WO2018043318A1 - インダクタ部品、および、電源モジュール - Google Patents
インダクタ部品、および、電源モジュール Download PDFInfo
- Publication number
- WO2018043318A1 WO2018043318A1 PCT/JP2017/030482 JP2017030482W WO2018043318A1 WO 2018043318 A1 WO2018043318 A1 WO 2018043318A1 JP 2017030482 W JP2017030482 W JP 2017030482W WO 2018043318 A1 WO2018043318 A1 WO 2018043318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inductor
- terminal electrode
- power supply
- inductor component
- core member
- Prior art date
Links
- 239000002184 metal Substances 0.000 claims abstract description 119
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0033—Printed inductances with the coil helically wound around a magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
- H01F2017/002—Details of via holes for interconnecting the layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2809—Printed windings on stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
- H01F2027/297—Terminals; Tapping arrangements for signal inductances with pin-like terminal to be inserted in hole of printed path
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/1003—Non-printed inductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10053—Switch
Definitions
- the present invention relates to an inductor component including a plurality of inductors, and a power supply module using the inductor component.
- the inductor component of Patent Document 1 includes a core substrate and a coil.
- the core substrate is formed from a printed circuit board or the like.
- the coil is made of a conductor, and is made of an upper wiring pattern, a lower wiring pattern, and an interlayer connection conductor.
- the upper wiring pattern and the lower wiring pattern are printing patterns.
- the upper wiring pattern is formed on the upper surface of the core substrate, and the lower wiring pattern is formed on the lower surface of the core substrate.
- the upper wiring pattern and the lower wiring pattern are connected by an interlayer connection conductor. Thereby, the helical coil is formed.
- the inductor components having the above-described configuration may not be satisfactory in terms of characteristics.
- inductor component in the configuration of the inductor component described above, only one inductor is provided for each inductor component. For this reason, for an electronic device that requires a plurality of inductors, it is necessary to prepare as many inductor components as necessary for the electronic device. In this case, required characteristics may not be obtained in a module in which a plurality of inductor components are used due to variations in the characteristics of each inductor component.
- an object of the present invention to provide an inductor component including a plurality of inductors, to achieve excellent inductor characteristics for each, and to suppress variation in the characteristics of each inductor.
- An inductor component includes a core member having an upper surface and a lower surface, a coil disposed on the core member, a first terminal electrode, a second terminal electrode, and a third terminal electrode.
- the coil includes a first metal plate disposed on the upper surface of the core member, a second metal plate disposed on the lower surface of the core member, and a plurality of metal pins penetrating the core member in the thickness direction.
- the coil is formed in a spiral shape by connecting the first metal plate and the second metal plate by a plurality of metal pins.
- the first terminal electrode, the second terminal electrode, and the third terminal electrode are connected to the coil at intervals along the direction in which the spiral of the coil extends.
- the coil is formed by including a metal plate and a metal pin that are integrally formed, variation of each inductor component is suppressed, and characteristics such as DCR are improved.
- a first inductor is formed between the first terminal electrode and the second terminal electrode, and a second inductor is formed between the second terminal electrode and the third terminal electrode.
- a plurality of inductors can be integrally formed by the above-described structure, and the above-described structure can be realized by molding, so that variation in characteristics between the plurality of inductors is also suppressed.
- the inductor component according to one embodiment of the present invention can have the following configuration.
- the core member is divided into a plurality of pieces, and the plurality of divided core members are arranged at intervals in a direction parallel to the upper surface and the lower surface.
- the inductor component according to one embodiment of the present invention can have the following configuration.
- the core member is not divided.
- the inductor component according to one embodiment of the present invention preferably has the following configuration.
- the first terminal electrode, the second terminal electrode, and the third terminal electrode are columnar shapes that are connected to the second metal plate and extend in a direction perpendicular to the lower surface of the core member.
- a power supply module includes the above-described inductor component, a circuit board on which a predetermined circuit pattern is formed, a power supply control IC, and a switching element.
- the inductor component, the power supply control IC, and the switching element are mounted on a circuit board.
- the switching element is disposed close to the terminal electrode to which the switching element is connected among the first terminal electrode, the second terminal electrode, and the third terminal electrode in the inductor component.
- connection distance between the inductor component and the switching element is shortened.
- the switching element and the inductor component are arranged so as to overlap at least partially in plan view.
- variation in each inductor component is suppressed, characteristics such as DCR are improved, and characteristic variation among a plurality of inductors can be suppressed.
- 1 is an external perspective view of an inductor component according to a first embodiment of the present invention. It is a disassembled perspective view of the inductor component which concerns on the 2nd Embodiment of this invention. It is an external appearance perspective view of the inductor component which concerns on the 2nd Embodiment of this invention. It is a circuit diagram of the power supply module which concerns on the 3rd Embodiment of this invention. It is a circuit diagram of the power supply module which concerns on the 4th Embodiment of this invention. It is a circuit diagram of the power supply module which concerns on the 5th Embodiment of this invention. It is a circuit diagram of the power supply module which concerns on the 6th Embodiment of this invention. It is an external appearance perspective view which shows schematic structure of the power supply module which concerns on embodiment of this invention.
- FIG. 1 is an exploded perspective view of an inductor component according to the first embodiment of the present invention.
- FIG. 2 is an external perspective view of the inductor component according to the first embodiment of the present invention.
- the inductor component 10 includes first metal plates 21, 22, 23, 24, second metal plates 31, 32, 33, 34, 35, core members 41, 42, metal pins 511. 521, 522, 531, 532, 541, 542, 552, and terminal electrodes 61, 62, 63.
- the core members 41 and 42 each have a substantially rectangular parallelepiped shape, and have an upper surface and a lower surface.
- the core members 41 and 42 are, for example, resin substrates.
- the core members 41 and 42 are not limited to resin substrates as long as the materials have a predetermined relative magnetic permeability, but are preferably materials that facilitate the formation of through holes.
- the core member 41 and the core member 42 are arranged at intervals along the x direction in FIGS.
- the core member 41 and the core member 42 have a shape obtained by dividing one core member at an intermediate position in the x direction.
- the core member 41 is disposed on the first end surface ED1 side as the inductor component 10
- the core member 42 is disposed on the second end surface ED2 side as the inductor component 10.
- the first side surface SD1 of the core member 41 and the first side surface SD1 of the core member 42 are substantially flush
- the second side surface SD2 of the core member 41 and the second side surface SD2 of the core member 42 are substantially flush. is there.
- the core member 41 is formed with through holes 411, 412, 413 penetrating from the upper surface to the lower surface.
- the through holes 411 and 412 are formed in the core member 41 in the vicinity of the first side surface SD1, and are formed at intervals in a direction parallel to the first side surface SD1 (the x direction in FIGS. 1 and 2).
- the through hole 413 is formed in the vicinity of the second side surface SD ⁇ b> 2 in the core member 41.
- the position of the through hole 412 and the position of the through hole 413 in the x direction are substantially the same.
- a through hole 411 is formed on the first end face ED1 side in the x direction of the core member 41.
- Through holes 412 and 413 are formed on the second end face ED2 side in the x direction of the core member 41.
- the through hole 421 is formed in the vicinity of the first side surface SD ⁇ b> 1 in the core member 42.
- the through holes 422 and 423 are formed in the vicinity of the second side surface SD2 of the core member 42, and are formed at intervals in a direction parallel to the first side surface SD1 (the x direction in FIGS. 1 and 2). .
- the position of the through hole 421 and the position of the through hole 422 in the x direction are substantially the same.
- Through holes 421 and 422 are formed on the first end surface ED1 side in the x direction of the core member 42.
- a through hole 423 is formed on the second end face ED2 side in the x direction of the core member 42.
- the first metal plates 21, 22, 23, 24 are arranged on the upper surface of the core members 41, 42, more precisely on the upper surface of the rectangular parallelepiped region forming the core members 41, 42.
- the first metal plate 21, the first metal plate 22, the first metal plate 23, and the first metal plate 24 are along the x direction from the first end surface ED1 as the inductor component 10 toward the second end surface ED2. Are arranged in this order.
- the first metal plate 21, the first metal plate 22, the first metal plate 23, and the first metal plate 24 are separated from each other.
- the width of the portion on the first side surface SD1 side of the first metal plate 21 is narrower than the width of the portion on the second side surface SD2 side.
- the width of the portion on the first side surface SD1 side of the first metal plate 24 is wider than the width of the portion on the second side surface SD2 side.
