WO2018043262A1 - パターン形成方法、積層体の製造方法および電子デバイスの製造方法 - Google Patents

パターン形成方法、積層体の製造方法および電子デバイスの製造方法 Download PDF

Info

Publication number
WO2018043262A1
WO2018043262A1 PCT/JP2017/030218 JP2017030218W WO2018043262A1 WO 2018043262 A1 WO2018043262 A1 WO 2018043262A1 JP 2017030218 W JP2017030218 W JP 2017030218W WO 2018043262 A1 WO2018043262 A1 WO 2018043262A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
pattern
negative photosensitive
photosensitive resin
Prior art date
Application number
PCT/JP2017/030218
Other languages
English (en)
French (fr)
Inventor
犬島 孝能
勝志 伊藤
ステファン ヴァンクロースター
哲 村山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018537191A priority Critical patent/JP6745344B2/ja
Publication of WO2018043262A1 publication Critical patent/WO2018043262A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a pattern forming method, a laminate manufacturing method, and an electronic device manufacturing method.
  • Polyimide is excellent in heat resistance and insulation, so it is used for insulation layers of electronic devices.
  • polyimide precursor polyimide precursor
  • it is applied to a support in the state of a precursor (polyimide precursor) before the cyclization reaction, and then heated to cyclize the polyimide precursor to form a cured film. It has also been done.
  • Patent Documents 1 and 2 describe forming a pattern using a negative photosensitive resin composition containing a polyimide precursor and a photopolymerization initiator.
  • a pattern can be formed on a negative photosensitive resin composition layer formed on a support having a step or a negative photosensitive resin composition.
  • Two or more types of patterns may be formed by laminating a plurality of resin composition layers. In such a case, two or more patterns having different thicknesses are formed.
  • a method of changing the mask and the exposure amount for each pattern thickness is used. However, in this case, it is necessary to perform the exposure process a plurality of times, and the number of processes is increased. Further, as the thickness difference between patterns increases, it tends to be difficult to form a desired pattern shape.
  • Patent Documents 1 and 2 there is no description or suggestion regarding forming patterns having different thicknesses.
  • an object of the present invention is to provide a pattern forming method, a laminate manufacturing method, and an electronic device manufacturing method capable of forming two or more types of patterns having different thicknesses with a wide range of exposure and high resolution. is there.
  • a negative photosensitive resin composition layer is formed on a support using a negative photosensitive resin composition containing a resin and a photopolymerization initiator, and exposed to the negative photosensitive resin composition layer.
  • a pattern forming method of performing development and simultaneously forming two or more patterns having different thicknesses Among the patterns with different thicknesses to be formed at the same time, the thickness of the thickest pattern is 1.5 to 10 times the thickness of the thinnest pattern.
  • a negative photosensitive resin composition in which the difference between the maximum value and the minimum value of the exposure amount capable of resolving a pattern having a thickness of 15 ⁇ m and a line width of 15 ⁇ m or less is 600 mJ / cm 2 or more.
  • a pattern forming method using ⁇ 2> Two or more negative photosensitive resin composition layers are laminated on the support, and the negative photosensitive resin composition layer obtained by laminating two or more layers is exposed and developed, and the thicknesses are different.
  • the pattern forming method according to ⁇ 1> wherein patterns of seeds or more are simultaneously formed.
  • ⁇ 3> The pattern formation according to ⁇ 1> or ⁇ 2>, wherein the thickness of the thickest pattern among the patterns having different thicknesses formed is 1.75 to 8 times the thickness of the thinnest pattern.
  • Method. ⁇ 4> The pattern forming method according to ⁇ 1> or ⁇ 2>, wherein the thickness of the thickest pattern among the patterns formed at the same time is 2 to 6 times the thickness of the thinnest pattern.
  • ⁇ 6> The pattern forming method according to any one of ⁇ 1> to ⁇ 5>, wherein the resin is a polyimide precursor.
  • the polyimide precursor is represented by the following formula (1); In formula (1), A 21 and A 22 each independently represent an oxygen atom or —NH—, R 21 represents a divalent organic group, R 22 represents a tetravalent organic group, R 23 and R 24 each independently represents a hydrogen atom or a monovalent organic group.
  • a pattern forming method a laminate manufacturing method, and an electronic device manufacturing method capable of forming two or more patterns having different thicknesses with a wide range of exposure amounts with good resolution.
  • the description of the components in the present invention described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the notation which does not describe substitution and unsubstituted includes the group which has a substituent with the group which does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams.
  • the light used for the exposure generally includes an active ray or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays or electron beams.
  • an active ray or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays or electron beams.
  • EUV light extreme ultraviolet rays
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate represents both and / or “acrylate” and “methacrylate”
  • (meth) allyl means both “allyl” and “methallyl”
  • (Meth) acryl” represents either “acryl” and “methacryl” or any one
  • “(meth) acryloyl” represents both “acryloyl” and “methacryloyl”, or Represents either.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • solid content concentration is the mass percentage of the other component except a solvent with respect to the gross mass of a composition.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are defined as polystyrene conversion values according to gel permeation chromatography (GPC) measurement unless otherwise specified.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220 (manufactured by Tosoh Corporation), and guard columns HZ-L, TSKgel Super HZM-M, TSKgel.
  • THF tetrahydrofuran
  • detection is performed using a UV ray (ultraviolet) wavelength 254 nm detector.
  • a negative photosensitive resin composition layer is formed using a negative photosensitive resin composition containing a resin and a photopolymerization initiator, and the negative photosensitive resin composition layer is exposed. And developing, and simultaneously forming two or more types of patterns having different thicknesses, and among the patterns having different thicknesses formed simultaneously, the thickness of the thickest pattern is the thickness of the thinnest pattern.
  • the difference between the maximum value and the minimum value of the exposure amount that can resolve a pattern having a thickness of 15 ⁇ m and a line width of 15 ⁇ m or less is 600 mJ / cm.
  • a negative photosensitive resin composition that is 2 or more is used.
  • the negative photosensitive resin composition by using the negative photosensitive resin composition in which the difference between the maximum value and the minimum value of the exposure amount is 600 mJ / cm 2 or more, By the amount, two or more patterns having different thicknesses can be formed simultaneously and with good resolution. For this reason, patterns with different thicknesses can be formed with good resolution with a small number of steps.
  • the desired pattern can be obtained even if the performance of the photosensitive composition changes over time (for example, the sensitivity is reduced) or the apparatus varies. Can also be expected.
  • simultaneously forming two or more types of patterns having different thicknesses means forming two or more types of patterns having different thicknesses by a single exposure and development operation.
  • the maximum value and the minimum value of the exposure amount that can resolve a pattern having a thickness of 15 ⁇ m and a line width of 15 ⁇ m or less are values defined as follows.
  • pattern resolution if the exposure amount at the time of exposure is too low, curing of the negative photosensitive resin composition layer does not proceed sufficiently, and a desired pattern cannot be resolved.
  • the exposure amount is too high, curing of the unexposed portion at the peripheral portion of the mask proceeds and pattern thickening occurs, and a pattern having a desired size cannot be resolved.
  • a negative photosensitive resin composition is applied to a support, dried to form a negative photosensitive resin composition layer having a thickness of 15 ⁇ m, and an exposure amount with respect to the negative photosensitive resin composition layer having a thickness of 15 ⁇ m.
  • the pattern of 15 ⁇ m in thickness and 15 ⁇ m or less in line width (preferably 15 ⁇ m in line width) is formed by developing and removing the unexposed portion, exposure is performed by varying the exposure amount during exposure, Among exposure amounts that can resolve a pattern having a thickness of 15 ⁇ m and a line width of 15 ⁇ m or less (preferably a line width of 15 ⁇ m), the lowest exposure value is defined as the minimum exposure value, and the highest exposure value is obtained. Is the maximum exposure value.
  • 100 mJ / cm 2 is The minimum exposure value.
  • 100 mJ / cm 2 is The minimum exposure value.
  • 1000 mJ / cm 2 exceeds 1000 mJ / cm 2
  • 1000 mJ / cm 2 Is the maximum exposure value.
  • light (radiation) used for exposure radiation such as visible light, ultraviolet light, far ultraviolet light, charged particle beam, and X-ray can be appropriately selected and used, but the wavelength is in the range of 190 to 450 nm.
  • the line width of a pattern is a line width of the image development removal part (negative pattern) of a negative photosensitive resin composition layer.
  • a pattern having a desired size can be resolved when the exposed width of the base is 0.8 to 1.2 times the mask dimension. For example, when a pattern is formed using a mask having a line width of 15 ⁇ m, a pattern having a line width of 15 ⁇ m can be resolved when the exposed width of the base is 15 ⁇ 3 ⁇ m.
  • the difference between the maximum value and the minimum value of the exposure amount is 600 mJ / cm 2 or more, preferably 700 mJ / cm 2 or more, more preferably 800 mJ / cm 2 or more, more preferably 900 mJ / cm 2 or more.
  • the upper limit is not particularly limited, since they can reduce the time required for each step, is preferably 1800 mJ / cm 2 or less, more preferably 1700mJ / cm 2 or less, 1600 mJ / cm 2 or less More preferably.
  • At least one selected from the maximum value and the minimum value of the exposure amount is in the range of 50 to 500 mJ / cm 2 (more A range of 100 to 400 mJ / cm 2 is preferable. Range both are 10 ⁇ 2000mJ / cm 2 of the maximum value and the minimum value of the above-described exposure amount (more preferably in the range of 50 ⁇ 1800mJ / cm 2) particularly preferably in the.
  • Examples of a method for adjusting the difference between the maximum value and the minimum value of the exposure amount in the negative photosensitive resin composition to 600 mJ / cm 2 include a method of adjusting the ratio of the resin and the photopolymerization initiator.
  • a method of adjusting the ratio of the resin and the photopolymerization initiator when using together resin and a radically polymerizable compound, it is also preferable to adjust the ratio of resin, a radically polymerizable compound, and a photoinitiator.
  • the ratio (mass ratio) of the resin and the radical polymerization initiator is adjusted in the range of 5: 1 to 10: 1, and the ratio (mass ratio) of the radical polymerization initiator to the photopolymerization initiator is 2: 1 to 8: 1. It is also preferable to adjust in the range of: 1.
  • the thickness of the thickest pattern and the thickness of the thinnest pattern in the patterns of different thicknesses formed at the same time mean the thickness of the pattern formed by negative development.
  • A1, B1, and C1 in FIG. 1 are pattern thicknesses
  • B1 in FIG. 1 corresponds to the thickness of the thickest pattern
  • A1 in FIG. 1 corresponds to the thickness of the thinnest pattern.
  • Reference numeral 10 in FIG. 1 denotes a resin layer formed using a negative photosensitive resin composition
  • reference numeral 20 denotes a structure such as a support or a metal layer.
  • a negative photosensitive resin composition layer 11 is formed on a support 20 having a step such as unevenness (FIG. 2A), and then exposed through a mask 50 having a pattern. (FIG. 2B) Then, the unexposed portion is developed and removed (FIG. 2C), and a desired pattern can be formed.
  • the thickness of the thickest pattern is 1.5 to 10 times the thickness of the thinnest pattern, and preferably 1.75 to 8 times. More preferably, it is 2 to 6 times.
  • the thickness of the pattern means the thickness of the pattern after curing.
  • the thickness of the pattern formed by the pattern forming method of the present invention is preferably 0.05 to 100 ⁇ m.
  • the upper limit is preferably 90 ⁇ m or less, more preferably 75 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the lower limit is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and still more preferably 5 ⁇ m or more.
  • the thickness of the thickest pattern among the patterns having different thicknesses formed simultaneously is preferably 0.1 to 100 ⁇ m.
  • the upper limit is preferably 90 ⁇ m or less, more preferably 75 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the lower limit is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the thickness of the thinnest pattern among the patterns having different thicknesses formed simultaneously is preferably 0.05 to 75 ⁇ m.
  • the upper limit is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the lower limit is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 3 ⁇ m or more.
  • two or more negative photosensitive resin composition layers described above are laminated on a support, and exposure and development are performed on the negative photosensitive resin composition layer obtained by laminating two or more layers.
  • the thickness of the negative photosensitive resin composition layer may vary due to unevenness of the support as a base. For this reason, a pattern with a larger thickness difference may be formed, but according to the present invention, even in such a case, two or more patterns having different thicknesses can be formed simultaneously and with good resolution.
  • the pattern production method of the present invention comprises a step of forming a negative photosensitive resin composition layer on a support using a negative photosensitive resin composition containing a resin and a photopolymerization initiator (negative photosensitive resin composition). Physical layer forming step).
  • a negative photosensitive resin composition in which the difference between the maximum value and the minimum value of the exposure amount is 600 mJ / cm 2 or more is used as the negative photosensitive resin composition. Details of the negative photosensitive resin composition will be described later.
  • the type of support can be appropriately determined according to the application.
  • an inorganic substrate, a resin substrate, a resin composite material substrate, or the like can be given.
  • the inorganic substrate include a glass substrate, a quartz substrate, a silicon substrate, a silicon nitride (silicon nitride) substrate, and a composite substrate obtained by depositing molybdenum, titanium, aluminum, copper, or the like on such a substrate.
  • the spin coating method is more preferable. In the case of the spin coating method, for example, it can be applied at a rotational speed of 500 to 5000 rpm for about 10 seconds to 1 minute.
  • the thickness of the negative photosensitive resin composition layer is preferably applied so that the film thickness after heating is 0.05 to 100 ⁇ m, and more preferably 1 to 50 ⁇ m.
  • the thickness of the negative photosensitive resin composition layer to be formed is not necessarily uniform. For example, as shown in FIG. 1, when a negative photosensitive resin composition layer is formed on an uneven surface, the negative photosensitive resin composition layer may have a different thickness.
  • the negative photosensitive resin composition layer formed on the support may be dried.
  • the drying temperature is preferably 50 to 150 ° C., more preferably 70 to 130 ° C., and further preferably 90 to 110 ° C.
  • the drying time is preferably 30 seconds to 20 minutes, more preferably 1 to 10 minutes, still more preferably 3 to 7 minutes.
  • the pattern forming method of the present invention includes a step of exposing and developing a negative photosensitive resin composition layer to form a pattern. Specifically, an exposure process for exposing the negative photosensitive resin composition layer in a pattern, and development for forming a pattern by developing and removing an unexposed portion of the exposed resin composition layer Process.
  • the negative photosensitive resin composition layer is exposed and developed to simultaneously form two or more patterns having different thicknesses.
  • a negative photosensitive resin composition layer is formed on a support having steps such as irregularities, and the negative photosensitive resin composition layers having different thicknesses are formed.
  • the support having steps such as unevenness include a support having a structure such as a metal layer formed on the surface thereof.
  • the exposure to the negative photosensitive resin composition layer is preferably performed at, for example, 50 to 10000 mJ / cm 2 in terms of exposure energy at a wavelength of 365 nm, and is performed at 100 to 8000 mJ / cm 2 . Is more preferable.
  • the exposure wavelength can be appropriately determined in the range of 190 to 1000 nm, and preferably 240 to 550 nm.
  • the development of the negative photosensitive resin composition layer is preferably performed using a developer.
  • the developer can be used without any particular limitation. Solvents are preferred. Examples of the solvent used in the developer include organic solvents such as esters, ethers, ketones, aromatic hydrocarbons, and sulfoxides. About these details, the solvent demonstrated in the column of the resin composition mentioned later is mentioned.
  • the development time is preferably 10 seconds to 5 minutes.
  • the temperature at the time of development is not particularly defined, but it can be carried out at 20 to 40 ° C.
  • rinsing may be further performed.
  • the rinsing is preferably performed with a solvent different from the developer. For example, it can rinse using the solvent contained in a resin composition.
  • the rinse time is preferably 5 seconds to 1 minute.
  • the pattern forming method of the present invention preferably includes a heating step of heating the pattern obtained by the development step.
  • the heating step the cyclization reaction of the polyimide precursor proceeds.
  • the negative photosensitive resin composition contains a radical polymerizable component such as a radical polymerizable compound, curing of the unreacted radical polymerizable component also proceeds. Thereby, the pattern excellent in heat resistance etc. can be formed.
  • the maximum heating temperature in the heating step is preferably 100 to 500 ° C, more preferably 140 to 400 ° C, and further preferably 160 to 350 ° C. Heating is preferably performed at a temperature rising rate of 1 to 12 ° C./min from a temperature of 20 to 150 ° C. to a maximum heating temperature, more preferably 2 to 10 ° C./min, and further preferably 3 to 10 ° C./min.
  • the temperature at the start of heating is preferably 20 to 150 ° C., more preferably 20 to 130 ° C., and further preferably 25 to 120 ° C.
  • the temperature at the start of heating refers to the temperature at which heating is started up to the maximum heating temperature.
  • the temperature after drying is the heating start temperature.
  • it after reaching the maximum heating temperature, it is preferably heated for 10 to 360 minutes, more preferably 20 to 300 minutes, and particularly preferably 30 to 240 minutes.
  • the heating in the heating process may be performed in stages. As an example, the temperature is raised from 25 ° C. to 180 ° C. at 3 ° C./min, left at 180 ° C. for 60 minutes, from 180 ° C. to 200 ° C. raised at 2 ° C./min, and placed at 200 ° C. for 120 minutes. And the like.
  • the heating step is preferably performed in a low oxygen concentration atmosphere by flowing an inert gas such as nitrogen, helium, or argon in order to prevent decomposition of the polyimide precursor or the like.
  • the oxygen concentration is preferably 50 ppm by volume or less, and more preferably 20 ppm by volume or less.
  • the cooling rate is preferably 1 to 5 ° C./min.
  • the pattern forming method of the present invention may include a step of forming a metal layer (metal layer forming step).
  • the metal layer is not particularly limited, and an existing metal species can be used.
  • copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold and tungsten can be mentioned, copper and aluminum are preferable, and copper is more preferable.
  • the method for forming the metal layer is not particularly limited, and an existing method can be applied. For example, the methods described in JP 2007-157879 A, JP 2001-521288 A, JP 2004-214501 A, and JP 2004-101850 A can be used.
  • the thickness of the metal layer is preferably 0.1 to 50 ⁇ m at the thickest portion, and more preferably 1 to 10 ⁇ m.
  • the process (surface activation process process) of carrying out the surface activation process of at least one part of a metal layer and a negative photosensitive resin composition layer is further included.
  • the surface activation treatment may be performed only on at least a part of the metal layer, or only at least a part of the negative photosensitive resin composition layer after the development step (after the heating step when the heating step is further performed). Or both of the metal layer and the negative photosensitive resin composition layer may be performed at least partially.
  • the surface activation treatment is usually performed after the metal layer is formed, but the surface activation treatment is performed on the negative photosensitive resin composition layer after the development step (after the heating step when the heating step is further performed).
  • a metal layer may be formed.
  • the surface activation treatment is preferably performed on at least a part of the metal layer, and the surface activation treatment is performed on a part or all of the region of the metal layer where the negative photosensitive resin composition layer is formed on the surface. Is preferred.
  • the surface activation treatment is also preferably performed on part or all of the negative photosensitive resin composition layer. In this way, the surface activation treatment is performed on the surface of the negative photosensitive resin composition layer, thereby improving the adhesion with the metal layer and the negative photosensitive resin composition layer provided on the surface activated surface. Can be made.
  • Surface activation treatment includes plasma treatment of various source gases (oxygen, hydrogen, argon, nitrogen, nitrogen / hydrogen mixed gas, argon / oxygen mixed gas, etc.), corona discharge treatment, CF 4 / O 2 , NF 3 / O 2 , SF 6 , NF 3 , etching treatment with NF 3 / O 2 , surface treatment by ultraviolet (UV) ozone method, compound having at least one amino group and thiol group after removing the oxide film by dipping in hydrochloric acid aqueous solution It is selected from an immersion treatment in an organic surface treatment agent contained and a mechanical surface roughening treatment using a brush, and a plasma treatment is preferred, and an oxygen plasma treatment using oxygen as a raw material gas is particularly preferred.
  • the energy is preferably 500 ⁇ 200000J / m 2, more preferably 1000 ⁇ 100000J / m 2, and most preferably 10000 ⁇ 50000J / m 2.
  • the above-described negative photosensitive resin composition layer forming step, the above-described exposure step, the above-described developing step, and the above-described heating step are performed again in this order. It is preferable. It is also preferable to perform the above-described metal layer forming step after the heating step. By doing in this way, the laminated body by which the resin layer and the metal layer were laminated
  • the negative photosensitive resin composition used in the pattern forming method of the present invention is also referred to as a resin composition.
  • the negative photosensitive resin composition used in the pattern forming method of the present invention contains a resin and a photopolymerization initiator.
  • the resin contains a radical polymerizable group or a radical polymerizable compound other than the resin.
  • each component of the negative photosensitive resin composition will be described in detail.
  • the resin composition in the present invention contains a resin.
  • the resin include a polyimide precursor, a polybenzoxazole precursor, polyimide, polybenzoxazole, an epoxy resin, and a phenol resin.
  • the resin is preferably a polyimide precursor.
  • a polyimide precursor it is preferable that it is a polyimide precursor containing the repeating unit represented by Formula (1).
  • a 21 and A 22 each independently represent an oxygen atom or —NH—
  • R 21 represents a divalent organic group
  • R 22 represents a tetravalent organic group
  • R 23 and R 24 each independently represents a hydrogen atom or a monovalent organic group.
  • a 21 and A 22 each independently represents an oxygen atom or —NH—, preferably an oxygen atom.
  • R 21 represents a divalent organic group.
  • the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group, and a group containing an aryl group, a linear or branched aliphatic group having 2 to 20 carbon atoms, and a carbon number of 6
  • a group consisting of a cyclic aliphatic group having 20 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a combination thereof is preferable, and a group consisting of an aryl group having 6 to 20 carbon atoms is more preferable.
  • the aryl group include the following.
  • R 21 include diamine residues remaining after removal of the amino group of the following diamine.
  • R 21 examples include diamine residues remaining after removal of the amino groups of diamines (DA-1) to (DA-18) shown below.
  • R 21 is a diamine residue remaining after removal of the amino group of a diamine having two or more alkylene glycol units in the main chain.
  • Preferred is a diamine residue containing two or more ethylene glycol chains or propylene glycol chains in one molecule, and more preferred is a diamine residue containing no aromatic ring.
  • Examples include Jeffamine (registered trademark) KH-511, ED-600, ED-900, ED-2003, EDR-148, EDR-176, D-200, D-400, D-2000, D-4000 ( Trade names, manufactured by HUNTSMAN Co., Ltd.), 1- (2- (2- (2-aminopropoxy) ethoxy) propoxy) propan-2-amine, 1- (1- (1- (2-aminopropoxy) propane Examples include, but are not limited to, -2-yl) oxy) propan-2-amine and the like.
  • the structures of Jeffamine (registered trademark) KH-511, ED-600, ED-900, ED-2003, EDR-148, and EDR-176 are shown below.
