WO2018044141A1 - 로터 위치 감지장치 및 이를 포함하는 모터 - Google Patents

로터 위치 감지장치 및 이를 포함하는 모터 Download PDF

Info

Publication number
WO2018044141A1
WO2018044141A1 PCT/KR2017/009704 KR2017009704W WO2018044141A1 WO 2018044141 A1 WO2018044141 A1 WO 2018044141A1 KR 2017009704 W KR2017009704 W KR 2017009704W WO 2018044141 A1 WO2018044141 A1 WO 2018044141A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
magnet
angle
disposed
sensing
Prior art date
Application number
PCT/KR2017/009704
Other languages
English (en)
French (fr)
Inventor
우승훈
김남훈
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160114082A external-priority patent/KR102101177B1/ko
Priority claimed from KR1020160175775A external-priority patent/KR102621325B1/ko
Priority to US16/329,620 priority Critical patent/US10903731B2/en
Priority to CN201780054083.4A priority patent/CN109690920B/zh
Priority to CN202111044832.XA priority patent/CN113726100B/zh
Priority to JP2019512233A priority patent/JP7110176B2/ja
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP21181099.9A priority patent/EP3907476A1/en
Priority to EP17847066.2A priority patent/EP3509198B1/en
Priority to CN202111043388.XA priority patent/CN113839591B/zh
Publication of WO2018044141A1 publication Critical patent/WO2018044141A1/ko
Priority to US17/121,134 priority patent/US11437899B2/en
Priority to JP2022116665A priority patent/JP7357122B2/ja
Priority to US17/816,131 priority patent/US11606014B2/en
Priority to US18/166,098 priority patent/US11863034B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • Embodiments relate to a rotor position sensing device and a motor including the same.
  • the motor is rotated by the electromagnetic interaction of the rotor and the stator.
  • the rotary shaft inserted in the rotor also rotates to generate a rotational driving force.
  • a sensor including a magnetic element is disposed inside the motor.
  • the sensor detects the current position of the rotor by detecting the magnetic force of the sensing magnet installed in rotational linkage with the rotor.
  • the added rotor position sensing device should be separately installed in an area different from the existing rotor position sensing device. This is because the sensing magnet and the sensor of the additional rotor position sensor must be aligned. But.
  • Such a rotor position sensing device has a complex layout of additional sensors and a design of a substrate, and has a large space limitation.
  • an embodiment is to solve the above problems, and an object thereof is to provide a rotor position sensing device and a motor including the same that can be driven even in the failure of some sensors.
  • an embodiment is to provide a rotor position sensing device and a motor including the same that can increase the resolution of the sensing signal without the addition of a sensor.
  • an embodiment is to provide a rotor position sensing device having two channels on an existing substrate and a motor including the same without additional structure.
  • An embodiment for achieving the above object includes a sensing magnet and a substrate disposed above the sensing magnet, wherein the sensing magnet includes a main magnet and a sub magnet, and the substrate is based on the center of the sensing magnet. And a first sensor and a second sensor disposed on the same circular track, wherein the first sensor includes a plurality of first Hall sensors neighboring on the circular track, and the second sensor is adjacent on the circular track. And a plurality of second Hall sensors, wherein the plurality of first Hall sensors are spaced apart by a first angle along a circumference of the circular track, and the plurality of second Hall sensors are arranged along the circumference of the circular track. The first Hall sensor and the second Hall sensor, which are spaced apart by a first angle, are different from the first angle along the circumference of the circular track. It is possible to provide a rotor position sensing device that is disposed by one second angle.
  • the first sensor and the second sensor may be disposed to correspond to the main magnet based on a radial direction of the sensing magnet.
  • the first angle may be R1 calculated by Equation 1 below.
  • R1 is the first angle
  • R0 is the electrical angle
  • N is the number of poles of the main magnet.
  • the second angle may be R2 calculated by Equation 2 below.
  • R2 R1 ⁇ R0 '/ (N / 2)
  • R2 is the second angle.
  • R1 is the first angle
  • R0 ' is the shifted electrical angle
  • N is the number of poles of the main magnet.
  • the first sensor may include three first Hall sensors
  • the second sensor may include three second Hall sensors.
  • the second angle may be 10 degrees.
  • the first sensor and the second sensor may be disposed to correspond to the sub-magnet on the basis of the radial direction of the sensing magnet.
  • the first angle may be R1 calculated by Equation 3 below.
  • R1 R0 x n + R3 / (N / 2) (n is an integer)
  • R1 is the first angle
  • R0 is the electrical angle
  • R3 is the resolution angle
  • N is the number of poles of the sub-magnet.
  • the second angle may be R2 calculated by Equation 4 below.
  • R2 R1 ⁇ R0 '/ (N / 2)
  • R2 is the second angle.
  • R1 is the first angle
  • R0 ' is the electrical angle to be shifted
  • N is the pole number of the sub-magnet.
  • the first sensor may include two first Hall sensors
  • the second sensor may include two second Hall sensors.
  • the second angle may be 10 ° xn + 2.5 ° plus 1.25 °.
  • n is an integer.
  • Another embodiment for achieving the above object includes a sensing magnet and a substrate disposed above the sensing magnet, the sensing magnet includes a main magnet and a sub-magnet, the substrate is the center of the sensing magnet A first sensor and a second sensor disposed on the same circular track as a reference, wherein the first sensor includes a plurality of first Hall sensors neighboring on the circular track, and the second sensor on the circular track And a plurality of neighboring second Hall sensors, wherein the plurality of first Hall sensors are disposed apart by a third angle along the circumference of the circular track, and the plurality of second Hall sensors follow the circumference of the circular track.
  • the second sensor Disposed apart by the third angle, the second sensor being symmetrical with the first sensor with reference to a reference line passing through the center of the circular orbit; It is possible to provide a rotor position sensing device disposed at a position shifted by a fourth angle along the circumference of the circular track in the position.
  • the first sensor and the second sensor may be disposed to correspond to the main magnet based on a radial direction of the sensing magnet.
  • the third angle may be R3 calculated by Equation 5 below.
  • R3 is the third angle
  • R0 is the electrical angle
  • N is the number of poles of the main magnet.
  • the fourth angle may be R4 calculated by Equation 6 below.
  • R4 R3 ⁇ R0 '/ (N / 2)
  • R4 is the fourth angle.
  • R3 is the third angle
  • R0 ' is the shifted electrical angle
  • N is the number of poles of the main magnet.
  • the first sensor may include three first Hall sensors
  • the second sensor may include three second Hall sensors.
  • the fourth angle may be 10 °.
  • the first sensor and the second sensor may be disposed to correspond to the sub-magnet on the basis of the radial direction of the sensing magnet.
  • the third angle may be R3 calculated by Equation 7 below.
  • R3 R0 * n + R3 '/ (N / 2) (n is an integer)
  • R3 is the third angle
  • R0 is the electrical angle
  • N is the pole number of the sub-magnet.
  • the fourth angle may be R4 calculated by Equation 8 below.
  • R4 R3 ⁇ R0 '/ (N / 2)
  • R4 is the fourth angle.
  • R3 is the third angle
  • R0 ' is the shifted electrical angle
  • N is the number of poles of the sub-magnet.
  • the first sensor may include two first Hall sensors
  • the second sensor may include two second Hall sensors.
  • the fourth angle may be 1.25 °.
  • a rotor including a rotating shaft, a hole in which the rotating shaft is disposed, a stator disposed outside the rotor, and a rotor position sensing device disposed above the rotor.
  • the rotor position sensing device includes a sensing magnet and a substrate disposed above the sensing magnet, wherein the sensing magnet includes a main magnet and a sub magnet, and the substrate has the same circular orbit based on the center of the sensing magnet.
  • a first sensor and a second sensor disposed on the first sensor, wherein the first sensor includes a plurality of first Hall sensors neighboring the circular track, and the second sensor includes a plurality of first neighboring sensors on the circular track.
  • a second hall sensor the plurality of first hall sensors being spaced apart by a first angle along a circumference of the circular track;
  • a plurality of second Hall sensors are spaced apart by the first angle along the circumference of the circular track, and the neighboring first Hall sensor and the second Hall sensor are different from the first angle along the circumference of the circular track. It is possible to provide a motor that is spaced apart by a second angle.
  • a rotor including a rotating shaft, a hole in which the rotating shaft is disposed, a stator disposed outside the rotor, and a rotor position sensing device disposed above the rotor.
  • the rotor position sensing device includes a sensing magnet and a substrate disposed above the sensing magnet, wherein the sensing magnet includes a main magnet and a sub magnet, and the substrate has the same circular orbit based on the center of the sensing magnet.
  • a first sensor and a second sensor disposed on the first sensor, wherein the first sensor includes a plurality of first Hall sensors neighboring the circular track, and the second sensor includes a plurality of first neighboring sensors on the circular track.
  • a second hall sensor wherein the plurality of first hall sensors are disposed apart by a third angle along a circumference of the circular track;
  • a plurality of second Hall sensors are disposed apart by the third angle along the circumference of the circular track, and the second sensor is located at a position symmetrical with the first sensor with reference to a reference line passing through the center of the circular track. It is possible to provide a motor arranged at a position shifted by a fourth angle along the circumference of the circular orbit.
  • the embodiment may include a sensing magnet and a substrate disposed above the sensing magnet, wherein the sensing magnet includes a main magnet and a sub magnet, and the substrate includes a first sensor, a second sensor, and a third sensor.
  • the first sensor, the second sensor, and the third sensor may provide a rotor position sensing device disposed on different circular tracks with respect to the center of the sensing magnet.
  • the first sensor may be disposed to correspond to the sub-magnet based on the radial direction of the sensing magnet.
  • the second sensor and the third sensor may be disposed to correspond to the main magnet on the basis of the radial direction of the sensing magnet.
  • the second sensor comprises a plurality of second Hall sensors
  • the third sensor comprises a plurality of third Hall sensors
  • the second Hall sensor and the third Hall sensor of the sensing magnet It may be arranged in alignment with respect to the circumferential direction.
  • the second sensor and the third sensor may be connected in parallel.
  • the first sensor may include four first Hall sensors
  • the second sensor may include three second Hall sensors
  • the third sensor may include three third Hall sensors. .
  • the substrate includes a control unit connected to the first sensor, the second sensor, and the third sensor, and the control unit is different if any one of the second sensor and the third sensor is determined to be a failure.
  • the position of the rotor can be detected based on one sensing signal.
  • Another embodiment includes a rotor including a rotating shaft, a hole in which the rotating shaft is disposed, a stator disposed outside the rotor, and a rotor position sensing device disposed above the rotor. And a sensing magnet and a substrate disposed above the sensing magnet, wherein the sensing magnet includes a main magnet and a sub magnet, and the substrate includes a first sensor, a second sensor, and a third sensor.
  • the sensor, the second sensor, and the third sensor may be disposed on different circular tracks with respect to the center of the sensing magnet.