- the width in the extending direction of the first metal plates 22 and 23 is constant, and is bent at an intermediate position in the extending direction.
- the second metal plates 31, 32, 33, 34, 35 are arranged on the lower surface of the core members 41, 42, more precisely on the lower surface of the rectangular parallelepiped region occupied by the core members 41, 42.
- the second metal plate 31, the second metal plate 32, the second metal plate 33, the second metal plate 34, and the second metal plate 35 are directed from the first end face ED1 as the inductor component 10 toward the second end face ED2.
- the second metal plate 31, the second metal plate 32, the second metal plate 33, the second metal plate 34, and the second metal plate 35 are separated from each other.
- the width of the portion on the first side surface SD1 side of the second metal plate 31 is wider than the width of the portion on the second side surface SD2 side.
- the width of the portion on the first side surface SD1 side of the second metal plate 35 is narrower than the width of the portion on the second side surface SD2 side.
- the width in the extending direction of the second metal plates 32, 33, and 34 is constant, and is bent at an intermediate position in the extending direction.
- the metal pin 511 is inserted through the through hole 411.
- the metal pin 511 connects a predetermined position on the first side surface SD1 side in the second metal plate 31 and a predetermined position on the first side surface SD1 side in the first metal plate 21.
- the metal pin 522 is inserted through the through hole 413.
- the metal pin 522 connects a predetermined position on the second side surface SD2 side in the first metal plate 21 and a predetermined position on the second side surface SD2 side in the second metal plate 32.
- the metal pin 521 is inserted through the through hole 412.
- the metal pin 521 connects a predetermined position on the first side surface SD1 side in the second metal plate 32 and a predetermined position on the first side surface SD1 side in the first metal plate 22.
- the metal pin 532 is inserted through the space between the core member 41 and the core member 42.
- the metal pin 532 connects a predetermined position on the second side surface SD2 side in the first metal plate 22 and a predetermined position on the second side surface SD2 side in the second metal plate 33.
- the metal pin 531 is inserted through the space between the core member 41 and the core member 42.
- the metal pin 531 connects a predetermined position on the first side surface SD1 side in the second metal plate 33 and a predetermined position on the first side surface SD1 side in the first metal plate 23.
- the metal pin 542 is inserted through the through hole 422.
- the metal pin 542 connects a predetermined position on the second side surface SD2 side in the first metal plate 23 and a predetermined position on the second side surface SD2 side in the second metal plate 34.
- the metal pin 541 is inserted through the through hole 421.
- the metal pin 541 connects a predetermined position on the first side surface SD1 side in the second metal plate 34 and a predetermined position on the first side surface SD1 side in the first metal plate 24.
- the metal pin 552 is inserted into the through hole 423.
- the metal pin 552 connects a predetermined position on the second side surface SD2 side in the first metal plate 24 and a predetermined position on the second side surface SD2 side in the second metal plate 35.
- a spiral coil is formed. And most parts of the core members 41 and 42 are arrange
- the inductor component 10 can realize a configuration in which the first inductor including the core member 41 and the second inductor including the core member 42 are integrally formed. Thereby, it is possible to realize the inductor component 10 in which variation in characteristics such as DCR is suppressed between the first inductor and the second inductor.
- the characteristic variation between the first inductor and the second inductor is further suppressed by molding with a mold or integrally molding.
- the 1st metal plates 21, 22, 23, 24, the 2nd metal plates 31, 32, 33, 34, 35, and the metal pins 511, 521, 522, 531, 532 , 541, 542, and 552, and the DCR as the inductor component 10 can be reduced. Thereby, excellent inductor characteristics can be realized for each of the first inductor and the second inductor.
- the terminal electrodes 61, 62, 63 are columnar like the metal pins described above.
- the terminal electrode 61 is formed on the surface of the second metal plate 31 opposite to the core member 41 side.
- the terminal electrode 61 is formed in the vicinity of the second side surface SD ⁇ b> 2 in the second metal plate 31.
- the terminal electrode 62 is formed on the surface of the second metal plate 35 opposite to the core member 42 side.
- the terminal electrode 62 is formed in the vicinity of the first side surface SD1 on the second metal plate 35.
- the terminal electrode 63 is formed on the surface of the second metal plate 33 opposite to the core members 41 and 42 side.
- the terminal electrode 63 is formed at an intermediate position in the extending direction of the second metal plate 33.
- terminal electrodes 61 and 63 become terminals of the first inductor including the core member 41, and the terminal electrodes 62 and 63 become terminals of the second inductor including the core member 42.
- terminal electrodes 61, 62, and 63 are arranged on the back surface of the inductor component 10 so as to extend in the direction orthogonal to the back surface (z direction) and protrude from the back surface. Improves mountability.
- the resistivity of the terminal electrodes 61, 62, 63 can be lowered by forming the terminal electrodes 61, 62, 63 in the same manner as the above-described metal pins.
- the terminal electrodes 61, 62, and 63 may be arranged at intervals in the order of the terminal electrode 61, the terminal electrode 63, and the terminal electrode 62 along the direction in which the spiral coil extends. That is, the first inductor and the second inductor can be adjusted to desired inductances by appropriately setting the arrangement positions of the terminal electrode 61, the terminal electrode 63, and the terminal electrode 62.
- the terminal electrodes 61, 62, 63 are formed on the back surface of the inductor component 10. However, a part of the terminal electrodes 61, 62, 63 (for example, the terminal electrode 62) is formed on the surface of the inductor component 10. May be.
- FIG. 3 is an exploded perspective view of the inductor component according to the second embodiment of the present invention.
- FIG. 4 is an external perspective view of an inductor component according to the second embodiment of the present invention.
- the inductor component 10A according to this embodiment is different from the inductor component 10 according to the first embodiment in that the number of core members 40 is one.
- the other configuration of the inductor component 10A is the same as that of the inductor component 10 according to the first embodiment, and the description of the same portion is omitted.
- the core member 40 has a rectangular parallelepiped shape having an upper surface and a lower surface, and has a shape connected from the first end surface ED1 to the second end surface ED2 as the inductor component 10A.
- through holes 401, 402, 403, 404, 405, 406, 407, and 408 penetrating from the upper surface to the lower surface are formed.
- the through holes 401, 402, 403, 404 are formed in the vicinity of the first side surface SD1 of the core member 40, and are spaced in a direction parallel to the first side surface SD1 (the x direction in FIGS. 3 and 4). Is formed.
- the through holes 401, 402, 403, 404 are arranged in this order along the x direction from the first end surface ED1 toward the second end surface ED2.
- the through holes 405, 406, 407, and 408 are formed near the second side surface SD2 of the core member 40, and are spaced in a direction parallel to the second side surface SD2 (the x direction in FIGS. 3 and 4). Is formed.
- the through holes 405, 406, 407, and 408 are arranged in this order along the x direction from the first end surface ED1 toward the second end surface ED2.
- a metal pin 511 is inserted into the through hole 401, a metal pin 521 is inserted into the through hole 402, a metal pin 531 is inserted into the through hole 403, and a metal pin 541 is inserted into the through hole 404. Is inserted.
- a metal pin 522 is inserted into the through hole 405, a metal pin 532 is inserted into the through hole 406, a metal pin 542 is inserted into the through hole 407, and a metal pin 552 is inserted into the through hole 408. Is inserted.
- the first inductor having the terminal electrode 61 and the terminal electrode 63 as input / output terminals and the second inductor having the terminal electrode 62 and the terminal electrode 63 as input / output terminals are integrated. It is formed.
- the first inductor and the second inductor are magnetically coupled. That is, the inductor component 10A realizes a configuration in which a first inductor and a second inductor that are magnetically coupled to each other are integrally formed.
- variation between a 1st inductor and a 2nd inductor is suppressed similarly to the inductor component 10 of 1st Embodiment, and 1st Excellent inductor characteristics can be realized for each of the inductor and the second inductor.
- FIG. 5 is a circuit diagram of a power supply module according to the third embodiment of the present invention.
- the power supply module 91 includes a power supply control IC 911, switching elements Q11, Q12, Q21, and Q22, inductors L11 and L21, and output capacitors Co1 and Co2.
- Each of the inductor L11 and the inductor L21 includes a direct current resistance (DCR) component.
- DCR direct current resistance
- the DCR L11 of the inductor L11 is connected in series to the inductor L11
- the DCR L21 of the inductor L21 is connected in series to the inductor L21.
- the switching element Q11 and the switching element Q12 are connected between the voltage input terminal Vin and the ground. Further, the switching element Q11 and the switching element Q12 are connected to the power supply control IC 911. Switching element Q11 and switching element Q12 are switching-controlled by a power supply control IC 911.