  • x, y, and z are average values.
  • R 22 represents a tetravalent organic group, preferably a tetravalent group containing an aromatic ring, and a group represented by the following formula (1-1) or formula (1-2) Is more preferable.
  • R 112 represents a single bond or a hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S—, —SO.
  • 2 - and -NHCO- is preferably a group selected from combinations thereof, a single bond, or an alkylene group which ⁇ 1 carbon atoms which may be 3-substituted by fluorine atoms, -O -, - More preferably, it is a divalent group selected from CO—, —S— and —SO 2 —, —CH 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, — More preferred is a divalent group selected from the group consisting of O—, —CO—, —S— and —SO 2 —.
  • R 22 examples include a tetracarboxylic acid residue remaining after the acid anhydride group is removed from tetracarboxylic dianhydride. Specific examples include tetracarboxylic acid residues remaining after the acid anhydride group is removed from the following tetracarboxylic dianhydrides.
  • examples of R 22 include tetracarboxylic acid residues remaining after the removal of acid anhydride groups from tetracarboxylic dianhydrides (DAA-1) to (DAA-5) shown below.
  • R 22 preferably has an OH group. More specifically, examples of R 22 include tetracarboxylic acid residues remaining after removal of anhydride groups from the above (DAA-1) to (DAA-5).
  • R 23 and R 24 each independently represent a hydrogen atom or a monovalent organic group.
  • the monovalent organic group represented by R 23 and R 24 include a linear or branched alkyl group, a cyclic alkyl group, a group containing an aromatic group, and a radical polymerizable group.
  • at least one of R 23 and R 24 is preferably a group containing a radical polymerizable group. According to this aspect, the effects of the present invention tend to be obtained more remarkably.
  • the photosensitive resin composition containing this polyimide precursor can be preferably used as a negative photosensitive resin composition.
  • the radical polymerizable group include a group having an ethylenically unsaturated bond. Specific examples of the radical polymerizable group include a vinyl group, a (meth) allyl group, a group represented by the following formula (III), and the like.
  • R 200 represents a hydrogen atom or a methyl group, and a methyl group is more preferable.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, —CH 2 CH (OH) CH 2 — or a polyoxyalkylene group having 4 to 30 carbon atoms.
  • suitable R 201 include ethylene group, propylene group, trimethylene group, tetramethylene group, 1,2-butanediyl group, 1,3-butanediyl group, pentamethylene group, hexamethylene group, octamethylene group, dodecamethylene.
  • R 200 is a methyl group and R 201 is an ethylene group is particularly preferable.
  • the linear or branched alkyl group preferably has 1 to 30 carbon atoms. Specific examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, octadecyl, isopropyl, isobutyl, Examples include sec-butyl group, t-butyl group, 1-ethylpentyl group, and 2-ethylhexyl group.
  • the cyclic alkyl group may be a monocyclic cyclic alkyl group or a polycyclic cyclic alkyl group.
  • Examples of the monocyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the polycyclic alkyl group include an adamantyl group, a norbornyl group, a bornyl group, a camphenyl group, a decahydronaphthyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a camphoroyl group, a dicyclohexyl group, and a pinenyl group. Can be mentioned.
  • a cyclohexyl group is preferable from the viewpoint of achieving high sensitivity.
  • the aromatic group a substituted or unsubstituted benzene ring group, naphthalene ring group, pentalene ring group, indene ring group, azulene ring group, heptalene ring group, indacene ring group, perylene ring group, pentacene ring group, acenaphthene ring group Phenanthrene ring group, anthracene ring group, naphthacene ring group, chrysene ring group, triphenylene ring group, fluorene ring group, biphenyl ring group, pyrrole ring group, furan ring group, thiophene ring group, imidazole ring group, oxazole ring group, thiazole Ring group, pyridine ring group, pyrazine ring group,
  • the polyimide precursor when A 22 is an oxygen atom and R 23 is a hydrogen atom, and / or when A 21 is an oxygen atom and R 24 is a hydrogen atom, the polyimide precursor is an ethylenic group. It may form a counter salt with a tertiary amine compound having a saturated bond. Examples of such tertiary amine compounds having an ethylenically unsaturated bond include N, N-dimethylaminopropyl methacrylate.
  • the polyimide precursor preferably has a fluorine atom in the structural unit from the viewpoint of improving resolution.
  • the fluorine atom imparts water repellency to the surface of the film during alkali development, and soaking from the surface can be suppressed.
  • the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less from the viewpoint of solubility in an alkaline aqueous solution.
  • the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine component include bis (3-aminopropyl) tetramethyldisiloxane and bis (p-aminophenyl) octamethylpentasiloxane.
  • the main chain terminal of the polyimide precursor is sealed with a terminal sealing agent such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, monoactive ester compound, etc. It is preferable to do. Of these, it is more preferable to use a monoamine.
  • a monoamine include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene and 1-hydroxy-6-aminonaphthalene.
  • the polyimide precursor may consist of a repeating unit represented by the formula (1) and another repeating unit that is another polyimide precursor.
  • the proportion of the other repeating units in the polyimide precursor is preferably 1 to 60 mol%, and more preferably 5 to 50 mol%.
  • the polyimide precursor in the present invention may be configured to be substantially free of other polyimide precursors other than the polyimide precursor containing the repeating unit represented by the formula (1). “Substantially free” means, for example, that the content of the other polyimide precursor contained in the resin composition is 3% by mass or less of the content of the polyimide precursor.
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 20000 to 28000, more preferably 22000 to 27000, and further preferably 23000 to 25000.
  • the degree of dispersion (Mw / Mn) of the polyimide precursor is not particularly defined, but is preferably 1.0 or more, more preferably 2.5 or more, and further preferably 2.8 or more. preferable.
  • the upper limit of the degree of dispersion of the polyimide precursor is not particularly defined, but is preferably 4.5 or less, for example, or 3.4 or less.
  • the resin content in the resin composition is preferably 20 to 100% by mass, more preferably 50 to 99% by mass, still more preferably 60 to 99% by mass, and more preferably 70 to 99% by mass with respect to the total solid content of the resin composition. Is particularly preferred.
  • the content of the polyimide precursor in the resin composition is preferably 20 to 100% by mass, more preferably 50 to 99% by mass, still more preferably 60 to 99% by mass, and more preferably 70 to 99% with respect to the total solid content of the resin composition. Mass% is particularly preferred.
  • it can also be set as the structure which does not contain resin other than a polyimide precursor substantially. “Substantially free” means, for example, that the content of the resin other than the polyimide precursor contained in the resin composition is 3% by mass or less of the content of the polyimide precursor.
  • the resin composition in the present invention may further contain a radical polymerizable compound.
  • a radical polymerizable compound By containing a radically polymerizable compound, it can be preferably used as a negative photosensitive resin composition. Furthermore, a cured film having more excellent heat resistance can be formed.
  • the radically polymerizable compound a compound having an ethylenically unsaturated bond is preferable, and a compound including two or more groups having an ethylenically unsaturated bond is more preferable.
  • the radically polymerizable compound may be in any of chemical forms such as monomers, prepolymers, oligomers and mixtures thereof, and multimers thereof.
  • a styryl group, a vinyl group, a (meth) acryloyl group and a (meth) allyl group are preferable, and a (meth) acryloyl group is more preferable.
  • the radically polymerizable compound in the present invention is a component different from the resin described above.
  • a monomer type radical polymerizable compound (hereinafter also referred to as a radical polymerizable monomer) is a compound different from a polymer compound.
  • the radical polymerizable monomer is typically a low molecular compound, preferably a low molecular compound having a molecular weight of 2000 or less, more preferably a low molecular compound having a molecular weight of 1500 or less, and a low molecular compound having a molecular weight of 900 or less. More preferably, it is a compound.
  • the molecular weight of the radical polymerizable monomer is usually 100 or more.
  • the oligomer type radical polymerizable compound is typically a polymer having a relatively low molecular weight, and is preferably a polymer in which 10 to 100 radical polymerizable monomers are bonded.
  • the molecular weight is preferably 2000 to 20000, more preferably 2000 to 15000, and still more preferably 2000 to 10000 in terms of polystyrene in gel permeation chromatography (GPC).
  • the number of functional groups of the radical polymerizable compound in the present invention means the number of radical polymerizable groups in one molecule.
  • the resin composition preferably contains at least one bifunctional or higher radical polymerizable compound containing two or more radical polymerizable groups, and preferably contains at least one bifunctional to tetrafunctional radical polymerizable compound. More preferably, seeds are included.
  • radical polymerizable compound examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof and amides, preferably unsaturated carboxylic acids. These are esters of acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyvalent amine compounds. In addition, addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group, monofunctional or polyfunctional.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof and amides preferably unsaturated carboxylic acids. These are esters of acids and polyhydric alcohol compounds, and amides
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine, or thiol, and a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable.
  • radical polymerizable compound a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable.
  • examples include polyethylene glycol di (meth) acrylate, trimethylolethane tri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol.
  • radical polymerizable compound examples include 2 groups having a fluorene ring and an ethylenically unsaturated bond described in JP 2010-160418 A, JP 2010-129825 A, Japanese Patent 4364216 A, and the like. It is also possible to use a compound having more than one, a cardo resin. Other examples include specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337, JP-B-1-40336, and JP-A-2-25493. And vinyl phosphonic acid compounds. Also, compounds containing a perfluoroalkyl group described in JP-A-61-22048 can be used. Furthermore, Journal of Japan Adhesion Association vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photopolymerizable monomers and oligomers, can also be used.
  • n is an integer from 0 to 14, and m is an integer from 0 to 8.
  • a plurality of R and T present in the molecule may be the same or different.
  • at least one of the plurality of R is —OC ( ⁇ O) CH ⁇ CH 2 or —OC ( ⁇ O) represents a group represented by C (CH 3 ) ⁇ CH 2 .
  • Specific examples of the compounds represented by the above formulas (MO-1) to (MO-5) include compounds described in paragraphs 0248 to 0251 of JP-A No. 2007-2699779.
  • JP-A-10-62986 as formulas (1) and (2) together with specific examples thereof, which are (meth) acrylated after adding ethylene oxide or propylene oxide to a polyfunctional alcohol, It can be used as a radically polymerizable compound.
  • the compounds described in paragraphs 0104 to 0131 of JP-A No. 2015-187211 can also be used as radically polymerizable compounds, the contents of which are incorporated herein.
  • radical polymerizable compound examples include dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, as KAYARAD D-320; Nippon Kayaku ( A-TMMT manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) Acrylate (commercially available KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth) acryloyl groups are bonded via ethylene glycol and propylene glycol residues.
  • the structure is preferable. These oligomer types can also be used. Further, preferred examples include pentaerythritol derivatives and / or dipentaerythritol derivatives of the above formulas (MO-1) and (MO-2). In addition, SR209 manufactured by Sartomer Co. can be used.
  • the radical polymerizable compound may have an acid group such as a carboxyl group, a sulfo group, or a phosphoric acid group.
  • examples of commercially available products include M-510 and M-520, which are polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • a preferable acid value of the radically polymerizable compound having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g. If the acid value of the said compound is the said range, it is excellent in manufacture and handleability, and also is excellent in developability. Moreover, radical polymerizability is favorable.
  • a compound having a caprolactone structure can also be used.
  • the compound having a caprolactone structure is not particularly limited as long as it has a caprolactone structure in the molecule.
  • trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol Mention is made of ⁇ -caprolactone-modified polyfunctional (meth) acrylate obtained by esterifying (meth) acrylic acid and ⁇ -caprolactone with polyhydric alcohols such as tripentaerythritol, glycerin, diglycerol, trimethylolmelamine Can do.
  • compounds represented by the following formula (C) are preferred.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents 1 or 2
  • “*” represents a bond
  • R 1 represents a hydrogen atom or a methyl group
  • “*” represents a bond
  • the number of the groups represented by 2 and the compound in which R 1 is all hydrogen atoms)
  • the radical polymerizable compound is preferably at least one selected from the group of compounds represented by the following general formula (i) or (ii).
  • each E independently represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —
  • Each y independently represents an integer of 0 to 10
  • each X independently represents a (meth) acryloyl group, a hydrogen atom, or a carboxyl group.
  • the total number of (meth) acryloyl groups is 3 or 4
  • each m independently represents an integer of 0 to 10
  • the total of each m is an integer of 0 to 40. However, when the total of each m is 0, any one of X is a carboxyl group.
  • the total number of (meth) acryloyl groups is 5 or 6, each n independently represents an integer of 0 to 10, and the total of each n is an integer of 0 to 60. However, when the total of each n is 0, any one of X is a carboxyl group.
  • m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
  • the total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and particularly preferably an integer of 4 to 8.
  • n is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
  • the total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and particularly preferably an integer of 6 to 12.
  • — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) — is bonded to X at the end on the oxygen atom side.
  • the form is preferred.
  • a form in which all six Xs are acryloyl groups is preferable.
  • Examples of commercially available compounds represented by formula (i) and formula (ii) include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartomer, and pentylene manufactured by Nippon Kayaku Co., Ltd. DPCA-60, which is a hexafunctional acrylate having six oxy chains, and TPA-330, which is a trifunctional acrylate having three isobutyleneoxy chains.
  • radical polymerizable compound examples include urethane acrylates described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable. Further, addition polymerizable monomers having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 are used. You can also.
  • urethane oligomers UAS-10, UAB-140 (manufactured by Sanyo Kokusaku Pulp Co., Ltd.), NK ester M-40G, NK ester 4G, NK ester M-9300, NK ester A-9300, UA-7200 (Shin Nakamura) Chemical Industry Co., Ltd.), DPHA-40H (Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (Kyoeisha Chemical Co., Ltd.) And Bremermer PME400 (manufactured by NOF Corporation).
  • the radical polymerizable compound preferably has a partial structure represented by the following formula from the viewpoint of heat resistance. However, * in the formula is a connecting hand.
  • the compound having the partial structure include, for example, trimethylolpropane tri (meth) acrylate, isocyanuric acid ethylene oxide-modified di (meth) acrylate, isocyanuric acid ethylene oxide-modified tri (meth) acrylate, pentaerythritol tri (meta) ) Acrylate, pentaerythritol tetra (meth) acrylate, dimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, and the like. .
  • the content of the radical polymerizable compound is preferably 1 to 50% by mass with respect to the total solid content of the resin composition from the viewpoint of good radical polymerizability and heat resistance.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 30% by mass or less.
  • the mass ratio of the polyimide precursor to the radical polymerizable compound is preferably 98/2 to 10/90, more preferably 95/5 to 30/70, and 90/10. More preferred is 50/50. If the mass ratio of a polyimide precursor and a radically polymerizable compound is the said range, the cured film excellent in sclerosis
  • the radical polymerizable compound may be used alone or in combination of two or more. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the resin composition in the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include a photocationic polymerization initiator and a photoradical polymerization initiator, and a photoradical polymerization initiator is preferred.
  • the resin composition in the present invention contains a photo-radical polymerization initiator
  • the resin composition is applied to a support such as a semiconductor wafer to form a resin composition layer, and then irradiated with light, resulting in radicals. Curing occurs, and the solubility in the light irradiation part can be reduced. Therefore, for example, by exposing the resin composition layer through a photomask having a pattern that masks only the electrode portion, there is an advantage that regions having different solubility can be easily produced according to the pattern of the electrode or the like. .
  • the photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators.
  • a photopolymerization initiator having photosensitivity to light in the ultraviolet region to the visible region is preferable. Further, it may be an activator that generates some active radicals by generating some action with the photoexcited sensitizer.
  • the photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 to 800 nm (preferably 330 to 500 nm).
  • the molar extinction coefficient of the compound can be measured using a known method. For example, it is preferable to measure with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g / L.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, etc.
  • Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, hydroxyacetophenone, azo compounds, azide compounds, metallocene compounds, organoboron compounds, iron arene complexes, etc. Can be mentioned.
  • ⁇ -hydroxyketone compounds ⁇ -aminoketone compounds, acylphosphine compounds and metallocene compounds can also be suitably used. More specifically, for example, a photopolymerization initiator described in JP-A-10-291969 and a photopolymerization initiator described in Japanese Patent No. 4225898 can also be used.
  • ⁇ -hydroxyketone compound IRGACURE-184 (IRGACURE is a registered trademark), DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF) can be used.
  • ⁇ -aminoketone compound commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF) can be used.
  • ⁇ -aminoketone compound compounds described in JP-A-2009-191179 in which the absorption maximum wavelength is matched with a wavelength light source of 365 nm or 405 nm can also be used.
  • the acylphosphine compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • IRGACURE-819 and IRGACURE-TPO which are commercially available products can be used.
  • the metallocene compound include IRGACURE-784 (manufactured by BASF).
  • More preferred examples of the photopolymerization initiator include oxime compounds.
  • the exposure latitude can be improved more effectively.
  • Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also act as a thermal base generator.
  • Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
  • Preferred oxime compounds include, for example, 3-benzooxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxycarbonyloxy And imino-1-phenylpropan-1-one.
  • IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF), Adekaoptomer N-1919 (manufactured by ADEKA Corporation, light described in JP2012-14052A) A polymerization initiator 2) is also preferably used.
  • TR-PBG-304 manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.
  • Adeka Arkles NCI-831 and Adeka Arkles NCI-930 made by ADEKA
  • DFI-091 manufactured by Daitokemix Co., Ltd.
  • an oxime compound having a fluorine atom examples include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in paragraph 0345 of JP 2014-500852 A, and JP 2013. And the compound (C-3) described in paragraph 0101 of JP-A No. 164471.
  • oxime compounds having a specific substituent as disclosed in JP-A-2007-267979 there are oxime compounds having a thioaryl group as disclosed in JP-A-2009-191061, and the like.
  • photopolymerization initiators from the viewpoint of exposure sensitivity, trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryls.
  • At least selected from imidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl-substituted coumarin compounds 1 type is preferable, trihalomethyltriazine compound, ⁇ -hydroxyketone compound, ⁇ -aminoketone compound, acylphosphine compound, phosphine oxide More preferably, at least one selected from a compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, an onium salt compound, a benzophenone compound and an acetophenone compound, a trihalomethyltriazine compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, and an oxime compound , At least one selected from triarylimidazole dimers and benzophen
  • Photopolymerization initiators include N, N′-tetraalkyl-4,4′-diaminobenzophenone, 2-benzyl-, such as benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), and the like.
  • Aromatic ketones such as 2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, alkyl anthraquinones, etc.
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkylbenzoin
  • benzyl derivatives such as benzyldimethyl ketal.
  • a compound represented by the following formula (I) can also be used.
  • R 50 represents an alkyl group having 1 to 20 carbon atoms; an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms; an alkoxy group having 1 to 12 carbon atoms; a phenyl group; An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a cyclopentyl group, a cyclohexyl group, an alkenyl group having 2 to 12 carbon atoms, and 2 to 2 carbon atoms interrupted by one or more oxygen atoms A phenyl group substituted with at least one of 18 alkyl groups and an alkyl group having 1 to 4 carbon atoms; or biphenylyl, and R 51 is the group represented by formula (II) or the same as R 50
  • Each of R 52 to R 54 is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or halogen.
  • the content of the photopolymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 0.1 to 10% by mass with respect to the total solid content of the resin composition. %.
  • the photoinitiator may contain only 1 type and may contain 2 or more types. When two or more photopolymerization initiators are contained, the total is preferably in the above range.
  • the resin composition in the present invention preferably contains a polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, p-tert-butylcatechol, p-benzoquinone, diphenyl-p-benzoquinone, 4,4′-thiobis.
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the resin composition. Only one polymerization inhibitor may be used, or two or more polymerization inhibitors may be used. When two or more polymerization inhibitors are used, the total is preferably within the above range.
  • the resin composition in the present invention may contain a photobase generator.
  • a photobase generator generates a base upon exposure and does not exhibit activity under normal conditions of normal temperature and pressure.
  • the base (basic substance) ) Is not particularly limited as long as it generates.
  • the content of the photobase generator is not particularly limited as long as it can form a desired pattern, and can be a general content.
  • the content of the photobase generator is preferably in the range of 0.01 parts by weight to less than 30 parts by weight with respect to 100 parts by weight of the resin composition, and in the range of 0.05 parts by weight to 25 parts by weight More preferably, it is more preferably in the range of 0.1 to 20 parts by mass.
  • a known compound can be used as a photobase generator.
  • M.M. Shirai, and M.M. Tsunooka Prog. Polym. Sci. , 21, 1 (1996); Masahiro Kadooka, polymer processing, 46, 2 (1997); Kutal, Coord. Chem. Rev. , 211, 353 (2001); Kaneko, A .; Sarker, and D. Neckers, Chem. Mater. 11, 170 (1999); Tachi, M .; Shirai, and M.M. Tsunooka, J. et al. Photopolym. Sci. Technol. , 13, 153 (2000); Winkle, and K.K. Graziano, J. et al.
  • An ionic compound neutralized by forming a salt with a base component, or a nonionic compound in which the base component is made latent by a urethane bond or an oxime bond such as a carbamate derivative, an oxime ester derivative, or an acyl compound Can be mentioned. It is also preferable to use WPBG-266 (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the basic substance generated from the photobase generator is not particularly limited, and examples thereof include compounds having an amino group, particularly monoamines, polyamines such as diamines, and amidines.
  • the generated basic substance is preferably a compound having an amino group having a higher basicity. This is because the catalytic action for the dehydration condensation reaction or the like in the imidization of the polyimide precursor is strong, and the catalytic effect in the dehydration condensation reaction or the like at a lower temperature can be expressed with a smaller amount of addition. That is, since the catalytic effect of the generated basic substance is large, the apparent sensitivity as the resin composition is improved. From the viewpoint of the catalytic effect, an amidine and an aliphatic amine are preferable.
  • the photobase generator is preferably a photobase generator that does not contain salt in the structure. It is preferred that there is no charge on the nitrogen atom of the base moiety generated in the photobase generator.
  • the generated base is preferably latentized using a covalent bond, and the base generation mechanism is such that the covalent bond between the nitrogen atom of the generated base moiety and the adjacent atom is cleaved. More preferably, the compound generates a base.
  • the photobase generator does not contain a salt in the structure, the photobase generator can be neutralized, so that the solvent solubility is good and the pot life is improved.
  • the amine generated from the photobase generator used in the present invention is preferably a primary amine or a secondary amine.
  • the photobase generator preferably has a latent base generated using a covalent bond as described above. More preferably, the generated base is latentized using an amide bond, carbamate bond, or oxime bond.
  • photobase generators having a cinnamic acid amide structure described in Japanese Patent Application Laid-Open No. 2009-80452 and International Publication No. WO2009 / 123122, Japanese Patent Application Laid-Open No. 2006-189591, and Japanese Patent Application Laid-Open No. 2008-247747. It is also possible to use a photobase generator having a carbamate structure described in the publication, a photobase generator having an oxime structure or a carbamoyloxime structure described in JP2007-249013A and JP2008-003581A. .
