制参数或第一下行参考信号发生重配置时,所述终端设备可以将所述第一SRI信息对应的第一闭环调整因子置零,重新进行发送功率的闭环累加调整,从而可以根据置零的所述第一闭环调整因子进 行功率控制,从而能够提高功率控制的准确度。
在一些可能的实现方式中,所述第一SRI信息包含于用于调度所述PUSCH的下行控制信息DCI中。
在一些可能的实现方式中,所述方法还包括:
所述终端设备接收网络设备发送的第一高层信令,所述第一高层信令用于配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包含所述第一SRI信息,所述开环功率控制参数包括所述第一开环功率控制参数,所述下行参考信号的索引包括所述第一下行参考信号的索引。
在一些可能的实现方式中,所述方法还包括:
所述终端设备接收网络设备发送的第二高层信令,所述第二高层信令用于配置所述终端设备的每个带宽部分BWP上多个SRI信息对应的开环功率控制参数或下行参考信号的索引;
所述终端设备根据传输所述PUSCH的BWP上的所述对应关系,确定所述第一SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号。
在一些可能的实现方式中,所述第一开环功率控制参数是目标接收功率或路损因子。
在一些可能的实现方式中,所述第一下行参考信号为下行同步信号块SSB或信道状态信息参考信号CIS-RS。
在一些可能的实现方式中,所述方法还包括:
所述终端设备根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控制进程中的所述第一闭环调整因子。
在一些可能的实现方式中,所述将与所述第一SRI信息关联的第一闭环调整因子置零,包括:
所述终端设备在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调整因子置零。
在一些可能的实现方式中,所述终端设备根据置零的所述第一闭环调整因子,确定所述PUSCH的发送功率,包括:
所述终端设备根据置零的所述第一闭环调整因子,以及最近接收到的发送功率控制TPC命令,确定更新的所述第一闭环调整因子;
所述终端设备根据更新的所述第一闭环调整因子,确定所述PUSCH的发送功率。
在一些可能的实现方式中,所述方法还包括:所述终端设备根据确定的所述发送功率发送所述PUSCH。
第二方面,提供了一种功率控制的方法,该方法包括:
网络设备在重新配置与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号后,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值。
在一些可能的实现方式中,所述第一SRI信息包含于用于调度所述PUSCH的下行控制信息DCI中。
在一些可能的实现方式中,所述方法还包括:
所述网络设备向终端设备设备发送第一高层信令,所述第一高层信令用于配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包含所述第一SRI信息,所述开环功率控制参数包括所述第一开环功率控制参数,所述下行参考信号的索引包括所述第一下行参考信号的索引。
在一些可能的实现方式中,所述方法还包括:
所述网络设备向终端设备发送第二高层信令,所述第二高层信令用于配置所述终端设备的每个带宽部分BWP上多个SRI信息对应的开环功率控制参数或下行参考信号的索引。
在一些可能的实现方式中,所述第一开环功率控制参数是目标接收功率或路损因子。
在一些可能的实现方式中,所述第一下行参考信号为下行同步信号块SSB或信道状态信息参考信号CIS-RS。
在一些可能的实现方式中,所述方法还包括:
所述网络设备根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控制进程中的所述第一闭环调整因子。
在一些可能的实现方式中,所述网络设备将与所述第一SRI信息关联的第一闭环调整因子置零,包括:
所述网络设备在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调整因子置零。
在一些可能的实现方式中,所述方法还包括:
所述网络设备根据置零的所述第一闭环调整因子,确定后续的TPC命令。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意 可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述各方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法,或者上述第二方面或第二方面的任一可选的实现方式中的方法。
附图说明
图1示出了本申请实施例一种应用场景的示意图。
图2示出了本申请实施例的功率控制的方法的示意性流程图。
图3示出了本申请实施例的功率控制的方法的另一示意性流程图。
图4示出了本申请实施例的终端设备的示意性框图。
图5示出了本申请实施例的网络设备的示意性框图。
图6示出了本申请实施例的终端设备的另一示意性框图。
图7示出了本申请实施例的网络设备的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯 (Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例一种应用场景的示意图。图1中的通信系统可以包括终端设备 10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
在NR系统中,终端设备可以根据SRI或SRI指示的SRS资源来得到对应上行传输的功率控制参数,从而得到用于传输上行数据的发送功率。
目前,PUSCH的发送功率可以通过如下公式计算:
Figure PCTCN2018073518-appb-000001