  • the rotor may include a rotor core and a plurality of magnets disposed surrounding the outer circumferential surface of the rotor core.
  • it may further include a can member for receiving the rotor core and the magnet.
  • the plurality of magnets are disposed in one stage on the outer circumferential surface of the rotor core, and the plurality of magnets may be arranged spaced apart from each other at a predetermined interval.
  • the first sensor may be disposed to correspond to the sub-magnet based on the radial direction of the sensing magnet.
  • the second sensor and the third sensor may be disposed to correspond to the main magnet on the basis of the radial direction of the sensing magnet.
  • the second sensor comprises a plurality of second Hall sensors
  • the third sensor comprises a plurality of third Hall sensors
  • the second Hall sensor and the third Hall sensor of the sensing magnet It may be arranged in alignment with respect to the circumferential direction.
  • the second sensor and the third sensor may be connected in parallel.
  • the first sensor may include four first Hall sensors
  • the second sensor may include three second Hall sensors
  • the third sensor may include three third Hall sensors. .
  • the second sensor in addition to the first sensor, even if a failure occurs in the first sensor, it provides an advantageous effect that can detect the position of the rotor.
  • the position of the second sensor is shifted by a predetermined angle so that the resolution is doubled at a position corresponding to the position of the first sensor, thereby providing an advantageous effect of accurately determining the position of the rotor.
  • the embodiment by adding the sensors in parallel to the existing PCB, by extending the sensing magnet, it provides an advantageous effect of implementing a two-channel sensing configuration on the existing PCB without additional structure.
  • FIG. 1 is a conceptual diagram of a motor according to an embodiment
  • FIG. 2 is a diagram illustrating a sensing magnet
  • FIG. 3 is a diagram illustrating a sensing signal
  • FIG. 4 is a view showing a rotor position sensing device
  • FIG. 5 illustrates a first embodiment of an arrangement of a first sensor and a second sensor corresponding to a main magnet
  • FIG. 6 illustrates a first embodiment of an arrangement of a first sensor and a second sensor corresponding to a sub magnet
  • FIG. 7 illustrates a second embodiment of an arrangement of a first sensor and a second sensor corresponding to a main magnet
  • FIG. 8 illustrates a first sensor and a second sensor with reference to an outer sensor
  • FIG. 9 is a view of the first magnet.
  • a graph showing a comparison between a conventional sensing signal with a resolution of 60 ° and a sensing signal with a resolution of 30 °.
  • FIG. 10 shows a second magnet. It is a graph comparing the conventional sensing signal having a resolution of 7.5 ° and the sensing signal having a resolution increased to 3.75 °.
  • FIG. 11 is a view showing an extended area of a main magnet
  • FIG. 12 is a diagram illustrating a sensing signal
  • FIG. 13 is a view illustrating a rotor position sensing apparatus according to the embodiment.
  • FIG. 14 illustrates a first sensor, a second sensor, and a third sensor
  • FIG. 15 is a diagram illustrating a second sensor and a third sensor arranged in the circumferential direction of the sensing magnet.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • the motor according to the embodiment may include a rotation shaft 100, a rotor 200, a stator 300, and a rotor position sensing device 400.
  • the rotating shaft 100 may be coupled to the rotor 200.
  • the rotation shaft 100 When electromagnetic interaction occurs in the rotor 200 and the stator 300 through the supply of current, the rotor 200 rotates and the rotation shaft 100 rotates in association with the rotation shaft 100.
  • the rotation shaft 100 is connected to the steering shaft of the vehicle. Power can be transmitted to the steering shaft.
  • the rotating shaft 100 may be supported by the bearing.
  • the rotor 200 rotates through electrical interaction with the stator 300.
  • the rotor 200 may include a rotor core 210 and a magnet 220.
  • the rotor core 210 may be implemented in a shape in which a plurality of plates in the form of a circular thin steel sheet is stacked. In the center of the rotor core 210, a hole to which the rotation shaft 100 is coupled may be formed. A protrusion for guiding the magnet 220 may protrude from the outer circumferential surface of the rotor core 210.
  • the magnet 220 may be attached to the outer circumferential surface of the rotor core 210.
  • the plurality of magnets 220 may be disposed along the circumference of the rotor core 210 at regular intervals.
  • the rotor 200 may include a can member surrounding the magnet 220 to fix the magnet 220 so as not to be separated from the rotor core 210 and to prevent the magnet 220 from being exposed.
  • the rotor 200 may be composed of a rotor core 210 that is a single cylindrical unit, and a magnet 220 disposed in one stage on the rotor core 210.
  • the first stage refers to a structure in which the magnet 220 may be disposed so that there is no skew on the outer circumferential surface of the rotor 200. Therefore, when referring to the longitudinal section of the rotor core 210 and the longitudinal section of the magnet 220, the height of the rotor core 210 and the height of the magnet 220 may be formed to be the same. That is, the magnet 220 may be implemented to cover the entire rotor core 210 based on the height direction.
  • the stator 300 may be wound around a coil to cause electrical interaction with the rotor 200.
  • a detailed configuration of the stator 300 for winding the coil 320 is as follows.
  • the stator 300 may include a stator core 310 including a plurality of teeth.
  • the stator core 310 may be provided with an annular yoke portion, and a tooth in which a coil is wound in the center direction from the yoke may be provided. Teeth may be provided at regular intervals along the outer circumferential surface of the yoke portion.
  • the stator core 310 may be formed by stacking a plurality of plates in the form of a thin steel sheet.
  • the stator core 310 may be formed by coupling or connecting a plurality of split cores.
  • the rotor position sensing apparatus 400 may include a sensing magnet 410 and a substrate 420.
  • the housing 500 is formed in a cylindrical shape to provide a space in which the stator 300 and the rotor 200 may be mounted.
  • the shape or material of the housing 500 may be variously modified, but a metal material that can withstand high temperatures may be selected.
  • the open top of the housing 500 is covered by the cover 600.
  • FIG. 2 is a diagram illustrating a sensing magnet.
  • the sensing magnet 410 may include a main magnet 411, a sub magnet 412, and a sensing plate 413.
  • the sensing magnet 410 is disposed on the rotor 200 to indicate the position of the rotor 200.
  • the sensing plate 413 is formed in a disk shape. Then, the rotation shaft 100 is coupled to the center of the sensing plate 413.
  • the main magnet 411 is disposed at the center of the sensing plate 413.
  • the sub magnet 412 may be disposed outside the main magnet 411 and disposed at an edge of the sensing plate 413.
  • the main magnet 411 corresponds to the magnet 220 of the rotor 200.
  • the number of poles of the magnet 220 of the rotor 200 and the number of poles of the main magnet 411 are the same.
  • the magnet 220 of the rotor 200 is six poles
  • the main magnet 411 is also six poles.
  • the magnet 220 and the main magnet 411 of the rotor 200 may be aligned with the polar divided regions, so that the position of the main magnet 411 may indicate the position of the magnet 220 of the rotor 200.
  • This main magnet 411 is used to determine the initial position of the rotor 200.
  • the sub magnet 412 is used to accurately locate the detailed position of the rotor 200.
  • the sub magnet 412 may be 72 poles.
  • Sensors disposed on the substrate 420 detect a change in magnetic flux by the main magnet 411 and the sub magnet 412 as the sensing magnet 410 rotates.
  • the substrate 420 may be disposed on the sensing magnet 410.
  • 3 is a diagram illustrating a sensing signal.
  • the sensors disposed on the substrate 420 may detect three sensing signals T1, T2, and T3 by sensing changes of the N pole and the S pole of the main magnet 411.
  • the substrate 420 may detect two sensing signals E1 and E2 by detecting a change in the magnetic flux of the sub magnet 412.
  • the main magnet 411 may detect the position of the rotor 400 by detecting a change in magnetic flux based on the main magnet 411.
  • the sensing signals T1, T2, and T3 may be used for initial driving of the motor, and may feed back information on U, V, and W, respectively.
  • FIG. 4 is a view illustrating a rotor position sensing device.
  • the shape of the substrate 421 may be implemented in an annular shape corresponding to the arrangement of the main magnet 411 and the sub magnet 412.
  • the substrate 421 may include first sensors S1 and S3 and second sensors S2 and S4.
  • the first sensors S1 and S3 and the second sensors S2 and S4 may be arranged on the same circular track based on the center C of the sensing magnet 410.
  • the first sensors S1 and S3 may include a plurality of first Hall sensors H1 neighboring on the circular track.
  • the second sensors S2 and S4 may include a plurality of second Hall sensors H2 neighboring on the circular track.
  • the first sensor S1 and the second sensor S2, which are positioned relatively inward, may be disposed along a circular track disposed on the main magnet 411.
  • the first sensor S1 and the second sensor S2 may be disposed to correspond to the main magnet 411 based on the radial direction of the sensing magnet 410.
  • the first sensor S3 and the second sensor S4, which are relatively disposed outside, may be disposed along a circular track on which the sub magnet 412 is disposed.
  • the first sensor S3 and the second sensor S4 may be disposed to correspond to the sub-magnet 412 based on the radial direction of the sensing magnet 410.
  • FIG. 5 is a diagram illustrating a first embodiment of an arrangement of a first sensor and a second sensor corresponding to a main magnet.
  • the first sensor S1 and the second sensor S2 disposed inside the substrate 421 detect a change in magnetic flux by the main magnet 411, respectively.
  • the first sensor S1 may include three first hall sensors H1.
  • the first sensor S1 may generate a continuous sensing signal on U, V, and W in response to the rotation of the main magnet 411.
  • the three first hall sensors H1 may be disposed apart by the first angle R1.
  • the second sensor S2 may include three second hall sensors H2.
  • the second sensor S2 may further generate a continuous sensing signal on U, V, and W corresponding to the rotation of the main magnet 411. Accordingly, even when any first Hall sensor H1 of the first sensor S1 fails, the continuous sensing signals on U, V, and W may be generated.
  • the three second hall sensors H2 may be disposed apart from each other by the first angle R1 in the same manner as the first hall sensor H1.
  • the first angle R1 may be calculated by the following Equation 1.
  • R1 is the first angle
  • R0 is the electrical angle
  • N is the number of poles of the main magnet 411
  • the constant "3" means the number of U, V, W phases.
  • the electric angle R0 of the motor is 120 °.
  • the first angle R1 may be calculated at 40 °.
  • the electrical angle represents the physical angle (mechanical angle) of the magnet occupied by the N pole and the S pole of the magnet with respect to 360 °.
  • the electric angle R0 of the motor is 90 °.
  • the second sensor S2 may be disposed at a position shifted from a position corresponding to the first sensor S1 in order to increase the resolution of the sensing signal.
  • the first sensor S1 and the second sensor S2 may be disposed apart from the first angle R1 by a second angle R2 on the same circular track. That is, the neighboring first hall sensor H1a and the second hall sensor H2a may be disposed apart from the first angle R1 by a second angle R2 along the circumference of the circular track.
  • the second angle R2 may be calculated by the following equation (2).
  • R2 is the second angle.
  • R1 is the first angle
  • R0 ' is the shifted electrical angle
  • N is the pole number of the main magnet 411.