- the inductor L11 is connected to the switching node to which the switching element Q11 and the switching element Q12 are connected, and this series circuit is connected to the voltage output terminal Vout.
- An output capacitor Co1 is connected between the voltage output terminal Vout and the ground.
- the switching element Q21 and the switching element Q22 are connected between the voltage input terminal Vin and the ground. Further, the switching element Q21 and the switching element Q22 are connected to the power supply control IC 911. Switching element Q21 and switching element Q22 are switching-controlled by a power supply control IC 911.
- An inductor L21 is connected to the switching node to which the switching element Q21 and the switching element Q22 are connected, and this series circuit is connected to the voltage output terminal Vout.
- An output capacitor Co2 is connected between the voltage output terminal Vout and the ground.
- the power supply module 91 realizes a multiphase converter including the first power stage on the inductor L11 side and the second power stage on the inductor L21 side.
- the inductor component 10 described above is used for the inductor L11 and the inductor L21.
- the inductor L11 is realized by the first inductor of the inductor component 10
- the inductor L12 is realized by the second inductor of the inductor component 10.
- the variation in inductance between the inductor L11 and the inductor L21 can be reduced, the variation in the inductor current can be reduced, and the characteristics of the power supply module 91 are improved.
- the inductor component 10 it becomes possible to flow a large current through the inductor L11 and the inductor L21, and it becomes possible to cope with a large current application.
- the degree of freedom in arrangement of the positions of the terminal electrodes 61 and 62 is high, the distance between the switching node of the switching elements Q11 and Q12 and the inductor L11, the distance between the switching node of the switching elements Q21 and Q22 and the inductor L21 can be shortened, The noise resistance of the power supply module 91 can be improved.
- the voltage output terminal Vout of each power stage can be easily shared, and the configuration of the power supply module 91 can be simplified.
- FIG. 6 is a circuit diagram of a power supply module according to the fourth embodiment of the present invention.
- the power supply module 92 includes a power supply control IC 921, a switching element Q30, inductors Lp and Ls, a capacitor Cs, a diode D, and an output capacitor Co.
- a series circuit of an inductor Lp, a capacitor Cs, and an inductor Ls is connected between the voltage input terminal Vin and the ground.
- a switching element Q30 is connected between the connection point of the inductor Lp and the capacitor Cs and the ground.
- a power supply control IC 921 is connected to the switching element Q30. Switching of the switching element Q30 is controlled by the power supply control IC 921.
- the anode of the diode D is connected to the connection point between the capacitor Cs and the inductor Ls, and the cathode of the diode D is connected to the voltage output terminal Vout.
- An output capacitor Co is connected between the voltage output terminal Vout and the ground.
- the power supply module 92 realizes a SEPIC converter.
- the inductor component 10A described above is used for the inductor Lp and the inductor Ls.
- the inductor Lp is realized by the first inductor of the inductor component 10A
- the inductor Ls is realized by the second inductor of the inductor component 10A.
- the SEPIC converter has a small characteristic variation between the inductor Lp and the inductor Ls. Therefore, the power supply module 92 can realize excellent characteristics by realizing the inductors Lp and Ls with the inductor component 10A.
- FIG. 7 is a circuit diagram of a power supply module according to the fifth embodiment of the present invention.
- the power supply module 93 includes a power supply control IC 931, switching elements Q41 and Q42, an inductor L3, and an output capacitor Co.
- the inductor L3 includes an inductor L32 and an inductor L32 that are coupled to each other.
- a series circuit of a switching element Q41, an inductor L32, and a switching element Q42 is connected between the voltage input terminal Vin and the ground.
- a power supply control IC 931 is connected to the switching elements Q41 and Q42.
- the switching elements Q41 and Q42 are switching-controlled by the power supply control IC 931.
- the switching element Q42 side of the inductor L32 is connected to the inductor L31.
- the switching element Q42 is connected between the connection point between the inductor L32 and the inductor L31 and the ground.
- the inductor L31 is connected to the voltage output terminal Vout.
- An output capacitor Co is connected between the voltage output terminal Vout and the ground.
- the power supply module 93 realizes a power supply module using a Tapped inductor.
- the inductor component 10A described above is used for the inductor L3.
- the inductor L31 is realized by the second inductor of the inductor component 10A
- the inductor L32 is realized by the first inductor of the inductor component 10A.
- the power supply module 93 can easily realize a power supply module with a high degree of freedom in setting the intermediate tap position, that is, the inductance ratio between the inductor L32 and the inductor L31.
- the winding ratio, winding method, and the like of the first inductor and the second inductor are set according to the positions of the first metal plate, the second metal plate, the terminal electrode, and the like, whereby the inductor L32 and the inductor L31.
- the inductance ratio can be easily realized with a high degree of freedom.
- the power supply module 93 can be applied to a large current application by using the inductor component 10A.
- the power supply module 93 can be used for a step-up converter or a step-down converter having a large input / output voltage difference.
- FIG. 8 is a circuit diagram of a power supply module according to the sixth embodiment of the present invention.
- the power supply module 94 includes a power supply control IC 941, a switching element Q50, an insulating transformer TR, a resonance capacitor Cres, an output side diode Do, an input capacitor Cin, and an output capacitor Co.
- the insulating transformer TR includes a primary side coil L91 and a secondary side coil L92.
- a series circuit of the primary side coil L91 of the insulated transformer TR and the switching element Q50 is connected.
- a resonance capacitor Cres is connected in parallel to the primary coil L91.
- An input capacitor Cin is connected between the first end and the second end of the voltage input terminal Vin.
- One end of the secondary side coil L92 of the insulated transformer TR is connected to the first end of the voltage output terminal Vout via the output side diode Do, and the other end of the secondary side coil L92 is connected to the voltage output terminal Vout.
- the second end is connected.
- a power supply control IC 941 is connected to the switching element Q50. Switching of the switching element Q50 is controlled by the power supply control IC 941.
- the power supply module 94 realizes an isolated DC converter.
- the above-described inductor component 10A is used for the insulating transformer TR.
- the primary coil L91 is realized by the first inductor of the inductor component 10A
- the secondary coil L92 is realized by the second inductor of the inductor component 10A.
- the power supply module 94 can easily realize a power supply module with a high degree of freedom in setting the inductance ratio between the primary side coil L91 and the secondary side coil L92. Specifically, by setting the winding ratio, winding method, and the like of the first inductor and the second inductor of the inductor component 10A according to the positions of the first metal plate, the second metal plate, the terminal electrode, etc., the primary The inductance ratio between the side coil L91 and the secondary side coil L92 can be easily realized with a high degree of freedom.
- the power supply module 94 can be applied to a large current application by using the inductor component 10A.
- the primary side coil and the secondary side coil can be combined as desired without performing such adjustment.
- FIG. 9 is an external perspective view showing a schematic configuration of the power supply module according to the embodiment of the present invention.
- FIG. 9 shows the case of the power supply module 93, the same configuration can be applied to other power supply modules.
- the power supply module 93 includes a circuit board 900, switching elements Q41 and Q42, an inductor component 10A, and a power supply control IC 931.
- the switching elements Q41 and Q42, the inductor component 10A, and the power supply control IC 931 are mounted electronic components, and are mounted on the surface of the circuit board 900.
- the circuit shown in FIG. 7 is realized.
- the terminal electrodes 61, 62, 63 of the inductor component 10A are connected to the conductor pattern on the surface of the circuit board 900.
- a switching element Q41 is connected to the conductor pattern to which the terminal electrode 61 is connected.
- the conductor pattern to which the terminal electrode 62 is connected is connected to a voltage output terminal Vout (not shown).
- the conductor pattern to which the terminal electrode 63 is connected is connected to the switching element Q42.
- the switching element Q41 and at least a part of the switching element Q42 are superimposed on the inductor component 10A.
- Switching element Q41 and switching element Q42 are arranged on the back side of inductor component 10A.
- the switching element Q42 is preferably disposed so as to substantially overlap the inductor component 10A.
- the physical distance and connection distance between the terminal electrode 63 of the inductor component 10A and the switching element Q42 can be shortened, and the power supply module 93 can improve resistance to noise. Further, the shape of the power supply module 93 in plan view can be reduced.
- the present invention can also be applied to an electric circuit component and an electronic circuit component having a plurality of inductors.
- the above-described inductor component 10A can be applied to a common mode choke coil.