其中,i是一次PUSCH传输的索引,j是开环功率控制参数的索引,q d是用于路损估计的参考信号(Reference Signal,RS)的索引,M PUSCH,c(i)为PUSCH所占的资源块(Resource Block,RB)数目,P CMAX,f,c(i)为终端设备配置的在服务小区c的子帧i上的最大发送功率,P O_PUSCH,f,c(j)和α f,c(j)是开环功率控制参数,PL f,c(q d)为终端设备测量得到的服务小区c到该终端设备的路径损耗值,Δ TF,f,c(i)为终端设备根据该PUSCH发送的上行数据比特数和该PUSCH中包括的资源单元的个数的比值确定的值,f f,c(i,l)是闭环功率控制调整因子,为终端设备根据对该PUSCH的功率调整命令确定的值,l为闭环功率控制进程的索引。
图2是根据本申请实施例的功率控制的方法200的示意性流程图,如图2所示,该方法200包括:
S210,终端设备在与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号发生重配置的情况下,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值
S220,所述终端设备根据置零的所述第一闭环调整因子,确定所述PUSCH的发送功率。
可选地,在本申请实施例中,所述第一SRI信息可以包含于用于调度所述PUSCH的下行控制信息(Downlink Control Information,DCI)中,例如,所述第一SRI消息可以为所述DCI中包含的SRI指示域所指示的SRI的值。所述第一SRI信息关联(或者说,对应)第一开环功率控制参数或第一下行参考信号。
可选地,在调度另一个PUSCH的DCI中可以包括第二SRI信息,所述第二SRI信 息关联(或者说,对应)第二开环功率控制参数或第二下行参考信号,即所述第一SRI信息和所述第二SRI下行分别对应独立的上行功率控制控制参数或下行参考信号。
可选地,在一些实施例中,所述第一SRI关联的第一开环功率控制参数是目标接收功率(对应于公式中的P O_PUSCH,c(j))或路损因子(对应于公式中的α c(j)),或者其他用于功率控制的参数,本申请实施例对此不作限定。
可选地,在一些实施例中,所述第一SRI关联的第一下行参考信号可以是下行同步信号块(Synchronous Signal Block,SSB)或者信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS),或者其他用于功率控制的参考信号,本申请实施例对此不作限定。特别地,在本申请实施例中,所述第一下行参考信号可以用于测量得到服务小区到终端设备的路径损耗值。
可选地,在一些实施例中,网络设备可以通过第一高层信令为所述终端设备预配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包括所述第一SRI信息。从而,所述终端设备可以根据所述第一SRI信息的取值确定对应的开环功率控制参数,然后基于这些参数得到对应的发送功率。所述终端设备还可以根据所述第一SRI信息的取值确定对应的目标下行参考信号的索引,然后基于该索引指示的目标下行参考信号进行下行路损测量,从而得到用于功率控制的路损值。也就是说,所述网络设备可以给终端设备预配置多个SRI信息和开环功率控制参数或者下行参考信号的索引的对应关系,从而终端设备可以根据当前的SRI信息的取值,结合该对应关系,确定该SRI信息对应的开环功率控制参数或者下行参考信号的索引。
例如,所述SRI指示域可以为2比特指示域,作为示例而非限定,该2比特指示域取值为00对应开环功率控制参数1和下行参考信号索引1,取值为01对应开环功率控制参数2和下行参考信号索引2,取值为10对应开环功率控制参数2和下行参考信号索引1,取值为11对应开环功率控制参数1和下行参考信号索引2。从而,所述终端设备可以根据第一SRI信息的取值即可获知对应的开环功率控制参数或者下行参考信号的索引,例如,若所述第一SRI信息的取值为10,则所述终端设备可以确定对应开环功率控制参数2和下行参考信号索引1,进一步地,可以根据开环功率控制参数2和下行参考信号索引1进行功率控制。
可选地,在一些实施例中,网络设备可以直接配置与所述第一SRI信息关联的开环功率控制参数或者下行参考信号的索引,此情况下,第一开环功率控制参数发生重配置,可以是终端设备检测到网络设备通过第一高层信令重新配置与所述第一SRI信息关联的开环功率控制参数,例如,第一SRI信息原来关联开环功率控制参数1,网络设备重新 配置第一SRI消息关联开环功率控制参数2,此时,所述终端设备可以将所述第一SRI信息关联的第一闭环调整因子置零,进一步地,所述终端设备可以根据置零的所述第一闭环调整因子,确定PUSCH的发送功率,从而能够提升功率控制的准确度。
可选地,在一些实施例中,网络设备可以预先配置开环功率控制参数(例如,P O_PUSCH,f,c(j)或α f,c(j))对应的索引(例如,公式中的j),即开环功率控制参数与索引的对应关系(记为第一对应关系),例如,网络设备可以配置不同的j的取值对应的P O_PUSCH,f,c(j)或α f,c(j),进一步地,所述网络设备还可以配置开环功率控制参数的索引和SRI信息的对应关系(记为第二对应关系),这样,所述终端设备可以根据所述第一SRI信息,以及所述第二对应关系,确定开环功率控制参数的索引,进一步地,可以根据该开环功率控制参数的索引和第一对应关系,确定该开环功率控制参数的索引对应的开环功率控制参数。此情况下,第一SRI信息关联的第一开环功率控制参数发生重配置,可以是所述终端设备检测到网络设备通过第一高层信令重新配置所述第一SRI对应的开环功率控制参数的索引(即重新配置所述第二对应关系),或者,重新配置开环功率控制参数索引对应的开环功率控制参数(即重新配置所述第一对应关系)。
类似地,网络设备也可以通过第一高层信令给所述终端设备预先配置多个下行参考信号和对应的下行参考信号的索引(例如,q d)的对应关系(记为第三对应关系),进一步地,所述网络设备可以配置所述第一SRI信息关联的目标下行参考信号的索引(记为第四对应关系),从而,终端设备可以根据所述第一SRI信息,以及所述第四对应关系,确定目标下行参考信号的索引;再结合所述目标下行信号的索引,以及该第三对应关系,确定与所述第一SRI信息关联的目标下行参考信号。此情况下,所述第一SRI信息关联的第一下行参考信号发生重配置,可以是网络设备通过第一高层信令重新配置与所述第一SRI信息关联的下行参考信号的索引(即重新配置第四对应关系),或者,网络设备重新配置所述下行参考信号索引所对应的下行参考信号(可以理解为所述第三对应关系发生变化)。例如,网络设备原来配置第一SRI信息与下行参考信号索引0相关联,网络设备重新配置第一SRI信息与下行参考信号索引1关联;或者,网络设备原来配置下行参考信号索引0与CSI-RS0关联,网络设备重新配置下行参考信号索引0与CSI-RS1关联。