  • the resolution of the sensing signal by the main magnet 411 can be set to 60 °, in which case if the electric angle is required to be shifted by 30 ° in order to double the resolution from 60 ° to 30 °, if R1 is 40 °,
  • the second angle R2 may be calculated at 30 ° or 50 °.
  • FIG. 6 is a diagram illustrating a first embodiment of an arrangement of a first sensor and a second sensor corresponding to a sub magnet.
  • the first sensor S3 and the second sensor S4 disposed on the outside of the substrate 421 detect the change in the magnetic flux caused by the sub-magnet 412, respectively.
  • the first sensor S3 may include two first hall sensors H1.
  • the first sensor S3 may generate a continuous sensing signal in response to the rotation of the sub magnet 412.
  • the two first Hall sensors H1 may be disposed apart by the first angle R1.
  • the second sensor S4 may include two second hall sensors H2.
  • the second sensor S4 may further generate a continuous sensing signal corresponding to the rotation of the sub magnet 411. Therefore, even when any first Hall sensor H1 of the first sensor S3 has failed, it is possible to generate a continuous sensing signal.
  • the two second hall sensors H2 may be disposed apart from each other by the first angle R1 in the same manner as the first hall sensor H1.
  • the first angle R1 may be calculated by Equation 3 below.
  • R1 is the first angle
  • R0 is the electrical angle
  • R3 ' is the resolution angle
  • N is the number of poles of the sub magnet 412.
  • the number of poles of the sub magnet 412 is 72, and thus the electric angle R0 of the motor is 10 degrees.
  • the first angle R1 becomes 10 ° xn + 2.5 °. Therefore, it is very difficult to physically separate the two first sensors S3 at the first angle R1. Accordingly, when the electrical angle R0 is 10 °, the first angle R1 may be calculated as 10 ° xn + 2.5 ° having the same phase difference.
  • the second sensor S4 may be disposed at a position shifted from a position corresponding to the first sensor S3 in order to increase the resolution of the sensing signal.
  • the first sensor S3 and the second sensor S4 may be disposed apart from the first angle R1 by a second angle R2 on the same circular track. That is, the neighboring first hall sensor H1a and the second hall sensor H2a may be disposed apart from the first angle R1 by a second angle R2 along the circumference of the circular track.
  • the second angle R2 may be calculated by the following equation (4).
  • R2 is the second angle.
  • R1 is the first angle
  • R0 ' is the electrical angle to be shifted
  • N is the pole number of the sub-magnet 412.
  • the second angle R2 is the first angle R1 plus 10 ° xn + 2.5 ° plus 1.25 °. to be.
  • the neighboring first Hall sensors H1a and the second Hall sensors H2a are disposed apart from each other by 10 ° xn + 2.5 °, which is the first angle R1, by 1.25 °.
  • the resolution of the sensing signal can be increased from 90 ° to 45 °.
  • FIG. 7 is a diagram illustrating a second embodiment of disposing a first sensor and a second sensor corresponding to a main magnet.
  • the first sensor S1 and the second sensor S2 disposed inside the substrate 421 detect changes in magnetic flux by the main magnet 411, respectively.
  • the first sensor S1 may include three first hall sensors H1.
  • the first sensor S1 may generate a continuous sensing signal on U, V, and W in response to the rotation of the main magnet 411.
  • the three first hall sensors H1 may be disposed apart by a third angle R3.
  • the second sensor S2 may include three second hall sensors H2.
  • the second sensor S2 may further generate a continuous sensing signal on U, V, and W corresponding to the rotation of the main magnet 411. Accordingly, even when any first Hall sensor H1 of the first sensor S1 fails, the continuous sensing signals on U, V, and W may be generated.
  • the three second hall sensors H2 may be disposed apart from each other by the third angle R3 like the first hall sensor H1.
  • the third angle R3 may be calculated by Equation 5 below.
  • R3 is the third angle
  • R0 is the electrical angle
  • N is the number of poles of the main magnet
  • the constant "3" means the number of U, V, W phases.
  • the electric angle R0 of the motor is 120 °.
  • the first angle R1 may be calculated at 40 °.
  • the electric angle R0 of the motor is 90 °.
  • the second sensor S2 may be disposed at a position shifted from a position corresponding to the first sensor S1 in order to increase the resolution of the sensing signal.
  • the position symmetrical with respect to the reference line CL passing through the axis center C is referred to as P in FIG.
  • the second Hall sensors H2 of the second sensor S2 may be positioned at a position shifted at a fourth angle R4 along a circumference at P of 7.
  • the fourth angle, the rotor position sensing device is R4 calculated by Equation 6 below.
  • R4 is the fourth angle.
  • R0 ' is the electric angle shifted and N is the number of poles of the main magnet 411.
  • the resolution of the sensing signal by the main magnet 411 can be set to 60 °, in which case the second angle (R2) is required to shift by 30 ° in order to increase the resolution twice from 60 ° to 30 °. 10 ° can be calculated. Therefore, when the number of poles of the main magnet 411 is 6, when the second sensor S2 is moved in a clockwise or counterclockwise direction by 10 ° relative to the first sensor S1, the resolution of the sensing signal is 60 °. To 30 °.
  • FIG. 8 is a diagram illustrating a first sensor and a second sensor with reference to an outer sensor.
  • a plurality of sensors disposed outside the substrate 421 may be divided into a first sensor S3 and a second sensor S4.
  • the first sensor S3 and the second sensor S4 detect changes in magnetic flux by the sub-magnet 412, respectively.
  • the first sensor S3 may include two first hall sensors H1.
  • the first sensor S3 may generate a continuous sensing signal in response to the rotation of the sub magnet 412.
  • the two first Hall sensors H1 may be disposed apart by a third angle R3.
  • the third angle R3 may be calculated by the following Equation 7.
  • R3 is the third angle
  • R0 is the electrical angle
  • R3 ' is the resolution angle
  • N is the pole number of the sub-magnet 412.
  • the number of poles of the sub magnet 412 is 72, and thus the electric angle R0 of the motor is 10 degrees.
  • the third angle R3 becomes 10 degrees xn + 2.5 degrees. Therefore, it is very difficult to physically dispose two first Hall sensors H1 at a third angle R1. Therefore, when the electric angle R0 is 10 °, the third angle R3 may be calculated as 10 ° xn + 2.5 ° having the same phase difference.
  • the second angle R2 may be calculated as 1.25 ° through Equation (8).
  • R4 is the fourth angle.
  • R0 ' is the electric angle shifted, and N is the number of poles of the sub-magnet 412.
  • the resolution of the sensing signal can be set to 90 °, and the second sensors S4 are clockwise or counterclockwise by 1.25 ° compared to the first sensor S3.
  • the resolution of the sensing signal can be increased from 90 ° to 45 °.
  • FIG. 9 is a view of the first magnet. It is a graph showing a comparison between a conventional sensing signal having a resolution of 60 ° and a sensing signal having a resolution increased to 30 °.
  • the resolution of the sensing signal is confirmed by 60 ° by the first sensor S3.
  • the second sensor S2 is added, and the positions of the second Hall sensors (H2 of FIG. 7) of the second sensor S2 are changed to the first sensor.
  • the resolution of the sensing signal may be increased from 60 ° to 30 °. Therefore, the initial drive position of the motor can be grasped more precisely.
  • FIG. 10 shows a second magnet. It is a graph comparing the conventional sensing signal with a resolution of 90 ° and the sensing signal with a resolution of 45 °.
  • the resolution of the sensing signal is confirmed by 90 ° by the first sensor S3.
  • the second sensor S4 is added, and the positions of the second Hall sensors H2 of FIG. By moving the clockwise direction by 1.25 ° relative to the first sensor S1 in S3, the resolution of the sensing signal can be increased from 90 ° to 45 °.
  • FIG. 11 is a diagram illustrating an extended area of the main magnet.
  • the main magnet 411 may include an extension region 411a extended toward the center of the sensing magnet 410.
  • the extended area 411a is a portion corresponding to the position of the third sensor 423 of FIG. 13 added in parallel to the second sensor 422 of FIG. 13.
  • the sub-magnet 412 is used to accurately grasp the detailed position of the rotor 200.
  • the sub magnet 412 may be 72 poles.
  • the substrate 420 may be disposed with sensors.
  • the sensors detect a change in magnetic flux according to the rotation of the sensing magnet 410.
  • the substrate 420 may be disposed on the sensing magnet 410.
  • FIG. 12 is a diagram illustrating a sensing signal.
  • the sensors disposed on the substrate 420 may detect three sensing signals T1, T2, and T3 by sensing changes of the N pole and the S pole of the main magnet 411.
  • two sensing signals E1 and E2 may be detected by detecting a change in the magnetic flux of the sub-magnet 412.
  • the main magnet 411 may detect the position of the rotor 400 by detecting a change in magnetic flux based on the main magnet 411.
  • the sensing signals S1, S2, and S3 may be used for initial driving of the motor, and may feed back information on U, V, and W, respectively.
  • FIG. 13 is a diagram illustrating a rotor position sensing apparatus according to an embodiment
  • FIG. 14 is a diagram illustrating a first sensor, a second sensor, and a third sensor.
  • the substrate 420 may include a first sensor 421, a second sensor 422, and a third sensor 423.
  • the first sensor 421 detects a change in magnetic flux caused by the sub magnet 412 according to the rotation of the sensing magnet 410.
  • the second sensor 422 and the third sensor 423 detect a change in magnetic flux by the main magnet 411 as the sensing magnet 410 rotates.
  • the shape of the substrate 421 may be arranged in the shape of drawing an arc corresponding to the arrangement of the main magnet 411 and the sub magnet 412.
  • the first sensor 421, the second sensor 422, and the third sensor 423 are respectively on different trajectories O1, O2, and O3 with respect to the center C of the sensing magnet 410. Can be arranged. Based on the radial direction of the sensing magnet 410, the first sensor 421 is disposed outside the second sensor 422, and the third sensor 423 is disposed inside the second sensor 422.
  • the first sensor 421 includes a plurality of first Hall sensors 421a (eg, four first Hall sensors), and the plurality of sensors are aligned with the outer magnet O1 to be aligned with the sub magnet 412. It may be arranged at regular intervals along the.
  • first Hall sensors 421a eg, four first Hall sensors
  • the second sensor 422 may be arranged at regular intervals along the intermediate track O2 such that a plurality of second Hall sensors 422a (eg, three second Hall sensors) are aligned with the main magnet 411. have.
  • the third sensor 423 may include a plurality of third Hall sensors 423a (for example, three third Hall sensors) along the inner track O3 such that the extension area 411a of the main magnet 411 is aligned. It may be arranged at regular intervals.
  • FIG. 15 is a diagram illustrating a second sensor and a third sensor arranged in the circumferential direction of the sensing magnet.
  • the second Hall sensor 422a of the second sensor 422 and the third Hall sensor 423a of the third sensor 423 are aligned based on the circumferential direction of the sensing magnet 410. Is placed.
  • the second hall sensor 422a and the third hall sensor 423a are disposed on different circular tracks.
  • the third hall sensor 423a is expanded to extend the substrate 420 or There is no need to install a separate board 420 and connect with a cable.
  • the mounting area of the third sensor 423 is secured to the inside of the existing substrate 420 based on the radial direction of the sensing magnet 410, thereby realizing a two-channel sensing structure and overcoming the limitation of the installation space.
  • the main magnet 411 includes an extension area 411a extended toward the center of the sensing magnet 410.
  • the second sensor 422 and the third sensor 423 may be electrically connected in parallel. Therefore, when an abnormality occurs in the second sensor 422, the sensing signal may be detected by the third sensor 423.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Brushless Motors (AREA)