  • examples of the photobase generator include compounds described in paragraph numbers 0185 to 0188, 0199 to 0200 and 0202 of JP2012-93746A, compounds described in paragraph numbers 0022 to 0069 of JP2013-194205A. And compounds described in paragraph numbers 0026 to 0074 of JP2013-204019A and compounds described in paragraph number 0052 of WO2010 / 064631.
  • the resin composition in the present invention may contain a thermal base generator.
  • the thermal base generator includes at least one selected from an acidic compound (A1) that generates a base when heated to 40 ° C. or more, and an ammonium salt (A2) having an anion having a pKa1 of 0 to 4 and an ammonium cation. It is preferable.
  • pKa1 represents a logarithmic representation ( ⁇ Log 10 Ka) of the dissociation constant (Ka) of the first proton of the polyvalent acid. Since the acidic compound (A1) and the ammonium salt (A2) generate a base when heated, the base generated from these compounds can promote the cyclization reaction of the polyimide precursor and the like. Can be carried out at low temperatures.
  • the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is preferably 40 ° C. or higher, and more preferably 120 to 200 ° C.
  • the upper limit of the base generation temperature is more preferably 190 ° C or lower, further preferably 180 ° C or lower, and further preferably 165 ° C or lower.
  • the lower limit of the base generation temperature is more preferably 130 ° C or higher, and still more preferably 135 ° C or higher. If the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 120 ° C. or higher, a base is unlikely to be generated during storage, and thus a resin composition having excellent stability can be prepared.
  • the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 200 ° C. or lower, the cyclization temperature of the polyimide precursor or the like can be lowered.
  • the base generation temperature is measured, for example, by using differential scanning calorimetry, heating the compound to 250 ° C. at 5 ° C./min in a pressure capsule, reading the peak temperature of the lowest exothermic peak, and measuring the peak temperature as the base generation temperature. can do.
  • the base generated by the hot base generator is preferably a secondary amine or a tertiary amine, more preferably a tertiary amine. Since tertiary amine has high basicity, cyclization temperature of a polyimide precursor etc. can be made lower. Further, the boiling point of the base generated by the thermal base generator is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and most preferably 140 ° C. or higher. The molecular weight of the generated base is preferably 80 to 2000. The lower limit is more preferably 100 or more. The upper limit is more preferably 500 or less. The molecular weight value is a theoretical value obtained from the structural formula.
  • the acidic compound (A1) preferably contains one or more selected from an ammonium salt and a compound represented by the formula (A1) described later.
  • the ammonium salt (A2) is preferably an acidic compound.
  • the ammonium salt (A2) may be a compound containing an acidic compound that generates a base when heated to 40 ° C. or higher (preferably 120 to 200 ° C.), or 40 ° C. or higher (preferably 120 to 200 ° C.). ) May be a compound other than an acidic compound that generates a base when heated.
  • the ammonium salt means a salt of an ammonium cation represented by the following formula (101) or (102) and an anion.
  • the anion may be bonded to any part of the ammonium cation via a covalent bond and may be outside the molecule of the ammonium cation, but is preferably outside the molecule of the ammonium cation.
  • numerator of an ammonium cation means the case where an ammonium cation and an anion are not couple
  • the anion outside the molecule of the cation moiety is also referred to as a counter anion.
  • R 1 to R 6 each independently represents a hydrogen atom or a hydrocarbon group
  • formula R 7 represents a hydrocarbon group.
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 5 and R 7 may be bonded to form a ring.
  • the ammonium salt preferably has an anion having an pKa1 of 0 to 4 and an ammonium cation.
  • the upper limit of the anion pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the lower limit is more preferably 0.5 or more, and further preferably 1.0 or more. If the pKa1 of the anion is in the above range, the polyimide precursor and the like can be cyclized at a low temperature, and further, the stability of the resin composition can be improved. If pKa1 is 4 or less, the stability of the thermal base generator is good, the generation of a base without heating can be suppressed, and the stability of the resin composition is good.
  • the kind of anion is preferably one selected from a carboxylate anion, a phenol anion, a phosphate anion, and a sulfate anion, and a carboxylate anion is more preferable because both the stability of the salt and the thermal decomposability can be achieved. That is, the ammonium salt is more preferably a salt of an ammonium cation and a carboxylate anion.
  • the carboxylic acid anion is preferably a divalent or higher carboxylic acid anion having two or more carboxyl groups, and more preferably a divalent carboxylic acid anion.
  • the stability, curability and developability of the resin composition can be further improved by using an anion of a divalent carboxylic acid.
  • the carboxylic acid anion is preferably a carboxylic acid anion having a pKa1 of 4 or less.
  • pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the stability of the resin composition can be further improved.
  • pKa1 represents the logarithm of the reciprocal of the first dissociation constant of the acid.
  • the carboxylate anion is preferably represented by the following formula (X1).
  • EWG represents an electron withdrawing group.
  • the electron withdrawing group means a group having a positive Hammett's substituent constant ⁇ m.
  • ⁇ m is a review by Yugo Tono, Journal of Synthetic Organic Chemistry, Vol. 631-642.
  • the electron withdrawing group of this invention is not limited to the substituent described in the said literature.
  • Me represents a methyl group
  • Ac represents an acetyl group
  • Ph represents a phenyl group.
  • EWG is preferably a group represented by the following formulas (EWG-1) to (EWG-6).
  • R x1 to R x3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, or a carboxyl group, and Ar represents an aryl group.
  • the carboxylate anion is also preferably represented by the following formula (X).
  • L 10 represents a single bond or a divalent linking group selected from an alkylene group, an alkenylene group, an arylene group, —NR X —, and a combination thereof, and R X represents a hydrogen atom, An alkyl group, an alkenyl group or an aryl group is represented.
  • carboxylate anion examples include a maleate anion, a phthalate anion, an N-phenyliminodiacetic acid anion, and an oxalate anion. These can be preferably used.
  • ammonium cation is preferably represented by any one of the following general formulas (Y1-1) to (Y1-6).
  • R 101 represents an n-valent organic group
  • R 102 to R 111 each independently represents a hydrogen atom or a hydrocarbon group
  • R 150 and R 151 each independently represent a hydrocarbon group
  • R 104 and R 105 , R 104 and R 150 , R 107 and R 108 , and R 109 and R 110 may be bonded to each other to form a ring
  • Ar 101 and Ar 102 each independently represent an aryl group
  • n represents an integer of 1 or more
  • m represents an integer of 0 to 5.
  • R 104 and R 105 , R 104 and R 150 , R 107 and R 108 , and R 109 and R 110 may be bonded to each other to form a ring.
  • the ring include an aliphatic ring (non-aromatic hydrocarbon ring), an aromatic ring, a heterocyclic ring, and the like.
  • the ring may be monocyclic or polycyclic.
  • the linking group is selected from the group consisting of —CO—, —O—, —NH—, a divalent aliphatic group, a divalent aryl group, and combinations thereof.
  • the bivalent coupling group chosen is mentioned.
  • the ring formed include, for example, pyrrolidine ring, pyrrole ring, piperidine ring, pyridine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, pyrazine ring, morpholine ring, thiazine ring, indole ring, isoindole.
  • the ammonium cation preferably has a structure represented by the formula (Y1-1) or (Y1-2), represented by the formula (Y1-1) or (Y1-2), and R 101 is aryl.
  • a structure which is a group is more preferable, and a structure represented by the formula (Y1-1) and in which R 101 is an aryl group is particularly preferable. That is, in the present invention, the ammonium cation is more preferably represented by the following formula (Y).
  • Ar 10 represents an aromatic group
  • R 11 to R 15 each independently represent a hydrogen atom or a hydrocarbon group
  • R 14 and R 15 are bonded to each other to form a ring.
  • N may represent an integer of 1 or more.
  • R 11 and R 12 each independently represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group is not particularly limited, but is preferably an alkyl group, an alkenyl group or an aryl group.
  • R 11 and R 12 are preferably a hydrogen atom.
  • R 13 to R 15 each represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include the hydrocarbon groups described above for R 11 and R 12 .
  • R 13 to R 15 are particularly preferably alkyl groups, and preferred embodiments are also the same as those described for R 11 and R 12 .
  • R 14 and R 15 may be bonded to each other to form a ring.
  • the ring include cycloaliphatic (non-aromatic hydrocarbon ring), aromatic ring, heterocyclic ring and the like.
  • the ring may be monocyclic or polycyclic.
  • the linking group in the case where R 14 and R 15 are combined to form a ring includes —CO—, —O—, —NH—, a divalent aliphatic group, a divalent aromatic group, and combinations thereof.
  • Specific examples of the ring formed include, for example, pyrrolidine ring, pyrrole ring, piperidine ring, pyridine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, pyrazine ring, morpholine ring, thiazine ring, indole ring, isoindole. Ring, benzimidazole ring, purine ring, quinoline ring, isoquinoline ring, quinoxaline ring, cinnoline ring, carbazole ring and the like.
  • R 13 to R 15 are a group in which R 14 and R 15 are bonded to each other to form a ring, or R 13 is a linear alkyl group having 5 to 30 carbon atoms (more preferably 6 to 18 carbon atoms).
  • R 14 and R 15 are preferably each independently an alkyl group having 1 to 3 carbon atoms (more preferably 1 or 2 carbon atoms).
  • the total number of carbon atoms of R 13 , R 14 and R 15 is preferably 7 to 30, and more preferably 10 to 20.
  • the amount of the chemical formula of “—NR 13 R 14 R 15 ” in the formula (Y) is preferably 80 to 2000, and more preferably 100 to 500, because an amine species having a high boiling point is likely to be generated.
  • R 13 and R 14 are methyl groups or ethyl groups, and R 15 is a straight chain having 5 or more carbon atoms. Examples include a chain, branched or cyclic alkyl group, or an aryl group. R 13 and R 14 are methyl groups, and R 15 is a linear alkyl group having 5 to 20 carbon atoms, a branched alkyl group having 6 to 17 carbon atoms, a cyclic alkyl group having 6 to 10 carbon atoms, or a phenyl group.
  • R 13 and R 14 are preferably methyl groups
  • R 15 is a linear alkyl group having 5 to 10 carbon atoms, a branched alkyl group having 6 to 10 carbon atoms, a cyclic alkyl group having 6 to 8 carbon atoms, or a phenyl group. It is more preferable that By reducing the hydrophobicity of the amine species in this way, the affinity between the metal layer and polyimide or the like can be increased even when the amine adheres onto the metal layer such as copper.
  • the acidic compound is also preferably a compound represented by the following formula (A1).
  • This compound is acidic at room temperature, but by heating, the carboxyl group is lost by decarboxylation or dehydration cyclization, and the amine site that has been neutralized and inactivated becomes active. It becomes sex.
  • the formula (A1) will be described.
  • a 1 represents a p-valent organic group
  • R 1 represents a monovalent organic group
  • L 1 represents an (m + 1) -valent linking group
  • m represents an integer of 1 or more
  • p represents an integer of 1 or more.
  • a 1 represents a p-valent organic group.
  • the organic group include an aliphatic group and an aromatic group, and an aromatic group is preferable.
  • the A 1 and aromatic group at lower temperatures, often invites a base having a boiling point higher. By increasing the boiling point of the generated base, volatilization or decomposition due to heating during curing of the polyimide precursor or the like can be suppressed, and cyclization of the polyimide precursor or the like can proceed more effectively.
  • the monovalent aliphatic group include an alkyl group and an alkenyl group.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 10 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may have a substituent or may be unsubstituted. Specific examples of the alkyl group include a methyl group, an ethyl group, a tert-butyl group, a dodecyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and an adamantyl group.
  • the alkenyl group preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and still more preferably 2 to 10 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic.
  • the alkenyl group may have a substituent or may be unsubstituted.
  • Examples of the alkenyl group include a vinyl group and a (meth) allyl group.
  • Examples of the divalent or higher aliphatic group include groups obtained by removing one or more hydrogen atoms from the above monovalent aliphatic group.
  • the aromatic group may be monocyclic or polycyclic.
  • the aromatic group may be an aromatic heterocyclic group containing a hetero atom.
  • the aromatic group may have a substituent or may be unsubstituted. Unsubstituted is preferred.
  • aromatic group examples include benzene ring group, naphthalene ring group, pentalene ring group, indene ring group, azulene ring group, heptalene ring group, indacene ring group, perylene ring group, pentacene ring group, acenaphthene ring group, phenanthrene.
  • a plurality of aromatic rings may be linked through a single bond or a linking group described later.
  • the linking group for example, an alkylene group is preferable.
  • the alkylene group is preferably linear or branched.
  • Specific examples of the group in which a plurality of aromatic rings are linked through a single bond or a linking group include a biphenyl group, a diphenylmethane group, a diphenylpropane group, a diphenylisopropane group, a triphenylmethane group, and a tetraphenylmethane group.
  • Examples of the substituent that the organic group represented by A 1 may have include, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methoxy group, an ethoxy group and a tert-butoxy group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a methoxy group, an ethoxy group and a tert-butoxy group such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • An acyloxy group such as an acetyl group, a benzoyl group, an isobutyryl group, an acryloyl group, a methacryloyl group and a methoxalyl group; an alkylsulfanyl group such as a methylsulfanyl group and a tert-butylsulfanyl group; And arylsulfanyl groups such as p-tolylsulfanyl group; alkyl groups such as methyl group, ethyl group, tert-butyl group and dodecyl group; halogenated alkyl groups
  • L 1 represents a (m + 1) -valent linking group.
  • the linking group is not particularly limited, and is —COO—, —OCO—, —CO—, —O—, —S—, —SO—, —SO 2 —, an alkylene group (preferably a straight chain having 1 to 10 carbon atoms).
  • the total carbon number of the linking group is preferably 3 or less.
  • the linking group is preferably an alkylene group, a cycloalkylene group, or an alkenylene group, more preferably a linear or branched alkylene group, still more preferably a linear alkylene group, particularly preferably an ethylene group or a methylene group, and most preferably a methylene group.
  • R 1 represents a monovalent organic group.
  • the monovalent organic group include an aliphatic group and an aromatic group. Aliphatic group, for aromatic groups include those described in A 1 described above.
  • the monovalent organic group represented by R 1 may have a substituent. Examples of the substituent include those described above.
  • R 1 is preferably a group having a carboxyl group. That is, R 1 is preferably a group represented by the following formula. -L 2- (COOH) n
  • L 2 represents an (n + 1) -valent linking group
  • n represents an integer of 1 or more.
  • Examples of the linking group represented by L 2 include the groups described above for L 1 , and the preferred ranges are also the same, an ethylene group or a methylene group is particularly preferred, and a methylene group is most preferred.
  • n represents an integer of 1 or more, preferably 1 or 2, and more preferably 1.
  • the upper limit of n is the maximum number of substituents that can take the linking group L 2 represents. If n is 1, a tertiary amine having a high boiling point is likely to be generated by heating at 200 ° C. or lower. Furthermore, the stability of the resin composition can be improved.
  • m represents an integer of 1 or more, preferably 1 or 2, and more preferably 1.
  • the upper limit of m is the maximum number of substituents that the linking group represented by L 1 can take.
  • m 1, a tertiary amine having a high boiling point is likely to be generated by heating at 200 ° C. or lower.
  • p represents an integer of 1 or more, preferably 1 or 2, and more preferably 1.
  • the upper limit of p is the maximum number of substituents that can take the organic group A 1 represents. When p is 1, a tertiary amine having a high boiling point is likely to be generated by heating at 200 ° C. or lower.
  • the compound represented by the formula (A1) is preferably a compound represented by the following formula (1a).
  • a 1 represents a p-valent organic group
  • L 1 represents an (m + 1) -valent linking group
  • L 2 represents an (n + 1) -valent linking group
  • m represents an integer of 1 or more
  • N represents an integer of 1 or more
  • p represents an integer of 1 or more.
  • a 1 , L 1 , L 2 , m, n, and p in the general formula (1a) have the same meanings as the ranges described in the general formula (A1), and preferred ranges are also the same.
  • the compound represented by the formula (A1) is preferably N-aryliminodiacetic acid.
  • a 1 in the general formula (A1) is an aromatic group
  • L 1 and L 2 are methylene groups
  • m is 1
  • n is 1
  • p is 1
  • N-aryliminodiacetic acid tends to generate a tertiary amine having a high boiling point at 120 to 200 ° C.
  • thermal base generator is not limited to these. These can be used alone or in admixture of two or more. Me in the following formulas represents a methyl group.
  • (A-1) to (A-11), (A-18), and (A-19) are compounds represented by the above formula (A1). Of the compounds shown below, (A-1) to (A-11), (A-18) to (A-26) are more preferred, and (A-1) to (A-9), (A-18) ) To (A-21), (A-23), and (A-24) are more preferable.
  • thermal base generator used in the present invention, compounds described in paragraph Nos. 0015 to 0055 of Japanese Patent Application No. 2015-034388 are also preferably used, the contents of which are incorporated herein.
  • the content of the thermal base generator in the resin composition is preferably 0.1 to 50% by mass with respect to the total solid content of the resin composition.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • 1 type (s) or 2 or more types can be used for a thermal base generator. When using 2 or more types, it is preferable that a total amount is the said range.
  • the resin composition in the present invention may contain a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator a known thermal radical polymerization initiator can be used.
  • the thermal radical polymerization initiator is a compound that generates radicals by heat energy and initiates or accelerates a polymerization reaction such as a polymerizable compound.
  • a thermal radical polymerization initiator By adding a thermal radical polymerization initiator, when a cyclization reaction of a polyimide precursor or the like proceeds, a polymerization reaction of a polymerizable compound or the like can proceed.
  • Thermal radical polymerization initiators include aromatic ketones, onium salt compounds, peroxides, thio compounds, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, carbon halogens. Examples thereof include a compound having a bond and an azo compound. Among these, a peroxide or an azo compound is more preferable, and a peroxide is particularly preferable.
  • the thermal radical polymerization initiator used in the present invention preferably has a 10-hour half-life temperature of 90 to 130 ° C, more preferably 100 to 120 ° C.
  • Specific examples include compounds described in paragraph numbers 0074 to 0118 of JP-A-2008-63554.
  • perbutyl Z and park mill D made by NOF Corporation can be used conveniently.
  • the content of the thermal radical polymerization initiator is preferably 0.1 to 50% by mass, preferably 0.1 to 30% by mass with respect to the total solid content of the resin composition. Is more preferable, and 0.1 to 20% by mass is particularly preferable. Further, the thermal radical polymerization initiator is preferably contained in an amount of 0.1 to 50 parts by mass, and more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the polymerizable compound. According to this aspect, it is easy to form a cured film having more excellent heat resistance. Only one type of thermal radical polymerization initiator may be used, or two or more types may be used. When there are two or more thermal radical polymerization initiators, the total is preferably in the above range.
  • the resin composition in the present invention preferably contains a rust inhibitor.
  • a resin composition contains a rust preventive agent, it can suppress effectively that the metal ion derived from a metal layer (metal wiring) moves into a resin composition layer.
  • the rust inhibitor include a rust inhibitor described in paragraph 0094 of JP2013-15701A, a compound described in paragraphs 0073 to 0076 of JP2009-283711A, and paragraph 0052 of JP2011-59656A. And the compounds described in paragraphs 0114, 0116 and 0118 of JP2012-194520A can be used.
  • a heterocyclic ring (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine Ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), thioureas and compounds having a mercapto group, hindered phenol compounds, salicylic acid derivative compounds, hydrazide Derivative compounds are mentioned.
  • triazole compounds such as triazole and benzotriazole
  • tetrazole compounds such as tetrazole and benzotetrazole are preferable.
  • 1,2,4-triazole, 1,2,3-benzotriazole, 5-methyl-1H-benzotriazole 1H-tetrazole, 5-methyl-1H-tetrazole and 5-phenyl-1H-tetrazole are more preferred, and 1H-tetrazole is most preferred.
  • KEMITEC BT-C Kemipro Kasei Co., Ltd., 1,2,3-benzotriazole
  • 1HT Toyobo Co., Ltd., 1H-tetrazole
  • P5T Toyobo Co., Ltd., 5- Phenyl-1H-tetrazole
  • KEMINOX 179 made by Chemipro Kasei Co., Ltd.
  • the content of the rust inhibitor is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin. Only one type of rust inhibitor may be used, or two or more types may be used. When using 2 or more types, it is preferable that the sum total is the said range.
  • the resin composition in the present invention preferably contains a silane coupling agent in order to improve adhesiveness with a metal material used for electrodes, wirings and the like.
  • the silane coupling agent include compounds described in paragraphs 0062 to 0073 of JP2014-191002, compounds described in paragraphs 0063 to 0071 of international publication WO2011 / 080992A1, and JP2014-191252A. Examples thereof include compounds described in paragraphs 0060 to 0061, compounds described in paragraphs 0045 to 0052 of JP 2014-41264 A, and compounds described in paragraph 0055 of international publication WO 2014/097594.
  • silane coupling agent 2-((3- (triethoxysilyl) propyl) carbamoyl) benzoic acid, triethoxysilylpropyl maleamic acid, and the following compounds are also preferably used.
  • Et represents an ethyl group.
  • KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd., N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane
  • KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd., N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane
  • the content of the silane coupling agent is preferably 0.1 to 30 parts by mass and more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the resin.
  • membrane obtained by making content of a silane coupling agent into 0.1 mass part or more becomes favorable, and it is obtained by making content of a silane coupling agent into 30 mass parts or less.
  • the heat resistance and mechanical properties of the film are improved. Only one type of silane coupling agent may be used, or two or more types may be used. When using 2 or more types, it is preferable that the sum total is the said range.
  • Solvent when the resin composition is layered by coating, it is preferable to add a solvent to the resin composition.
  • a known solvent can be arbitrarily used as the solvent. Examples thereof include compounds such as esters, ethers, ketones, aromatic hydrocarbons, sulfoxides and the like.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, and ⁇ -caprolactone , ⁇ -valerolactone, alkyl oxyacetates (for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (for example, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.
  • alkyl oxyacetates for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl al
  • 3-alkyloxypropionic acid alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (eg, methyl 3-methoxypropionate, 3-methoxypropioate) Ethyl), methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.
  • 2-alkyloxypropionic acid alkyl esters for example, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, 2- Propyl alkyloxypropionate and the like (for example, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)
  • 2-alkyloxy Methyl 2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate for example
  • ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Preferred examples include monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate.
  • ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone and the like.
  • aromatic hydrocarbons include toluene, xylene, anisole, limonene and the like.
  • Preferred examples of the sulfoxides include dimethyl sulfoxide.
  • the solvent is preferably in the form of a mixture of two or more from the viewpoint of improving the properties of the coated surface.
  • a mixed solution composed of two or more selected from dimethyl sulfoxide, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether, and propylene glycol methyl ether acetate is preferable.