可选地,在一些实施例中,所述方法200还可以包括:
所述终端设备接收网络设备发送的第二高层信令,所述第二高层信令用于配置所述终端设备的每个带宽部分BWP上多个SRI信息对应的开环功率控制参数或下行参考信号的索引;
所述终端设备根据传输所述PUSCH的BWP上的所述对应关系,确定所述第一SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号。
即所述网络设备可以通过第二高层信令配置每个带宽部分(Bandwidth Part,BWP)上多个SRI信息对应的开环功率控制参数或下行参考信号的索引(记为第五对应关系),也就是说,每个BWP上可以有一个第五对应关系,从而,所述终端设备可以传输PUSCH的BWP上的该第五对应关系,确定第一信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号。
可选地,所述第一高层信令和所述第二高层信令可以为同一高层信令,或不同的高层信令,本申请实施例对此不作限定。
应理解,在本申请实施例中,在第一SRI信息对应的第一开环功率控制参数或第一下行参考信号发生重配置时,若所述终端设备依然基于重配置前获得的第一闭环调整因子对重配置后的发送功率进行调整,可能会降低功率控制的准确度,此情况下,所述终端设备可以将所述第一SRI信息对应的第一闭环调整因子置零,重新进行发送功率的闭环累加调整,从而可以根据置零的所述第一闭环调整因子进行功率控制,从而能够提高功率控制的准确度。
需要说明的是,在本申请实施例中,所述第一SRI信息对应的第一闭环调整因子可以对应于f c(i,l),将与所述第一SRI信息关联的第一闭环调整因子置零,可以包括将所述第一闭环调整因子的历史值置零,例如,将f f,c(i-1,l)置零,或者将所述第一闭环调整因子的当前值置零,例如,将f f,c(i,l)置零。
应理解,在本申请实施例中,在第一SRI信息关联的功率控制控制参数或下行参考信号时发生重配置,所述终端设备只重配置所述第一SRI信息关联的第一闭环调整因子,即只将所述第一SRI信息关联的第一闭环调整因子置零,而不需要调整其他SRI信息关联的闭环调整因子,例如,不需要置零第二SRI信息关联的第二闭环调整因子。
可选地,在本申请实施例中,所述方法200还可以包括:
所述终端设备根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控制进程中的所述第一闭环调整因子。
具体地,网络设备还可以预先配置与所述第一SRI信息关联的闭环功率控制进程的索引(例如,公式中的l)的取值,从而,所述终端设备可以根据该闭环功率控制进程的索引,确定对应的闭环调整因子(例如,公式中的f f,c(i,l))的值,进一步地,可以将其作为与所述第一SRI指示关联的第一闭环调整因子。当第一SRI信息关联的开环功率控制参数或下行参考信号发生重配置时,所述终端设备可以对第一闭环调整因子进行重置, 例如,可以将与所述第一SRI信息关联的第一闭环调整因子的历史值(例如,f f,c(i-1,l))或当前值(例如f f,c(i,l))置零。
特别地,在本申请实施例中,S210可以具体包括:
所述终端设备在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调整因子置零。
应理解,在本申请实施例中,累加模式可以是针对所有的闭环功率控制进程的,此情况下,所述终端设备可以在与所述第一SRI信息关联的开环功率控制参数或下行参考信号发生重配置,并且闭环功率控制开启了累加模式时,将所述第一SRI信息对应的第一闭环调整因子置零;或者,所述网络设备也可以为每个闭环功率控制进程分别配置对应的累加模式,此情况下,所述终端设备可以在与所述第一SRI信息关联的开环功率控制参数或下行参考信号发生重配置,并且与所述第一SRI信息对应的闭环功率控制进程开启了累加模式时,将所述第一SRI信息对应的第一闭环调整因子置零。
还应理解,具体实现时,所述终端设备还可以在传输所述PUSCH的BWP上开启了闭环功率控制的累加模式时,将所述第一闭环调整因子置零。
可选地,在一些实施例中,所述终端设备可以根据置零后的所述第一功率调整因子,结合前文所述的公式计算PUSCH的发送功率,具体的,可以将所述第一闭环调整因子加到根据开环功率控制参数获得的发送功率上,从而获得所述PUSCH的发送功率,这里不再赘述。
可选地,在一些实施例中,S220可以具体包括:
所述终端设备根据置零的所述第一闭环调整因子,以及最近接收到的发送功率控制TPC命令,确定更新的所述第一闭环调整因子;
所述终端设备根据更新的所述第一闭环调整因子,确定所述PUSCH的发送功率。
具体的,终端设备根据置零后的所述第一闭环调整因子,以及最近接收到的发送功率控制(Transmit Power Control,TPC)命令,确定更新的第一闭环调整因子,进一步地,所述终端设备可以根据更新的所述第一闭环调整因子,确定所述PUSCH的发送功率。此时,开启累加方式的闭环功率控制的第一闭环调整因子f f,c(i,l)可以表示为f f,c(i,l)=δ PUSCH,f,c(i-K PUSCH,l),其中,δ PUSCH,f,c(i-K PUSCH,l)为TPC所指示的调整值,即终端设备直接将之前的第一闭环调整因子置零,即f f,c(i-1,l)=0。
应理解,在本申请实施例中,所述TPC命令可以通过下行DCI指示给终端设备,例如,可以通过调度所述PUSCH的DCI中的TPC指示域指示给所述终端设备,也就是说,所述终端设备可以通过DCI中的TPC指示域获知网络设备配置的闭环功率的调整值,即 δ PUSCH,f,c(i-K PUSCH,l)。
可选地,在一些实施例中,所述方法200还可以包括:
所述终端设备根据所述确定的所述发送功率发送所述PUSCH。