Abstract

본 발명은 센싱 마그넷 및, 상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며, 상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고, 상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고, 상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고, 상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고, 상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제1 각도만큼 떨어져 배치되며, 상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도만큼 떨어져 배치되며, 이웃하는 상기 제1 홀센서와 상기 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도와 상이한 제2 각도만큼 떨어져 배치되는 로터 위치 감지 장치를 제공한다.

Description

로터 위치 감지장치 및 이를 포함하는 모터
실시 예는 로터 위치 감지장치 및 이를 포함하는 모터에 관한 것이다.
일반적으로, 모터는 로터와 스테이터의 전자기적 상호작용에 의해 로터가 회전하게 된다. 이때, 로터에 삽입된 회전축도 회전하게 되어 회전 구동력을 발생시킨다.
로터 위치 감지장치로서, 모터의 내측에는 자기소자를 포함하는 센서가 배치된다. 센서는 로터와 회전 연동 가능하게 설치된 센싱 마그넷의 자기력을 감지하여 로터의 현재 위치를 파악한다.
일반적으로, 3상 브러시리스(brushless) 모터의 경우, 이러한 센서가 최소 3개가 필요하다. U,V,W상의 정보를 얻는 3개의 센싱시그널이 필요하기 때문이다. 그러나. 3개의 센서 중 하나라도 고장이 나면 로터 위치 감지장치 전체가 구동이 불가한 문제점이 있다. 특히, 센서의 고장이 빈번한 점을 고려할 때, 하나의 센서 고장으로 인하여 로터 위치 감지장치 전체를 교체하여 하기 때문에 경제적 손실이 큰 문제점이 있다.
또한, 추가적으로 로터 위치 감지장치를 설치하는 경우, 추가된 로터 위치 감지장치는 기존의 로터 위치 감지장치가 설치된 영역과 다른 영역에 별물로 설치되어야 한다. 이는 센싱마그넷과 추가되는 로터 위치 감지장치의 센서가 정렬되어야 하기 때문이다. 그러나. 이러한 로터 위치 감지장치는 추가되는 센서의 배치 및 기판의 설계가 복잡하며, 공간상 제약이 큰 문제가 있다.
한편, 센싱 마그넷의 착자 정밀도의 한계로 인하여, 센싱시그널의 분해능이 낮기 때문에 로터의 현재 위치를 정밀하게 파악하기 힘든 문제점이 있다.
이에, 실시 예는 상기한 문제점을 해결하기 위한 것으로, 일부 센서의 고장에도 구동이 가능한 로터 위치 감지장치 및 이를 포함하는 모터를 제공하는 것을 그 목적으로 한다. 특히, 기존의 별도의 추가 구조 없이 기존 PCB 상에서 구동이 가능한 로터 위치 감지장치 및 이를 포함하는 모터를 제공하는 것을 그 목적으로 한다.
또한, 실시 예는 센서의 추가 없이 센싱시그널의 분해능을 높일 수 있는 로터 위치 감지장치 및 이를 포함하는 모터를 제공하는 것을 그 목적으로 한다.
또한, 실시 예는 추가 구조 없이 기존 기판 상에서 2채널을 구비한 로터 위치 감지장치 및 이를 포함하는 모터를 제공하는 것을 그 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 실시 예는, 센싱 마그넷 및, 상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며, 상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고, 상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고, 상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고, 상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고, 상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제1 각도만큼 떨어져 배치되며, 상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도만큼 떨어져 배치되며, 이웃하는 상기 제1 홀센서와 상기 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도와 상이한 제2 각도만큼 떨어져 배치되는 로터 위치 감지 장치를 제공할 수 있다.
바람직하게는, 상기 제1 센서 및 상기 제2 센서는, 상기 센싱 마그넷의 반경 방향을 기준으로 상기 메인 마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제1 각도는 아래 수학식 1에 의해 산출되는 R1일 수 있다.
<수학식 1>
R1=R0/3
R0=360°/(N/2)
여기서, R1은 제1 각도이며, R0는 전기각도이고, N은 상기 메인 마그넷의 극수이다.
바람직하게는, 상기 제2 각도는, 아래 수학식 2에 의해 산출되는 R2일 수 있다.
<수학식 2>
R2=R1±R0'/(N/2)
여기서, R2는 제2 각도이며. R1은 상기 제1 각도이며, R0'는 시프트 되는 전기각도이며, N은 상기 메인 마그넷의 극수이다.
바람직하게는, 상기 제1 센서는 3개의 상기 제1 홀센서를 포함하고, 상기 제2 센서는 3개의 상기 제2 홀센서를 포함할 수 있다.
바람직하게는, 상기 메인 마그넷의 극수가 6이면, 상기 제2 각도는 10°일 수 있다.
바람직하게는, 상기 제1 센서 및 상기 제2 센서는, 상기 센싱 마그넷의 반경 방향을 기준으로 상기 서브 마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제1 각도는 아래 수학식 3에 의해 산출되는 R1일 수 있다.
<수학식 3>
R1=R0 x n + R3/(N/2) (n은 정수)
R0=360°/(N/2)
여기서, R1은 제1 각도이며, R0는 전기각도이고, R3는 분해능 각도, N은 상기 서브 마그넷의 극수이다.
바람직하게는, 상기 제2 각도는, 아래 수학식 4에 의해 산출되는 R2일 수 있다.
<수학식 4>
R2=R1±R0'/(N/2)
여기서, R2는 제2 각도이며. R1은 상기 제1 각도이며, R0'는 시프트 되는 전기각도이며, N은 상기 서브 마그넷의 극수이다.
바람직하게는, 상기 제1 센서는 2개의 상기 제1 홀센서를 포함하고, 상기 제2 센서는 2개의 상기 제2 홀센서를 포함할 수 있다.
바람직하게는, 상기 서브 마그넷의 극수가 72이면, 상기 제2 각도는 10°xn+ 2.5°에 1.25°를 더 한 값일 수 있다. 여기서, n은 정수이다.
상기 목적을 달성하기 위한 다른 실시 예는, 센싱 마그넷 및, 상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며, 상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고, 상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고, 상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고, 상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고, 상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제3 각도만큼 떨어져 배치되며, 상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제3 각도만큼 떨어져 배치되며, 상기 제2 센서는 상기 원형 궤도의 중심을 지나는 기준선을 기준하여, 상기 제1 센서와 대칭되는 위치에서 상기 원형 궤도의 원주를 따라 제4 각도만큼 시프트된 위치에 배치되는 로터 위치 감지장치를 제공할 수 있다.
바람직하게는, 상기 제1 센서 및 상기 제2 센서는, 상기 센싱 마그넷의 반경 방향을 기준으로 상기 메인 마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제3 각도는 아래 수학식 5에 의해 산출되는 R3일 수 있다.
<수학식 5>
R3=R0/3
R0=360°/(N/2)
여기서, R3은 제3 각도이며, R0는 전기각도이고, N은 상기 메인 마그넷의 극수이다.
바람직하게는, 상기 제4 각도는, 아래 수학식 6에 의해 산출되는 R4일 수 있다.
<수학식 6>
R4=R3±R0'/(N/2)
여기서, R4는 제4 각도이고. R3는 상기 제3 각도이며, R0'는 시프트 되는 전기각도이며, N은 상기 메인 마그넷의 극수이다.
바람직하게는, 상기 제1 센서는 3개의 상기 제1 홀센서를 포함하고, 상기 제2 센서는 3개의 상기 제2 홀센서를 포함할 수 있다.
바람직하게는, 상기 메인 마그넷의 극수가 6이면, 상기 제4 각도는 10°일 수 있다.
바람직하게는, 상기 제1 센서 및 상기 제2 센서는, 상기 센싱 마그넷의 반경 방향을 기준으로 상기 서브 마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제3 각도는 아래 수학식 7에 의해 산출되는 R3일 수 있다.
<수학식 7>
R3=R0*n+R3'/(N/2) (n은 정수)
R0=360°/(N/2)
여기서, R3은 제3 각도이며, R0는 전기각도이고, R3' 분해능 각도이고, N은 상기 서브 마그넷의 극수이다.
바람직하게는, 상기 제4 각도는, 아래 수학식 8에 의해 산출되는 R4일 수 있다.
<수학식 8>
R4=R3±R0'/(N/2)
여기서, R4는 제4 각도이고. R3는 상기 제3 각도이며, R0'는 시프트 되는 전기각도이며, N은 상기 서브 마그넷의 극수이다.
바람직하게는, 상기 제1 센서는 2개의 상기 제1 홀센서를 포함하고, 상기 제2 센서는 2개의 상기 제2 홀센서를 포함할 수 있다.
바람직하게는, 상기 서브 마그넷의 극수가 72이면, 상기 제4 각도는 1.25°일 수 있다.
상기 목적을 달성하기 위한 다른 실시예는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 로터 및 상기 로터의 외측에 배치되는 스테이터와, 상기 로터 상측에 배치되는 로터 위치 감지장치를 포함하고, 상기 로터 위치 감지 장치는, 센싱 마그넷 및, 상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며, 상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고, 상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고, 상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고, 상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고, 상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제1 각도만큼 떨어져 배치되며, 상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도만큼 떨어져 배치되며, 이웃하는 상기 제1 홀센서와 상기 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도와 상이한 제2 각도만큼 떨어져 배치되는 모터를 제공할 수 있다.
상기 목적을 달성하기 위한 다른 실시예는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 로터 및 상기 로터의 외측에 배치되는 스테이터와, 상기 로터 상측에 배치되는 로터 위치 감지장치를 포함하고, 상기 로터 위치 감지 장치는, 센싱 마그넷 및, 상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며, 상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고, 상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고, 상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고, 상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고, 상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제3 각도만큼 떨어져 배치되며, 상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제3 각도만큼 떨어져 배치되며, 상기 제2 센서는 상기 원형 궤도의 중심을 지나는 기준선을 기준하여, 상기 제1 센서와 대칭되는 위치에서 상기 원형 궤도의 원주를 따라 제4 각도만큼 시프트된 위치에 배치되는 모터를 제공할 수 있다.
실시 예는, 센싱 마그넷 및 상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며, 상기 센싱 마그넷은 메인 마그넷과 서브 마그넷과, 상기 기판은 제1 센서, 제2 센서 및 제3 센서를 포함하고, 상기 제1 센서, 상기 제2 센서 및 상기 제3 센서는 상기 센싱 마그넷의 중심을 기준으로 서로 상이한 원형 궤도상에 각각 배치되는 로터 위치 감지 장치를 제공할 수 있다.
바람직하게는, 상기 제1 센서는 상기 센싱 마그넷의 반경 방향을 기준으로 상기 서브 마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제2 센서 및 상기 제3 센서는 상기 센싱 마그넷의 반경 방향을 기준으로 상기 메인마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제2 센서는 복수 개의 제2 홀센서를 포함하고, 상기 제3 센서는 복수 개의 제3 홀센서를 포함하고, 상기 제2 홀센서와 상기 제3 홀센서는 상기 센싱 마그넷의 원주 방향을 기준으로 정렬 배치될 수 있다.
바람직하게는, 상기 제2 센서와 상기 제3 센서는 병렬 연결될 수 있다.
바람직하게는, 상기 제1 센서는 4개의 제1 홀센서를 포함하고, 상기 제2 센서는 3개의 제2 홀센서를 포함하고, 상기 제3 센서는 3개의 제3 홀센서를 포함할 수 있다.
바람직하게는, 상기 기판은 상기 제1 센서와 상기 제2 센서와 상기 제3 센서와 연결되는 제어부를 포함하고, 상기 제어부는 상기 제2 센서 및 상기 제3 센서 중 어느 하나가 고장으로 판단되면 다른 하나의 센싱시그널에 기초하여 로터의 위치를 감지할 수 있다.