- it can be realized by a configuration in which either the first metal plate or the second metal plate is divided, a metal pin is divided, or a configuration in which any one of the plurality of metal pins is omitted.
- a common mode choke coil having excellent characteristics can be realized by providing the configuration of the inductor component.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
- Dc-Dc Converters (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
Abstract
インダクタ部品(10)は、コア部材(41、42)と、コア部材に配置されたコイルと、端子電極(61-63)と、を備える。コイルは、コア部材(41、42)の上面に配置された第1金属板(21-24)と、コア部材(41、42)の下面に配置された第2金属板(31-35)と、コア部材(41、42)のいずれかに対して厚み方向に貫通する複数の金属ピン(511、521、522、531、532、541、542、552)と、を備える。コイルは、第1金属板(21-24)と第2金属板(31-35)とを複数の金属ピン(511、521、522、531、532、541、542、552)によって接続して、螺旋形に形成されている。端子電極(61-63)は、螺旋形の延びる方向に沿って間隔を空けてコイルに接続されている。
Description
本発明は、複数のインダクタを備えるインダクタ部品、および、該インダクタ部品を用いた電源モジュールに関する。
現在、各種のインダクタ部品が利用されている。例えば、特許文献1のインダクタ部品は、コア基板とコイルとを備える。コア基板は、プリント基板等から形成されている。コイルは、導体からなり、上側配線パターン、下側配線パターン、および層間接続導体からなる。上側配線パターンと下側配線パターンは、印刷パターンである。
上側配線パターンは、コア基板の上面に形成されており、下側配線パターンは、コア基板の下面に形成されている。上側配線パターンと下側配線パターンとは、層間接続導体によって接続されている。これにより、螺旋状のコイルが形成されている。
しかしながら、近年の電子機器の高性能化のため、上述の構成のインダクタ部品では、特性的に満足できない場合がある。
また、上述のインダクタ部品の構成では、1個のインダクタ部品に対して1つのインダクタしか備えていない。このため、複数のインダクタを要する電子機器に対しては、上述のインダクタ部品を、電子機器に必要な個数だけ用意しなければならない。この場合、インダクタ部品毎の特性のばらつきによって、複数のインダクタ部品が用いられるモジュールにおいて必要な特性を得られない場合がある。
したがって、本発明の目的は、複数のインダクタを備えるインダクタ部品であって、それぞれに優れたインダクタ特性を実現し、且つ、インダクタそれぞれの特性バラツキを抑制することにある。
本発明の一形態に係るインダクタ部品は、上面と下面を有するコア部材と、該コア部材に配置されたコイルと、第1端子電極、第2端子電極、および、第3端子電極と、を備える。コイルは、コア部材の上面に配置された第1金属板と、コア部材の下面に配置された第2金属板と、コア部材を厚み方向に貫通する複数の金属ピンと、を備える。コイルは、第1金属板と第2金属板とを複数の金属ピンによって接続して、螺旋形に形成されている。第1端子電極、第2端子電極、および、第3端子電極は、コイルにおける螺旋形の延びる方向に沿って、間隔を空けて、コイルに接続されている。
この構成では、コイルが、一体形成される金属板と金属ピンとを備えて形成されるので、各インダクタ部品のバラツキが抑制され、DCR等の特性が向上する。また、第1端子電極と第2端子電極との間で第1のインダクタが形成され、第2端子電極と第3端子電極との間で第2のインダクタが形成される。また、上述の構造によって、複数のインダクタを一体に形成することができるとともに、金型成形によって上述の構造を実現可能であるので、複数のインダクタ間の特性バラツキも抑制される。
また、本発明の一形態に係るインダクタ部品では、次の構成とすることができる。コア部材は、複数に分断されており、分断された複数のコア部材は、上面と前記下面に平行な方向に間隔を空けて配置されている。
この構成では、互いに磁界結合しない複数のインダクタが一体に形成される。
また、本発明の一形態に係るインダクタ部品では、次の構成とすることができる。コア部材は分断されていない。
この構成では、互いに磁界結合する複数のインダクタが一体形成される。
また、本発明の一形態に係るインダクタ部品では、次の構成であることが好ましい。第1端子電極、第2端子電極、および、第3端子電極は、第2金属板に接続し、コア部材の下面に直交する方向に延びる柱状である。
この構成では、インダクタ部品の実装性が向上する。
また、本発明の一形態に係る電源モジュールは、上述のインダクタ部品と、所定の回路パターンが形成された回路基板と、電源制御用ICと、スイッチング素子と、を備える。インダクタ部品、電源制御用IC、および、スイッチング素子は、回路基板に実装されている。スイッチング素子は、インダクタ部品における第1端子電極、第2端子電極、および、第3端子電極のうち、スイッチング素子が接続される端子電極に近接して配置されている。
この構成では、インダクタ部品とスイッチング素子との接続距離が短くなる。
また、本発明の一形態に係る電源モジュールでは、スイッチング素子と、インダクタ部品とは、平面視において少なくとも部分的に重畳して配置されていることが好ましい。
この構成では、電源モジュールの平面面積が小さくなる。
この発明によれば、各インダクタ部品のバラツキが抑制され、DCR等の特性が向上し、複数のインダクタ間の特性バラツキも抑制できる。
本発明の第1の実施形態に係るインダクタ部品について、図を参照して説明する。図1は、本発明の第1の実施形態に係るインダクタ部品の分解斜視図である。図2は、本発明の第1の実施形態に係るインダクタ部品の外観斜視図である。
図1、図2に示すように、インダクタ部品10は、第1金属板21、22、23、24、第2金属板31、32、33、34、35、コア部材41、42、金属ピン511、521、522、531、532、541、542、552、および、端子電極61、62、63を備える。
コア部材41、42は、それぞれ略直方体形状であり、上面と下面とを有する。コア部材41、42は、例えば、樹脂基板である。なお、コア部材41、42は、所定の比透磁率を有する材料であれば、樹脂基板に限らないが、貫通孔の形成が容易な材料であることが好ましい。
コア部材41とコア部材42は、図1、図2のx方向に沿って、間隔を空けて配置されている。言い換えれば、コア部材41とコア部材42は、1個のコア部材をx方向の途中位置で分断した形状である。コア部材41は、インダクタ部品10としての第1端面ED1側に配置されており、コア部材42は、インダクタ部品10としての第2端面ED2側に配置されている。コア部材41の第1側面SD1とコア部材42の第1側面SD1とは、略面一であり、コア部材41の第2側面SD2とコア部材42の第2側面SD2とは、略面一である。
コア部材41には、上面から下面に貫く貫通孔411、412、413が形成されている。貫通孔411、412は、コア部材41における第1側面SD1の近傍に形成されており、第1側面SD1に平行な方向(図1、図2のx方向)に間隔を空けて形成されている。貫通孔413は、コア部材41における第2側面SD2の近傍に形成されている。x方向における、貫通孔412の位置と貫通孔413の位置とは、略同じである。コア部材41のx方向における第1端面ED1側に、貫通孔411が形成されている。コア部材41のx方向における第2端面ED2側に、貫通孔412、413が形成されている。
コア部材42には、上面から下面に貫く貫通孔421、422、423が形成されている。貫通孔421は、コア部材42における第1側面SD1の近傍に形成されている。貫通孔422、423は、コア部材42における第2側面SD2の近傍に形成されており、第1側面SD1に平行な方向(図1、図2のx方向)に間隔を空けて形成されている。x方向における、貫通孔421の位置と貫通孔422の位置とは、略同じである。コア部材42のx方向における第1端面ED1側に、貫通孔421、422形成されている。コア部材42のx方向における第2端面ED2側に、貫通孔423が形成されている。
第1金属板21、22、23、24は、コア部材41、42の上面、より正確には、コア部材41、42を形成する直方体の領域の上面に配置されている。第1金属板21、第1金属板22、第1金属板23、および、第1金属板24は、インダクタ部品10としての第1端面ED1から第2端面ED2に向かって、x方向に沿って、この順に配置されている。第1金属板21、第1金属板22、第1金属板23、および、第1金属板24は、互いに離間している。第1金属板21の第1側面SD1側の部分の幅は、第2側面SD2側の部分の幅よりも狭い。第1金属板24の第1側面SD1側の部分の幅は、第2側面SD2側の部分の幅よりも広い。第1金属板22、23における延びる方向の幅は一定であり、延びる方向の途中位置において屈曲している。
第2金属板31、32、33、34、35は、コア部材41、42の下面、より正確には、コア部材41、42が占有する直方体の領域の下面に配置されている。第2金属板31、第2金属板32、第2金属板33、第2金属板34、および、第2金属板35は、インダクタ部品10としての第1端面ED1から第2端面ED2に向かって、x方向に沿って、この順に配置されている。第2金属板31、第2金属板32、第2金属板33、第2金属板34、および、第2金属板35は、互いに離間している。第2金属板31の第1側面SD1側の部分の幅は、第2側面SD2側の部分の幅よりも広い。第2金属板35の第1側面SD1側の部分の幅は、第2側面SD2側の部分の幅よりも狭い。第2金属板32、33、34における延びる方向の幅は一定であり、延びる方向の途中位置において屈曲している。
金属ピン511は、貫通孔411に挿通している。金属ピン511は、第2金属板31における第1側面SD1側の所定位置と、第1金属板21における第1側面SD1側の所定位置とを接続している。