即所述终端设备确定的所述发送功率可以用于发送所述PUSCH,可选地,所述发送功率也可以不用于发送PUSCH,例如,所述终端设备可以根据确定的所述发送功率计算当前PUSCH的功率余量上报(Power Headroom Report,PHR),然后将PHR上报给网络设备,或者也可以根据确定的所述发送功率计算其他上行信号的发送功率。例如,设备终端可以将确定的所述发送功率加上一定的偏移值得到的功率值确定为SRS的发送功率等,本申请实施例并不限定所述发送功率的应用场景。
上文结合图2,从终端设备的角度详细描述了根据本申请实施例的传输信息的方法,下文结合图3,从网络设备的角度详细描述根据本申请另一实施例的传输信息的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图3示出了本申请实施例的功率控制的方法300的示意性框图。如图3所示,该方法300包括以下部分或全部内容:
S310,网络设备在重新配置与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号后,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值。
可选地,在一些实施例中,所述第一SRI信息包含于用于调度所述PUSCH的下行控制信息DCI中。
可选地,在一些实施例中,所述方法300还可以包括:
所述网络设备向终端设备设备发送第一高层信令,所述第一高层信令用于配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包含所述第一SRI信息,所述开环功率控制参数包括所述第一开环功率控制参数,所述下行参考信号的索引包括所述第一下行参考信号的索引。
可选地,在一些实施例中,所述第一开环功率控制参数是目标接收功率或路损因子。
可选地,在一些实施例中,所述第一下行参考信号为下行同步信号块SSB或信道状态信息参考信号CIS-RS。
可选地,在一些实施例中,所述方法300还可以包括:
所述网络设备根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控制进程中的所述第一闭环调整因子。
可选地,在一些实施例中,所述将与所述第一SRI信息关联的第一闭环调整因子置零,包括:
所述网络设备在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调整因子置零。
可选地,在一些实施例中,所述方法300还可以包括:
所述网络设备根据置零的所述第一闭环调整因子,确定后续的TPC命令。
上文结合图2至图3,详细描述了本申请的方法实施例,下文结合图4至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4是根据本申请实施例的终端设备的示意性框图,该终端设备400包括:
调整模块410,用于在与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号发生重配置的情况下,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值;
具体地,该终端设备400可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该终端设备400中的各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
图5是根据本申请实施例的网络设备的示意性框图,该网络设备500包括:
调整模块510,用于在重新配置与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号后,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值。
具体地,该网络设备500可以对应(例如,可以配置于或本身即为)上述方法300中描述的网络设备,并且,该网络设备500中的各模块或单元分别用于执行上述方法300中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
如图6所示,本申请实施例还提供了一种终端设备600,该终端设备600可以是图4中的终端设备400,其能够用于执行与图2中方法200对应的终端设备的内容。该终端设 备600包括:输入接口610、输出接口620、处理器630以及存储器640,该输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。该存储器640用于存储包括程序、指令或代码。该处理器630,用于执行该存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(Central Processing Unit,CPU),该处理器630还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,终端设备400中的调整模块410和确定模块420可以由图6中的处理器630实现,终端设备400的通信模块可以由图6中的输出接口620和输入接口610实现。
如图7所示,本申请实施例还提供了一种网络设备700,该网络设备700可以是图5中的网络设备500,其能够用于执行与图3中方法300对应的网络设备的内容。该网络设备700包括:输入接口710、输出接口720、处理器730以及存储器740,该输入接口710、输出接口720、处理器730和存储器740可以通过总线系统相连。该存储器740用于存储包括程序、指令或代码。该处理器730,用于执行该存储器740中的程序、指令或代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,该处理器730可以是中央处理单元(Central Processing  Unit,CPU),该处理器730还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,网络设备500中的调整模块510和确定模块由图7中的处理器730实现,网络设备500中的通信模块可以由图7中的输入接口710和输出接口720实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (38)