다른 실시 예는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 로터와 및 상기 로터의 외측에 배치되는 스테이터와, 상기 로터 상측에 배치되는 로터 위치 감지장치를 포함하고, 상기 로터 위치 감지 장치는, 센싱 마그넷 및, 상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며, 상기 센싱 마그넷은 메인 마그넷과 서브 마그넷과, 상기 기판은 제1 센서, 제2 센서 및 제3 센서를 포함하고, 상기 제1 센서, 상기 제2 센서 및 상기 제3 센서는 상기 센싱 마그넷의 중심을 기준으로 서로 상이한 원형 궤도상에 각각 배치될 수 있다.
바람직하게는, 상기 로터는 로터코어 및 상기 로터코어의 외주면을 둘러싸며 배치되는 복수 개의 마그넷을 포함할 수 있다.
바람직하게는, 상기 로터코어와 상기 마그넷을 수용하는 캔부재를 더 포함할 수 있다.
바람직하게는, 상기 복수 개의 마그넷은 상기 로터코어의 외주면에 1단으로 배치되며, 상기 복수개의 마그넷은 서로 소정간격으로 이격되어 배열될 수 있다.
바람직하게는, 상기 제1 센서는 상기 센싱 마그넷의 반경 방향을 기준으로 상기 서브 마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제2 센서 및 상기 제3 센서는 상기 센싱 마그넷의 반경 방향을 기준으로 상기 메인마그넷과 대응되도록 배치될 수 있다.
바람직하게는, 상기 제2 센서는 복수 개의 제2 홀센서를 포함하고, 상기 제3 센서는 복수 개의 제3 홀센서를 포함하고, 상기 제2 홀센서와 상기 제3 홀센서는 상기 센싱 마그넷의 원주 방향을 기준으로 정렬 배치될 수 있다.
바람직하게는, 상기 제2 센서와 상기 제3 센서는 병렬 연결될 수 있다.
바람직하게는, 상기 제1 센서는 4개의 제1 홀센서를 포함하고, 상기 제2 센서는 3개의 제2 홀센서를 포함하고, 상기 제3 센서는 3개의 제3 홀센서를 포함할 수 있다.
실시 예에 따르면, 제1 센서에 추가하여 제2 센서를 배치함으로써, 제1 센서에 고장이 발생한 경우에도, 로터의 위치를 감지할 수 있는 유리한 효과를 제공한다.
실시 예에 따르면, 제2 센서의 위치를 제1 센서의 위치와 대응되는 위치에서, 분해능이 2배가 되도록 일정 각도만큼 시프트하여, 로터의 위치를 정밀하게 파악할 수 있는 유리한 효과를 제공한다.
실시 예에 따르면, 기존의 PCB에 병렬로 센서들을 추가하고, 센싱마그넷을 확장하여, 별도의 추가 구조 없이 기존 PCB 상에서 2채널의 센싱 구성을 구현하는 유리한 효과를 제공한다.
도 1은 실시 예에 따른 모터의 개념도,
도 2는 센싱 마그넷을 도시한 도면,
도 3은 센싱시그널을 도시한 도면,
도 4는 로터 위치 감지장치를 도시한 도면,
도 5는 메인 마그넷과 대응되는 제1 센서와 제2 센서의 배치에 대한 제1 실시 예를 도시한 도면,
도 6은 서브 마그넷과 대응되는 제1 센서와 제2 센서의 배치에 대한 제1 실시 예를 도시한 도면,
도 7은 메인 마그넷과 대응되는 제1 센서와 제2 센서의 배치에 대한 제2 실시 예를 도시한 도면,
도 8은 외측 센서를 기준으로 하는, 제1 센서와 제2 센서를 도시한 도면,
도 9는 제1 마그넷에 대해. 분해능이 60°인 종래 센싱시그널과, 분해능이 30°로 높아진 센싱시그널을 비교하여 나타낸 그래프,
도 10은 제2 마그넷에 대해. 분해능이 7.5°인 종래 센싱시그널과, 분해능이 3.75°로 높아진 센싱시그널을 비교하여 나타낸 그래프이다.
도 11은 메인 마그넷의 확장영역을 도시한 도면,
도 12는 센싱시그널을 도시한 도면,
도 13은 실시 예에 따른 로터 위치 감지장치를 도시한 도면,
도 14는 제1 센서와 제2 센서와 제3 센서를 도시한 도면,
도 15는 센싱 마그넷의 원주 방향으로 정렬 배치되는 제2 센서와 제3 센서를 도시한 도면이다.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시 예들로부터 더욱 명백해질 것이다. 그리고 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지기술에 대한 상세한 설명은 생략한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
도 1은 실시 예에 따른 모터의 개념도이다. 도 1을 참고하면, 실시 예에 따른 모터는 회전축(100)과, 로터(200)와, 스테이터(300)와, 로터 위치 감지장치(400)를 포함할 수 있다.
회전축(100)은 로터(200)에 결합될 수 있다. 전류 공급을 통해 로터(200)와 스테이터(300)에 전자기적 상호 작용이 발생하면 로터(200)가 회전하고 이에 연동하여 회전축(100)이 회전한다 회전축(100)은 차량의 조향축과 연결되어 조향축에 동력을 전달할 수 있다. 회전축(100)은 베어링에 의해 지지될 수 있다.
로터(200)는 스테이터(300)와 전기적 상호 작용을 통해 회전한다.
로터(200)는 로터 코어(210)와, 마그넷(220)을 포함할 수 있다. 로터 코어(210)는 원형의 얇은 강판 형태의 복수 개의 플레이트가 적층된 형상으로 실시될 수 있다. 로터 코어(210)의 중심에는 회전축(100)이 결합하는 홀이 형성될 수 있다. 로터 코어(210)의 외주면에는 마그넷(220)을 가이드 하는 돌기가 돌출될 수 있다. 마그넷(220)은 로터 코어(210)의 외주면에 부착될 수 있다. 복수 개의 마그넷(220)은 일정 간격으로 로터 코어(210)의 둘레를 따라 배치될 수 있다. 로터(200)는 마그넷(220)을 둘러싸서 마그넷(220)이 로터 코어(210)에서 이탈되지 않도록 고정시키며 마그넷(220)이 노출되는 것을 막는 캔부재를 포함할 수 있다.
한편, 로터(200)는 원통형의 단일품인 로터 코어(210)와, 로터 코어(210)에 1단으로 배치되는 마그넷(220)으로 이루어질 수 있다. 여기서, 1단이라 함은, 로터(200)의 외주면에 스큐(skew)가 없도록 마그넷(220)이 배치될 수 있는 구조를 의미한다. 따라서, 로터 코어(210)의 종단면과 마그넷(220)의 종단면를 기준할 때, 로터 코어(210)의 높이와 마그넷(220)의 높이가 동일하게 형성될 수 있다. 즉, 높이 방향을 기준하여, 마그넷(220)이 로터 코어(210) 전체를 덮도록 실시될 수 있다.
스테이터(300)는 로터(200)와 전기적 상호 작용을 유발하기 위해 코일이 감길 수 있다. 코일(320)을 감긴 위한 스테이터(300)의 구체적인 구성은 다음과 같다 스테이터(300)는 복수 개의 티스를 포함하는 스테이터 코어(310)를 포함할 있다. 스테이터 코어(310)는 환형의 요크 부분이 마련되고, 요크에서 중심방향으로 코일이 감기는 티스가 마련될 수 있다. 티스는 요크 부분의 외주면을 따라 일정한 간격으로 마련될 수 있다. 한편, 스테이터 코어(310)는 얇은 강판 형태의 복수 개의 플레이트가 상호 적층되어 이루어질 수 있다. 또한, 스테이터 코어(310)는 복수 개의 분할 코어가 상호 결합되거나 연결되어 이루어질 수 있다.
로터 위치 감지장치(400)는 센싱 마그넷(410)과 기판(420)를 포함할 수 있다.
하우징(500)은 원통형상으로 형성되어 내부에 스테이터(300)와 로터(200)가 장착될 수 있는 공간이 마련된다. 이때, 하우징(500)의 형상이나 재질은 다양하게 변형될 수 있으나 고온에서도 잘 견딜 수 있는 금속재질이 선택될 수 있다. 하우징(500)의 개방된 상부는 커버(600)가 덮는다.
도 2는 센싱 마그넷을 도시한 도면이다
도 2를 참조하면, 센싱 마그넷(410)은 메인 마그넷(411)과, 서브 마그넷(412)과, 센싱 플레이트(413)을 포함할 수 있다. 센싱 마그넷(410)은 로터(200) 위에 배치되어, 로터(200)의 위치를 나타낸다.
센싱 플레이트(413)은 원판 형상으로 형성된다. 그리고, 센싱 플레이트(413)의 중심에 회전축(100)이 결합한다. 메인 마그넷(411)은 센싱 플레이트(413)의 중앙에 배치된다. 그리고, 서브 마그넷(412)은 메인 마그넷(411)의 외측에 배치되며, 센싱 플레이트(413)의 가장자리에 배치될 수 있다.
메인 마그넷(411)은 로터(200)의 마그넷(220)과 대응된다. 다시 말해서, 로터(200)의 마그넷(220)의 극수와 메인 마그넷(411)의 극수는 동일하다. 예를 들어, 로터(200)의 마그넷(220)이 6극인 경우, 메인 마그넷(411)도 6극이다. 또한, 로터(200)의 마그넷(220)과 메인 마그넷(411)은 극 분할 영역이 정렬되어 메인 마그넷(411)의 위치가 로터(200)의 마그넷(220)의 위치를 나타낼 수 있다. 이러한 메인 마그넷(411)은 로터(200)의 초기 위치를 파악하는데 이용된다.
서브 마그넷(412)은 로터(200)의 세부적인 위치를 정밀하게 파악하는데 이용된다. 예를 들어, 서브 마그넷(412)은 72극일 수 있다.
기판(420)에 배치된 센서들은 센싱 마그넷(410)의 회전에 따라, 메인 마그넷(411)과 서브 마그넷(412)에 의한 자속의 변화를 감지한다. 기판(420)는 센싱 마그넷(410) 위에 배치될 수 있다.
도 3은 센싱시그널을 도시한 도면이다.
도 3을 참조하면, 기판(420)에 배치된 센서들은 메인 마그넷(411)의 N극과 S극의 변화를 감지하여 3개의 센싱시그널(T1,T2,T3)을 감지할 수 있다. 그리고 추가적으로, 기판(420)는 서브 마그넷(412)의 자속을 변화를 감지하여 2개의 센싱시그널(E1,E2)를 감지할 수 있다.
앞서 설명하였듯이, 메인 마그넷(411)은 로터(400)에 결합된 마그넷이 그대로 모사되어 있기 때문에, 메인 마그넷(411)을 기준으로 하는 자속 변화를 감지하여 로터(400)의 위치를 감지할 수 있다. 이러한 센싱시그널(T1,T2,T3)은 모터의 초기 구동에 사용될 수 있는 것으로, 각각 U,V,W상의 정보를 피드백 할 수 있다.
도 4는 로터 위치 감지장치를 도시한 도면이다.
도 4에서 도시한 바와 같이, 기판(421)의 형태는 메인 마그넷(411)과 서브 마그넷(412)의 배열에 대응하여 환형의 구현될 수 있다.
기판(421)은 제1 센서(S1,S3)와, 제2 센서(S2,S4)를 포함할 수 있다. 제1 센서(S1,S3)와 제2 센서(S2,S4)는 센싱 마그넷(410)의 중심(C)을 기준으로 동일한 원형 궤도상에 배열될 수 있다. 제1 센서(S1,S3)는 이러한 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서(H1)를 포함할 수 있다. 그리고 제2 센서(S2,S4)는 이러한 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서(H2)를 포함할 수 있다.
상대적으로 내측에 위치한 제1 센서(S1) 및 제2 센서(S2)는 메인 마그넷(411)에 배치된 원형 궤도를 따라 배치될 수 있다. 다시 말해서, 제1 센서(S1) 및 제2 센서(S2)는, 센싱 마그넷(410)의 반경 방향을 기준으로 메인 마그넷(411)과 대응되도록 배치될 수 있다. 상대적으로 외측에 배치된 제1 센서(S3) 및 제2 센서(S4)는 서브 마그넷(412)이 배치된 원형 궤도를 따라 배치될 수 있다. 다시 말해서, 제1 센서(S3) 및 제2 센서(S4)는, 센싱 마그넷(410)의 반경 방향을 기준으로 서브 마그넷(412)과 대응되도록 배치될 수 있다.
제1 실시 예
도 5는 메인 마그넷과 대응되는 제1 센서와 제2 센서의 배치에 대한 제1 실시 예를 도시한 도면이다.
도 4 및 도 5를 참조하면, 기판(421)의 내측에 배치된 제1 센서(S1)와 제2 센서(S2)는 메인 마그넷(411)에 의한 자속 변화를 각각 감지한다.
제1 센서(S1)는 3개의 제1 홀센서(H1)를 포함할 수 있다. 이러한 제1 센서(S1)는 메인 마그넷(411)의 회전에 대응하여 U,V,W 상의 연속된 센싱시그널을 생성할 수 있다. 3개의 제1 홀센서(H1)는 제1 각도(R1)만큼 떨어져 배치될 수 있다.
제2 센서(S2)는 3개의 제2 홀센서(H2)를 포함할 수 있다. 이러한 제2 센서(S2)도 메인 마그넷(411)의 회전에 대응하여 U,V,W 상의 연속된 센싱시그널을 추가로 생성할 수 있다. 따라서, 제1 센서(S1)의 어떤 제1 홀센서(H1)가 고장 난 경우에도, U,V,W 상의 연속된 센싱시그널을 생성할 수 있다. 3개의 제2 홀센서(H2)는 제1 홀센서(H1)와 동일하게 제1 각도(R1)만큼 떨어져 배치될 수 있다.
여기서, 제1 각도(R1)은 다음 수학식 1에 의해 산출될 수 있다.
Figure PCTKR2017009704-appb-M000001
Figure PCTKR2017009704-appb-I000001
여기서, R1은 제1 각도이며, R0는 전기각도이고, N은 메인 마그넷(411)의 극수이며, 상수 "3"은 U,V,W 상의 개수를 의미한다.
예를 들어, 로터(200)의 마그넷(220)이 6극인 경우, 메인 마그넷(411)의 극수는 6이다. 따라서, 해당 모터의 전기각도(R0)는 120°이다. 그 결과, 제1 각도(R1)는 40°로 산출될 수 있다. 여기서, 전기각도란, 360°를 기준으로 마그넷의 N극과 S극이 차지하는 마그넷의 물리적인 각도(기계각)를 나타낸다. 예를 들어, 로터(200)의 마그넷(220)이 8극인 경우, 해당 모터의 전기각도(R0)는 90°이다.
제2 센서(S2)는 센싱시그널의 분해능을 높이기 위하여, 제1 센서(S1)에 대응한 위치에서 시프트된 위치에 배치될 수 있다. 다시 말해서, 제1 센서(S1)와 제2 센서(S2)는 동일한 원형 궤도상에서, 제1 각도(R1)와 상이한 제2 각도(R2)만큼 떨어져 배치될 수 있다. 즉, 이웃하는 제1 홀센서(H1a)와 제2 홀센서(H2a)는 원형 궤도상의 원주를 따라 제1 각도(R1)와 상이한 제2 각도(R2)만큼 떨어져 배치될 수 있다.
여기서, 제2 각도(R2)는 다음 수학식 2에 의해 산출될 수 있다.
Figure PCTKR2017009704-appb-M000002
여기서, R2는 제2 각도이며. R1은 제1 각도이고, R0'는 시프트 되는 전기각도이며, N은 메인 마그넷(411)의 극수이다.
메인 마그넷(411)에 의한 센싱시그널의 분해능은 60°로 설정할 수 있는데, 이때, 분해능을 60°에서 30°로 2배 높이기 위해서, 전기각도 30°만큼 시프트가 필요한 경우, R1이 40°이면, 제2 각도(R2)는 30° 또는 50°로 산출될 수 있다.