  • the combined use of dimethyl sulfoxide and ⁇ -butyrolactone is particularly preferred.
  • the content of the solvent is preferably such that the total solid concentration of the resin composition is 5 to 80% by mass from the viewpoint of applicability. More preferred is 10 to 60% by mass.
  • the solvent content may be adjusted depending on the desired thickness and coating method. For example, if the coating method is spin coating or slit coating, the content of the solvent having a solid content concentration in the above range is preferable. In the case of spray coating, the amount is preferably 0.1% by mass to 50% by mass, and more preferably 1.0% by mass to 25% by mass. By adjusting the amount of solvent by the coating method, a resin composition layer having a desired thickness can be formed uniformly.
  • One type of solvent may be sufficient and 2 or more types may be sufficient as it.
  • the total is preferably in the above range.
  • the contents of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide and N, N-dimethylformamide are based on the total mass of the resin composition from the viewpoint of film strength. Less than 5% by mass, more preferably less than 1% by mass, even more preferably less than 0.5% by mass, and even more preferably less than 0.1% by mass.
  • the resin composition in the present invention may contain a sensitizing dye.
  • a sensitizing dye absorbs specific actinic radiation and enters an electronically excited state.
  • the sensitizing dye in an electronically excited state comes into contact with a thermal base generator, a photobase generator, a thermal radical polymerization initiator, a photopolymerization initiator, and the like, and effects such as electron transfer, energy transfer, and heat generation occur.
  • the thermal base generator, the photobase generator, the thermal radical polymerization initiator, and the photopolymerization initiator are decomposed by a chemical change to generate radicals, acids, or bases.
  • the sensitizing dye can be referred to the descriptions in paragraphs 0161 to 0163 of JP-A-2016-027357, the contents of which are incorporated herein.
  • the content of the sensitizing dye is preferably 0.01 to 20% by mass, more preferably 0.1 to 15% by mass, based on the total solid content of the resin composition. More preferably, it is 0.5 to 10% by mass.
  • a sensitizing dye may be used individually by 1 type, and may use 2 or more types together.
  • the resin composition in the present invention may contain a chain transfer agent.
  • the chain transfer agent is defined, for example, in Polymer Dictionary 3rd Edition (edited by the Polymer Society, 2005) pages 683-684.
  • As the chain transfer agent for example, a compound group having SH, PH, SiH, GeH in the molecule is used. These can donate hydrogen to low-activity radical species to generate radicals, or can be oxidized and then deprotonated to generate radicals.
  • thiol compounds for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.
  • 2-mercaptobenzimidazoles for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.
  • the content of the chain transfer agent is preferably 0.01 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the resin composition. Part, more preferably 1 to 5 parts by weight. Only one type of chain transfer agent may be used, or two or more types may be used. When there are two or more chain transfer agents, the total is preferably in the above range.
  • surfactant Various surfactants may be added to the resin composition in the present invention from the viewpoint of further improving applicability.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the following surfactants are also preferable.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 2.0% by mass with respect to the total solid content of the resin composition. 1.0% by mass. Only one surfactant may be used, or two or more surfactants may be used. When two or more surfactants are contained, the total is preferably in the above range.
  • a higher fatty acid derivative such as behenic acid or behenic acid amide is added to the resin composition in the present invention, and it is applied to the surface of the composition in the process of drying after coating. It may be unevenly distributed.
  • the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass with respect to the total solid content of the resin composition. Only one higher fatty acid derivative may be used, or two or more higher fatty acid derivatives may be used. When two or more higher fatty acid derivatives are used, the total is preferably within the above range.
  • the resin composition in the present invention is within a range that does not impair the effects of the present invention, and various additives, for example, inorganic particles, curing agents, curing catalysts, fillers, antioxidants, ultraviolet absorbers, agglomerates, as necessary.
  • An inhibitor or the like can be blended.
  • blending these additives it is preferable that the total compounding quantity shall be 3 mass% or less of solid content of a resin composition.
  • the water content of the resin composition in the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and particularly preferably less than 0.6% by mass from the viewpoint of coating surface properties.
  • the metal content of the resin composition is preferably less than 5 ppm by weight (parts per million), more preferably less than 1 ppm by weight, and particularly preferably less than 0.5 ppm by weight.
  • the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are included, the total of these metals is preferably in the above range.
  • a raw material having a low metal content is selected as a raw material constituting the resin composition. Examples of the method include filtration and distillation under conditions where the inside of the apparatus is lined with polytetrafluoroethylene or the like and contamination is suppressed as much as possible.
  • the content of halogen atoms is preferably less than 500 ppm by mass, more preferably less than 300 ppm by mass, and particularly preferably less than 200 ppm by mass from the viewpoint of wiring corrosion.
  • a halogen ion is less than 5 mass ppm, More preferably, it is less than 1 mass ppm, Especially less than 0.5 mass ppm is preferable.
  • the halogen atom include a chlorine atom and a bromine atom. The total of chlorine atoms and bromine atoms, or chloride ions and bromide ions is preferably in the above range.
  • the resin composition can be prepared by mixing the above components.
  • the mixing method is not particularly limited, and can be performed by a conventionally known method.
  • the filter pore size is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon. A filter that has been washed in advance with an organic solvent may be used. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel.
  • filters having different pore diameters and / or materials may be used in combination.
  • Various materials may be filtered a plurality of times.
  • circulation filtration may be used.
  • you may pressurize and filter.
  • the pressure applied is preferably 0.05 MPa or more and 0.3 MPa or less.
  • impurities may be removed using an adsorbent. Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • the adsorbent a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the manufacturing method of the laminated body of this invention contains the pattern formation method of this invention mentioned above.
  • the method for producing a laminate of the present invention includes a negative photosensitive resin composition layer forming step, an exposure step, a developing step, and a heating step to form a resin layer pattern on a support, and then a metal layer forming step.
  • the pattern forming step in which the negative photosensitive resin composition layer forming step, the exposure step, the developing step, and the heating step are performed in this order is preferably performed 2 to 7 times, more preferably 2 to 5 times. preferable.
  • a pattern having a large thickness difference is often formed.
  • a pattern having a greater thickness difference is often formed.
  • the conventional method tends to require a lot of work because the number of steps is greatly increased.
  • the support or the like tends to warp, and it has been difficult to maintain the uniformity of the pattern by the conventional method.
  • a pattern can be efficiently formed on a resin layer (negative photosensitive resin composition layer) even in a laminate having such a multilayer wiring structure. For this reason, the effect of the present invention is more easily exhibited by using the pattern forming method of the present invention in the production of such a laminate.
  • FIG. 3 is a diagram showing an example of a laminated body having a multilayer wiring structure.
  • reference numeral 500 denotes a laminated body
  • reference numerals 201 to 204 denote resin layers
  • reference numerals 301 to 303 denote metal layers.
  • 2 is the thickness of the thinnest pattern formed by the pattern forming method of the present invention and having different thicknesses
  • B is a pattern having different thicknesses formed simultaneously. Is the thickness of the thickest pattern.
  • a desired pattern is formed on the resin layer 201. This pattern is formed by negative development.
  • a metal layer 301 is formed on the surface of the resin layer 201. The metal layer 301 is formed so as to cover a part of the surface of the groove 401 formed in the resin layer 201.
  • a resin layer 202 is formed on the metal layer 301.
  • a desired pattern is formed on the resin layer 202, and a part of the metal layer 301 is exposed from the resin layer 202. This pattern is formed by negative development.
  • a metal layer 302 is formed on the surface of the resin layer 202.
  • the metal layer 302 is formed so as to cover a part of the surface of the groove 402 formed in the resin layer 202, and is electrically connected to the metal layer 301 exposed from the resin layer 202.
  • a resin layer 203 is formed on the metal layer 302.
  • a desired pattern is formed on the resin layer 203, and a part of the metal layer 302 is exposed from the resin layer 203. This pattern is formed by negative development.
  • a metal layer 303 is formed on the surface of the resin layer 203.
  • the metal layer 303 is formed so as to cover part of the surface of the groove 403 formed in the resin layer 203, and is electrically connected to the metal layer 302 exposed from the resin layer 203.
  • a resin layer 204 is formed on the metal layer 303.
  • a desired pattern is formed on the resin layer 204, and a part of the metal layer 303 is exposed from the resin layer 204. In FIG. 3, a part of the metal layer 302 is also exposed from the resin layer 204.
  • the resin layers 201 to 204 function as insulating films, and the metal layers 301 to 303 function as wiring layers.
  • Such a laminate can be preferably used as a rewiring layer in an electronic device.
  • the method for manufacturing an electronic device of the present invention includes the pattern forming method of the present invention described above.
  • One embodiment of an electronic device obtained by applying the pattern forming method of the present invention will be described with reference to the drawings.
  • An electronic device 100 shown in FIG. 4 is a so-called three-dimensional mounting device.
  • a stacked body 101 in which a plurality of semiconductor elements (semiconductor chips) 101 a to 101 d are stacked is arranged on a wiring board 120.
  • the case where the number of stacked semiconductor elements (semiconductor chips) is four will be mainly described.
  • the number of stacked semiconductor elements (semiconductor chips) is not particularly limited. It may be a layer, 8 layers, 16 layers, 32 layers, or the like. Moreover, one layer may be sufficient.
  • Each of the plurality of semiconductor elements 101a to 101d is made of a semiconductor wafer such as a silicon substrate.
  • the uppermost semiconductor element 101a does not have a through electrode, and an electrode pad (not shown) is formed on one surface thereof.
  • the semiconductor elements 101b to 101d have through electrodes 102b to 102d, and connection pads (not shown) provided integrally with the through electrodes are provided on both surfaces of each semiconductor element.
  • the stacked body 101 has a structure in which a semiconductor element 101a having no through electrode and semiconductor elements 101b to 101d having through electrodes 102b to 102d are flip-chip connected. That is, the electrode pad of the semiconductor element 101a having no through electrode and the connection pad on the semiconductor element 101a side of the semiconductor element 101b having the adjacent through electrode 102b are connected by the metal bump 103a such as a solder bump, The connection pad on the other side of the semiconductor element 101b having the electrode 102b is connected to the connection pad on the semiconductor element 101b side of the semiconductor element 101c having the penetrating electrode 102c adjacent thereto by a metal bump 103b such as a solder bump.
  • connection pad on the other side of the semiconductor element 101c having the through electrode 102c is connected to the connection pad on the semiconductor element 101c side of the semiconductor element 101d having the adjacent through electrode 102d by the metal bump 103c such as a solder bump. ing.
  • An underfill layer 110 is formed in the gaps between the semiconductor elements 101a to 101d, and the semiconductor elements 101a to 101d are stacked via the underfill layer 110.
  • the stacked body 101 is stacked on the wiring substrate 120.
  • the wiring substrate 120 for example, a multilayer wiring substrate using an insulating substrate such as a resin substrate, a ceramic substrate, or a glass substrate as a base material is used.
  • the wiring board 120 to which the resin board is applied include a multilayer copper-clad laminate (multilayer printed wiring board).
  • a surface electrode 120 a is provided on one surface of the wiring board 120.
  • An insulating layer 115 in which a rewiring layer 105 is formed is disposed between the wiring substrate 120 and the stacked body 101, and the wiring substrate 120 and the stacked body 101 are electrically connected via the rewiring layer 105. It is connected.
  • the insulating layer 115 is formed by using the pattern forming method of the present invention.
  • the insulating layer 115 may be a stacked body having a multilayer wiring structure as shown in FIG.
  • One end of the rewiring layer 105 is connected to an electrode pad formed on the surface of the semiconductor element 101d on the rewiring layer 105 side through a metal bump 103d such as a solder bump.
  • the other end of the rewiring layer 105 is connected to the surface electrode 120a of the wiring board via a metal bump 103e such as a solder bump.
  • An underfill layer 110 a is formed between the insulating layer 115 and the stacked body 101.
  • an underfill layer 110 b is formed between the insulating layer 115 and the wiring substrate 120.
  • reaction mixture was cooled to room temperature and 21.43 g (270.9 mmol) pyridine and 90 ml N-methylpyrrolidone were added.
  • the reaction mixture was then cooled to ⁇ 10 ° C. and 16.12 g (135.5 mmol) of SOCl 2 was added over 10 minutes while maintaining the temperature at ⁇ 10 ⁇ 4 ° C. During the addition of SOCl 2 the viscosity increased. After dilution with 50 ml N-methylpyrrolidone, the reaction mixture was stirred at room temperature for 2 hours.
  • a solution obtained by dissolving aniline in 100 ml of NMP was added dropwise over 30 minutes, and then the reaction mixture was stirred at room temperature overnight. Then, it was poured into 5 liters of water to precipitate the polyimide precursor, and the water-polyimide precursor mixture was stirred at a speed of 5000 rpm for 15 minutes. The polyimide precursor was collected by filtration, poured into 4 liters of water again, stirred for another 30 minutes, and collected again by filtration. Next, the obtained polyimide precursor was dried at 45 ° C. under reduced pressure for 3 days to obtain a polyimide precursor (P-4) containing a repeating unit represented by the following formula.
  • the mixture was further stirred at 75 ° C. for 2 hours under a nitrogen atmosphere.
  • the polymer was precipitated by pouring into 5 liters of water and stirred for 15 minutes at a speed of 5000 rpm.
  • the acrylic resin was collected by filtration, poured into 4 liters of water again, stirred for another 30 minutes, and collected again by filtration.
  • the obtained acrylic resin was dried at 45 ° C. under reduced pressure for 3 days to obtain an acrylic polymer (P-6) represented by the following formula.
  • composition ⁇ Preparation of negative photosensitive resin composition> The following components were mixed to prepare a negative photosensitive resin composition coating solution as a uniform solution.
  • Resin parts by mass described in the following table
  • Radical polymerizable compound parts by mass described in the following table
  • Photoradical polymerization initiator parts by mass described in the following table
  • Silane coupling agent parts by mass described in the following table
  • Rust preventive Part by mass described in the following table
  • Polymerization inhibitor Part by mass described in the following table
  • Base generator Part by mass described in the following table
  • Solvent 1 dimethyl sulfoxide
  • Solvent 2 ⁇ -butyrolactone
  • the negative photosensitive resin composition was applied to form a coating film. Next, heat treatment was performed for 240 seconds using a 100 ° C. hot plate to form a negative photosensitive resin composition layer having a film thickness of 15 ⁇ m. Next, using a stepper exposure apparatus FPA-3000i5 + (manufactured by Canon Inc.), the negative photosensitive resin composition layer is subjected to i-line (365 nm wavelength light) through a pattern mask having a 15 ⁇ m square Bayer.
  • i-line 365 nm wavelength light
  • A The difference between the maximum value and the minimum value of the exposure amount that can resolve a pattern having a thickness of 15 ⁇ m and a line width of 15 ⁇ m is 900 mJ / cm 2 or more.
  • B The difference between the maximum value and the minimum value of the exposure amount capable of resolving a pattern having a thickness of 15 ⁇ m and a line width of 15 ⁇ m is 600 mJ / cm 2 or more and less than 900 mJ / cm 2 .
  • C The difference between the maximum value and the minimum value of the exposure amount that can resolve a pattern having a thickness of 15 ⁇ m and a line width of 15 ⁇ m is less than 600 mJ / cm 2 .
  • B-1 SR209 (manufactured by Sartomer, tetraethylene glycol diacrylate)
  • B-2 NK ester A-9300 (manufactured by Shin-Nakamura Chemical Co., Ltd., ethoxylated isocyanuric acid triacrylate)
  • B-3 A-TMMT (made by Shin-Nakamura Chemical Co., Ltd., pentaerythritol tetraacrylate)
  • B-4 A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd., dipentaerythritol hexaacrylate)
  • C-1 IRGACURE OXE 01 (manufactured by BASF, oxime compound)
  • C-2 IRGACURE OXE 02 (manufactured by BASF, oxime compound)
  • C-3 IRGACURE-784 (made by BASF, metallocene compound)
  • C-4 Adeka Arcles NCI-831 (manufactured by ADEKA Corporation, oxime compound)
  • (Silane coupling agent) D-1 KBM-602 (manufactured by Shin-Etsu Chemical Co., Ltd., silane compound having an amino group)
  • D-2 2-((3- (triethoxysilyl) propyl) carbamoyl) benzoic acid (manufactured by Aquila Pharmatech LLC, silane compound having a carboxyl group)
  • D-3 Triethoxysilylpropyl maleamic acid (manufactured by Gelest, Inc., silane compound having a carboxyl group)
  • E-1 KEMITEC BT-C (Chemipro Kasei Co., Ltd., 1,2,3-benzotriazole)
  • E-2 1HT (Toyobo Co., Ltd., 1H-tetrazole)
  • E-3 P5T (manufactured by Toyobo Co., Ltd., 5-phenyl-1H-tetrazole)
  • Base generator A-1, A-21, A-40: Compounds having the following structure (thermal base generator) A-43: WPBG-266 (manufactured by Wako Pure Chemical Industries, Ltd., photobase generator. Also a compound that decomposes by heating to generate a base)
  • the negative photosensitive resin composition layer is subjected to i-line (light having a wavelength of 365 nm) through a pattern mask having a 15 ⁇ m square Bayer. Irradiation was performed at 100 to 1000 mJ / cm 2 while changing the exposure amount by 100 mJ / cm 2 .
  • the Si substrate on which the negative photosensitive resin composition layer after exposure is formed is placed on a horizontal rotary table of a spin shower developing machine (DW-30 type; manufactured by Chemtronics Co., Ltd.). Development was performed at 23 ° C. for 60 seconds using pentanone, and unexposed portions were developed and removed.
  • a pattern was formed on each step of the Si substrate by performing heat treatment at 230 ° C. for 180 minutes in a nitrogen oven.
  • the thicknesses of the patterns formed in FIG. 5 are 2 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 16 ⁇ m, 18 ⁇ m, and 20 ⁇ m.
  • ⁇ Evaluation of resolution> The resolution was evaluated according to the following criteria.
  • a pattern with a line width of 15 ⁇ m could be formed in the thickness range of 2 to 20 ⁇ m.
  • B A pattern with a line width of 15 ⁇ m could be formed in a thickness range of 2 to 16 ⁇ m, but a pattern with a line width of 15 ⁇ m could not be formed in a portion exceeding the thickness of 16 ⁇ m.
  • a pattern with a line width of 15 ⁇ m could be formed in a thickness range of 2 to 12 ⁇ m, but a pattern with a line width of 15 ⁇ m could not be formed in a portion exceeding the thickness of 12 ⁇ m.
  • D Not applicable to any of the above A to C. A pattern with a line width of 15 ⁇ m could not be formed at any thickness of 2 to 20 ⁇ m.
  • the examples were able to form patterns with different thicknesses with a wide range of exposure and good resolution.