  1. 一种功率控制的方法,其特征在于,所述方法包括:
    终端设备在与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号发生重配置的情况下,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值;
    所述终端设备根据置零的所述第一闭环调整因子,确定所述PUSCH的发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一SRI信息包含于用于调度所述PUSCH的下行控制信息DCI中。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第一高层信令,所述第一高层信令用于配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包含所述第一SRI信息,所述开环功率控制参数包括所述第一开环功率控制参数,所述下行参考信号的索引包括所述第一下行参考信号的索引。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第二高层信令,所述第二高层信令用于配置所述终端设备的每个带宽部分BWP上多个SRI信息对应的开环功率控制参数或下行参考信号的索引;
    所述终端设备根据传输所述PUSCH的BWP上的所述对应关系,确定所述第一SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一开环功率控制参数是目标接收功率或路损因子。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一下行参考信号为下行同步信号块SSB或信道状态信息参考信号CIS-RS。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控制进程中的所述第一闭环调整因子。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述将与所述第一SRI信息关联的第一闭环调整因子置零,包括:
    所述终端设备在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调 整因子置零。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端设备根据置零的所述第一闭环调整因子,确定所述PUSCH的发送功率,包括:
    所述终端设备根据置零的所述第一闭环调整因子,以及最近接收到的发送功率控制TPC命令,确定更新的所述第一闭环调整因子;
    所述终端设备根据更新的所述第一闭环调整因子,确定所述PUSCH的发送功率。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据确定的所述发送功率发送所述PUSCH。
  11. 一种功率控制的方法,其特征在于,所述方法包括:
    网络设备在重新配置与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号后,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值。
  12. 根据权利要求11所述的方法,其特征在于,所述第一SRI信息包含于用于调度所述PUSCH的下行控制信息DCI中。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备设备发送第一高层信令,所述第一高层信令用于配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包含所述第一SRI信息,所述开环功率控制参数包括所述第一开环功率控制参数,所述下行参考信号的索引包括所述第一下行参考信号的索引。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备发送第二高层信令,所述第二高层信令用于配置所述终端设备的每个带宽部分BWP上多个SRI信息对应的开环功率控制参数或下行参考信号的索引。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第一开环功率控制参数是目标接收功率或路损因子。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述第一下行参考信号为下行同步信号块SSB或信道状态信息参考信号CIS-RS。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控 制进程中的所述第一闭环调整因子。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述将与所述第一SRI信息关联的第一闭环调整因子置零,包括:
    所述网络设备在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调整因子置零。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据置零的所述第一闭环调整因子,确定后续的TPC命令。
  20. 一种终端设备,其特征在于,所述方法包括:
    调整模块,用于在与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号发生重配置的情况下,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值;
    确定模块,用于根据置零的所述第一闭环调整因子,确定所述PUSCH的发送功率。
  21. 根据权利要求20所述的终端设备,其特征在于,所述第一SRI信息包含于用于调度所述PUSCH的下行控制信息DCI中。
  22. 根据权利要求20或21所述的终端设备,其特征在于,所述终端设备还包括:
    通信模块,用于接收网络设备发送的第一高层信令,所述第一高层信令用于配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包含所述第一SRI信息,所述开环功率控制参数包括所述第一开环功率控制参数,所述下行参考信号的索引包括所述第一下行参考信号的索引。
  23. 根据权利要求20至22中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信模块,用于接收网络设备发送的第二高层信令,所述第二高层信令用于配置所述终端设备的每个带宽部分BWP上多个SRI信息对应的开环功率控制参数或下行参考信号的索引;
    所述确定模块还用于:
    根据传输所述PUSCH的BWP上的所述对应关系,确定所述第一SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号。
  24. 根据权利要求20至23中任一项所述的终端设备,其特征在于,所述第一开环功率控制参数是目标接收功率或路损因子。
  25. 根据权利要求20至24中任一项所述的终端设备,其特征在于,所述第一下行参考信号为下行同步信号块SSB或信道状态信息参考信号CIS-RS。
  26. 根据权利要求20至25中任一项所述的终端设备,其特征在于,所述确定模块还用于:
    根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控制进程中的所述第一闭环调整因子。
  27. 根据权利要求20至26中任一项所述的终端设备,其特征在于,所述调整模块具体用于:
    在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调整因子置零。
  28. 根据权利要求20至27中任一项所述的终端设备,其特征在于,所述确定模块具体用于:
    根据置零的所述第一闭环调整因子,以及最近接收到的发送功率控制TPC命令,确定更新的所述第一闭环调整因子;
    根据更新的所述第一闭环调整因子,确定所述PUSCH的发送功率。
  29. 根据权利要求20至28中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信模块,用于根据确定的所述发送功率发送所述PUSCH。
  30. 一种网络设备,其特征在于,所述方法包括:
    调整模块,用于在重新配置与第一探测参考信号资源指示SRI信息关联的第一开环功率控制参数或者与第一SRI信息关联的第一下行参考信号后,将与所述第一SRI信息关联的第一闭环调整因子置零,其中,所述第一开环功率控制参数用于物理上行共享信道PUSCH的功率控制,所述第一下行参考信号用于测量对所述PUSCH进行功率控制的路损值。
  31. 根据权利要求30所述的网络设备,其特征在于,所述第一SRI信息包含于用于调度所述PUSCH的下行控制信息DCI中。
  32. 根据权利要求30或31所述的网络设备,其特征在于,所述网络设备还包括:
    通信模块,用于向终端设备设备发送第一高层信令,所述第一高层信令用于配置多个SRI信息对应的开环功率控制参数或下行参考信号的索引,其中,所述多个SRI信息包含所述第一SRI信息,所述开环功率控制参数包括所述第一开环功率控制参数,所述下行参考信号的索引包括所述第一下行参考信号的索引。
  33. 根据权利要求30至32中任一项所述的网络设备,其特征在于,所述网络设备 还包括:
    通信模块,用于向终端设备设备发送第二高层信令,所述第二高层信令用于配置所述终端设备的每个带宽部分BWP上多个SRI信息对应的开环功率控制参数或下行参考信号的索引。
  34. 根据权利要求30至33中任一项所述的网络设备,其特征在于,所述第一开环功率控制参数是目标接收功率或路损因子。
  35. 根据权利要求30至34中任一项所述的网络设备,其特征在于,所述第一下行参考信号为下行同步信号块SSB或信道状态信息参考信号CIS-RS。
  36. 根据权利要求30至35中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    确定模块,用于根据与所述第一SRI信息关联的闭环功率控制进程,确定所述闭环控制进程中的所述第一闭环调整因子。
  37. 根据权利要求30至36中任一项所述的网络设备,其特征在于,所述调整模块具体用于:
    在所述PUSCH的闭环功率控制开启了累加模式时,将所述第一闭环调整因子置零。
  38. 根据权利要求30至37中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    确定模块,用于根据置零的所述第一闭环调整因子,确定后续的TPC命令。
PCT/CN2018/073518 2018-01-19 2018-01-19 功率控制的方法、终端设备和网络设备 WO2019140665A1 (zh)