도 6은 서브 마그넷과 대응되는 제1 센서와 제2 센서의 배치에 대한 제1 실시예를 도시한 도면이다.
도 4 및 도 6을 참조하면, 기판(421)의 외측에 배치되는 제1 센서(S3)와 제2 센서(S4)는 서브 마그넷(412)에 의한 자속 변화를 각각 감지한다.
제1 센서(S3)는 2개의 제1 홀센서(H1)를 포함할 수 있다. 이러한 제1 센서(S3)는 서브 마그넷(412)의 회전에 대응하여 연속된 센싱시그널을 생성할 수 있다. 2개의 제1 홀센서(H1)는 제1 각도(R1)만큼 떨어져 배치될 수 있다.
제2 센서(S4)는 2개의 제2 홀센서(H2)를 포함할 수 있다. 이러한 제2 센서(S4)도 서브 마그넷(411)의 회전에 대응하여 연속된 센싱시그널을 추가로 생성할 수 있다. 따라서, 제1 센서(S3)의 어떤 제1 홀센서(H1)가 고장 난 경우에도, 연속된 센싱시그널을 생성할 수 있다. 2개의 제2 홀센서(H2)는 제1 홀센서(H1)와 동일하게 제1 각도(R1)만큼 떨어져 배치될 수 있다.
여기서, 제1 각도(R1)은 다음 수학식 3에 의해 산출될 수 있다.
Figure PCTKR2017009704-appb-M000003
Figure PCTKR2017009704-appb-I000002
여기서, R1은 제1 각도이며, R0는 전기각도이고, R3'는 분해능 각도, N은 서브 마그넷(412)의 극수이다.
예를 들어, 서브 마그넷(412)의 극수가 72이고, 따라서, 해당 모터의 전기각도(R0)는 10°이다. R3가 90°이면 제1 각도(R1)는 10°xn+ 2.5°가 된다 따라서 물리적으로, 2개의 제1 센서(S3)를 제1 각도(R1)로 떨어져 배치시키는 것은 매우 힘들다. 따라서, 전기각도(R0)는 10°인 경우, 이와 위상차가 동일한 10°xn+ 2.5°를 제1 각도(R1)로 산출할 수 있다.
제2 센서(S4)는 센싱시그널의 분해능을 높이기 위하여, 제1 센서(S3)에 대응한 위치에서 시프트된 위치에 배치될 수 있다. 다시 말해서, 제1 센서(S3)와 제2 센서(S4)는 동일한 원형 궤도상에서, 제1 각도(R1)와 상이한 제2 각도(R2)만큼 떨어져 배치될 수 있다. 즉, 이웃하는 제1 홀센서(H1a)와 제2 홀센서(H2a)는 원형 궤도상의 원주를 따라 제1 각도(R1)와 상이한 제2 각도(R2)만큼 떨어져 배치될 수 있다.
여기서, 제2 각도(R2)는 다음 수학식 4에 의해 산출될 수 있다.
Figure PCTKR2017009704-appb-M000004
여기서, R2는 제2 각도이며. R1은 제1 각도이고, R0'는 시프트 되는 전기각도이며, N은 서브 마그넷(412)의 극수이다. 따라서, 시프트 되는 전기각도(R0')가 45°이고 서브 마그넷(412)의 극수가 72이면, 제2 각도(R2)는 제1 각도(R1)인 10°xn+ 2.5°에 1.25°을 더한 값이다.
그 결과, 도 6에서 도시한 바와 같이, 이웃하는 제1 홀센서(H1a)와 제2 홀센서(H2a)를 제1 각도(R1)인 10°xn+ 2.5°에 1.25°을 더한 값만큼 떨어져 배치시키면, 센싱시그널의 분해능을 90°에서 45°로 높일 수 있다.
제2 실시 예
도 7은 메인 마그넷과 대응되는 제1 센서와 제2 센서의 배치에 대한 제2 실시 예를 도시한 도면이다.
도 4 및 도 7을 참조하면, 기판(421)의 내측에 배치된 제1 센서(S1)와 제2 센서(S2)는 메인 마그넷(411)에 의한 자속 변화를 각각 감지한다.
제1 센서(S1)는 3개의 제1 홀센서(H1)를 포함할 수 있다. 이러한 제1 센서(S1)는 메인 마그넷(411)의 회전에 대응하여 U,V,W 상의 연속된 센싱시그널을 생성할 수 있다. 3개의 제1 홀센서(H1)는 제3 각도(R3)만큼 떨어져 배치될 수 있다.
제2 센서(S2)는 3개의 제2 홀센서(H2)를 포함할 수 있다. 이러한 제2 센서(S2)도 메인 마그넷(411)의 회전에 대응하여 U,V,W 상의 연속된 센싱시그널을 추가로 생성할 수 있다. 따라서, 제1 센서(S1)의 어떤 제1 홀센서(H1)가 고장 난 경우에도, U,V,W 상의 연속된 센싱시그널을 생성할 수 있다. 3개의 제2 홀센서(H2)는 제1 홀센서(H1)와 동일하게 제3 각도(R3)만큼 떨어져 배치될 수 있다.
여기서, 제3 각도(R3)는 아래 수학식 5에 의해 산출될 수 있다.
Figure PCTKR2017009704-appb-M000005
Figure PCTKR2017009704-appb-I000003
여기서, R3는 제3 각도이며, R0는 전기각도이고, N은 상기 메인 마그넷의 극수이다, 상수 "3"은 U,V,W 상의 개수를 의미한다.
예를 들어, 로터(200)의 마그넷(220)이 6극인 경우, 제1 마그넷(411)의 극수는 6이다. 따라서, 해당 모터의 전기각도(R0)는 120°이다. 그 결과, 제1 각도(R1)는 40°로 산출될 수 있다. 예를 들어, 로터(200)의 마그넷(220)이 8극인 경우, 해당 모터의 전기각도(R0)는 90°이다.
제2 센서(S2)는 센싱시그널의 분해능을 높이기 위하여, 제1 센서(S1)에 대응한 위치에서 시프트된 위치에 배치될 수 있다. 다시 말해서, 제1 센서(S1)의 각각의 제1 홀센서(H1)에 대해, 축 중심(C)를 지나는 기준선(CL)을 기준으로, 대칭된 위치를 도 7의 P라 할 때, 도 7의 P에서 원주를 따라 제4 각도(R4)로 시프트된 위치에 제2 센서(S2)의 제2 홀센서(H2)들이 위치할 수 있다.
여기서, 상기 제4 각도는, 아래 수학식 6에 의해 산출되는 R4인 로터 위치 감지장치.
Figure PCTKR2017009704-appb-M000006
여기서, R4는 제4 각도이며. R0'는 시프트 되는 전기각도이며, N은 상기 메인 마그넷(411)의 극수이다.
메인 마그넷(411)에 의한 센싱시그널의 분해능은 60°로 설정할 수 있는데, 이때, 분해능을 60°에서 30°로 2배 높이기 위해서, 전기각도 30°만큼 시프트가 필요한 경우, 제2 각도(R2)는 10° 산출될 수 있다. 따라서, 메인 마그넷(411)의 극수가 6이면, 제2 센서(S2)들을 제1 센서(S1)에 비해 10°만큼 시계 방향 또는 반시계 방향으로 이동시켜 배치하면, 센싱시그널의 분해능을 60°에서 30°로 높일 수 있다.
도 8은 외측 센서를 기준으로 하는, 제1 센서와 제2 센서를 도시한 도면이다.
도 4 및 도 8을 참조하면, 기판(421)의 외측에 배치된 복수 개의 센서는 제1 센서(S3)와 제2 센서(S4)로 구분될 수 있다. 제1 센서(S3)와 제2 센서(S4)는 서브 마그넷(412)에 의한 자속 변화를 각각 감지한다.
제1 센서(S3)은 2개의 제1 홀센서(H1)를 포함할 수 있다. 이러한 제1 센서(S3)는 서브 마그넷(412)의 회전에 대응하여 연속된 센싱시그널을 생성할 수 있다. 2개의 제1 홀센서(H1)는 제3 각도(R3)만큼 떨어져 배치될 수 있다.
여기서, 제3 각도(R3)은 다음 수학식 7에 의해 산출될 수 있다.
Figure PCTKR2017009704-appb-M000007
Figure PCTKR2017009704-appb-I000004
여기서, R3은 제3 각도이며, R0는 전기각도이고, R3'는 분해능 각도, N은 서브 마그넷(412)의 극수이다.
예를 들어, 서브 마그넷(412)의 극수가 72이고, 따라서, 해당 모터의 전기각도(R0)는 10°이다. R3'가 90°이면 제3 각도(R3)는 10°xn+ 2.5°가 된다. 따라서 물리적으로, 2개의 제1 홀센서(H1)를 제3 각도(R1)로 떨어져 배치시키는 것은 매우 힘들다. 따라서, 전기각도(R0)는 10°인 경우, 이와 위상차가 동일한 10°xn+ 2.5°를 제3 각도(R3)로 산출할 수 있다.
그리고 전기각도(R0)는 90°로 하였을 때, 전기각도 45°만큼 시프트가 필요한 경우, 제2 각도(R2)는 <수학식8>를 통해 1.25°로 산출될 수 있다.
Figure PCTKR2017009704-appb-M000008
여기서, R4는 제4 각도이며. R0'는 시프트 되는 전기각도이며, N은 상기 서브 마그넷(412)의 극수이다.
따라서, 서브 마그넷(412)의 극수가 72이면, 센싱시그널의 분해능을 90°로설정할 수 있는데, 제2 센서(S4)들을 제1 센서(S3)에 비해 1.25°만큼 시계 방향 또는 반시계 방향으로 이동시켜 배치하면, 센싱시그널의 분해능을 90°에서 45°로 높일 수 있다.
도 9는 제1 마그넷에 대해. 분해능이 60°인 종래 센싱시그널과, 분해능이 30°로 높아진 센싱시그널을 비교하여 나타낸 그래프이다.
메인 마그넷(411)의 극수가 6이면, 도 9의 (a)에서 도시한 바와 같이, 제1 센서(S3)에 의해 센싱시그널의 분해능이 60°로 확인된다. 그러나, 도 7 및 도 9의 (b)에서 도시한 바와 같이, 제2 센서(S2)를 추가하고, 제2 센서(S2)의 제2 홀센서(도 7의 H2)들의 위치를 제1 센서(S1)의 제1 홀센서(H1)에 비해 10°만큼 시계 방향으로 이동시켜 배치하면, 센싱시그널의 분해능을 60°에서 30°로 높일 수 있다. 따라서, 모터의 초기 구동위치를 보다 정밀하게 파악할 수 있다.
도 10은 제2 마그넷에 대해. 분해능을 90°인 종래 센싱시그널과, 분해능이 45°로 높아진 센싱시그널을 비교하여 나타낸 그래프이다.
서브 마그넷(412)의 극수가 72이면, 도 10의 (a)에서 도시한 바와 같이, 제1 센서(S3)에 의해 센싱시그널의 분해능이 90°로 확인된다. 그러나, 도 8 및 도 10의 (b)에서 도시한 바와 같이, 제2 센서(S4)을 추가하고, 제2 센서(S4)의 제2 홀센서(도 8의 H2)들의 위치를 제1 센서(S3)의 제1 센서(S1)에 비해 1.25°만큼 시계 방향으로 이동시켜 배치하면, 센싱시그널의 분해능을 90°에서 45°로 높일 수 있다.
제3 실시 예
도 11은 메인 마그넷의 확장영역을 도시한 도면이다.
도 2 및 도 11을 참조하면, 메인 마그넷(411)은 센싱 마그넷(410)의 중심을 향하여 확장된 확장영역(411a)을 포함할 수 있다. 확장영역(411a)은 제2 센서(도 13의 422)에 병렬로 추가되는 제3 센서(도 13의 423)의 위치에 대응되는 부분이다. 한편, 서브 마그넷(412)은 로터(200)의 세부적인 위치를 정밀하게 파악하는데 이용된다. 예를 들어, 서브 마그넷(412)은 72극일 수 있다.
기판(420)은 센서들이 배치될 수 있다. 센서들은 센싱 마그넷(410)의 회전에 따라 자속 변화를 감지한다. 기판(420)은 센싱 마그넷(410) 위에 배치될 수 있다.
도 12는 센싱시그널을 도시한 도면이다.
도 12를 참조하면, 기판(420)에 배치된 센서들은 메인 마그넷(411)의 N극과 S극의 변화를 감지하여 3개의 센싱시그널(T1,T2,T3)을 감지할 수 있다. 그리고 추가적으로, 서브 마그넷(412)의 자속을 변화를 감지하여 2개의 센싱시그널(E1,E2)를 감지할 수 있다.
앞서 설명하였듯이, 메인 마그넷(411)은 로터(400)에 결합된 마그넷이 그대로 모사되어 있기 때문에, 메인 마그넷(411)을 기준으로 하는 자속 변화를 감지하여 로터(400)의 위치를 감지할 수 있다. 이러한 센싱시그널(S1,S2,S3)은 모터의 초기 구동에 사용될 수 있는 것으로, 각각 U,V,W상의 정보를 피드백 할 수 있다.
도 13은 실시 예에 따른 로터 위치 감지장치를 도시한 도면이고, 도 14는 제1 센서와 제2 센서와 제3 센서를 도시한 도면이다.
도 13 및 도 14를 참조하면, 기판(420)은 제1 센서(421)와, 제2 센서(422)와, 제3 센서(423)를 포함할 수 있다. 제1 센서(421)는 센싱 마그넷(410)의 회전에 따라, 서브 마그넷(412)에 의한 자속의 변화를 감지한다. 제2 센서(422)와, 제3 센서(423)는 센싱 마그넷(410)의 회전에 따라, 메인 마그넷(411)에 의한 자속의 변화를 감지한다. 기판(421)의 형태는 메인 마그넷(411)과 서브 마그넷(412)의 배열에 대응하여 원호를 그리는 형태로 배치될 수 있다.
제1 센서(421)와, 제2 센서(422)와, 제3 센서(423)는 각각 센싱 마그넷(410)의 중심(C)을 기준으로 서로 상이한 궤도(O1,O2,O3) 상에 각각 배열될 수 있다. 센싱 마그넷(410)의 반경 방향을 기준으로, 제1 센서(421)는 제2 센서(422)의 외측에 배치되며, 제3 센서(423)는 제2 센서(422)의 내측에 배치된다.
제1 센서(421)는 복수 개의 제1 홀센서(421a)들(예를 들어, 4개의 제1 홀센서)을 포함하며, 복수 개의 센서들은 서브 마그넷(412)과 정렬되도록 외측 궤도(O1)를 따라 일정 간격으로 배치될 수 있다.
제2 센서(422)는 복수 개의 제2 홀센서(422a)(예를 들어, 3개의 제2 홀센서)가 메인 마그넷(411)과 정렬되도록 중간 궤도(O2)를 따라 일정 간격으로 배치될 수 있다. 제3 센서(423)는 복수 개의 제3 홀센서(423a)(예를 들어, 3개의 제3 홀센서)가 메인 마그넷(411)의 확장영역(411a)이 정렬되도록 내측 궤도(O3)를 따라 일정 간격으로 배치될 수 있다.
도 15는 센싱 마그넷의 원주 방향으로 정렬 배치되는 제2 센서와 제3 센서를 도시한 도면이다.
이때, 도 15을 참조하면, 제2 센서(422)의 제2 홀센서(422a)와 제3 센서(423)의 제3 홀센서(423a)는 센싱 마그넷(410)의 원주 방향을 기준으로 정렬 배치된다. 제2 홀센서(422a)와 제3 홀센서(423a)는 서로 상이한 원형 궤도 상에 배치된다. 그리고 제2 홀센서(422a)와 제3 홀센서(423a)는 센싱 마그넷(410)의 원주 방향을 기준으로 정렬되기 때문에, 제3 홀센서(423a)가 추가됨에 따라 기판(420)을 확장하거나 별도의 기판(420)을 설치하여 케이블로 연결할 필요가 없다. 즉, 센싱 마그넷(410)의 반경 방향을 기준으로 기존의 기판(420)의 내측에 제3 센서(423)의 실장 영역을 확보하여, 2채널의 센싱 구조를 구현하면서도 설치 공간의 제약을 극복할 수 있다. 상술하였듯이, 이에 대응하여 메인 마그넷(411)은 센싱 마그넷(410)의 중심을 향하여 확장된 확장영역(411a)을 포함한다.
제2 센서(422)와 제3 센서(423)는 전기적으로 병렬로 연결될 수 잇다. 따라서, 제2 센서(422)에 이상이 발생한 경우, 제3 센서(423)에서 센싱 시그널을 검출할 수 있다.
이상으로 본 발명의 바람직한 하나의 실시예에 따른 로터 위치 감지장치 및 이를 포함하는 모터에 관하여 첨부된 도면을 참조하여 구체적으로 살펴보았다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (18)