  • Resin layer 11 Negative photosensitive resin composition layer 20: Support 50: Mask 100: Electronic devices 101a to 101d: Semiconductor device 101: Stacked bodies 102b to 102d: Through electrodes 103a to 103e: Metal bumps 105: Re Wiring layers 110, 110a, 110b: underfill layer 115: insulating layer 120: wiring substrate 120a: surface electrodes 201 to 204: resin layers 301 to 303: metal layers 401 to 403: grooves 500: laminate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

厚さの異なる2種以上のパターンを解像性良く形成できるパターン形成方法、積層体の製造方法および電子デバイスの製造方法を提供する。樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いてネガ型感光性樹脂組成物層を形成し、ネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成するパターン形成方法であって、同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5~10倍であり、ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いる。

Description

パターン形成方法、積層体の製造方法および電子デバイスの製造方法
 本発明は、パターン形成方法、積層体の製造方法および電子デバイスの製造方法に関する。
 ポリイミドは、耐熱性及び絶縁性に優れるため、電子デバイスの絶縁層などに用いられている。また、ポリイミドは溶剤への溶解性が低いため、環化反応前の前駆体(ポリイミド前駆体)の状態で支持体などに適用した後、加熱してポリイミド前駆体を環化して硬化膜を形成することも行われている。
 例えば、特許文献1、2には、ポリイミド前駆体と光重合開始剤とを含むネガ型感光性樹脂組成物を用いてパターンを形成することが記載されている。
特開2011-191749号公報 特開2014-201695号公報
 ネガ型感光性樹脂組成物を用いてパターンを形成するにあたって、近年においては、段差を有する支持体上に形成したネガ型感光性樹脂組成物層に対してパターンを形成したり、ネガ型感光性樹脂組成物層を複数積層して2種以上のパターン形成を行うこともある。このような場合、厚みの異なる2種以上のパターンを形成することになる。厚みの異なる2種以上のパターンを形成する場合においては、パターンの厚さ毎にマスクおよび露光量を変えて行う方法が用いられている。しかしながら、この場合、露光工程を複数回行う必要があり、工程数が嵩んでいた。また、パターン間の厚み差が大きくなるに伴い、所望のパターン形状を形成しにくい傾向にあった。
 なお、特許文献1、2には、厚さの異なるパターンを形成することに関する記載や示唆はない。
 よって、本発明の目的は、厚さの異なる2種以上のパターンを、幅広い露光量にて解像性良く形成できるパターン形成方法、積層体の製造方法および電子デバイスの製造方法を提供することにある。
 上記課題のもと、発明者が検討を行った結果、以下に示すパターン形成方法により上記課題を解決できることを見出し本発明を完成するに至った。本発明は以下を提供する。
<1> 樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いて支持体上にネガ型感光性樹脂組成物層を形成し、ネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成するパターン形成方法であって、
 同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5~10倍であり、
 ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いる、パターン形成方法。
<2> 支持体上にネガ型感光性樹脂組成物層を2層以上積層し、2層以上積層したネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成する、<1>に記載のパターン形成方法。
<3> 同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.75~8倍である、<1>または<2>に記載のパターン形成方法。
<4> 同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの2~6倍である、<1>または<2>に記載のパターン形成方法。
<5> ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値の差が900mJ/cm以上であるネガ型感光性樹脂組成物を用いる、<1>~<4>のいずれか1つに記載のパターン形成方法。
<6> 樹脂がポリイミド前駆体である、<1>~<5>のいずれか1つに記載のパターン形成方法。
<7> ポリイミド前駆体が、下記式(1)で表される、<6>に記載のパターン形成方法;
Figure JPOXMLDOC01-appb-C000002
 式(1)中、A21およびA22は、それぞれ独立に、酸素原子または‐NH‐を表し、R21は、2価の有機基を表し、R22は、4価の有機基を表し、R23およびR24はそれぞれ独立に、水素原子または1価の有機基を表す。
<8> 式(1)中、R23およびR24の少なくとも一方が、ラジカル重合性基を含む、<7>に記載のパターン形成方法。
<9> 式(1)における、R22は、芳香環を含む4価の基である、<7>または<8>に記載のパターン形成方法。
<10> 更に、金属層を形成する工程を含む、<1>~<9>のいずれか1つに記載のパターン形成方法。
<11> <1>~<10>のいずれか1つに記載のパターン形成方法を含む、積層体の製造方法。
<12> <1>~<10>のいずれか1つに記載のパターン形成方法を含む、電子デバイスの製造方法。
 本発明により、厚さの異なる2種以上のパターンを、幅広い露光量にて解像性良く形成できるパターン形成方法、積層体の製造方法および電子デバイスの製造方法を提供することが可能になった。
厚さの異なるパターンを説明する概略図である。 図1に示すパターンの形成工程を示す図である。 積層体の一実施形態の構成を示す概略図である。 電子デバイスの一実施形態の構成を示す概略図である。 段差を有するSi基板上に、ネガ型感光性樹脂組成物を適用した状態を示す図である。
 以下に記載する本発明における構成要素の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の双方、または、いずれかを表し、「(メタ)アリル」は、「アリル」および「メタリル」の双方、または、いずれかを表し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の双方、または、いずれかを表し、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。また、固形分濃度は、特に述べない限り25℃における濃度をいう。
 本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィー(GPC)測定に従い、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000およびTSKgel Super HZ2000(東ソー(株)製)を用いることによって求めることができる。溶離液は特に述べない限り、THF(テトラヒドロフラン)を用いるものとする。また、検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
<パターン形成方法>
 本発明のパターン形成方法は、樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いてネガ型感光性樹脂組成物層を形成し、ネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成するパターン形成方法であって、同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5~10倍であり、ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いることを特徴とする。
 本発明によれば、ネガ型感光性樹脂組成物として、上述の露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いることで、幅広い露光量にて、上述の厚さの異なる2種以上のパターンを同時にかつ解像性良く形成できる。このため、少ない工程数で、厚みの異なるパターンを解像性良く形成できる。また、幅広い露光量にて上記のパターンを形成できるので、感光性組成物の経時での性能変動(例えば低感度化)や、装置のバラツキなどが生じても、所望のパターンを得られるという効果も期待できる。なお、本発明において、厚さの異なる2種以上のパターンを同時に形成するとは、1回の露光および現像の操作により、厚さの異なる2種以上のパターンを形成することを意味する。
 本発明において、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値および最小値は、以下により定義される値である。パターン解像において、露光時における露光量が低すぎるとネガ型感光性樹脂組成物層の硬化が十分に進まず、所望のパターンを解像できない。また、露光量が高すぎるとマスク周縁部の未露光部分の硬化が進んでパターン太りが発生し、所望のサイズのパターンを解像できない。ネガ型感光性樹脂組成物を支持体に適用し、乾燥して厚さ15μmのネガ型感光性樹脂組成物層を形成し、厚さ15μmのネガ型感光性樹脂組成物層に対して露光量を変動させて露光し、未露光部を現像除去して厚さ15μm、線幅15μm以下(好ましくは線幅15μm)のパターンを形成した際において、露光時における露光量を変動させて露光し、厚さ15μm、線幅15μm以下(好ましくは線幅15μm)のパターンを解像可能な露光量のうち、最も低露光量の値を、露光量の最小値と定義し、最も高露光量の値を露光量の最大値とする。例えば、100mJ/cmまでの露光量では上記のパターンを解像できるものの、100mJ/cmを下回ると、硬化が十分に進まず、上記のパターンを解像できない場合は、100mJ/cmが露光量の最小値となる。また、例えば、1000mJ/cmまでの露光量では上記のパターンを解像できるものの、1000mJ/cmを超えると、パターン太りが発生して上記のパターンを解像できない場合は、1000mJ/cmが露光量の最大値となる。露光に使用される光(放射線)としては、可視光線、紫外線、遠紫外線、荷電粒子線、X線等の放射線を適宜に選択して使用することができるが、波長が190~450nmの範囲にある光(放射線)が好ましい。例えば、ステッパー等の露光装置を用い、1μmから15μmまで、1μmごとの四方のベイヤーパターンを有するマスクを介してパターン露光することが好ましい。露光に際して用いることができる光(放射線)としては、g線、i線等の紫外線が好ましく、i線がより好ましい。
 なお、本発明において、パターンの線幅とは、ネガ型感光性樹脂組成物層の現像除去部(ネガパターン)の線幅のことである。また、本発明において、下地の露出幅が、マスク寸法の0.8~1.2倍である場合を、所望のサイズのパターンを解像できたとする。例えば、15μmの線幅のマスクを使用してパターンを形成した場合、下地の露出幅が、15±3μmである場合を、線幅15μmのパターンを解像できたとする。
 本発明のパターン形成方法で用いるネガ型感光性樹脂組成物は、上述の露光量の最大値と最小値との差が600mJ/cm以上であり、700mJ/cm以上であることが好ましく、800mJ/cm以上であることがより好ましく、900mJ/cm以上であることが更に好ましい。上限は、特に限定はないが、各工程に必要な時間を短縮できるという理由から、1800mJ/cm以下であることが好ましく、1700mJ/cm以下であることがより好ましく、1600mJ/cm以下であることが更に好ましい。また、ネガ型感光性樹脂組成物については、上述の露光量の最大値および最小値から選ばれる少なくとも一方(好ましくは上述の露光量の最小値)は、50~500mJ/cmの範囲(より好ましくは100~400mJ/cmの範囲)にあることが好ましい。上述の露光量の最大値および最小値の両方が10~2000mJ/cmの範囲(より好ましくは50~1800mJ/cmの範囲)にあることが特に好ましい。
 ネガ型感光性樹脂組成物における上述の露光量の最大値と最小値との差を600mJ/cmに調整する方法としては、樹脂と光重合開始剤の比率を調整する方法が挙げられる。また、樹脂とラジカル重合性化合物とを併用した場合においては、樹脂とラジカル重合性化合物と光重合開始剤との比率を調整することも好ましい。例えば、樹脂とラジカル重合開始剤の比率(質量比)で5:1~10:1の範囲で調整し、ラジカル重合開始剤と光重合開始剤との比率(質量比)で2:1~8:1の範囲で調整することも好ましい。
 また、本発明において、同時に形成する厚さの異なるパターンにおける、最も厚いパターンの厚さ、および、最も薄いパターンの厚さとは、ネガ型現像によって形成されるパターンの厚さを意味する。例えば、図1における、A1、B1およびC1がパターンの厚みであり、図1におけるB1が最も厚いパターンの厚さに相当し、図1におけるA1が最も薄いパターンの厚さに相当する。図1における符号10はネガ型感光性樹脂組成物を用いて形成される樹脂層であり、符号20は支持体や金属層などの構造物である。図1に示すパターンは、凹凸等の段差を有する支持体20上にネガ型感光性樹脂組成物層11を形成し(図2(A))、次いで、パターンを有するマスク50を介して露光し(図2(B))、ついで、未露光部分を現像して除去して(図2(C))、所望のパターンを形成することができる。 
 本発明において、同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5~10倍であり、1.75~8倍であることが好ましく、2~6倍であることがより好ましい。なお、本発明においてパターンの厚みは、硬化後のパターンの厚みを意味する。
 本発明のパターン形成方法によって形成されるパターンの厚みは、0.05~100μmであることが好ましい。上限は、90μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることが更に好ましい。下限は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることが更に好ましい。
 本発明において、同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、0.1~100μmであることが好ましい。上限は、90μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることが更に好ましい。下限は、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることが更に好ましい。
 本発明において、同時に形成する厚さの異なるパターンのうち、最も薄いパターンの厚さは、0.05~75μmであることが好ましい。上限は、50μm以下であることが好ましく、30μm以下であることがより好ましい。下限は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、3μm以上であることが更に好ましい。
 本発明のパターン形成方法は、支持体上に上述のネガ型感光性樹脂組成物層を2層以上積層し、2層以上積層したネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成することが好ましい。ネガ型感光性樹脂組成物層を2層以上積層した場合、下地となる支持体の凹凸などに起因してネガ型感光性樹脂組成物層の厚みにばらつきが生じることがある。このため、より厚み差の大きいパターンを形成することがあるが、本発明によれば、このような場合においても、厚さの異なる2種以上のパターンを同時にかつ解像性良く形成できる。
 以下、本発明のパターン形成方法について具体的に説明する。
 本発明のパターンの製造方法は、樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いて支持体上にネガ型感光性樹脂組成物層を形成する工程(ネガ型感光性樹脂組成物層形成工程)を含む。本発明では、ネガ型感光性樹脂組成物として、上述の露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いる。ネガ型感光性樹脂組成物の詳細については後述する。
 支持体の種類は、用途に応じて適宜定めることができる。例えば、無機基板、樹脂基板、樹脂複合材料基板などが挙げられる。無機基板としては、例えばガラス基板、石英基板、シリコン基板、シリコンナイトライド(窒化シリコン)基板、および、それらのような基板上にモリブデン、チタン、アルミニウム、銅などを蒸着した複合基板が挙げられる。樹脂基板としては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンスルフィド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミド、オレフィン、セルロース、エピスルフィド化合物等の合成樹脂からなる基板が挙げられる。これらの基板は、上記の形態のまま用いられる場合は少なく、通常、最終製品の形態によって、例えば薄膜トランジスタ(TFT)素子のような多層積層構造が形成されている。なお、金属層などを有するネガ型感光性樹脂組成物層の表面に、更にネガ型感光性樹脂組成物層を形成する場合においては、金属層やネガ型感光性樹脂組成物層が支持体となる。
 支持体へのネガ型感光性樹脂組成物の適用方法としては、塗布が好ましい。具体的な適用方法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法、およびインクジェット法などが例示される。ネガ型感光性樹脂組成物層の厚さの均一性の観点から、より好ましくはスピンコート法である。スピンコート法の場合、例えば、500~5000rpmの回転数で、10秒~1分程度適用することができる。
 ネガ型感光性樹脂組成物層の厚さは、加熱後の膜厚が0.05~100μmとなるように塗布することが好ましく、1~50μmとなるように塗布することがより好ましい。また、形成されるネガ型感光性樹脂組成物層の厚さは、必ずしも均一である必要はない。例えば、図1に示すように、凹凸のある表面上にネガ型感光性樹脂組成物層を形成する場合、厚さの異なるネガ型感光性樹脂組成物層となることがある。
 ネガ型感光性樹脂組成物層形成工程では、支持体上に形成したネガ型感光性樹脂組成物層に対し、乾燥を行ってもよい。乾燥温度は50~150℃が好ましく、70~130℃がより好ましく、90~110℃がさらに好ましい。乾燥時間は、30秒~20分が好ましく、1~10分がより好ましく、3~7分が更に好ましい。
 本発明のパターン形成方法は、ネガ型感光性樹脂組成物層に対して露光および現像を行ってパターンを形成する工程を含む。具体的には、ネガ型感光性樹脂組成物層に対してパターン状に露光する露光工程、および、露光された樹脂組成物層の未露光部分を現像して除去することによってパターンを形成する現像工程を含む。そして、本発明では、ネガ型感光性樹脂組成物層に対して露光および現像を行って厚さの異なる2種以上のパターンを同時に形成する。厚さの異なる2種以上のパターンを同時に形成するには、凹凸等の段差のある支持体上にネガ型感光性樹脂組成物層を形成し、厚さの異なるネガ型感光性樹脂組成物層に対して、同時に露光および現像を行ってパターンを形成する方法が挙げられる。凹凸等の段差のある支持体としては、表面に金属層などの構造物が形成された支持体などが挙げられる。
 露光工程において、ネガ型感光性樹脂組成物層への露光は、例えば、波長365nmでの露光エネルギー換算で50~10000mJ/cmにて行うことが好ましく、100~8000mJ/cmにて行うことがより好ましい。露光波長は、190~1000nmの範囲で適宜定めることができ、240~550nmが好ましい。
 現像工程において、ネガ型感光性樹脂組成物層の現像は現像液を用いて行うことが好ましい。現像液としては、特に制限なく使用できる。溶剤が好ましい。現像液に用いる溶剤としては、エステル類、エーテル類、ケトン類、芳香族炭化水素類、スルホキシド類などの有機溶剤が挙げられる。これらの詳細については、後述する樹脂組成物の欄で説明する溶剤が挙げられる。なかでも3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートが好ましく、シクロペンタノン、γ-ブチロラクトンがより好ましい。
 現像時間としては、10秒~5分が好ましい。現像時の温度は、特に定めるものではないが、20~40℃で行うことができる。現像液を用いた処理の後、さらに、リンスを行ってもよい。リンスは、現像液とは異なる溶剤で行うことが好ましい。例えば、樹脂組成物に含まれる溶剤を用いてリンスすることができる。リンス時間は、5秒~1分が好ましい。
 本発明のパターン形成方法は、現像工程により得られたパターンを加熱する加熱工程を含むことが好ましい。加熱工程では、ポリイミド前駆体の環化反応が進行する。また、ネガ型感光性樹脂組成物がラジカル重合性化合物等のラジカル重合性成分を含む場合においては、未反応のラジカル重合性成分の硬化なども進行する。これにより、耐熱性などに優れたパターンを形成することができる。
 加熱工程における最高加熱温度(加熱時の最高温度)としては、100~500℃が好ましく、140~400℃がより好ましく、160~350℃がさらに好ましい。
 加熱は、20~150℃の温度から最高加熱温度まで1~12℃/分の昇温速度で行うことが好ましく、2~10℃/分がより好ましく、3~10℃/分がさらに好ましい。昇温速度を1℃/分以上とすることにより、高い生産性を確保しつつ、アミンの過剰な揮発を防止することができ、昇温速度を12℃/分以下とすることにより、得られる膜の残存応力を緩和することができる。
 加熱開始時の温度は、20~150℃が好ましく、20℃~130℃がより好ましく、25℃~120℃がさらに好ましい。加熱開始時の温度は、最高加熱温度まで加熱を開始する際の温度のことをいう。例えば、ネガ型感光性樹脂組成物を支持体上に適用した後、乾燥させる場合、この乾燥後の温度が加熱開始温度である。加熱工程では、例えば、ネガ型感光性樹脂組成物に含まれる溶剤の沸点よりも30~200℃低い温度から徐々に昇温させることが好ましい。
 加熱工程においては、最高加熱温度に到達した後、10~360分間加熱することが好ましく、20~300分間加熱することがさらに好ましく、30~240分間加熱することが特に好ましい。
 加熱工程における加熱は段階的に行ってもよい。例として、25℃から180℃までは3℃/分で昇温し、180℃にて60分置き、180℃から200℃までは2℃/分で昇温し、200℃にて120分置く、といった工程が挙げられる。
 加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す等により、低酸素濃度の雰囲気で行うことがポリイミド前駆体等の分解を防ぐ点で好ましい。酸素濃度は、50体積ppm以下が好ましく、20体積ppm以下がより好ましい。
 加熱工程を終えたのち、冷却することが好ましい。冷却速度としては、1~5℃/分であることが好ましい。
 本発明のパターン形成方法は、金属層を形成する工程(金属層形成工程)を含んでいてもよい。金属層としては、特に限定なく、既存の金属種を使用することができる。例えば、銅、アルミニウム、ニッケル、バナジウム、チタン、クロム、コバルト、金およびタングステンが挙げられ、銅およびアルミニウムが好ましく、銅がより好ましい。金属層の形成方法は、特に限定なく、既存の方法を適用することができる。例えば、特開2007-157879号公報、特表2001-521288号公報、特開2004-214501号公報、特開2004-101850号公報に記載された方法を使用することができる。例えば、フォトリソグラフィ、リフトオフ、電解メッキ、無電解メッキ、エッチング、印刷、及びこれらを組み合わせた方法などが考えられる。より具体的には、スパッタリング、フォトリソグラフィおよびエッチングを組み合わせたパターニング方法、フォトリソグラフィと電解メッキとを組み合わせたパターニング方法が挙げられる。
 金属層の厚さとしては、最も厚い部分で0.1~50μmが好ましく、1~10μmがより好ましい。
 本発明のパターン形成方法において、金属層形成工程を含む場合、更に、金属層及びネガ型感光性樹脂組成物層の少なくとも一部を表面活性化処理する工程(表面活性化処理工程)を含んでいてもよい。表面活性化処理は、金属層の少なくとも一部のみに行ってもよいし、上記現像工程後(加熱工程をさらに行う場合は加熱工程後)のネガ型感光性樹脂組成物層の少なくとも一部のみに行っても良いし、金属層およびネガ型感光性樹脂組成物層の両方について、それぞれ、少なくとも一部に行ってもよい。
 表面活性化処理は、通常、金属層を形成した後に行うが、上記現像工程後(加熱工程をさらに行う場合は加熱工程後)のネガ型感光性樹脂組成物層に表面活性化処理を行ってから、金属層を形成してもよい。
 表面活性化処理は、金属層の少なくとも一部について行うことが好ましく、金属層のうち、表面にネガ型感光性樹脂組成物層を形成する領域の一部または全部に表面活性化処理を行うことが好ましい。このように、金属層の表面に表面活性化処理を行うことにより、その表面に設けられるネガ型感光性樹脂組成物層との密着性を向上させることができる。
 また、表面活性化処理は、ネガ型感光性樹脂組成物層の一部または全部についても行うことが好ましい。このように、ネガ型感光性樹脂組成物層の表面に表面活性化処理を行うことにより、表面活性化処理した表面に設けられる金属層やネガ型感光性樹脂組成物層との密着性を向上させることができる。
 表面活性化処理としては、各種原料ガス(酸素、水素、アルゴン、窒素、窒素/水素混合ガス、アルゴン/酸素混合ガスなど)のプラズマ処理、コロナ放電処理、CF/O、NF/O、SF、NF、NF/Oによるエッチング処理、紫外線(UV)オゾン法による表面処理、塩酸水溶液に浸漬して酸化皮膜を除去した後にアミノ基とチオール基を少なくとも一種有する化合物を含む有機表面処理剤への浸漬処理、ブラシを用いた機械的な粗面化処理から選択され、プラズマ処理が好ましく、特に原料ガスに酸素を用いた酸素プラズマ処理が好ましい。コロナ放電処理の場合、エネルギーは、500~200000J/mが好ましく、1000~100000J/mがより好ましく、10000~50000J/mが最も好ましい。
 本発明のパターン形成方法は、金属層を形成した後、再度、上述したネガ型感光性樹脂組成物層形成工程、上述した露光工程、上述した現像工程および上述した加熱工程を、この順番で行うことが好ましい。また、加熱工程後に、更に上述した金属層形成工程を行うことも好ましい。このようにすることで、樹脂層と金属層とが交互に積層した積層体を形成することができる。
<ネガ型感光性樹脂組成物(樹脂組成物)>
 次に、本発明のパターン形成方法に用いるネガ型感光性樹脂組成物について説明する。以下、ネガ型感光性樹脂組成物を樹脂組成物ともいう。
 本発明のパターン形成方法に用いるネガ型感光性樹脂組成物は、樹脂と光重合開始剤とを含む。本発明におけるネガ型感光性樹脂組成物は、樹脂がラジカル重合性基を含むか、あるいは、樹脂以外のラジカル重合性化合物を含むことが好ましい。以下、ネガ型感光性樹脂組成物の各成分について詳細に説明する。
<<樹脂>>
 本発明における樹脂組成物は、樹脂を含む。樹脂としては、ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾール、エポキシ樹脂、フェノール樹脂などが挙げられる。本発明において樹脂はポリイミド前駆体であることが好ましい。ポリイミド前駆体としては、式(1)で表される繰り返し単位を含むポリイミド前駆体であることが好ましい。
式(1)
Figure JPOXMLDOC01-appb-C000003
 式(1)中、A21およびA22は、それぞれ独立に、酸素原子または-NH-を表し、R21は、2価の有機基を表し、R22は、4価の有機基を表し、R23およびR24は、それぞれ独立に、水素原子または1価の有機基を表す。
 A21およびA22は、それぞれ独立に酸素原子または-NH-を表し、酸素原子が好ましい。
 R21は、2価の有機基を表す。2価の有機基としては、直鎖または分岐の脂肪族基、環状の脂肪族基およびアリール基を含む基が例示され、炭素数2~20の直鎖または分岐の脂肪族基、炭素数6~20の環状の脂肪族基、炭素数6~20のアリール基、または、これらの組み合わせからなる基が好ましく、炭素数6~20のアリール基からなる基がより好ましい。アリール基の例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式中、Aは、単結合、または、フッ素原子で置換されていてもよい炭素数1~10の炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-および-NHCO-、並びにこれらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-、-SO-から選択される基であることがより好ましく、-CH-、-O-、-S-、-SO-、-C(CF-、-C(CH-から選択される2価の基であることがさらに好ましい。