Priority Applications (21)

Application Number Priority Date Filing Date Title
BR112019021143-8A BR112019021143A2 (pt) 2018-01-19 2018-01-19 Método de controle de potência, e dispositivo terminal
ES18901012T ES2870155T3 (es) 2018-01-19 2018-01-19 Método de control de potencia, dispositivo terminal y dispositivo de red
AU2018403275A AU2018403275A1 (en) 2018-01-19 2018-01-19 Power control method, terminal device and network device
EP18901012.7A EP3570598B1 (en) 2018-01-19 2018-01-19 Power control method, terminal device and network device
CN201880023541.2A CN110476461B (zh) 2018-01-19 2018-01-19 功率控制的方法、终端设备和网络设备
CA3055624A CA3055624C (en) 2018-01-19 2018-01-19 Power control method, terminal device and network device
PCT/CN2018/073518 WO2019140665A1 (zh) 2018-01-19 2018-01-19 功率控制的方法、终端设备和网络设备
JP2019549560A JP7348068B2 (ja) 2018-01-19 2018-01-19 パワー制御の方法、端末デバイス及びネットワークデバイス
KR1020197026290A KR102380345B1 (ko) 2018-01-19 2018-01-19 전력 제어 방법, 단말 기기 및 네트워크 기기
CN201911295963.8A CN111010728B (zh) 2018-01-19 2018-01-19 功率控制的方法、终端设备和网络设备
RU2019134996A RU2748616C1 (ru) 2018-01-19 2018-01-19 Способ управления мощностью, оконечное устройство и сетевое устройство
DK18901012.7T DK3570598T3 (da) 2018-01-19 2018-01-19 Effektstyringsproces, terminalanordning og netværksanordning
SG11201908352S SG11201908352SA (en) 2018-01-19 2018-01-19 Power control method, terminal device and network device
MX2019013366A MX2019013366A (es) 2018-01-19 2018-01-19 Metodo de control de potencia, dispositivo terminal y dispositivo de red.
EP21150290.1A EP3826374A1 (en) 2018-01-19 2018-01-19 Power control
US16/535,688 US10939383B2 (en) 2018-01-19 2019-08-08 Power control method, terminal device and network device
IL269195A IL269195B (en) 2018-01-19 2019-09-09 Method for power control, terminal device and network device
ZA2019/06012A ZA201906012B (en) 2018-01-19 2019-09-11 Power control method, terminal device and network device
PH12019502081A PH12019502081A1 (en) 2018-01-19 2019-09-12 Power control method, terminal device and network device
US17/161,172 US11368914B2 (en) 2018-01-19 2021-01-28 Power control method, terminal device and network device
JP2022190317A JP2023025128A (ja) 2018-01-19 2022-11-29 パワー制御の方法、端末デバイス及びネットワークデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073518 WO2019140665A1 (zh) 2018-01-19 2018-01-19 功率控制的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/535,688 Continuation US10939383B2 (en) 2018-01-19 2019-08-08 Power control method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2019140665A1 true WO2019140665A1 (zh) 2019-07-25