  1. 센싱 마그넷 및,
    상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며,
    상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고,
    상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고,
    상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고,
    상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고,
    상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제1 각도만큼 떨어져 배치되며,
    상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도만큼 떨어져 배치되며,
    이웃하는 상기 제1 홀센서와 상기 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도와 상이한 제2 각도만큼 떨어져 배치되는 로터 위치 감지 장치.
  2. 제1 항에 있어서,
    상기 제1 센서 및 상기 제2 센서는, 상기 센싱 마그넷의 반경 방향을 기준으로 상기 메인 마그넷과 대응되도록 배치되는 로터 위치 감지 장치.
  3. 제2 항에 있어서,
    상기 제1 각도는 아래 수학식 1에 의해 산출되는 R1인 로터 위치 감지장치.
    <수학식 1>
    R1=R0/3
    R0=360°/(N/2)
    여기서, R1은 제1 각도이며, R0는 전기각도이고, N은 상기 메인 마그넷의 극수이다.
  4. 제3 항에 있어서,
    상기 제2 각도는, 아래 수학식 2에 의해 산출되는 R2인 로터 위치 감지장치.
    <수학식 2>
    R2=R1±R0'/(N/2)
    여기서, R2는 제2 각도이며. R1은 상기 제1 각도이며, R0'는 시프트 되는
    전기각도이며, N은 상기 메인 마그넷의 극수이다.
  5. 제1 항에 있어서,
    상기 제1 센서 및 상기 제2 센서는, 상기 센싱 마그넷의 반경 방향을 기준으로 상기 서브 마그넷과 대응되도록 배치되는 로터 위치 감지 장치.
  6. 제5 항에 있어서,
    상기 제1 각도는 아래 수학식 3에 의해 산출되는 R1인 로터 위치 감지장치.
    <수학식 3>
    R1=R0 x n + R3/(N/2) (n은 정수)
    R0=360°/(N/2)
    여기서, R1은 제1 각도이며, R0는 전기각도이고, R3는 분해능 각도, N은 상기 서브 마그넷의 극수이다.
  7. 제6 항에 있어서,
    상기 제2 각도는, 아래 수학식 4에 의해 산출되는 R2인 로터 위치 감지장치.
    <수학식 4>
    R2=R1±R0'/(N/2)
    여기서, R2는 제2 각도이며. R1은 상기 제1 각도이며, R0'는 시프트 되는
    전기각도이며, N은 상기 서브 마그넷의 극수이다.
  8. 센싱 마그넷 및,
    상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며,
    상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고,
    상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고,
    상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고,
    상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고,
    상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제3 각도만큼 떨어져 배치되며,
    상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제3 각도만큼 떨어져 배치되며,
    상기 제2 센서는 상기 원형 궤도의 중심을 지나는 기준선을 기준하여, 상기 제1 센서와 대칭되는 위치에서 상기 원형 궤도의 원주를 따라 제4 각도만큼 시프트된 위치에 배치되는 로터 위치 감지장치.
  9. 제8 항에 있어서,
    상기 제1 센서 및 상기 제2 센서는, 상기 센싱 마그넷의 반경 방향을 기준으로 상기 메인 마그넷과 대응되도록 배치되는 로터 위치 감지 장치.
  10. 제9 항에 있어서,
    상기 제3 각도는 아래 수학식 5에 의해 산출되는 R3인 로터 위치 감지장치.
    <수학식 5>
    R3=R0/3
    R0=360°/(N/2)
    여기서, R3은 제3 각도이며, R0는 전기각도이고, N은 상기 메인 마그넷의 극수이다.
  11. 제10 항에 있어서,
    상기 제4 각도는, 아래 수학식 6에 의해 산출되는 R4인 로터 위치 감지장치.
    <수학식 6>
    R4=R3±R0'/(N/2)
    여기서, R4는 제4 각도이고. R3는 상기 제3 각도이며, R0'는 시프트 되는
    전기각도이며, N은 상기 메인 마그넷의 극수이다.
  12. 회전축;
    상기 회전축이 배치되는 홀을 포함하는 로터; 및
    상기 로터의 외측에 배치되는 스테이터;
    상기 로터 상측에 배치되는 로터 위치 감지장치;를 포함하고
    상기 로터 위치 감지 장치는,
    센싱 마그넷 및,
    상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며,
    상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고,
    상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고,
    상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고,
    상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고,
    상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제1 각도만큼 떨어져 배치되며,
    상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도만큼 떨어져 배치되며,
    이웃하는 상기 제1 홀센서와 상기 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제1 각도와 상이한 제2 각도만큼 떨어져 배치되는 모터.
  13. 회전축;
    상기 회전축이 배치되는 홀을 포함하는 로터; 및
    상기 로터의 외측에 배치되는 스테이터;
    상기 로터 상측에 배치되는 로터 위치 감지장치;를 포함하고
    상기 로터 위치 감지 장치는,
    센싱 마그넷 및,
    상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며,
    상기 센싱 마그넷은 메인 마그넷과 서브 마그넷을 포함하고,
    상기 기판은 상기 센싱 마그넷의 중심을 기준으로 동일한 원형 궤도상에 배치되는 제1 센서 및 제2 센서를 포함하고,
    상기 제1 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제1 홀센서를 포함하고,
    상기 제2 센서는 상기 원형 궤도 상에서 이웃하는 복수 개의 제2 홀센서를 포함하고,
    상기 복수 개의 제1 홀센서는 상기 원형 궤도상의 원주를 따라 제3 각도만큼 떨어져 배치되며,
    상기 복수 개의 제2 홀센서는 상기 원형 궤도상의 원주를 따라 상기 제3 각도만큼 떨어져 배치되며,
    상기 제2 센서는 상기 원형 궤도의 중심을 지나는 기준선을 기준하여, 상기 제1 센서와 대칭되는 위치에서 상기 원형 궤도의 원주를 따라 제4 각도만큼 시프트된 위치에 배치되는 모터.
  14. 센싱 마그넷 및,
    상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며,
    상기 센싱 마그넷은 메인 마그넷과 서브 마그넷;
    상기 기판은 제1 센서, 제2 센서 및 제3 센서를 포함하고,
    상기 제1 센서, 상기 제2 센서 및 상기 제3 센서는 상기 센싱 마그넷의 중심을 기준으로 서로 상이한 원형 궤도상에 각각 배치되는 로터 위치 감지 장치.
  15. 제14 항에 있어서,
    상기 제1 센서는 상기 센싱 마그넷의 반경 방향을 기준으로 상기 서브 마그넷과 대응되도록 배치되는 로터 위치 감지 장치.
  16. 제15 항에 있어서,
    상기 제2 센서부 및 상기 제3 센서부는 상기 센싱 마그넷의 반경 방향을 기준으로 상기 메인마그넷과 대응되도록 배치되는 로터 위치 감지 장치.
  17. 회전축;
    상기 회전축이 배치되는 홀을 포함하는 로터; 및
    상기 로터의 외측에 배치되는 스테이터;
    상기 로터 상측에 배치되는 로터 위치 감지장치;를 포함하고
    상기 로터 위치 감지 장치는,
    센싱 마그넷 및,
    상기 센싱 마그넷의 상측에 배치되는 기판을 포함하며,
    상기 센싱 마그넷은 메인 마그넷과 서브 마그넷;
    상기 기판은 제1 센서, 제2 센서 및 제3 센서를 포함하고,
    상기 제1 센서, 상기 제2 센서 및 상기 제3 센서는 상기 센싱 마그넷의 중심을 기준으로 서로 상이한 원형 궤도상에 각각 배치되는 모터.
  18. 제17 항에 있어서,
    상기 로터는 로터코어 및 상기 로터코어의 외주면을 둘러싸며 배치되는 복수 개의 마그넷을 포함하는 모터.
PCT/KR2017/009704 2016-09-05 2017-09-05 로터 위치 감지장치 및 이를 포함하는 모터 WO2018044141A1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN202111043388.XA CN113839591B (zh) 2016-09-05 2017-09-05 用于感测转子位置的装置以及包括该装置的马达
EP17847066.2A EP3509198B1 (en) 2016-09-05 2017-09-05 Apparatus for sensing rotor location and motor comprising apparatus
CN201780054083.4A CN109690920B (zh) 2016-09-05 2017-09-05 用于感测转子位置的装置以及包括该装置的马达
CN202111044832.XA CN113726100B (zh) 2016-09-05 2017-09-05 用于感测转子位置的装置以及包括该装置的马达
JP2019512233A JP7110176B2 (ja) 2016-09-05 2017-09-05 ロータ位置感知装置およびこれを含むモータ
US16/329,620 US10903731B2 (en) 2016-09-05 2017-09-05 Apparatus for sensing rotor location and motor comprising apparatus
EP21181099.9A EP3907476A1 (en) 2016-09-05 2017-09-05 Apparatus for sensing rotor location and motor comprising apparatus
US17/121,134 US11437899B2 (en) 2016-09-05 2020-12-14 Apparatus for sensing rotor location and motor comprising apparatus
JP2022116665A JP7357122B2 (ja) 2016-09-05 2022-07-21 ロータ位置感知装置およびこれを含むモータ
US17/816,131 US11606014B2 (en) 2016-09-05 2022-07-29 Apparatus for sensing rotor location and motor comprising apparatus
US18/166,098 US11863034B2 (en) 2016-09-05 2023-02-08 Apparatus for sensing rotor location and motor comprising apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160114082A KR102101177B1 (ko) 2016-09-05 2016-09-05 로터 위치 감지장치 및 이를 포함하는 모터
KR10-2016-0114082 2016-09-05
KR10-2016-0175775 2016-12-21
KR1020160175775A KR102621325B1 (ko) 2016-12-21 2016-12-21 로터 위치 감지장치 및 이를 포함하는 모터