 具体的には、R21は、以下のジアミンのアミノ基の除去後に残存するジアミン残基などが挙げられる。
 1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタンおよび1,6-ジアミノヘキサン;1,2-または1,3-ジアミノシクロペンタン、1,2-、1,3-または1,4-ジアミノシクロヘキサン、1,2-、1,3-または1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタンおよびイソホロンジアミン;m-およびp-フェニレンジアミン、ジアミノトルエン、4,4’-および3,3’-ジアミノビフェニル、4,4’-および3,3’-ジアミノジフェニルエーテル、4,4’-および3,3’-ジアミノジフェニルメタン、4,4’-および3,3’-ジアミノジフェニルスルホン、4,4’-および3,3’-ジアミノジフェニルスルフィド、4,4’-および3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-および2,5-ジアミノクメン、2,5-ジメチル-p-フェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジンおよび4,4’’’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミン。
 また、下記に示すジアミン(DA-1)~(DA-18)のアミノ基の除去後に残存するジアミン残基もR21の例として挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 また、2つ以上のアルキレングリコール単位を主鎖にもつジアミンのアミノ基の除去後に残存するジアミン残基もR21の例として挙げられる。好ましくは、エチレングリコール鎖、プロピレングリコール鎖のいずれかまたは両方を一分子中にあわせて2つ以上含むジアミン残基であり、より好ましくは芳香環を含まないジアミン残基である。例としては、ジェファーミン(登録商標)KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176、D-200、D-400、D-2000、D-4000(以上商品名、HUNTSMAN(株)製)、1-(2-(2-(2-アミノプロポキシ)エトキシ)プロポキシ)プロパン-2-アミン、1-(1-(1-(2-アミノプロポキシ)プロパン-2-イル)オキシ)プロパン-2-アミンなどが挙げられるが、これらに限定されない。ジェファーミン(登録商標)KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000007
 上記において、x、y、zは平均値である。
 式(1)中、R22は4価の有機基を表し、芳香環を含む4価の基であることが好ましく、下記式(1-1)または式(1-2)で表される基がより好ましい。
式(1-1)
Figure JPOXMLDOC01-appb-C000008
 式(1-1)中、R112は、単結合、または、フッ素原子で置換されていてもよい炭素数1~10の炭化水素基、-O-、-CO-、-S-、-SO2-および-NHCO-、並びにこれらの組み合わせから選択される基であることが好ましく、単結合、または、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-CO-、-S-および-SO-から選択される2価の基であることがより好ましく、-CH-、-C(CF-、-C(CH-、-O-、-CO-、-S-および-SO-からなる群から選択される2価の基がさらに好ましい。
式(1-2)
Figure JPOXMLDOC01-appb-C000009
 R22は、テトラカルボン酸二無水物から酸無水物基を除去した後に残存するテトラカルボン酸残基などが挙げられる。具体的には、以下のテトラカルボン酸二無水物から酸無水物基を除去した後に残存しているテトラカルボン酸残基などが挙げられる。
 ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、および1,2,3,4-ベンゼンテトラカルボン酸二無水物、並びに、これらの炭素数1~6のアルキル誘導体および炭素数1~6のアルコキシ誘導体から選ばれる少なくとも1種のテトラカルボン酸二無水物。
 また、下記に示すテトラカルボン酸二無水物(DAA-1)~(DAA-5)から酸無水物基を除去した後に残存しているテトラカルボン酸残基も、R22の例として挙げられる。
Figure JPOXMLDOC01-appb-C000010
 アルカリ現像液への溶解度の観点からは、R22はOH基を有することが好ましい。より具体的には、R22として、上記(DAA-1)~(DAA-5)から無水物基の除去後に残存しているテトラカルボン酸残基が挙げられる。
 式(1)において、R23およびR24は、それぞれ独立に、水素原子または1価の有機基を表す。R23およびR24が表す1価の有機基としては、直鎖または分岐のアルキル基、環状アルキル基、芳香族基を含む基、ラジカル重合性基などが挙げられる。本発明において、R23およびR24の少なくとも一方は、ラジカル重合性基を含む基であることが好ましい。この態様によれば、本発明の効果がより顕著に得られる傾向にある。また、このポリイミド前駆体を含む感光性樹脂組成物は、ネガ型感光性樹脂組成物として好ましく用いることができる。ラジカル重合性基としては、エチレン性不飽和結合を有する基などが挙げられる。ラジカル重合性基の具体例としては、ビニル基、(メタ)アリル基、下記式(III)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(III)において、R200は、水素原子またはメチル基を表し、メチル基がより好ましい。
 式(III)において、R201は、炭素数2~12のアルキレン基、-CHCH(OH)CH-または炭素数4~30のポリオキシアルキレン基を表す。好適なR201の例としては、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基、-CHCH(OH)CH-が挙げられ、エチレン基、プロピレン基、トリメチレン基、-CHCH(OH)CH-がより好ましい。R200がメチル基で、R201がエチレン基である組み合わせが特に好ましい。
 直鎖または分岐のアルキル基の炭素数は1~30が好ましい。具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-エチルペンチル基、および2-エチルヘキシル基が挙げられる。
 環状のアルキル基は、単環の環状アルキル基であってもよく、多環の環状アルキル基であってもよい。単環の環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基が挙げられる。多環の環状アルキル基としては、例えば、アダマンチル基、ノルボルニル基、ボルニル基、カンフェニル基、デカヒドロナフチル基、トリシクロデカニル基、テトラシクロデカニル基、カンホロイル基、ジシクロヘキシル基およびピネニル基が挙げられる。中でも、高感度化との両立の観点から、シクロヘキシル基が好ましい。
 芳香族基としては、置換または無置換のベンゼン環基、ナフタレン環基、ペンタレン環基、インデン環基、アズレン環基、ヘプタレン環基、インダセン環基、ペリレン環基、ペンタセン環基、アセナフテン環基、フェナントレン環基、アントラセン環基、ナフタセン環基、クリセン環基、トリフェニレン環基、フルオレン環基、ビフェニル環基、ピロール環基、フラン環基、チオフェン環基、イミダゾール環基、オキサゾール環基、チアゾール環基、ピリジン環基、ピラジン環基、ピリミジン環基、ピリダジン環基、インドリジン環基、インドール環基、ベンゾフラン環基、ベンゾチオフェン環基、イソベンゾフラン環基、キノリジン環基、キノリン環基、フタラジン環基、ナフチリジン環基、キノキサリン環基、キノキサゾリン環基、イソキノリン環基、カルバゾール環基、フェナントリジン環基、アクリジン環基、フェナントロリン環基、チアントレン環基、クロメン環基、キサンテン環基、フェノキサチイン環基、フェノチアジン環基またはフェナジン環基が挙げられる。ベンゼン環基が好ましい。
 式(1)において、A22が酸素原子であってR23が水素原子である場合、および/またはA21が酸素原子であってR24が水素原子である場合、ポリイミド前駆体はエチレン性不飽和結合を有する3級アミン化合物と対塩を形成していてもよい。このようなエチレン性不飽和結合を有する3級アミン化合物の例としては、N,N-ジメチルアミノプロピルメタクリレートが挙げられる。
 また、アルカリ現像の場合、解像性を向上させる点から、ポリイミド前駆体は、構造単位中にフッ素原子を有することが好ましい。フッ素原子により、アルカリ現像の際に膜の表面に撥水性が付与され、表面からの浸み込みなどを抑えることができる。ポリイミド前駆体中のフッ素原子含有量は10質量%以上が好ましく、また、アルカリ水溶液に対する溶解性の点から20質量%以下が好ましい。
 また、基板との密着性を向上させる目的で、ポリイミド前駆体はシロキサン構造を有する脂肪族基を共重合してもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどが挙げられる。
 また、樹脂組成物の保存安定性を向上させるため、ポリイミド前駆体の主鎖末端をモノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止することが好ましい。これらのうち、モノアミンを用いることがより好ましい。モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 ポリイミド前駆体は、式(1)で表される繰り返し単位と、他のポリイミド前駆体である他の繰り返し単位とからなっていてもよい。
 他の繰り返し単位を含む場合、ポリイミド前駆体における、他の繰り返し単位の割合は、1~60モル%であることが好ましく、5~50モル%であることがより好ましい。
 本発明におけるポリイミド前駆体は、式(1)で表される繰り返し単位を含むポリイミド前駆体以外の、他のポリイミド前駆体を実質的に含まない構成とすることもできる。実質的に含まないとは、例えば、樹脂組成物に含まれる上記の他のポリイミド前駆体の含有量が、ポリイミド前駆体の含有量の3質量%以下であることをいう。
 ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは20000~28000であり、より好ましくは22000~27000であり、さらに好ましくは23000~25000である。ポリイミド前駆体の分散度(Mw/Mn)は、特に定めるものではないが、1.0以上であることが好ましく、2.5以上であることがより好ましく、2.8以上であることがさらに好ましい。ポリイミド前駆体の分散度の上限値は特に定めるものではないが、例えば、4.5以下が好ましく、3.4以下とすることもできる。
 樹脂組成物における樹脂の含有量は、樹脂組成物の全固形分に対し20~100質量%が好ましく、50~99質量%がより好ましく、60~99質量%がさらに好ましく、70~99質量%が特に好ましい。
 樹脂組成物におけるポリイミド前駆体の含有量は、樹脂組成物の全固形分に対し20~100質量%が好ましく、50~99質量%がより好ましく、60~99質量%がさらに好ましく、70~99質量%が特に好ましい。
 また、本発明では、ポリイミド前駆体以外の樹脂を実質的に含まない構成とすることもできる。実質的に含まないとは、例えば、樹脂組成物に含まれるポリイミド前駆体以外の樹脂の含有量が、ポリイミド前駆体の含有量の3質量%以下であることをいう。
<<ラジカル重合性化合物>>
 本発明における樹脂組成物は、更に、ラジカル重合性化合物を含有していてもよい。ラジカル重合性化合物を含有させることにより、ネガ型感光性樹脂組成物として好ましく用いることができる。更には、より耐熱性に優れた硬化膜を形成することができる。ラジカル重合性化合物としては、エチレン性不飽和結合を有する化合物が好ましく、エチレン性不飽和結合を有する基を2個以上含む化合物であることがより好ましい。ラジカル重合性化合物は、例えば、モノマー、プレポリマー、オリゴマーおよびそれらの混合物並びにそれらの多量体などの化学的形態のいずれであってもよい。エチレン性不飽和結合を有する基としては、スチリル基、ビニル基、(メタ)アクリロイル基および(メタ)アリル基が好ましく、(メタ)アクリロイル基がより好ましい。なお、本発明におけるラジカル重合性化合物は、上述した樹脂とは異なる成分である。
 本発明において、モノマータイプのラジカル重合性化合物(以下、ラジカル重合性モノマーともいう)は、高分子化合物とは異なる化合物である。ラジカル重合性モノマーは、典型的には、低分子化合物であり、分子量2000以下の低分子化合物であることが好ましく、分子量1500以下の低分子化合物であることがより好ましく、分子量900以下の低分子化合物であることがさらに好ましい。なお、ラジカル重合性モノマーの分子量は、通常、100以上である。
 また、オリゴマータイプのラジカル重合性化合物は、典型的には比較的低い分子量の重合体であり、10個から100個のラジカル重合性モノマーが結合した重合体であることが好ましい。分子量としては、ゲルパーミエーションクロマトグラフィー(GPC)法でのポリスチレン換算の重量平均分子量が、2000~20000であることが好ましく、2000~15000がより好ましく、2000~10000であることがさらに好ましい。
 本発明におけるラジカル重合性化合物の官能基数は、1分子中におけるラジカル重合性基の数を意味する。樹脂組成物は、解像性の観点から、ラジカル重合性基を2個以上含む2官能以上のラジカル重合性化合物を少なくとも1種含むことが好ましく、2~4官能のラジカル重合性化合物を少なくとも1種含むことがより好ましい。
 ラジカル重合性化合物としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、および不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシル基、アミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 ラジカル重合性化合物としては、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後、(メタ)アクリレート化した化合物、特公昭48-41708号公報、特公昭50-6034号公報、特開昭51-37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタクリレートおよびこれらの混合物を挙げることができる。また、特開2008-292970号公報の段落0254~0257に記載の化合物も好適である。
 ラジカル重合性化合物としては、特開2010-160418号公報、特開2010-129825号公報、特許第4364216号公報等に記載される、フルオレン環を有し、エチレン性不飽和結合を有する基を2個以上有する化合物、カルド樹脂も使用することが可能である。さらに、その他の例としては、特公昭46-43946号公報、特公平1-40337号公報、特公平1-40336号公報に記載の特定の不飽和化合物や、特開平2-25493号公報に記載のビニルホスホン酸系化合物等もあげることができる。また、特開昭61-22048号公報に記載のペルフルオロアルキル基を含む化合物を用いることもできる。さらに日本接着協会誌 vol.20、No.7、300~308ページ(1984年)に光重合性モノマーおよびオリゴマーとして紹介されているものも使用することができる。
 上記のほか、下記一般式(MO-1)~(MO-5)で表される化合物も好適に用いることができる。なお、式中、Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 上記の各式において、nは0~14の整数であり、mは0~8の整数である。分子内に複数存在するR、T、は、各々同一であっても、異なっていてもよい。
 上記式(MO-1)~(MO-5)で表される化合物の各々において、複数のRの内の少なくとも1つは、-OC(=O)CH=CH、または、-OC(=O)C(CH)=CHで表される基を表す。
 上記式(MO-1)~(MO-5)で表される化合物の具体例としては、特開2007-269779号公報の段落0248~0251に記載されている化合物が挙げられる。
 また、特開平10-62986号公報において式(1)および式(2)としてその具体例と共に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、ラジカル重合性化合物として用いることができる。さらに、特開2015-187211号公報の段落0104~0131に記載の化合物もラジカル重合性化合物として用いることができ、これらの内容は本明細書に組み込まれる。
 ラジカル重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬(株)製、A-TMMT:新中村化学工業社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製、A-DPH;新中村化学工業製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。また、上記式(MO-1)、式(MO-2)のペンタエリスリトール誘導体および/またはジペンタエリスリトール誘導体も好ましい例として挙げられる。また、サートマー社製のSR209を用いることもできる。
 ラジカル重合性化合物は、カルボキシル基、スルホ基、リン酸基等の酸基を有していてもよい。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーである、M-510、M-520などが挙げられる。酸基を有するラジカル重合性化合物の好ましい酸価としては、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。上記化合物の酸価が上記範囲であれば、製造や取扱性に優れ、さらには、現像性に優れる。また、ラジカル重合性が良好である。
 ラジカル重合性化合物としては、カプロラクトン構造を有する化合物を用いることもできる。カプロラクトン構造を有する化合物としては、分子内にカプロラクトン構造を有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸およびε-カプロラクトンをエステル化することにより得られる、ε-カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(C)で表される化合物が好ましい。
式(C)
Figure JPOXMLDOC01-appb-C000014
 式中、6個のRは全てが下記式(D)で表される基であるか、または6個のRのうち1~5個が下記式(D)で表される基であり、残余が下記式(E)で表される基である。
式(D)
Figure JPOXMLDOC01-appb-C000015
 式中、Rは水素原子またはメチル基を示し、mは1または2を示し、「*」は結合手であることを示す。
 式(E)
Figure JPOXMLDOC01-appb-C000016
式中、Rは水素原子またはメチル基を示し、「*」は結合手であることを示す。
 このようなカプロラクトン構造を有する化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(C)~(E)においてm=1、式(D)で表される基の数=2、Rが全て水素原子である化合物)、DPCA-30(同式、m=1、式(D)で表される基の数=3、Rが全て水素原子である化合物)、DPCA-60(同式、m=1、式(D)で表される基の数=6、Rが全て水素原子である化合物)、DPCA-120(同式においてm=2、式(D)で表される基の数=6、Rが全て水素原子である化合物)等を挙げることができる。
 ラジカル重合性化合物としては、下記一般式(i)または(ii)で表される化合物の群から選択される少なくとも1種であることも好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(i)および式(ii)中、Eは、各々独立に、-((CHCHO)-、または-((CHCH(CH)O)-を表し、yは、各々独立に0~10の整数を表し、Xは、各々独立に、(メタ)アクリロイル基、水素原子、またはカルボキシル基を表す。
 式(i)中、(メタ)アクリロイル基の合計は3個または4個であり、mは各々独立に0~10の整数を表し、各mの合計は0~40の整数である。但し、各mの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
 式(ii)中、(メタ)アクリロイル基の合計は5個または6個であり、nは各々独立に0~10の整数を表し、各nの合計は0~60の整数である。但し、各nの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
 式(i)中、mは、0~6の整数が好ましく、0~4の整数がより好ましい。また、各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が特に好ましい。
 式(ii)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。また、各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数が特に好ましい。
 式(i)または式(ii)中の-((CHCHO)-または-((CHCH(CH)O)-は、酸素原子側の末端がXに結合する形態が好ましい。特に、式(ii)において、6個のX全てがアクリロイル基である形態が好ましい。
 式(i)および式(ii)で表される化合物の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。
 ラジカル重合性化合物としては、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。また、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性モノマー類を用いることもできる。
 市販品としては、ウレタンオリゴマーUAS-10、UAB-140(山陽国策パルプ社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(新中村化学工業(株)製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学(株)製)、ブレンマーPME400(日油(株)製)などが挙げられる。
 ラジカル重合性化合物としては、耐熱性の観点から、下記式で表される部分構造を有することが好ましい。ただし、式中の*は連結手である。
Figure JPOXMLDOC01-appb-C000018
 上記部分構造を有する化合物の具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレートなどが挙げられる。
 樹脂組成物において、ラジカル重合性化合物の含有量は、良好なラジカル重合性と耐熱性の観点から、樹脂組成物の全固形分に対して、1~50質量%が好ましい。下限は5質量%以上がより好ましい。上限は、30質量%以下がより好ましい。
 また、ポリイミド前駆体とラジカル重合性化合物との質量割合(ポリイミド前駆体/ラジカル重合性化合物)は、98/2~10/90が好ましく、95/5~30/70がより好ましく、90/10~50/50がさらに好ましい。ポリイミド前駆体とラジカル重合性化合物との質量割合が上記範囲であれば、硬化性および耐熱性により優れた硬化膜を形成できる。ラジカル重合性化合物は、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
<<光重合開始剤>>
 本発明における樹脂組成物は、光重合開始剤を含むことが好ましい。光重合開始剤としては、光カチオン重合開始剤、光ラジカル重合開始剤などが挙げられ、光ラジカル重合開始剤が好ましい。本発明における樹脂組成物が光ラジカル重合開始剤を含むことにより、樹脂組成物を半導体ウエハなどの支持体に適用して樹脂組成物層を形成した後、光を照射することで、ラジカルに起因する硬化が起こり、光照射部における溶解性を低下させることができる。このため、例えば、電極部のみをマスクするパターンを持つフォトマスクを介して樹脂組成物層を露光することで、電極などのパターンにしたがって、溶解性の異なる領域を簡便に作製できるという利点がある。
 光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。光重合開始剤は、約300~800nm(好ましくは330~500nm)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182の記載を参酌でき、この内容は本明細書に組み込まれる。また、ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュアーDETX(日本化薬(株)製)も好適に用いられる。
 光重合開始剤としては、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物およびメタロセン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載の光重合開始剤、特許第4225898号に記載の光重合開始剤も用いることができる。
 α-ヒドロキシケトン化合物としては、IRGACURE-184(IRGACUREは登録商標)、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、IRGACURE-127(商品名:いずれもBASF社製)を用いることができる。
 α-アミノケトン化合物としては、市販品であるIRGACURE-907、IRGACURE-369、および、IRGACURE-379(商品名:いずれもBASF社製)を用いることができる。α-アミノケトン化合物としては、365nmまたは405nm等の波長光源に吸収極大波長がマッチングされた特開2009-191179号公報に記載の化合物も用いることができる。
 アシルホスフィン化合物としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドなどが挙げられる。また、市販品であるIRGACURE-819やIRGACURE-TPO(商品名:いずれもBASF社製)を用いることができる。
 メタロセン化合物としては、IRGACURE-784(BASF社製)などが例示される。
 光重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、熱塩基発生剤としても働くため、特に好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物を用いることができる。好ましいオキシム化合物としては、例えば、3-ベンゾオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、および2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。
 市販品ではIRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-14052号公報に記載の光重合開始剤2)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831およびアデカアークルズNCI-930(ADEKA社製)も用いることができる。また、DFI-091(ダイトーケミックス株式会社製)を用いることができる。さらに、また、フッ素原子を有するオキシム化合物を用いることも可能である。そのようなオキシム化合物の具体例としては、特開2010-262028号公報に記載されている化合物、特表2014-500852号公報の段落0345に記載されている化合物24、36~40、特開2013-164471号公報の段落0101に記載されている化合物(C-3)などが挙げられる。
 最も好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられる。
 光重合開始剤としては、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物およびその誘導体、シクロペンタジエン-ベンゼン-鉄錯体およびその塩、ハロメチルオキサジアゾール化合物、および、3-アリール置換クマリン化合物から選ばれる少なくとも1種が好ましく、トリハロメチルトリアジン化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物およびアセトフェノン化合物から選ばれる少なくとも1種がより好ましく、トリハロメチルトリアジン化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、オキシム化合物、トリアリールイミダゾールダイマーおよびベンゾフェノン化合物から選ばれる少なくとも1種が更に好ましく、メタロセン化合物またはオキシム化合物がより一層好ましく、オキシム化合物が特に好ましい。
 また、光重合開始剤は、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1等の芳香族ケトン、アルキルアントラキノン等の芳香環と縮環したキノン類、ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体などを用いることもできる。また、下記式(I)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000019