金属ピン522は、貫通孔413に挿通している。金属ピン522は、第1金属板21における第2側面SD2側の所定位置と、第2金属板32における第2側面SD2側の所定位置とを接続している。
金属ピン521は、貫通孔412に挿通している。金属ピン521は、第2金属板32における第1側面SD1側の所定位置と、第1金属板22における第1側面SD1側の所定位置とを接続している。
金属ピン532は、コア部材41とコア部材42との間の空間を挿通している。金属ピン532は、第1金属板22における第2側面SD2側の所定位置と、第2金属板33における第2側面SD2側の所定位置とを接続している。
金属ピン531は、コア部材41とコア部材42との間の空間を挿通している。金属ピン531は、第2金属板33における第1側面SD1側の所定位置と、第1金属板23における第1側面SD1側の所定位置とを接続している。
金属ピン542は、貫通孔422に挿通している。金属ピン542は、第1金属板23における第2側面SD2側の所定位置と、第2金属板34における第2側面SD2側の所定位置とを接続している。
金属ピン541は、貫通孔421に挿通している。金属ピン541は、第2金属板34における第1側面SD1側の所定位置と、第1金属板24における第1側面SD1側の所定位置とを接続している。
金属ピン552は、貫通孔423に挿通している。金属ピン552は、第1金属板24における第2側面SD2側の所定位置と、第2金属板35における第2側面SD2側の所定位置とを接続している。
この構成により、第1金属板21、22、23、24、第2金属板31、32、33、34、35、および、金属ピン511、521、522、531、532、541、542、552からなる螺旋形状のコイルが形成される。そして、コア部材41、42の殆どの部分は、コイルの内側に配置される。なお、コア部材41、42の一部が、コイルの外側に配置されていてもよい。
したがって、インダクタ部品10は、コア部材41を含む第1のインダクタと、コア部材42を含む第2のインダクタとが一体形成された構成を実現できる。これにより、第1のインダクタと第2のインダクタとの間で、DCR等の特性バラツキが抑制されたインダクタ部品10を実現できる。特に、第1金属板21、22、23、24、第2金属板31、32、33、34、35、および、金属ピン511、521、522、531、532、541、542、552のそれぞれを、金型で成形したり、一体成形することによって、第1のインダクタと第2のインダクタとの間の特性バラツキがさらに抑制される。
そして、このような構成とすることによって、第1金属板21、22、23、24、第2金属板31、32、33、34、35、および、金属ピン511、521、522、531、532、541、542、552の抵抗率を低くでき、インダクタ部品10としてのDCRを低くできる。これにより、第1のインダクタと第2のインダクタとのそれぞれに対して、優れたインダクタ特性を実現できる。
端子電極61、62、63は、上述の金属ピンと同様に、柱状である。端子電極61は、第2金属板31におけるコア部材41側と反対側の面に形成されている。端子電極61は、第2金属板31における第2側面SD2の近傍に形成されている。端子電極62は、第2金属板35におけるコア部材42側と反対側の面に形成されている。端子電極62は、第2金属板35における第1側面SD1の近傍に形成されている。端子電極63は、第2金属板33におけるコア部材41、42側と反対側の面に形成されている。端子電極63は、第2金属板33における延びる方向の途中位置に形成されている。
この構成により、端子電極61、63は、コア部材41を含む第1のインダクタの端子となり、端子電極62、63は、コア部材42を含む第2のインダクタの端子となる。そして、この構成とすることで、インダクタ部品10の裏面に、裏面に直交する方向(z方向)に延び、裏面から突出する形状の端子電極61、62、63が配置されるので、インダクタ部品10の実装性が向上する。
また、端子電極61、62、63を上述の金属ピンと同様に形成することによって、端子電極61、62、63の抵抗率を低くすることができる。
なお、端子電極61、62、63は、螺旋形状のコイルの延びる方向に沿って、端子電極61、端子電極63、端子電極62の順に間隔を空けて配置されていればよい。すなわち、端子電極61、端子電極63、端子電極62の配置位置を適宜設定することによって、第1のインダクタおよび第2のインダクタを所望のインダクタンスに調整できる。
上述した実施形態では、端子電極61、62、63をインダクタ部品10の裏面に形成したが、端子電極61、62、63の一部(例えば、端子電極62)をインダクタ部品10の表面に形成してもよい。
次に、本発明の第2の実施形態に係るインダクタ部品について、図を参照して説明する。図3は、本発明の第2の実施形態に係るインダクタ部品の分解斜視図である。図4は、本発明の第2の実施形態に係るインダクタ部品の外観斜視図である。
本実施形態に係るインダクタ部品10Aは、第1の実施形態に係るインダクタ部品10に対して、コア部材40が1個である点において異なる。インダクタ部品10Aの他の構成は、第1の実施形態に係るインダクタ部品10と同様であり、同様の箇所の説明は省略する。
コア部材40は、上面および下面を有する直方体形状であり、インダクタ部品10Aとしての第1端面ED1から第2端面ED2まで繋がる形状である。
コア部材40には、上面から下面に貫く貫通孔401、402、403、404、405、406、407、408が形成されている。貫通孔401、402、403、404は、コア部材40における第1側面SD1の近傍に形成されており、第1側面SD1に平行な方向(図3、図4のx方向)に間隔を空けて形成されている。貫通孔401、402、403、404は、第1端面ED1から第2端面ED2に向かって、x方向に沿って、この順に配置されている。
貫通孔405、406、407、408は、コア部材40における第2側面SD2の近傍に形成されており、第2側面SD2に平行な方向(図3、図4のx方向)に間隔を空けて形成されている。貫通孔405、406、407、408は、第1端面ED1から第2端面ED2に向かって、x方向に沿って、この順に配置されている。
貫通孔401には金属ピン511が挿通されており、貫通孔402には金属ピン521が挿通されており、貫通孔403には金属ピン531が挿通されており、貫通孔404には金属ピン541が挿通されている。
貫通孔405には金属ピン522が挿通されており、貫通孔406には金属ピン532が挿通されており、貫通孔407には金属ピン542が挿通されており、貫通孔408には金属ピン552が挿通されている。
このような構成とすることで、端子電極61と端子電極63とを入出力端子とする第1のインダクタと、端子電極62と端子電極63とを入出力端子とする第2のインダクタとが一体形成される。そして、第1のインダクタと第2のインダクタとは磁界結合している。すなわち、インダクタ部品10Aは、互いに磁界結合した第1のインダクタと第2のインダクタとが一体形成された構成を実現している。そして、このような磁界結合を有する構成であっても、第1の実施形態のインダクタ部品10と同様に、第1のインダクタと第2のインダクタとの間の特性バラツキが抑制され、第1のインダクタと第2のインダクタとのそれぞれに対して、優れたインダクタ特性を実現できる。
次に、第3の実施形態に係る電源モジュールについて、図を参照して説明する。図5は、本発明の第3の実施形態に係る電源モジュールの回路図である。
図5に示すように、電源モジュール91は、電源制御IC911、スイッチング素子Q11、Q12、Q21、Q22、インダクタL11、L21、および、出力コンデンサCo1、Co2を備える。インダクタL11およびインダクタL21には、それぞれに直流抵抗(DCR)成分が含まれている。等価回路的には、インダクタL11のDCRL11は、インダクタL11に直列接続されており、インダクタL21のDCRL21は、インダクタL21に直列接続されている。
スイッチング素子Q11とスイッチング素子Q12は、電圧入力端子Vinとグランドとの間に接続されている。また、スイッチング素子Q11とスイッチング素子Q12は、電源制御IC911に接続されている。スイッチング素子Q11とスイッチング素子Q12は、電源制御IC911によってスイッチング制御される。
スイッチング素子Q11とスイッチング素子Q12とが接続されたスイッチングノードには、インダクタL11が接続されており、この直列回路は、電圧出力端子Voutに接続されている。電圧出力端子Voutとグランドとの間には、出力コンデンサCo1が接続されている。
スイッチング素子Q21とスイッチング素子Q22は、電圧入力端子Vinとグランドとの間に接続されている。また、スイッチング素子Q21とスイッチング素子Q22は、電源制御IC911に接続されている。スイッチング素子Q21とスイッチング素子Q22は、電源制御IC911によってスイッチング制御される。
スイッチング素子Q21とスイッチング素子Q22とが接続されたスイッチングノードには、インダクタL21が接続されており、この直列回路は、電圧出力端子Voutに接続されている。電圧出力端子Voutとグランドとの間には、出力コンデンサCo2が接続されている。
このような構成によって、電源モジュール91は、インダクタL11側の第1のパワーステージと、インダクタL21側の第2のパワーステージとを備えるマルチフェーズコンバータを実現している。そして、インダクタL11とインダクタL21には、上述のインダクタ部品10が用いられている。例えば、インダクタL11がインダクタ部品10の第1のインダクタで実現され、インダクタL12がインダクタ部品10の第2のインダクタで実現されている。
これにより、インダクタL11とインダクタL21とのDCRのバラツキが小さくなる。したがって、インダクタL11とインダクタL21との電流のセンシング精度を向上でき、複数のパワーステージ(マルチフェーズ)間での電流バランスを高精度に保持でき、電源モジュール91の特性が改善される。
また、インダクタL11とインダクタL21とのインダクタンスのバラツキを低減できるので、インダクタ電流のバラツキを低減でき、電源モジュール91の特性が改善される。
また、インダクタ部品10を用いることによって、インダクタL11とインダクタL21に大電流を流すことが可能になり、大電流用のアプリケーションへの対応が可能になる。
また、端子電極61、62の位置の配置自由度が高いので、スイッチング素子Q11、Q12のスイッチングノードとインダクタL11との距離、スイッチング素子Q21、Q22のスイッチングノードとインダクタL21との距離を短くでき、電源モジュール91のノイズ耐性を改善できる。