Family

ID=67301920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073518 WO2019140665A1 (zh) 2018-01-19 2018-01-19 功率控制的方法、终端设备和网络设备

Country Status (17)

Country Link
US (2) US10939383B2 (zh)
EP (2) EP3826374A1 (zh)
JP (2) JP7348068B2 (zh)
KR (1) KR102380345B1 (zh)
CN (2) CN110476461B (zh)
AU (1) AU2018403275A1 (zh)
BR (1) BR112019021143A2 (zh)
CA (1) CA3055624C (zh)
DK (1) DK3570598T3 (zh)
ES (1) ES2870155T3 (zh)
IL (1) IL269195B (zh)
MX (1) MX2019013366A (zh)
PH (1) PH12019502081A1 (zh)
RU (1) RU2748616C1 (zh)
SG (1) SG11201908352SA (zh)
WO (1) WO2019140665A1 (zh)
ZA (1) ZA201906012B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4224774A1 (en) * 2019-09-29 2023-08-09 ZTE Corporation Systems and methods for transmitting signals

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383905B (zh) * 2017-05-05 2021-05-18 华为技术有限公司 上行链路传输的功率控制方法
BR112019021143A2 (pt) * 2018-01-19 2020-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de controle de potência, e dispositivo terminal
US11026180B2 (en) * 2018-01-23 2021-06-01 Qualcomm Incorporated Uplink power control configuration
US11265818B2 (en) * 2019-03-29 2022-03-01 FG Innovation Company Limited Method of closed-loop power control in multi-panel transmission and related device
CN110536394B (zh) * 2019-03-29 2024-04-05 中兴通讯股份有限公司 功率控制方法、装置和系统
US11019573B2 (en) * 2019-03-29 2021-05-25 Qualcomm Incorporated Out-of-order communication management
US11729723B2 (en) * 2019-11-21 2023-08-15 Qualcomm Incorporated Power control indication for multiple services
EP4013138A1 (en) * 2020-12-10 2022-06-15 Nokia Solutions and Networks Oy Determining open loop power control parameters
WO2022141075A1 (zh) * 2020-12-29 2022-07-07 Oppo广东移动通信有限公司 上行功率控制方法、装置、终端及存储介质
US20240172225A1 (en) * 2021-03-31 2024-05-23 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for open loop power control of uplink cg pusch, and storage medium
KR20220149360A (ko) * 2021-04-30 2022-11-08 삼성전자주식회사 전자 장치 및 전자 장치에서 과온도 상태에 따라 송신 전력을 제어하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120329503A1 (en) * 2011-06-21 2012-12-27 Telefonaktiebolaget L M Ericsson (Publ) Systems and Methods For Controlling The Power at Which a Communication Device Transmits an Uplink Signal
CN105309017A (zh) * 2013-06-18 2016-02-03 Lg电子株式会社 用于在支持无线资源的用途的改变的无线通信系统中控制传输功率的方法及其装置
CN105307254A (zh) * 2015-09-21 2016-02-03 中国人民解放军国防科学技术大学 一种用户设备发射功率控制系统及其控制方法
CN108134659A (zh) * 2017-08-11 2018-06-08 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141405A2 (en) * 2008-05-21 2009-11-26 Nokia Siemens Networks Oy Deployment of lte ul system for arbitrary system bandwidths via pucch configuration
CN101369834B (zh) * 2008-10-17 2013-08-28 华为技术有限公司 联合功率控制方法、系统和设备
JP5106500B2 (ja) * 2009-09-14 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、無線基地局及び移動局
JP5331161B2 (ja) * 2011-05-19 2013-10-30 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
WO2012159298A1 (zh) * 2011-06-27 2012-11-29 华为技术有限公司 一种实现上行数据发送的方法和装置
CN103037489B (zh) * 2011-09-29 2017-12-26 中兴通讯股份有限公司 上行信号功率控制方法及装置
CN108809364B (zh) * 2011-09-30 2022-03-29 交互数字专利控股公司 用于无线通信系统中的多点传输的方法及装置
CN103096448B (zh) * 2011-10-28 2016-08-24 华为技术有限公司 上行功率控制的方法、用户设备和接入点
CN103379603B (zh) * 2012-04-17 2016-08-03 电信科学技术研究院 功控信息通知及功控方法和设备
US8977313B2 (en) * 2012-05-18 2015-03-10 Futurewei Technologies, Inc. Method for optimizing uplink power-control parameters in LTE
KR102364695B1 (ko) * 2013-08-17 2022-02-18 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호의 전송 전력 제어 방법 및 이를 위한 장치
US9554339B2 (en) * 2013-11-09 2017-01-24 Lg Electronics Inc. Method for controlling uplink transmission power in wireless communication system and device therefor
US9609598B2 (en) * 2014-07-31 2017-03-28 Qualcomm Incorporated Power control performance for user equipment
CN107005376B (zh) * 2014-09-15 2020-08-28 诺基亚技术有限公司 用于单载波传输的下行链路控制信道的方法和装置
CN108811064B (zh) * 2014-09-28 2019-07-12 华为技术有限公司 上行功率配置方法和网络设备
EP3247163B1 (en) * 2015-01-13 2020-04-22 LG Electronics Inc. Method and user equipment for sending uplink signal, and method and base station for receiving uplink signal
US10182406B2 (en) 2015-03-09 2019-01-15 Comcast Cable Communications, Llc Power headroom report for a wireless device and a base station
US10847170B2 (en) 2015-06-18 2020-11-24 Qualcomm Incorporated Device and method for generating a high-band signal from non-linearly processed sub-ranges
KR102542702B1 (ko) * 2015-10-12 2023-06-14 삼성전자 주식회사 다중반송파 무선 통신 시스템에서의 반복전송 운용 방안 및 장치
US10542529B2 (en) * 2016-02-01 2020-01-21 Ofinno, Llc Power control in a wireless device and wireless network
US10548158B2 (en) * 2016-03-10 2020-01-28 Huawei Technologies Co., Ltd. Message passing algorithm decoder and methods
US10979186B2 (en) * 2017-05-01 2021-04-13 Lg Electronics Inc. Method of sounding a terminal in a wireless communication system and apparatus therefor
SG11201903386WA (en) * 2017-05-04 2019-05-30 Lg Electronics Inc Method for transmitting and receiving uplink in wireless communication system and apparatus therefor
US11751204B2 (en) * 2017-10-27 2023-09-05 Comcast Cable Communications, Llc Group common DCI for wireless resources
US10945172B2 (en) * 2017-11-16 2021-03-09 Comcast Cable Communications, Llc Power control for bandwidth part switching
BR112019021143A2 (pt) * 2018-01-19 2020-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de controle de potência, e dispositivo terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120329503A1 (en) * 2011-06-21 2012-12-27 Telefonaktiebolaget L M Ericsson (Publ) Systems and Methods For Controlling The Power at Which a Communication Device Transmits an Uplink Signal
CN105309017A (zh) * 2013-06-18 2016-02-03 Lg电子株式会社 用于在支持无线资源的用途的改变的无线通信系统中控制传输功率的方法及其装置
US10004043B2 (en) * 2013-06-18 2018-06-19 Lg Electronics Inc. Method for controlling electric power in wireless communication system supporting change in purpose of wireless resource and apparatus therefor
CN105307254A (zh) * 2015-09-21 2016-02-03 中国人民解放军国防科学技术大学 一种用户设备发射功率控制系统及其控制方法
CN108134659A (zh) * 2017-08-11 2018-06-08 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4224774A1 (en) * 2019-09-29 2023-08-09 ZTE Corporation Systems and methods for transmitting signals