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/329,620 A-371-Of-International US10903731B2 (en) 2016-09-05 2017-09-05 Apparatus for sensing rotor location and motor comprising apparatus
US17/121,134 Continuation US11437899B2 (en) 2016-09-05 2020-12-14 Apparatus for sensing rotor location and motor comprising apparatus

Publications (1)

Publication Number Publication Date
WO2018044141A1 true WO2018044141A1 (ko) 2018-03-08

Family

ID=61301178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009704 WO2018044141A1 (ko) 2016-09-05 2017-09-05 로터 위치 감지장치 및 이를 포함하는 모터

Country Status (5)

Country Link
US (4) US10903731B2 (ko)
EP (2) EP3509198B1 (ko)
JP (2) JP7110176B2 (ko)
CN (4) CN113839591B (ko)
WO (1) WO2018044141A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532709A (ja) * 2018-07-20 2021-11-25 エルジー イノテック カンパニー リミテッド モーター

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210989A1 (de) * 2018-07-04 2020-01-09 Dr. Johannes Heidenhain Gmbh Messeinrichtung für eine Spindel oder einen Rundtisch
KR102651815B1 (ko) * 2018-08-23 2024-03-29 엘지이노텍 주식회사 센싱 장치
DE102019220480A1 (de) * 2019-12-20 2021-06-24 Robert Bosch Gmbh Verfahren zum Ermitteln einer Drehinformation einer Drehvorrichtung und Vorrichtung zur Durchführung des Verfahrens
KR20220148179A (ko) * 2020-01-29 2022-11-04 세페이드 앱솔루트 인코더를 구비한 통합식 액츄에이터를 구비한 모터 및 이용 방법
CN112117872B (zh) * 2020-07-24 2022-05-06 哈尔滨工业大学 特种电机、电气设备及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349747A (ja) * 2000-06-09 2001-12-21 Nippon Soken Inc 同期電動機用エンコーダ
JP2002262541A (ja) * 2001-02-28 2002-09-13 Aichi Emerson Electric Co Ltd 3相リラクタンスモータの位置検出方法と制御方法
JP2007252096A (ja) * 2006-03-16 2007-09-27 Mitsuba Corp ブラシレスモータ
JP2009128246A (ja) * 2007-11-26 2009-06-11 Yaskawa Electric Corp ロータリエンコーダおよびこれを備えたモータ
JP2010243152A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp エンコーダー及び電気機械装置。

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170043A (en) * 1981-04-09 1982-10-20 Matsushita Electric Ind Co Ltd Magnetic field position detector of rotor
JP2924729B2 (ja) * 1995-08-29 1999-07-26 株式会社デンソー 回転電機
DE19609041C2 (de) * 1996-03-08 1998-10-15 Mannesmann Sachs Ag Drehschwingungsdämpfer
DE19749678C1 (de) * 1997-11-10 1998-12-10 Mannesmann Sachs Ag Drehschwingungsdämpfer
US6437526B1 (en) * 1999-09-17 2002-08-20 Delphi Technologies, Inc. Commutation system for torque ripple minimization
JP2001343206A (ja) 2000-05-31 2001-12-14 Koyo Seiko Co Ltd 回転角度検出装置、ブラシレスモータ及び電動パワーステアリング装置
DE10054530B4 (de) 2000-07-27 2005-11-10 Daimlerchrysler Ag Verfahren zur Ermittlung der Winkellage einer drehbaren Welle
CN100340057C (zh) * 2001-03-14 2007-09-26 保坂明 磁马达
DE10262194B4 (de) * 2001-05-18 2014-01-23 Denso Corporation Drehmomentsensor und elektrisches servolenkungssystem mit drehmomentsensor
US7083033B2 (en) * 2003-03-27 2006-08-01 Tochigi Fuji Sangyo Kabushiki Kaisha Torque transmission apparatus
JP2005240963A (ja) * 2004-02-27 2005-09-08 Ebara Corp フライホイール式蓄エネルギー装置
KR20060101998A (ko) * 2005-03-22 2006-09-27 현대모비스 주식회사 교류모터의 로터 위치 감지 장치
US7323835B2 (en) * 2006-05-01 2008-01-29 Delphi Technologies, Inc. Brushless DC motor actuator having remote commutation sensing apparatus
CN200944308Y (zh) * 2006-08-01 2007-09-05 吉佳科技股份有限公司 具有霍尔效应的位置回授传感器的音圈马达定位装置
CN101657694A (zh) * 2006-12-13 2010-02-24 石通瑞吉控制装置公司 汽缸位置传感器和包括该汽缸位置传感器的汽缸
JP5007581B2 (ja) * 2007-03-01 2012-08-22 日本電産株式会社 モータ
JP5093748B2 (ja) * 2007-03-01 2012-12-12 日本電産株式会社 モータ
WO2008153976A1 (en) * 2007-06-06 2008-12-18 Hydro-Aire Inc. Angular position sensor
KR20090050650A (ko) 2007-11-16 2009-05-20 엘지이노텍 주식회사 전동 파워 스티어링용 모터
US8121811B2 (en) 2008-04-02 2012-02-21 Continental Automotive Systems, Inc. Systems and methods for detecting angular position
DE102008022369B4 (de) * 2008-05-06 2022-07-07 Sew-Eurodrive Gmbh & Co Kg Elektromotor
DE102008060262B4 (de) * 2008-12-03 2018-08-16 Nidec Motors & Actuators (Germany) Gmbh Sensorsystem für elektrische Maschinen mit mehrpoligen Sensormagneten und mindestens einem Hall-IC
JP5415819B2 (ja) * 2009-04-30 2014-02-12 東芝機械株式会社 リニアモータおよびリニアモータ装置
JP5563815B2 (ja) 2009-12-24 2014-07-30 株式会社ミツバ モータ装置、及び該モータ装置を備えるワイパ装置
US8645101B2 (en) * 2011-02-10 2014-02-04 Siemens Energy, Inc. Method for monitoring the condition of a vibration sensor
DE102011084702A1 (de) * 2011-10-18 2013-04-18 Continental Automotive Gmbh Verfahren zum Herstellen eines BLDC-Motors
KR101775165B1 (ko) 2011-10-24 2017-09-05 엘지이노텍 주식회사 트랙션 모터
CN102361370B (zh) * 2011-10-29 2013-08-07 重庆大学 一种电机端盖内置传感器的一体化电机转速测量机构
US9853525B2 (en) * 2012-06-12 2017-12-26 Abb Research Ltd. Magnetic bearing assembly and arrangement of position sensors for a magnetic bearing assembly
KR102023509B1 (ko) * 2012-12-14 2019-09-20 엘지이노텍 주식회사 모터 및 그의 센싱 마그네트
KR101987169B1 (ko) 2012-12-17 2019-06-10 엘지이노텍 주식회사 모터
KR20140100637A (ko) * 2013-02-06 2014-08-18 한라비스테온공조 주식회사 홀 센서 모듈 및 이를 이용하는 모터 제어 방법
CN105164900B (zh) * 2013-04-30 2019-03-15 株式会社美姿把 电机装置
JP2017052465A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6428817B2 (ja) * 2017-03-22 2018-11-28 株式会社安川電機 モータ制御システム、制御方法、エンコーダ及びモータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349747A (ja) * 2000-06-09 2001-12-21 Nippon Soken Inc 同期電動機用エンコーダ
JP2002262541A (ja) * 2001-02-28 2002-09-13 Aichi Emerson Electric Co Ltd 3相リラクタンスモータの位置検出方法と制御方法
JP2007252096A (ja) * 2006-03-16 2007-09-27 Mitsuba Corp ブラシレスモータ
JP2009128246A (ja) * 2007-11-26 2009-06-11 Yaskawa Electric Corp ロータリエンコーダおよびこれを備えたモータ
JP2010243152A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp エンコーダー及び電気機械装置。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532709A (ja) * 2018-07-20 2021-11-25 エルジー イノテック カンパニー リミテッド モーター
JP7275249B2 (ja) 2018-07-20 2023-05-17 エルジー イノテック カンパニー リミテッド モーター

Also Published As

Publication number Publication date
CN109690920B (zh) 2021-09-17
JP2022160497A (ja) 2022-10-19
CN113726100B (zh) 2024-03-29
CN111355345A (zh) 2020-06-30
US20220368204A1 (en) 2022-11-17
CN113839591A (zh) 2021-12-24
EP3509198A4 (en) 2019-08-21
EP3907476A1 (en) 2021-11-10
JP7357122B2 (ja) 2023-10-05
US10903731B2 (en) 2021-01-26
CN109690920A (zh) 2019-04-26
JP7110176B2 (ja) 2022-08-01
US20190229600A1 (en) 2019-07-25
CN111355345B (zh) 2021-09-07
CN113726100A (zh) 2021-11-30
US11606014B2 (en) 2023-03-14
JP2019530400A (ja) 2019-10-17
US11437899B2 (en) 2022-09-06
EP3509198B1 (en) 2024-01-17
EP3509198A1 (en) 2019-07-10
US11863034B2 (en) 2024-01-02
US20210099061A1 (en) 2021-04-01
US20230188022A1 (en) 2023-06-15
CN113839591B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2018044141A1 (ko) 로터 위치 감지장치 및 이를 포함하는 모터
WO2009157666A2 (ko) 조향장치용 비접촉식 토크센서
WO2017078431A1 (en) Motor
WO2019132338A1 (ko) 스테이터 및 이를 포함하는 모터
WO2013147550A1 (ko) 3결선 구조의 스테이터, 이를 이용한 bldc 모터 및 그의 구동방법
WO2018044027A1 (ko) 스테이터 및 이를 포함하는 모터
WO2018147610A1 (ko) 스테이터 및 이를 포함하는 모터
WO2017131296A1 (ko) 회전전기기계
WO2016036185A1 (ko) 토크 센서 장치
WO2020032463A1 (ko) 인슐레이터 및 이를 포함하는 모터
WO2021172761A1 (ko) 모터
WO2018026177A1 (ko) 리어 홀더 및 이를 포함하는 모터
WO2020235958A1 (ko) 센싱 장치
WO2018084564A1 (ko) 커버 조립체 및 이를 포함하는 모터
WO2017204425A1 (ko) 비균일 자극 길이를 가지는 영구자석 전기기기
WO2020235713A1 (ko) 분할코어조립체 및 이를 포함하는 스테이터
WO2019045305A1 (ko) 스테이터 및 이를 포함하는 모터
WO2019107828A1 (ko) 로터 및 이를 구비하는 모터
WO2018135805A1 (ko) 센싱 마그넷 조립체, 로터 위치 감지장치 및 이를 포함하는 모터
WO2019107829A1 (ko) 모터
WO2019151660A1 (ko) 로터 및 이를 구비하는 모터
WO2020145498A1 (ko) 모터
WO2022005197A1 (ko) 버스바 및 이를 포함하는 모터
WO2021261731A1 (ko) 동축 와전류 변위 센서를 갖는 자기베어링
WO2016148321A1 (ko) 자성체 홀딩 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017847066

Country of ref document: EP