また、各パワーステージの電圧出力端子Voutを容易に共通化でき、電源モジュール91の構成を簡素化できる。
次に、第4の実施形態に係る電源モジュールについて、図を参照して説明する。図6は、本発明の第4の実施形態に係る電源モジュールの回路図である。
図6に示すように、電源モジュール92は、電源制御IC921、スイッチング素子Q30、インダクタLp、Ls、コンデンサCs、ダイオードD、および、出力コンデンサCoを備える。
電圧入力端子Vinとグランドとの間には、インダクタLp、コンデンサCs、および、インダクタLsの直列回路が接続されている。インダクタLpとコンデンサCsとの接続点とグランドとの間には、スイッチング素子Q30が接続されている。スイッチング素子Q30には、電源制御IC921が接続されている。スイッチング素子Q30は、電源制御IC921によってスイッチング制御されている。
コンデンサCsとインダクタLsとの接続点には、ダイオードDのアノードが接続されており、ダイオードDのカソードは、電圧出力端子Voutに接続されている。電圧出力端子Voutとグランドとの間には、出力コンデンサCoが接続されている。
このような構成によって、電源モジュール92は、SEPICコンバータを実現している。そして、インダクタLpとインダクタLsには、上述のインダクタ部品10Aが用いられている。例えば、インダクタLpがインダクタ部品10Aの第1のインダクタで実現され、インダクタLsがインダクタ部品10Aの第2のインダクタで実現されている。
SEPICコンバータは、インダクタLpとインダクタLsとの特性バラツキが小さいことが好ましい。したがって、インダクタLp、Lsをインダクタ部品10Aで実現することによって、電源モジュール92は、優れた特性を実現できる。
次に、第5の実施形態に係る電源モジュールについて、図を参照して説明する。図7は、本発明の第5の実施形態に係る電源モジュールの回路図である。
図7に示すように、電源モジュール93は、電源制御IC931、スイッチング素子Q41、Q42、インダクタL3、および、出力コンデンサCoを備える。インダクタL3は互いに結合するインダクタL32とインダクタL32とからなる。
電圧入力端子Vinとグランドとの間には、スイッチング素子Q41、インダクタL32、スイッチング素子Q42の直列回路が接続されている。スイッチング素子Q41、Q42には、電源制御IC931が接続されている。スイッチング素子Q41、Q42は、電源制御IC931によってスイッチング制御されている。インダクタL32のスイッチング素子Q42側は、インダクタL31に接続されている。言い換えれば、スイッチング素子Q42は、インダクタL32とインダクタL31との接続点とグランドとの間に接続されている。インダクタL31は、電圧出力端子Voutに接続されている。電圧出力端子Voutとグランドとの間には、出力コンデンサCoが接続されている。
このような構成によって、電源モジュール93は、Tapped inductorを用いた電源モジュールを実現している。インダクタL3には、上述のインダクタ部品10Aが用いられている。例えば、インダクタL31がインダクタ部品10Aの第2のインダクタで実現され、インダクタL32がインダクタ部品10Aの第1のインダクタで実現されている。
このような構成によって、電源モジュール93は、中間タップ位置、すなわち、インダクタL32とインダクタL31とのインダクタンス比の設定自由度が高い電源モジュールを容易に実現できる。具体的には、第1のインダクタと第2のインダクタの巻線比、巻き方等を、第1金属板、第2金属板、端子電極の位置等によって設定することで、インダクタL32とインダクタL31とのインダクタンス比を、高い自由度で容易に実現できる。また、電源モジュール93は、インダクタ部品10Aを用いることで、大電流用のアプリケーションに適用できる。また、電源モジュール93は、入出力電圧差が大きな昇圧型コンバータまたは降圧側コンバータに利用できる。
次に、第6の実施形態に係る電源モジュールについて、図を参照して説明する。図8は、本発明の第6の実施形態に係る電源モジュールの回路図である。
図8に示すように、電源モジュール94は、電源制御IC941、スイッチング素子Q50、絶縁型トランスTR、共振用コンデンサCres、出力側ダイオードDo、入力コンデンサCin、および、出力コンデンサCoを備える。絶縁型トランスTRは、一次側コイルL91と二次側コイルL92とを備える。
電圧入力端子Vinの第1端と第2端との間には、絶縁型トランスTRの一次側コイルL91とスイッチング素子Q50の直列回路が接続されている。一次側コイルL91には、共振用コンデンサCresが並列接続されている。電圧入力端子Vinの第1端と第2端との間には、入力コンデンサCinが接続されている。絶縁型トランスTRの二次側コイルL92の一方端は、出力側ダイオードDoを介して、電圧出力端子Voutの第1端が接続され、二次側コイルL92の他方端は、電圧出力端子Voutの第2端が接続されている。スイッチング素子Q50には、電源制御IC941が接続されている。スイッチング素子Q50は、電源制御IC941によってスイッチング制御されている。
このような構成によって、電源モジュール94は、絶縁型DCコンバータを実現している。絶縁型トランスTRには、上述のインダクタ部品10Aが用いられている。例えば、一次側コイルL91がインダクタ部品10Aの第1のインダクタで実現され、二次側コイルL92がインダクタ部品10Aの第2のインダクタで実現されている。
このような構成によって、電源モジュール94は、一次側コイルL91と二次側コイルL92とのインダクタンス比の設定自由度が高い電源モジュールを容易に実現できる。具体的には、インダクタ部品10Aの第1のインダクタと第2のインダクタの巻線比、巻き方等を、第1金属板、第2金属板、端子電極の位置等によって設定することで、一次側コイルL91と二次側コイルL92とのインダクタンス比を、高い自由度で容易に実現できる。また、電源モジュール94は、インダクタ部品10Aを用いることで、大電流用のアプリケーションに適用できる。
また、絶縁型トランスTRを実現する従来の構成では、EIコア、EEコア等のコアによる一次側コイルと二次側コイルとの結合度を考慮する必要があり、製造時に調整を行う必要があったが、インダクタ部品10Aを用いることによって、このような調整を行うことなく、一次側コイルと二次側コイルを所望の結合にすることができる。
上述の各電源モジュールは、図9に示すような構造によって実現できる。図9は、本発明の実施形態に係る電源モジュールの概略構成を示す外観斜視図である。なお、図9では、本願に特徴的な部分を構成する部品のみを図示しており、他の部品の図示は省略している。また、図9では、電源モジュール93の場合を示しているが、他の電源モジュールも同様の構成を適用できる。
図9に示すように、電源モジュール93は、回路基板900、スイッチング素子Q41、Q42、インダクタ部品10A、および、電源制御IC931を備える。スイッチング素子Q41、Q42、インダクタ部品10A、および、電源制御IC931は、実装型電子部品であり、回路基板900の表面に実装されている。回路基板900には、これらスイッチング素子Q41、Q42、インダクタ部品10A、電源制御IC931、および、図示を省略した部品を実装することによって、図7に示す回路を実現している。
インダクタ部品10Aの端子電極61、62、63は、回路基板900の表面の導体パターンに接続されている。端子電極61が接続された導体パターンには、スイッチング素子Q41が接続されている。端子電極62が接続された導体パターンは、図示しない電圧出力端子Voutに接続されている。端子電極63が接続された導体パターンは、スイッチング素子Q42に接続されている。
回路基板900を平面視して、スイッチング素子Q41の少なくとも一部およびスイッチング素子Q42の少なくとも一部は、インダクタ部品10Aに重畳している。スイッチング素子Q41とスイッチング素子Q42は、インダクタ部品10Aの裏面側に配置されている。特に、図9に示すように、スイッチング素子Q42がインダクタ部品10Aに略重畳して配置されていることが好ましい。
これにより、インダクタ部品10Aの端子電極63とスイッチング素子Q42との物理的距離および接続距離を短くでき、電源モジュール93は、ノイズに対する耐性を向上できる。また、電源モジュール93の平面視した形状を小さくできる。
なお、上述の説明では、インダクタ部品を電源モジュールに適用する態様を示したが、複数のインダクタを備える電気回路部品および電子回路部品にも適用することができる。
例えば、上述のインダクタ部品10Aを、コモンモードチョークコイルに適用することができる。この場合、第1金属板または第2金属板のいずれかを分断する構成、金属ピンを分断、または、複数の金属ピンのいずれか1個を省略する構成によって実現が可能である。そして、インダクタ部品の構成を備えることによって、優れた特性のコモンモードチョークコイルを実現できる。
以上、本発明に係るインダクタ部品および電源モジュールについて、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されない。本発明の主旨を逸脱しない限り、当業者が考えうる各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本発明の範囲内に含まれる。
10、10A:インダクタ部品
21、22、23、24:第1金属板
31、32、33、34、35:第2金属板
40、41、42:コア部材
61、62、63:端子電極
91、92、93、94:電源モジュール
401-408、411-413、421-423:貫通孔
511、521、522、531、532、541、542、552:金属ピン
900:回路基板
Cin:入力コンデンサ
Co:出力コンデンサ
Co1:出力コンデンサ
Co2:出力コンデンサ
Cres:共振用コンデンサ
Cs:コンデンサ
D:ダイオード
Do:出力側ダイオード
ED1:第1端面
ED2:第2端面
IC:電源制御用
911、921、931、941:電源制御IC
L11、L12、L21、L3、L31、L32、Lp、Ls:インダクタ
L91:一次側コイル
L92:二次側コイル
Q11、Q12、Q21、Q22、Q30、Q41、Q42、Q50:スイッチング素子
DCRL11、DCRL12:インダクタの直流抵抗
SD1:第1側面
SD2:第2側面
TR:絶縁型トランス
Vin:電圧入力端子
Vout:電圧出力端子
21、22、23、24:第1金属板
31、32、33、34、35:第2金属板
40、41、42:コア部材