Also Published As

Publication number Publication date
EP3826374A1 (en) 2021-05-26
US20190364511A1 (en) 2019-11-28
CA3055624A1 (en) 2019-07-25
EP3570598A4 (en) 2020-03-11
BR112019021143A2 (pt) 2020-05-12
ES2870155T3 (es) 2021-10-26
JP7348068B2 (ja) 2023-09-20
EP3570598B1 (en) 2021-04-07
KR20200109237A (ko) 2020-09-22
CN111010728A (zh) 2020-04-14
CN111010728B (zh) 2021-06-04
JP2023025128A (ja) 2023-02-21
US20210153133A1 (en) 2021-05-20
ZA201906012B (en) 2022-11-30
US11368914B2 (en) 2022-06-21
CN110476461B (zh) 2024-01-30
KR102380345B1 (ko) 2022-03-29
EP3570598A1 (en) 2019-11-20
MX2019013366A (es) 2020-01-13
JP2021515994A (ja) 2021-06-24
PH12019502081A1 (en) 2020-09-14
AU2018403275A1 (en) 2019-10-03
DK3570598T3 (da) 2021-05-10
RU2748616C1 (ru) 2021-05-28
SG11201908352SA (en) 2019-10-30
CA3055624C (en) 2022-08-23
US10939383B2 (en) 2021-03-02
IL269195B (en) 2022-04-01
CN110476461A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2019140665A1 (zh) 功率控制的方法、终端设备和网络设备
WO2019134100A1 (zh) 功率控制的方法、终端设备和网络设备
US11218974B2 (en) Method, terminal device and network device for transmitting signals
KR102356351B1 (ko) 신호를 전송하는 방법, 단말 장치와 네트워크 장치
WO2019080107A1 (zh) 传输物理上行控制信道pucch的方法、终端设备和网络设备
CA3066296C (en) Data transmission method and terminal device
CN112703779B (zh) 一种上行传输的功率控制方法及终端设备
WO2021012129A1 (zh) 一种信息传输方法及装置、通信设备
KR20220021010A (ko) 무선 통신 방법과 장치
CN113613322A (zh) 用于确定发射功率的方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018901012

Country of ref document: EP

Effective date: 20190812

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3055624

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019549560

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018403275

Country of ref document: AU

Date of ref document: 20180119

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019021143

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019021143

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191008

NENP Non-entry into the national phase

Ref country code: DE