 式(I)中、R50は、炭素数1~20のアルキル基;1個以上の酸素原子によって中断された炭素数2~20のアルキル基;炭素数1~12のアルコキシ基;フェニル基;炭素数1~20のアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、シクロペンチル基、シクロヘキシル基、炭素数2~12のアルケニル基、1個以上の酸素原子によって中断された炭素数2~18のアルキル基および炭素数1~4のアルキル基の少なくとも1つで置換されたフェニル基;またはビフェニリルであり、R51は、式(II)で表される基であるか、R50と同じ基であり、R52~R54は各々独立に炭素数1~12のアルキル、炭素数1~12のアルコキシまたはハロゲンである。
Figure JPOXMLDOC01-appb-C000020
 式(II)
式中、R55~R57は、上記式(I)のR52~R54と同じである。
 また、光重合開始剤は、国際公開WO2015/125469号の段落0048~0055に記載の化合物を用いることもできる。
 光重合開始剤の含有量は、樹脂組成物の全固形分に対し0.1~30質量%が好ましく、より好ましくは0.1~20質量%であり、さらに好ましくは0.1~10質量%である。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<<重合禁止剤>>
 本発明における樹脂組成物は、重合禁止剤を含むことが好ましい。重合禁止剤としては、例えば、ヒドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、p-tert-ブチルカテコール、p-ベンゾキノン、ジフェニル-p-ベンゾキノン、4,4′-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2′-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソ-N-フェニルヒドロキシアミンアルミニウム塩、フェノチアジン、N-ニトロソジフェニルアミン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-4-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-(1-ナフチル)ヒドロキシアミンアンモニウム塩、ビス(4-ヒドロキシ-3,5-tert-ブチル)フェニルメタンなどが好適に用いられる。また、特開2015-127817号公報の段落0060に記載の重合禁止剤、および、国際公開WO2015/125469号の段落0031~0046に記載の化合物を用いることもできる。
 樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、樹脂組成物の全固形分に対して、0.01~5質量%が好ましい。重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<光塩基発生剤>>
 本発明における樹脂組成物は、光塩基発生剤を含んでいてもよい。光塩基発生剤とは、露光により塩基を発生するものであり、常温常圧の通常の条件下では活性を示さないが、外部刺激として電磁波の照射と加熱が行なわれると、塩基(塩基性物質)を発生するものであれば特に限定されるものではない。
 光塩基発生剤の含有量は、所望のパターンを形成できるものであれば特に限定されるものではなく、一般的な含有量とすることができる。光塩基発生剤の含有量は、樹脂組成物100質量部に対して、0.01質量部以上30質量部未満の範囲内であることが好ましく、0.05質量部~25質量部の範囲内であることがより好ましく、0.1質量部~20質量部の範囲内であることがさらに好ましい。
 本発明においては、光塩基発生剤として公知の化合物を用いることができる。例えば、M.Shirai, and M.Tsunooka, Prog.Polym.Sci.,21,1(1996);角岡正弘,高分子加工,46,2(1997);C.Kutal,Coord.Chem.Rev.,211,353(2001);Y.Kaneko,A.Sarker, and D.Neckers,Chem.Mater.,11,170(1999);H.Tachi,M.Shirai, and M.Tsunooka,J.Photopolym.Sci.Technol.,13,153(2000);M.Winkle, and K.Graziano,J.Photopolym.Sci.Technol.,3,419(1990);M.Tsunooka,H.Tachi, and S.Yoshitaka,J.Photopolym.Sci.Technol.,9,13(1996);K.Suyama,H.Araki,M.Shirai,J.Photopolym.Sci.Technol.,19,81(2006)に記載されているように、遷移金属化合物錯体や、アンモニウム塩などの構造を有するものや、アミジン部分がカルボン酸と塩を形成することで潜在化されたもののように、塩基成分が塩を形成することにより中和されたイオン性の化合物や、カルバメート誘導体、オキシムエステル誘導体、アシル化合物などのウレタン結合やオキシム結合などにより塩基成分が潜在化された非イオン性の化合物を挙げることができる。また、WPBG-266(和光純薬工業(株)製)を用いることも好ましい。
 光塩基発生剤から発生する塩基性物質は特に限定されないが、アミノ基を有する化合物、特にモノアミンや、ジアミンなどのポリアミン、また、アミジンなどが挙げられる。
 発生する塩基性物質は、より塩基性度の高いアミノ基を有する化合物が好ましい。ポリイミド前駆体のイミド化における脱水縮合反応等に対する触媒作用が強く、より少量の添加で、より低い温度での脱水縮合反応等における触媒効果の発現が可能となるからである。つまりは、発生した塩基性物質の触媒効果が大きい為、樹脂組成物としての見た目の感度が向上する。上記触媒効果の観点からアミジン、脂肪族アミンであることが好ましい。
 光塩基発生剤は、構造中に塩を含まない光塩基発生剤であることが好ましい。光塩基発生剤において発生する塩基部分の窒素原子上に電荷がないことが好ましい。光塩基発生剤は、発生する塩基が共有結合を用いて潜在化されていることが好ましく、塩基の発生機構が、発生する塩基部分の窒素原子と隣接する原子との間の共有結合が切断されて塩基が発生する化合物であることがより好ましい。構造中に塩を含まない光塩基発生剤であると、光塩基発生剤を中性にすることができるため、溶剤溶解性が良好であり、ポットライフが向上する。このような理由から、本発明で用いられる光塩基発生剤から発生するアミンは、1級アミンまたは2級アミンが好ましい。
 また、上記のような理由から、光塩基発生剤は、前述のように発生する塩基が共有結合を用いて潜在化されていることが好ましい。また、発生する塩基がアミド結合、カルバメート結合、オキシム結合を用いて潜在化されていることがより好ましい。
 光塩基発生剤としては、特開2009-80452号公報および国際公開WO2009/123122号に記載された桂皮酸アミド構造を有する光塩基発生剤、特開2006-189591号公報および特開2008-247747号公報に記載されたカルバメート構造を有する光塩基発生剤、特開2007-249013号公報および特開2008-003581号公報に記載されたオキシム構造、カルバモイルオキシム構造を有する光塩基発生剤を用いることもできる。
 その他、光塩基発生剤としては、特開2012-93746号公報の段落番号0185~0188、0199~0200および0202に記載の化合物、特開2013-194205号公報の段落番号0022~0069に記載の化合物、特開2013-204019号公報の段落番号0026~0074に記載の化合物、並びにWO2010/064631号公報の段落番号0052に記載の化合物が挙げられる。
<<熱塩基発生剤>>
 本発明における樹脂組成物は、熱塩基発生剤を含んでいてもよい。熱塩基発生剤としては、40℃以上に加熱すると塩基を発生する酸性化合物(A1)、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩(A2)から選ばれる少なくとも一種を含むことが好ましい。ここで、pKa1とは、多価の酸の第一のプロトンの解離定数(Ka)の対数表示(-Log10Ka)を示す。
 上記酸性化合物(A1)および上記アンモニウム塩(A2)は、加熱すると塩基を発生するので、これらの化合物から発生した塩基により、ポリイミド前駆体などの環化反応を促進でき、ポリイミド前駆体などの環化を低温で行うことができる。また、これらの化合物は、塩基により環化して硬化するポリイミド前駆体などと共存させても、加熱しなければポリイミド前駆体などの環化が殆ど進行しないので、保存安定性に優れた樹脂組成物を調製することができる。
 なお、本明細書において、酸性化合物とは、化合物を容器に1g採取し、イオン交換水とテトラヒドロフランとの混合液(質量比は水/テトラヒドロフラン=1/4)を50mL加えて、室温で1時間攪拌し、得られた溶液をpHメーターを用いて、20℃にて測定したpH値が7未満である化合物を意味する。
 酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度は、40℃以上が好ましく、120~200℃がより好ましい。塩基発生温度の上限は、190℃以下がより好ましく、180℃以下がさらに好ましく、165℃以下が一層好ましい。塩基発生温度の下限は、130℃以上がさらに好ましく、135℃以上が一層好ましい。
 酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が120℃以上であれば、保存中に塩基が発生しにくいので、安定性に優れた樹脂組成物を調製することができる。酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が200℃以下であれば、ポリイミド前駆体などの環化温度を低くすることができる。塩基発生温度は、例えば、示差走査熱量測定を用い、化合物を耐圧カプセル中5℃/分で250℃まで加熱し、最も温度が低い発熱ピークのピーク温度を読み取り、ピーク温度を塩基発生温度として測定することができる。
 熱塩基発生剤により発生する塩基は、2級アミンまたは3級アミンが好ましく、3級アミンがより好ましい。3級アミンは、塩基性が高いので、ポリイミド前駆体などの環化温度をより低くすることができる。また、熱塩基発生剤により発生する塩基の沸点は、80℃以上であることが好ましく、100℃以上であることがより好ましく、140℃以上であることが最も好ましい。また、発生する塩基の分子量は、80~2000が好ましい。下限は100以上がより好ましい。上限は500以下がより好ましい。なお、分子量の値は、構造式から求めた理論値である。
 上記酸性化合物(A1)は、アンモニウム塩および後述する式(A1)で表される化合物から選ばれる1種以上を含むことが好ましい。
 上記アンモニウム塩(A2)は、酸性化合物であることが好ましい。なお、上記アンモニウム塩(A2)は、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物を含む化合物であってもよいし、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物以外の化合物であってもよい。
 本発明において、アンモニウム塩とは、下記式(101)、または式(102)で表されるアンモニウムカチオンと、アニオンとの塩を意味する。アニオンは、アンモニウムカチオンのいずれかの一部と共有結合を介して結合していてもよく、アンモニウムカチオンの分子外に有ってもよいが、アンモニウムカチオンの分子外に有ることが好ましい。なお、アニオンが、アンモニウムカチオンの分子外に有るとは、アンモニウムカチオンとアニオンが共有結合を介して結合していない場合をいう。以下、カチオン部の分子外のアニオンを対アニオンともいう。
Figure JPOXMLDOC01-appb-C000021
 上記式中、R~Rは、それぞれ独立に、水素原子または炭化水素基を表し、式Rは炭化水素基を表す。RとR、RとR、RとR、RとRはそれぞれ結合して環を形成してもよい。
 本発明において、アンモニウム塩は、pKa1が0~4のアニオンとアンモニウムカチオンとを有することが好ましい。アニオンのpKa1の上限は、3.5以下がより好ましく、3.2以下がさらに好ましい。下限は、0.5以上がより好ましく、1.0以上がさらに好ましい。アニオンのpKa1が上記範囲であれば、ポリイミド前駆体などを低温で環化でき、さらには、樹脂組成物の安定性を向上できる。pKa1が4以下であれば、熱塩基発生剤の安定性が良好で、加熱なしに塩基が発生することを抑制でき、樹脂組成物の安定性が良好である。pKa1が0以上であれば、発生した塩基が中和されにくく、ポリイミド前駆体などの環化効率が良好である。
 アニオンの種類は、カルボン酸アニオン、フェノールアニオン、リン酸アニオンおよび硫酸アニオンから選ばれる1種が好ましく、塩の安定性と熱分解性を両立させられるという理由からカルボン酸アニオンがより好ましい。すなわち、アンモニウム塩は、アンモニウムカチオンとカルボン酸アニオンとの塩がより好ましい。
 カルボン酸アニオンは、2個以上のカルボキシル基を持つ2価以上のカルボン酸のアニオンが好ましく、2価のカルボン酸のアニオンがより好ましい。この態様によれば、樹脂組成物の安定性、硬化性および現像性をより向上できる熱塩基発生剤とすることができる。特に、2価のカルボン酸のアニオンを用いることで、樹脂組成物の安定性、硬化性および現像性をさらに向上できる。
 本発明において、カルボン酸アニオンは、pKa1が4以下のカルボン酸のアニオンであることが好ましい。pKa1は、3.5以下がより好ましく、3.2以下がさらに好ましい。この態様によれば、樹脂組成物の安定性をより向上できる。
 ここでpKa1とは、酸の第一解離定数の逆数の対数を表し、Determination of Organic Structures by Physical Methods(著者:Brown, H. C., McDaniel, D. H., Hafliger, O., Nachod, F. C.; 編纂:Braude, E. A., Nachod, F. C.; Academic Press, New York, 1955)や、Data for Biochemical Research(著者:Dawson, R.M.C.et al; Oxford, Clarendon Press, 1959)に記載の値を参照することができる。これらの文献に記載の無い化合物については、ACD/pKa(ACD/Labs製)のソフトを用いて構造式より算出した値を用いることとする。
 本発明において、カルボン酸アニオンは、下記式(X1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(X1)において、EWGは、電子求引性基を表す。
 本発明において電子求引性基とは、ハメットの置換基定数σmが正の値を示すものを意味する。ここでσmは、都野雄甫による総説、有機合成化学協会誌第23巻第8号(1965)P.631-642に詳しく説明されている。なお、本発明の電子求引性基は、上記文献に記載された置換基に限定されるものではない。
 σmが正の値を示す置換基の例としては、例えば、CF基(σm=0.43)、CFCO基(σm=0.63)、HC≡C基(σm=0.21)、CH=CH基(σm=0.06)、Ac基(σm=0.38)、MeOCO基(σm=0.37)、MeCOCH=CH基(σm=0.21)、PhCO基(σm=0.34)、HNCOCH基(σm=0.06)などが挙げられる。なお、Meはメチル基を表し、Acはアセチル基を表し、Phはフェニル基を表す。
 本発明において、EWGは、下記式(EWG-1)~(EWG-6)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式中、Rx1~Rx3は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基、水酸基またはカルボキシル基を表し、Arはアリール基を表す。
 本発明において、カルボン酸アニオンは、下記式(X)で表されるものも好ましい。
Figure JPOXMLDOC01-appb-C000024
 式(X)において、L10は、単結合、または、アルキレン基、アルケニレン基、アリーレン基、-NR-およびこれらの組み合わせから選ばれる2価の連結基を表し、Rは、水素原子、アルキル基、アルケニル基またはアリール基を表す。
 カルボン酸アニオンの具体例としては、マレイン酸アニオン、フタル酸アニオン、N-フェニルイミノ二酢酸アニオンおよびシュウ酸アニオンが挙げられる。これらを好ましく用いることができる。
 アンモニウムカチオンは、下記一般式(Y1-1)~(Y1-6)のいずれかで表されることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 上記一般式において、R101は、n価の有機基を表し、
 R102~R111は、それぞれ独立に、水素原子、または、炭化水素基を表し、
 R150およびR151は、それぞれ独立に、炭化水素基を表し、
 R104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよく、
 Ar101およびAr102は、それぞれ独立に、アリール基を表し、
 nは、1以上の整数を表し、
 mは、0~5の整数を表す。
 R104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよい。環としては、脂肪族環(非芳香性の炭化水素環)、芳香環、複素環などが挙げられる。環は単環であってもよく、多環であってもよい。上記の基が結合して環を形成する場合の連結基としては、-CO-、-O-、-NH-、2価の脂肪族基、2価のアリール基およびそれらの組み合わせからなる群より選ばれる2価の連結基が挙げられる。形成される環の具体例としては、例えば、ピロリジン環、ピロール環、ピペリジン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、カルバゾール環などが挙げられる。
 本発明において、アンモニウムカチオンは、式(Y1-1)または式(Y1-2)で表される構造が好ましく、式(Y1-1)または式(Y1-2)で表され、R101がアリール基である構造がより好ましく、式(Y1-1)で表され、R101がアリール基である構造が特に好ましい。すなわち、本発明において、アンモニウムカチオンは、下記式(Y)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000026
式(Y)中、Ar10は、芳香族基を表し、R11~R15は、それぞれ独立に、水素原子または炭化水素基を表し、R14とR15は互いに結合して環を形成していてもよく、nは、1以上の整数を表す。
 R11およびR12は、それぞれ独立に、水素原子または炭化水素基を表す。炭化水素基としては、特に限定はないが、アルキル基、アルケニル基またはアリール基が好ましい。
 R11およびR12は、水素原子が好ましい。
 R13~R15は、水素原子または炭化水素基を表す。
 炭化水素基としては、上述したR11、R12で説明した炭化水素基が挙げられる。R13~R15は、特にアルキル基が好ましく、好ましい態様もR11、R12で説明したものと同じである。
 R14とR15は、互いに結合して環を形成していてもよい。環としては、環状脂肪族(非芳香性の炭化水素環)、芳香環、複素環などが挙げられる。環は単環であってもよく、多環であってもよい。R14とR15が結合して環を形成する場合の連結基としては、-CO-、-O-、-NH-、2価の脂肪族基、2価の芳香族基およびそれらの組み合わせからなる群より選ばれる2価の連結基が挙げられる。形成される環の具体例としては、例えば、ピロリジン環、ピロール環、ピペリジン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、カルバゾール環などが挙げられる。
 R13~R15は、R14とR15が互いに結合して環を形成しているか、あるいは、R13が、炭素数5~30(より好ましくは炭素数6~18)の直鎖アルキル基であり、R14およびR15が、それぞれ独立に炭素数1~3(より好ましくは炭素数1または2)のアルキル基であることが好ましい。この態様によれば、沸点の高いアミン種を発生しやすくすることができる。
 また、発生するアミン種の塩基性や沸点の観点から、R13とR14とR15の炭素原子の総数が7~30であることが好ましく、10~20であることがより好ましい。
 また、沸点の高いアミン種を発生しやすいという理由から、式(Y)における「-NR131415」の化学式量は、80~2000が好ましく、100~500がより好ましい。
 また、銅などの金属層との密着性をより向上させるための実施形態として、式(Y)において、R13およびR14がメチル基またはエチル基であり、R15が炭素数5以上の直鎖、分岐または環状のアルキル基であるか、アリール基である形態が挙げられる。R13およびR14がメチル基であり、R15が炭素数5~20の直鎖アルキル基、炭素数6~17の分岐アルキル基、炭素数6~10の環状アルキル基またはフェニル基であることが好ましく、R13およびR14がメチル基であり、R15が炭素数5~10の直鎖アルキル基、炭素数6~10の分岐アルキル基、炭素数6~8の環状アルキル基またはフェニル基であることがより好ましい。このようにアミン種の疎水性を低くすることで、銅などの金属層上にアミンが付着した場合であっても、金属層とポリイミドなどとの親和性を高めることができる。
 本発明において、酸性化合物は、下記式(A1)で表される化合物であることも好ましい。この化合物は、室温では酸性であるが、加熱により、カルボキシル基が脱炭酸または、脱水環化して失われることで、それまで中和され不活性化していたアミン部位が活性となることにより、塩基性となる。以下、式(A1)について説明する。
式(A1)
Figure JPOXMLDOC01-appb-C000027
 式(A1)において、Aはp価の有機基を表し、Rは1価の有機基を表し、Lは(m+1)価の連結基を表し、mは1以上の整数を表し、pは1以上の整数を表す。
 式(A1)中、Aはp価の有機基を表す。有機基としては、脂肪族基、芳香族基などが挙げられ、芳香族基が好ましい。Aを芳香族基とすることにより、より低温で、沸点の高い塩基を発生しやすくできる。発生する塩基の沸点を高くすることにより、ポリイミド前駆体などの硬化時の加熱による揮発または分解を抑制し、ポリイミド前駆体などの環化をより効果的に進行させることができる。
 1価の脂肪族基としては、例えば、アルキル基、アルケニル基等が挙げられる。
 アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよい。アルキル基は、置換基を有していてもよく、無置換であってもよい。アルキル基の具体例としては、メチル基、エチル基、tert-ブチル基、ドデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基等が挙げられる。
 アルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10がさらに好ましい。アルケニル基は直鎖、分岐、環状のいずれであってもよい。アルケニル基は、置換基を有していてもよく、無置換であってもよい。アルケニル基としては、ビニル基、(メタ)アリル基等が挙げられる。
 2価以上の脂肪族基としては、上記の1価の脂肪族基から水素原子を1個以上除いた基が挙げられる。
 芳香族基は、単環であってもよく、多環であってもよい。芳香族基は、ヘテロ原子を含む芳香族複素環基であってもよい。芳香族基は、置換基を有していてもよく、無置換であってもよい。無置換が好ましい。芳香族基の具体例としては、ベンゼン環基、ナフタレン環基、ペンタレン環基、インデン環基、アズレン環基、ヘプタレン環基、インダセン環基、ペリレン環基、ペンタセン環基、アセナフテン環基、フェナントレン環基、アントラセン環基、ナフタセン環基、クリセン環基、トリフェニレン環基、フルオレン環基、ビフェニル環基、ピロール環基、フラン環基、チオフェン環基、イミダゾール環基、オキサゾール環基、チアゾール環基、ピリジン環基、ピラジン環基、ピリミジン環基、ピリダジン環基、インドリジン環基、インドール環基、ベンゾフラン環基、ベンゾチオフェン環基、イソベンゾフラン環基、キノリジン環基、キノリン環基、フタラジン環基、ナフチリジン環基、キノキサリン環基、キノキサゾリン環基、イソキノリン環基、カルバゾール環基、フェナントリジン環基、アクリジン環基、フェナントロリン環基、チアントレン環基、クロメン環基、キサンテン環基、フェノキサチイン環基、フェノチアジン環基、および、フェナジン環基が挙げられ、ベンゼン環基が最も好ましい。
 芳香族基は、複数の芳香環が、単結合または後述する連結基を介して連結していてもよい。連結基としては、例えば、アルキレン基が好ましい。アルキレン基は、直鎖、分岐のいずれも好ましい。複数の芳香環が単結合または連結基を介して連結した基の具体例としては、ビフェニル基、ジフェニルメタン基、ジフェニルプロパン基、ジフェニルイソプロパン基、トリフェニルメタン基、テトラフェニルメタン基などが挙げられる。
 Aが表す有機基が有していてもよい置換基の例としては、例えば、フッ素原子、塩素原子、臭素原子およびヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基およびtert-ブトキシ基等のアルコキシ基;フェノキシ基およびp-トリルオキシ基等のアリールオキシ基;メトキシカルボニル基及びブトキシカルボニル基等のアルコキシカルボニル基;フェノキシカルボニル基等のアリールオキシカルボニル基;アセトキシ基、プロピオニルオキシ基およびベンゾイルオキシ基等のアシルオキシ基;アセチル基、ベンゾイル基、イソブチリル基、アクリロイル基、メタクリロイル基およびメトキサリル基等のアシル基;メチルスルファニル基およびtert-ブチルスルファニル基等のアルキルスルファニル基;フェニルスルファニル基およびp-トリルスルファニル基等のアリールスルファニル基;メチル基、エチル基、tert-ブチル基およびドデシル基等のアルキル基;フッ化アルキル基等のハロゲン化アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびアダマンチル基等のシクロアルキル基;フェニル基、p-トリル基、キシリル基、クメニル基、ナフチル基、アンスリル基およびフェナントリル基等のアリール基;水酸基;カルボキシル基;ホルミル基;スルホ基;シアノ基;アルキルアミノカルボニル基;アリールアミノカルボニル基;スルホンアミド基;シリル基;アミノ基;モノアルキルアミノ基;ジアルキルアミノ基;アリールアミノ基;ジアリールアミノ基;チオキシ基;またはこれらの組み合わせが挙げられる。
 Lは(m+1)価の連結基を表す。連結基としては特に限定されず、―COO-、-OCO-、-CO-、-O-、-S―、-SO―、―SO-、アルキレン基(好ましくは炭素数1~10の直鎖または分岐アルキレン基)、シクロアルキレン基(好ましくは炭素数3~10のシクロアルキレン基)、アルケニレン基(好ましくは炭素数210の直鎖または分岐アルケニレン基)、またはこれらの複数が連結した連結基などを挙げることができる。連結基の総炭素数は、3以下が好ましい。連結基は、アルキレン基、シクロアルキレン基、アルケニレン基が好ましく、直鎖または分岐アルキレン基がより好ましく、直鎖アルキレン基がさらに好ましく、エチレン基またはメチレン基が特に好ましく、メチレン基が最も好ましい。
 Rは1価の有機基を表す。1価の有機基としては、脂肪族基、芳香族基などが挙げられる。脂肪族基、芳香族基については、上述したAで説明したものが挙げられる。Rが表す1価の有機基は、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
 Rは、カルボキシル基を有する基であることが好ましい。すなわち、Rは、下記式で表される基が好ましい。
 -L-(COOH)  
 式中、Lは(n+1)価の連結基を表し、nは1以上の整数を表す。
 Lが表す連結基は、上述したLで説明した基が挙げられ、好ましい範囲も同様であり、エチレン基またはメチレン基が特に好ましく、メチレン基が最も好ましい。
 nは1以上の整数を表し、1または2が好ましく、1がより好ましい。nの上限は、Lが表す連結基が取り得る置換基の最大数である。nが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。更には、樹脂組成物の安定性を向上できる。
 mは1以上の整数を表し、1または2が好ましく、1がより好ましい。mの上限は、Lが表す連結基が取り得る置換基の最大数である。mが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。さらには、樹脂組成物の安定性を向上できる。
 pは、1以上の整数を表し、1または2が好ましく、1がより好ましい。pの上限は、Aが表す有機基が取り得る置換基の最大数である。pが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。
 本発明において、式(A1)で表される化合物は、下記式(1a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 式(1a)中、Aはp価の有機基を表し、Lは(m+1)価の連結基を表し、Lは(n+1)価の連結基を表し、mは1以上の整数を表し、nは1以上の整数を表し、pは1以上の整数を表す。
 一般式(1a)のA、L、L、m、nおよびpは、一般式(A1)で説明した範囲と同義であり、好ましい範囲も同様である。
 本発明において、式(A1)で表される化合物は、N-アリールイミノ二酢酸であることが好ましい。N-アリールイミノ二酢酸は、一般式(A1)におけるAが芳香族基であり、LおよびLがメチレン基であり、mが1であり、nが1であり、pが1である化合物である。N-アリールイミノ二酢酸は、120~200℃にて、沸点の高い3級アミンを発生しやすい。