61、62、63:端子電極
91、92、93、94:電源モジュール
401-408、411-413、421-423:貫通孔
511、521、522、531、532、541、542、552:金属ピン
900:回路基板
Cin:入力コンデンサ
Co:出力コンデンサ
Co1:出力コンデンサ
Co2:出力コンデンサ
Cres:共振用コンデンサ
Cs:コンデンサ
D:ダイオード
Do:出力側ダイオード
ED1:第1端面
ED2:第2端面
IC:電源制御用
911、921、931、941:電源制御IC
L11、L12、L21、L3、L31、L32、Lp、Ls:インダクタ
L91:一次側コイル
L92:二次側コイル
Q11、Q12、Q21、Q22、Q30、Q41、Q42、Q50:スイッチング素子
DCRL11、DCRL12:インダクタの直流抵抗
SD1:第1側面
SD2:第2側面
TR:絶縁型トランス
Vin:電圧入力端子
Vout:電圧出力端子
Claims (6)
- 上面と下面を有するコア部材と、
該コア部材に配置されたコイルと、
第1端子電極、第2端子電極、および、第3端子電極と、を備え、
前記コイルは、
前記コア部材の上面に配置された第1金属板と、
前記コア部材の下面に配置された第2金属板と、
前記コア部材を厚み方向に貫通する複数の金属ピンと、を備え、
前記第1金属板と前記第2金属板とを前記複数の金属ピンによって接続して、螺旋形に形成されており、
前記第1端子電極、前記第2端子電極、および、前記第3端子電極は、前記コイルにおける前記螺旋形の延びる方向に沿って、間隔を空けて、前記コイルに接続されている、
インダクタ部品。 - 前記コア部材は、複数に分断されており、分断された複数のコア部材は、前記上面と前記下面に平行な方向に間隔を空けて配置されている、
請求項1に記載のインダクタ部品。 - 前記コア部材は分断されていない、
請求項1に記載のインダクタ部品。 - 前記第1端子電極、前記第2端子電極、および、前記第3端子電極は、
前記第2金属板に接続し、前記コア部材の前記下面に直交する方向に延びる柱状である、
請求項1乃至請求項3のいずれかに記載のインダクタ部品。 - 請求項4に記載のインダクタ部品と、
所定の回路パターンが形成された回路基板と、
電源制御用ICと、
スイッチング素子と、を備え、
前記インダクタ部品、前記電源制御用IC、および、前記スイッチング素子は、前記回路基板に実装されており、
前記スイッチング素子は、前記インダクタ部品における前記第1端子電極、前記第2端子電極、および、前記第3端子電極のうち、前記スイッチング素子が接続される端子電極に近接して配置されている、
電源モジュール。 - 前記スイッチング素子と、前記インダクタ部品とは、平面視において少なくとも部分的に重畳して配置されている、
請求項5に記載の電源モジュール。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018537219A JP6662461B2 (ja) | 2016-09-02 | 2017-08-25 | インダクタ部品、および、電源モジュール |
EP17846323.8A EP3493227B1 (en) | 2016-09-02 | 2017-08-25 | Inductor component and power supply module |
CN201780052496.9A CN109643597B (zh) | 2016-09-02 | 2017-08-25 | 电感器部件以及电源模块 |
US16/269,587 US11456106B2 (en) | 2016-09-02 | 2019-02-07 | Inductor component and power supply module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-171464 | 2016-09-02 | ||
JP2016171464 | 2016-09-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/269,587 Continuation US11456106B2 (en) | 2016-09-02 | 2019-02-07 | Inductor component and power supply module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043318A1 true WO2018043318A1 (ja) | 2018-03-08 |
Family
ID=61300754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/030482 WO2018043318A1 (ja) | 2016-09-02 | 2017-08-25 | インダクタ部品、および、電源モジュール |
Country Status (5)
Country | Link |
---|---|
US (1) | US11456106B2 (ja) |
EP (1) | EP3493227B1 (ja) |
JP (2) | JP6662461B2 (ja) |
CN (1) | CN109643597B (ja) |
WO (1) | WO2018043318A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020079002A1 (en) * | 2018-10-15 | 2020-04-23 | University College Cork - National University Of Ireland, Cork | A vertical magnetic structure for integrated power conversion |
CN111415812A (zh) * | 2019-01-07 | 2020-07-14 | 台达电子企业管理(上海)有限公司 | 耦合电感及电源模块 |
JP2023035037A (ja) * | 2021-08-31 | 2023-03-13 | 株式会社村田製作所 | インダクタ部品およびインダクタ部品の実装構造 |
US11676756B2 (en) | 2019-01-07 | 2023-06-13 | Delta Electronics (Shanghai) Co., Ltd. | Coupled inductor and power supply module |
US11909311B2 (en) | 2017-05-05 | 2024-02-20 | Delta Electronics (Shanghai) Co., Ltd | Power converter, inductor element and control method of phase shedding |
WO2024095566A1 (ja) * | 2022-11-02 | 2024-05-10 | 株式会社村田製作所 | インダクタ部品 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3493227B1 (en) | 2016-09-02 | 2023-01-25 | Murata Manufacturing Co., Ltd. | Inductor component and power supply module |
US20220293326A1 (en) * | 2021-03-12 | 2022-09-15 | Virginia Tech Intellectual Properties, Inc. | Multi-phase integrated coupled inductor structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000040620A (ja) | 1998-07-24 | 2000-02-08 | Toshiba Corp | インダクタ及び該インダクタを使用した回路装置 |
JP2013243330A (ja) * | 2012-04-25 | 2013-12-05 | Nec Tokin Corp | シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法 |
JP2014168038A (ja) * | 2013-02-04 | 2014-09-11 | Nec Tokin Corp | 磁芯、インダクタ、及びインダクタを備えたモジュール |
JP2016046390A (ja) * | 2014-08-22 | 2016-04-04 | Necトーキン株式会社 | インダクタ部品およびその製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2045540B (en) * | 1978-12-28 | 1983-08-03 | Tdk Electronics Co Ltd | Electrical inductive device |
JP2909122B2 (ja) * | 1990-02-09 | 1999-06-23 | 東光株式会社 | 積層複合部品 |
US5572180A (en) * | 1995-11-16 | 1996-11-05 | Motorola, Inc. | Surface mountable inductor |
JPH10335142A (ja) * | 1997-05-29 | 1998-12-18 | Citizen Electron Co Ltd | チップインダクタとその製造方法 |
JP2003059722A (ja) * | 2001-08-10 | 2003-02-28 | Murata Mfg Co Ltd | 積層型インダクタ及びその製造方法 |
JP2006054208A (ja) * | 2002-08-29 | 2006-02-23 | Ajinomoto Co Inc | 可変インダクタンス素子、可変インダクタンス素子内蔵多層基板、半導体チップ及びチップ型可変インダクタンス素子 |
JP2005184343A (ja) * | 2003-12-18 | 2005-07-07 | Murata Mfg Co Ltd | 積層セラミック電子部品 |
US8378777B2 (en) * | 2008-07-29 | 2013-02-19 | Cooper Technologies Company | Magnetic electrical device |
TWI384739B (zh) * | 2008-01-03 | 2013-02-01 | Delta Electronics Inc | 組合式電路及電子元件 |
JP2010147043A (ja) * | 2008-12-16 | 2010-07-01 | Sony Corp | インダクタモジュール、回路モジュール |
CN102308349B (zh) * | 2009-02-07 | 2016-06-29 | 株式会社村田制作所 | 带平板状线圈的模块的制造方法及带平板状线圈的模块 |
US9287844B2 (en) * | 2011-07-07 | 2016-03-15 | Kemet Electronics Corporation | Surface mountable multi-layer ceramic filter |
JP5338875B2 (ja) * | 2011-08-25 | 2013-11-13 | 株式会社村田製作所 | Dc−dcコンバータ |
US9337251B2 (en) * | 2013-01-22 | 2016-05-10 | Ferric, Inc. | Integrated magnetic core inductors with interleaved windings |
JPWO2015019519A1 (ja) * | 2013-08-07 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Dc−dcコンバータモジュール |
CN108701527B (zh) * | 2016-02-16 | 2021-06-18 | 株式会社村田制作所 | 电感器部件以及电感器部件的制造方法 |
EP3493227B1 (en) | 2016-09-02 | 2023-01-25 | Murata Manufacturing Co., Ltd. | Inductor component and power supply module |
-
2017
- 2017-08-25 EP EP17846323.8A patent/EP3493227B1/en active Active
- 2017-08-25 WO PCT/JP2017/030482 patent/WO2018043318A1/ja unknown
- 2017-08-25 JP JP2018537219A patent/JP6662461B2/ja active Active
- 2017-08-25 CN CN201780052496.9A patent/CN109643597B/zh active Active
-
2019
- 2019-02-07 US US16/269,587 patent/US11456106B2/en active Active
- 2019-11-20 JP JP2019209486A patent/JP2020043352A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000040620A (ja) | 1998-07-24 | 2000-02-08 | Toshiba Corp | インダクタ及び該インダクタを使用した回路装置 |
JP2013243330A (ja) * | 2012-04-25 | 2013-12-05 | Nec Tokin Corp | シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法 |
JP2014168038A (ja) * | 2013-02-04 | 2014-09-11 | Nec Tokin Corp | 磁芯、インダクタ、及びインダクタを備えたモジュール |
JP2016046390A (ja) * | 2014-08-22 | 2016-04-04 | Necトーキン株式会社 | インダクタ部品およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3493227A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11909311B2 (en) | 2017-05-05 | 2024-02-20 | Delta Electronics (Shanghai) Co., Ltd | Power converter, inductor element and control method of phase shedding |
WO2020079002A1 (en) * | 2018-10-15 | 2020-04-23 | University College Cork - National University Of Ireland, Cork | A vertical magnetic structure for integrated power conversion |
CN111415812A (zh) * | 2019-01-07 | 2020-07-14 | 台达电子企业管理(上海)有限公司 | 耦合电感及电源模块 |
US11676756B2 (en) | 2019-01-07 | 2023-06-13 | Delta Electronics (Shanghai) Co., Ltd. | Coupled inductor and power supply module |
CN111415812B (zh) * | 2019-01-07 | 2023-11-10 | 台达电子企业管理(上海)有限公司 | 耦合电感及电源模块 |
US11901113B2 (en) | 2019-01-07 | 2024-02-13 | Delta Electronics (Shanghai) Co., Ltd. | Inversely coupled inductor and power supply module |
JP2023035037A (ja) * | 2021-08-31 | 2023-03-13 | 株式会社村田製作所 | インダクタ部品およびインダクタ部品の実装構造 |
JP7548165B2 (ja) | 2021-08-31 | 2024-09-10 | 株式会社村田製作所 | インダクタ部品およびインダクタ部品の実装構造 |
WO2024095566A1 (ja) * | 2022-11-02 | 2024-05-10 | 株式会社村田製作所 | インダクタ部品 |
Also Published As
Publication number | Publication date |
---|---|
EP3493227A1 (en) | 2019-06-05 |
US11456106B2 (en) | 2022-09-27 |
EP3493227A4 (en) | 2020-01-22 |
JPWO2018043318A1 (ja) | 2019-06-24 |
CN109643597B (zh) | 2021-08-24 |
JP6662461B2 (ja) | 2020-03-11 |
JP2020043352A (ja) | 2020-03-19 |
EP3493227B1 (en) | 2023-01-25 |
CN109643597A (zh) | 2019-04-16 |
US20190189334A1 (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6662461B2 (ja) | インダクタ部品、および、電源モジュール | |
US9320134B2 (en) | DC-DC converter module and multi-layer substrate | |
JPWO2009131059A1 (ja) | トランスならびにそれを用いた電力変換装置、点灯装置、車両用灯具および車両 | |
US10049807B2 (en) | Laminated coil component and matching circuit | |
JP2012164770A (ja) | コイル内蔵基板およびそれを備えたdc−dcコンバータモジュール | |
JP6432460B2 (ja) | Dc−dcコンバータ | |
US9553509B2 (en) | Multichannel DC-DC converter | |
US11424066B2 (en) | Electronic component including planar transformer | |
JP6330311B2 (ja) | 巻線部品及び電源装置 | |
KR102687173B1 (ko) | 평면형 트랜스포머 | |
US10497504B2 (en) | Uncoupled multi-phase inductor | |
US11024571B2 (en) | Coil built-in multilayer substrate and power supply module | |
JP6326803B2 (ja) | コイル基板、巻線部品及び電源装置 | |
JP6090348B2 (ja) | コイル内蔵基板およびそれを備えたdc−dcコンバータモジュール | |
JP2018107926A (ja) | スイッチング電源装置 | |
WO2013171924A1 (ja) | 多チャンネル型dc-dcコンバータ | |
JPWO2020039625A1 (ja) | 電力変換回路モジュール | |
US20230187119A1 (en) | Embedded magnetic component transformer device | |
US20240266105A1 (en) | Transformer assembly including copper stampings as secondary windings | |
JP2011239507A (ja) | 電源モジュール | |
WO2010053038A1 (ja) | 実装型電子回路モジュール | |
JP2008091500A (ja) | インダクタ回路 | |
JP2013005578A (ja) | Lcモジュールおよびdc−dcコンバータ | |
JP2013021800A (ja) | 平滑コンデンサの回路基板への実装構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846323 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018537219 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017846323 Country of ref document: EP Effective date: 20190226 |