 以下に、熱塩基発生剤の具体例を記載するが、本発明はこれらに限定されるものではない。これらは、それぞれ単独でまたは2種以上を混合して用いることができる。以下の式中におけるMeは、メチル基を表す。以下に示す化合物のうち、(A-1)~(A-11)、(A-18)、(A-19)が、上記式(A1)で表される化合物である。以下に示す化合物のうち、(A-1)~(A-11)、(A-18)~(A-26)がより好ましく、(A-1)~(A-9)、(A-18)~(A-21)、(A-23)、(A-24)がさらに好ましい。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 本発明で用いる熱塩基発生剤としては、特願2015-034388号明細書の段落番号0015~0055に記載の化合物も好ましく用いられ、これらの内容は本明細書に組み込まれる。
 熱塩基発生剤を用いる場合、樹脂組成物における熱塩基発生剤の含有量は、樹脂組成物の全固形分に対し、0.1~50質量%が好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。上限は、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
 熱塩基発生剤は、1種または2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
<<熱ラジカル重合開始剤>>
 本発明における樹脂組成物は、熱ラジカル重合開始剤を含んでいてもよい。熱ラジカル重合開始剤としては、公知の熱ラジカル重合開始剤を用いることができる。熱ラジカル重合開始剤は、熱のエネルギーによってラジカルを発生し、重合性化合物などの重合反応を開始または促進させる化合物である。熱ラジカル重合開始剤を添加することによって、ポリイミド前駆体などの環化反応を進行させる際に、重合性化合物などの重合反応を進行させることができる。また、ポリイミド前駆体がラジカル重合性基を含む場合は、ポリイミド前駆体の環化と共に、ポリイミド前駆体の重合反応を進行させることもできるので、より高耐熱化が達成できることとなる。
 熱ラジカル重合開始剤としては、芳香族ケトン類、オニウム塩化合物、過酸化物、チオ化合物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、アゾ系化合物等が挙げられる。中でも、過酸化物またはアゾ系化合物がより好ましく、過酸化物が特に好ましい。
 本発明で用いる熱ラジカル重合開始剤は、10時間半減期温度が90~130℃であることが好ましく、100~120℃であることがより好ましい。
 具体的には、特開2008-63554号公報の段落番号0074~0118に記載されている化合物が挙げられる。
 市販品では、パーブチルZおよびパークミルD(日油(株)製)を好適に用いることができる。
 樹脂組成物が熱ラジカル重合開始剤を含有する場合、熱ラジカル重合開始剤の含有量は、樹脂組成物の全固形分に対し0.1~50質量%が好ましく、0.1~30質量%がより好ましく、0.1~20質量%が特に好ましい。また、重合性化合物100質量部に対し、熱ラジカル重合開始剤を0.1~50質量部含むことが好ましく、0.5~30質量部含むことがより好ましい。この態様によれば、より耐熱性に優れた硬化膜を形成しやすい。熱ラジカル重合開始剤は1種のみでもよいし、2種以上であってもよい。熱ラジカル重合開始剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<防錆剤>>
 本発明における樹脂組成物には、防錆剤を含有することが好ましい。樹脂組成物が防錆剤を含むことにより、金属層(金属配線)由来の金属イオンが樹脂組成物層内へ移動することを効果的に抑制できる。防錆剤としては、特開2013-15701号公報の段落0094に記載の防錆剤、特開2009-283711号公報の段落0073~0076に記載の化合物、特開2011-59656号公報の段落0052に記載の化合物、特開2012-194520号公報の段落0114、0116および0118に記載の化合物などを使用することができる。具体的には、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環および6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類およびメルカプト基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。なかでも、トリアゾール、ベンゾトリアゾール等のトリアゾール系化合物、テトラゾール、ベンゾテトラゾール等のテトラゾール系化合物が好ましく、1,2,4-トリアゾール、1,2,3-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾールがより好ましく、1H-テトラゾールが最も好ましい。市販品としては、KEMITEC BT-C(ケミプロ化成(株)製、1,2,3-ベンゾトリアゾール)、1HT(東洋紡(株)製、1H-テトラゾール)、P5T(東洋紡(株)製、5-フェニル-1H-テトラゾール)などが挙げられる。また、KEMINOX 179(ケミプロ化成(株)製)を用いることも好ましい。
 樹脂組成物が防錆剤を含有する場合、防錆剤の含有量は樹脂100質量部に対して0.1~10質量部が好ましく、0.2~5質量部がより好ましい。防錆剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<<シランカップリング剤>
 本発明における樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させるためシランカップリング剤を含んでいることが好ましい。シランカップリング剤の例としては、特開2014-191002号公報の段落0062~0073に記載の化合物、国際公開WO2011/080992A1号の段落0063~0071に記載の化合物、特開2014-191252号公報の段落0060~0061に記載の化合物、特開2014-41264号公報の段落0045~0052に記載の化合物、国際公開WO2014/097594号の段落0055に記載の化合物が挙げられる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。また、シランカップリング剤は、2-((3-(トリエトキシシリル)プロピル)カルバモイル)安息香酸、トリエトキシシリルプロピルマレインアミド酸、下記化合物を用いることも好ましい。以下の式中、Etはエチル基を表す。市販品としては、KBM-602(信越化学工業(株)製、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン)などを用いることもできる。
Figure JPOXMLDOC01-appb-C000034
 シランカップリング剤の含有量は、樹脂100質量部に対して0.1~30質量部であることが好ましく、0.5~15質量部であることがより好ましい。シランカップリング剤の含有量を0.1質量部以上とすることで得られる膜の金属層との接着性が良好となり、シランカップリング剤の含有量を30質量部以下とすることで得られる膜の耐熱性、機械特性が良好となる。シランカップリング剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<<溶剤>>
 本発明において、樹脂組成物を塗布によって層状にする場合、樹脂組成物に溶剤を配合することが好ましい。溶剤としては、公知の溶剤を任意に使用できる。例えば、エステル類、エーテル類、ケトン類、芳香族炭化水素類、スルホキシド類などの化合物が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチルおよび2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が好適に挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が好適に挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン等が好適に挙げられる。
 芳香族炭化水素類として、例えば、トルエン、キシレン、アニソール、リモネン等が好適に挙げられる。
 スルホキシド類としてジメチルスルホキシド等が好適に挙げられる。
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。なかでも、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートから選択される2種以上で構成される混合溶液が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用が特に好ましい。
 樹脂組成物が溶剤を有する場合、溶剤の含有量は、塗布性の観点から、樹脂組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~70質量%がさらに好ましく、10~60質量%が特に好ましい。溶剤含有量は、所望の厚さと塗布方法によって調節すればよい。例えば塗布方法がスピンコートやスリットコートであれば上記範囲の固形分濃度となる溶剤の含有量が好ましい。スプレーコートであれば0.1質量%~50質量%になる量とすることが好ましく、1.0質量%~25質量%とすることが好ましい。塗布方法によって溶剤量を調節することで、所望の厚さの樹脂組成物層を均一に形成することができる。
 溶剤は1種のみでもよいし、2種以上であってもよい。溶剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
 また、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミドおよびN,N-ジメチルホルムアミドの含有量は、膜強度の観点から、樹脂組成物の全質量に対して5質量%未満が好ましく、1質量%未満がより好ましく、0.5質量%未満がさらに好ましく、0.1質量%未満が一層好ましい。
<<増感色素>>
 本発明における樹脂組成物は、増感色素を含んでいてもよい。増感色素は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感色素は、熱塩基発生剤、光塩基発生剤、熱ラジカル重合開始剤、光重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱塩基発生剤、光塩基発生剤、熱ラジカル重合開始剤、光重合開始剤は化学変化を起こして分解し、ラジカル、酸或いは塩基を生成する。増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。樹脂組成物が増感色素を含む場合、増感色素の含有量は、樹脂組成物の全固形分に対し、0.01~20質量%が好ましく、0.1~15質量%がより好ましく、0.5~10質量%がさらに好ましい。増感色素は、1種単独で用いてもよいし、2種以上を併用してもよい。
<<連鎖移動剤>>
 本発明における樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内にSH、PH、SiH、GeHを有する化合物群が用いられる。これらは、低活性のラジカル種に水素供与して、ラジカルを生成するか、もしくは、酸化された後、脱プロトンすることによりラジカルを生成し得る。特に、チオール化合物(例えば、2-メルカプトベンズイミダゾール類、2-メルカプトベンズチアゾール類、2-メルカプトベンズオキサゾール類、3-メルカプトトリアゾール類、5-メルカプトテトラゾール類等)を好ましく用いることができる。樹脂組成物が連鎖移動剤を含有する場合、連鎖移動剤の含有量は、樹脂組成物の全固形分100質量部に対し、好ましくは0.01~20質量部、より好ましくは1~10質量部、さらに好ましくは1~5質量部である。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<界面活性剤>>
 本発明における樹脂組成物には、塗布性をより向上させる観点から、各種の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。また、下記界面活性剤も好ましい。
Figure JPOXMLDOC01-appb-C000035
 樹脂組成物が界面活性剤を含有する場合、界面活性剤の含有量は、樹脂組成物の全固形分に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。界面活性剤は1種のみでもよいし、2種以上であってもよい。界面活性剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<<高級脂肪酸誘導体>>
 本発明における樹脂組成物には、酸素に起因する重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体を添加して、塗布後の乾燥の過程で組成物の表面に偏在させてもよい。樹脂組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、樹脂組成物の全固形分に対して、0.1~10質量%が好ましい。高級脂肪酸誘導体は1種のみでもよいし、2種以上であってもよい。高級脂肪酸誘導体が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<その他の添加剤>>
 本発明における樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、各種添加物、例えば、無機粒子、硬化剤、硬化触媒、充填剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加剤を配合する場合、その合計配合量は樹脂組成物の固形分の3質量%以下とすることが好ましい。
<<<その他の含有物質についての制限>>>
 本発明における樹脂組成物の水分含有量は、塗布面性状の観点から、5質量%未満が好ましく、1質量%未満がさらに好ましく、0.6質量%未満が特に好ましい。
 本発明における樹脂組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、クロム、ニッケルなどが挙げられる。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
 また、樹脂組成物に意図せずに含まれる金属不純物を低減する方法としては、樹脂組成物を構成する原料として金属含有量が少ない原料を選択する、樹脂組成物を構成する原料に対してフィルター濾過を行う、装置内をポリテトラフロロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。
 本発明における樹脂組成物は、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が特に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。ハロゲン原子としては、塩素原子および臭素原子が挙げられる。塩素原子および臭素原子、あるいは塩化物イオンおよび臭化物イオンの合計がそれぞれ上記範囲であることが好ましい。
<樹脂組成物の調製>
 樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 また、樹脂組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下がさらに好ましい。フィルターの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列または並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径および/または材質が異なるフィルターを組み合わせて使用しても良い。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であっても良い。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は0.05MPa以上0.3MPa以下が好ましい。
 フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行っても良い。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせても良い。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
<積層体の製造方法>
 次に、本発明の積層体の製造方法について説明する。本発明の積層体の製造方法は、上述した本発明のパターン形成方法を含む。
 本発明の積層体の製造方法は、ネガ型感光性樹脂組成物層形成工程、露光工程、現像工程および加熱工程を行って支持体上に樹脂層のパターンを形成した後、金属層形成工程と、ネガ型感光性樹脂組成物層形成工程、露光工程、現像工程および加熱工程をこの順で行うパターン形成工程とを、交互に2~7回行うことが好ましく、2~5回行うことがより好ましい。このようにすることで、ネガ型感光性樹脂組成物層から形成される樹脂層と金属層とが交互に複数積層した多層配線構造の積層体を製造することができる。また、このような多層配線構造の積層体においては、厚み差の大きいパターンを形成することが多い。特に、樹脂層の積層数が多くなるに伴い、より厚み差の大きいパターンを形成することが多くなる。また、従来の方法では工程数が大幅に増えて手間を要する傾向がある。また、樹脂層の積層数が多くなるに伴い、支持体などに反りが生じやすく、従来の方法ではパターンの均一性を保つことが難しい傾向にあった。これに対し、本発明によれば、このような多層配線構造の積層体においても、樹脂層(ネガ型感光性樹脂組成物層)に対して効率よくパターンを形成できる。このため、このような積層体の製造において本発明のパターン形成方法を用いることで、本発明の効果がより顕著に発揮されやすい。
 図3は、多層配線構造の積層体の一例を示した図である。図中の符号500は、積層体を示し、符号201~204は樹脂層を示し、符号301~303は金属層を示している。また、図2における符号Aが本発明のパターン形成方法により形成された、同時に形成する厚さの異なるパターンのうち最も薄いパターンの厚さであり、符号Bが、同時に形成する厚さの異なるパターンのうち最も厚いパターンの厚さである。
 図3に示す積層体について説明する。樹脂層201には所望のパターンが形成されている。このパターンはネガ型現像によって形成されている。樹脂層201の表面には金属層301が形成されている。この金属層301は樹脂層201に形成された溝401の表面の一部を覆うように形成されている。
 金属層301上には、樹脂層202が形成されている。樹脂層202には所望のパターンが形成されて金属層301の一部が樹脂層202から露出している。このパターンはネガ型現像によって形成されている。樹脂層202の表面には金属層302が形成されている。この金属層302は樹脂層202に形成された溝402の表面の一部を覆うように形成され、樹脂層202から露出した金属層301と電気的に接続している。
 金属層302上には、樹脂層203が形成されている。樹脂層203には所望のパターンが形成されて、金属層302の一部が樹脂層203から露出している。このパターンはネガ型現像によって形成されている。樹脂層203の表面には金属層303が形成されている。この金属層303は樹脂層203に形成された溝403の表面の一部を覆うように形成されており、樹脂層203から露出した金属層302と電気的に接続している。
 金属層303上には、樹脂層204が形成されている。樹脂層204には所望のパターンが形成されて、金属層303の一部が樹脂層204から露出している。また、図3では金属層302の一部も樹脂層204から露出している。
 この積層体は、樹脂層201~204が絶縁膜として働き、金属層301~303が配線層として機能する。このような積層体は、電子デバイスにおける再配線層として好ましく用いることができる。
<電子デバイスの製造方法>
 次に、本発明の電子デバイスの製造方法を説明する。本発明の電子デバイスの製造方法は、上述した本発明のパターン形成方法を含む。本発明のパターン形成方法を適用して得られる電子デバイスの一実施形態について図面を用いて説明する。図4に示す電子デバイス100は、いわゆる3次元実装デバイスであり、複数の半導体素子(半導体チップ)101a~101dが積層した積層体101が、配線基板120上に配置されている。なお、この実施形態では、半導体素子(半導体チップ)の積層数が4層である場合を中心に説明するが、半導体素子(半導体チップ)の積層数は特に限定されるものではなく、例えば、2層、8層、16層、32層等であってもよい。また、1層であってもよい。
 複数の半導体素子101a~101dは、いずれもシリコン基板等の半導体ウエハからなる。
 最上段の半導体素子101aは、貫通電極を有さず、その一方の面に電極パッド(図示せず)が形成されている。
 半導体素子101b~101dは、貫通電極102b~102dを有し、各半導体素子の両面には、貫通電極に一体に設けられた接続パッド(図示せず)が設けられている。
 積層体101は、貫通電極を有さない半導体素子101aと、貫通電極102b~102dを有する半導体素子101b~101dとをフリップチップ接続した構造を有している。
 すなわち、貫通電極を有さない半導体素子101aの電極パッドと、これに隣接する貫通電極102bを有する半導体素子101bの半導体素子101a側の接続パッドが、半田バンプ等の金属バンプ103aで接続され、貫通電極102bを有する半導体素子101bの他側の接続パッドが、それに隣接する貫通電極102cを有する半導体素子101cの半導体素子101b側の接続パッドと、半田バンプ等の金属バンプ103bで接続されている。同様に、貫通電極102cを有する半導体素子101cの他側の接続パッドが、それに隣接する貫通電極102dを有する半導体素子101dの半導体素子101c側の接続パッドと、半田バンプ等の金属バンプ103cで接続されている。
 各半導体素子101a~101dの間隙には、アンダーフィル層110が形成されており、各半導体素子101a~101dは、アンダーフィル層110を介して積層している。
 積層体101は、配線基板120上に積層されている。
 配線基板120としては、例えば樹脂基板、セラミックス基板、ガラス基板等の絶縁基板を基材として用いた多層配線基板が使用される。樹脂基板を適用した配線基板120としては、多層銅張積層板(多層プリント配線板)等が挙げられる。
 配線基板120の一方の面には、表面電極120aが設けられている。
 配線基板120と積層体101との間には、再配線層105が形成された絶縁層115が配置されており、配線基板120と積層体101とは、再配線層105を介して電気的に接続されている。絶縁層115は、本発明のパターン形成方法を用いて形成してなるものである。絶縁層115は、図3に示すような多層配線構造の積層体であってもよい。
 再配線層105の一端は、半田バンプ等の金属バンプ103dを介して、半導体素子101dの再配線層105側の面に形成された電極パッドに接続されている。また、再配線層105の他端は、配線基板の表面電極120aと、半田バンプ等の金属バンプ103eを介して接続している。
 そして、絶縁層115と積層体101との間には、アンダーフィル層110aが形成されている。また、絶縁層115と配線基板120との間には、アンダーフィル層110bが形成されている。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。NMRは、核磁気共鳴の略称である。
(合成例1)
[ピロメリット酸二無水物、4,4’-オキシジアニリンおよびベンジルアルコールからのポリイミド前駆体(P-1:ラジカル重合性基を有さないポリイミド前駆体)の合成]
 14.06g(64.5ミリモル)のピロメリット酸二無水物(140℃で12時間乾燥)と、14.22g(131.58ミリモル)のベンジルアルコールとを、50mlのN-メチルピロリドンに懸濁させ、モレキュラーシーブで乾燥させた。懸濁液を100℃で3時間加熱した。加熱を開始してから数分後に透明な溶液が得られた。反応混合物を室温に冷却し、21.43g(270.9ミリモル)のピリジンおよび90mlのN-メチルピロリドンを加えた。次いで、反応混合物を-10℃に冷却し、温度を-10±4℃に保ちながら16.12g(135.5ミリモル)のSOClを10分かけて加えた。SOClを加えている間、粘度が増加した。50mlのN-メチルピロリドンで希釈した後、反応混合物を室温で2時間撹拌した。次いで、100mlのN-メチルピロリドンに11.08g(58.7ミリモル)の4,4’-オキシジアニリンを溶解させた溶液を、20~23℃で20分かけて反応混合物に滴下した。次いで、反応混合物を室温で1晩撹拌した。次いで、5リットルの水の中でポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体を濾取し、再度4リットルの水に投入してさらに30分間撹拌し再び濾過した。次いで、得られたポリイミド前駆体を減圧下で、45℃で3日間乾燥し、下記式で表される繰り返し単位を含むポリイミド前駆体(P-1)を得た。
Figure JPOXMLDOC01-appb-C000036
(合成例2)
[ピロメリット酸二無水物、4,4’-オキシジアニリンおよび2-ヒドロキシエチルメタクリレートからのポリイミド前駆体(P-2:ラジカル重合性基を有するポリイミド前駆体)の合成]
 14.06g(64.5ミリモル)のピロメリット酸二無水物(140℃で12時間乾燥した)と、18.6g(129ミリモル)の2-ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライム(ジエチレングリコールジメチルエーテル)とを混合し、60℃の温度で18時間撹拌して、ピロメリット酸と2-ヒドロキシエチルメタクリレートとのジエステルを製造した。次いで、得られたジエステルをSOClにより塩素化した後、合成例1と同様の方法で4,4’-オキシジアニリンでポリイミド前駆体に変換し、合成例1と同様の方法で、下記式で表される繰り返し単位を含むポリイミド前駆体(P-2)を得た。
Figure JPOXMLDOC01-appb-C000037
(合成例3)
[4,4’-オキシジフタル酸無水物、4,4’-オキシジアニリンおよび2-ヒドロキシエチルメタクリレートからのポリイミド前駆体(P-3:ラジカル重合性基を有するポリイミド前駆体)の合成]
 20.0g(64.5ミリモル)の4,4’-オキシジフタル酸無水物(140℃で12時間乾燥した)と、18.6g(129ミリモル)の2-ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライムとを混合し、60℃の温度で18時間撹拌して、4,4’-オキシジフタル酸と2-ヒドロキシエチルメタクリレートとのジエステルを製造した。次いで、得られたジエステルをSOClにより塩素化した後、合成例1と同様の方法で4,4’-オキシジアニリンでポリイミド前駆体に変換し、合成例1と同様の方法で、下記式で表される繰り返し単位を含むポリイミド前駆体(P-3)を得た。
Figure JPOXMLDOC01-appb-C000038
(合成例4)
 [4,4’-オキシジフタル酸無水物、および4,4’-オキシジアニリンからのポリイミド前駆体(P-4:カルボキシル基を有するポリイミド前駆体)の合成]
 20.0g(64.5ミリモル)の4,4’-オキシジフタル酸無水物(140℃で12時間乾燥した)を180mlのNMP(N-メチル-2-ピロリドン)に溶解させて、さらに21.43g(270.9ミリモル)のピリジンを加えて、反応液を-10℃に冷却し、温度を-10±4℃に保ちながら、11.08g(58.7ミリモル)の4,4’-オキシジアニリンをNMP100mlに溶解させた溶解液を30分かけて滴下し、次いで反応混合液を室温で1晩撹拌した。次いで、5リットルの水に投入してポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体を濾取し、再度4リットルの水に投入してさらに30分間撹拌し、再び濾取した。次いで、得られたポリイミド前駆体を減圧下、45℃で3日間乾燥して、下記式で表される繰り返し単位を含むポリイミド前駆体(P-4)を得た。
Figure JPOXMLDOC01-appb-C000039
(合成例5)[アクリル系ポリマー(P-6)の合成]
 27.0g(153.2ミリモル)のベンジルメタクリレート、20g(157.3ミリモル)のN-イソプロピルメタクリルアミド、39g(309.2ミリモル)のメタクリル酸アリル、13g(151.0ミリモル)のメタクリル酸、重合開始剤(V-601、和光純薬工業製)3.55g(15.4ミリモル)、および3-メトキシ-2-プロパノール300gを混合した。混合液を、窒素雰囲気下、75℃に加熱した3-メトキシ-2-プロパノール300gの中に、2時間かけて滴下した。滴下終了後、さらに窒素雰囲気下、75℃で2時間撹拌した。反応終了後、5リットルの水に投入してポリマーを沈殿させて、5000rpmの速度で15分間撹拌した。アクリル樹脂を濾取し、再度4リットルの水に投入してさらに30分間撹拌し、再び濾取した。次いで、得られたアクリル樹脂を減圧下、45℃で3日間乾燥して、下記式で表されるアクリル系ポリマー(P-6)を得た。
Figure JPOXMLDOC01-appb-C000040
<ネガ型感光性樹脂組成物の調製>
 下記記載の成分を混合し、均一な溶液として、ネガ型感光性樹脂組成物の塗布液を調製した。
(組成)
 樹脂:下記表に記載の質量部
 ラジカル重合性化合物:下記表に記載の質量部
 光ラジカル重合開始剤:下記表に記載の質量部
 シランカップリング剤:下記表に記載の質量部
 防錆剤:下記表に記載の質量部
 重合禁止剤:下記表に記載の質量部
 塩基発生剤:下記表に記載の質量部
 溶剤1(ジメチルスルホキシド):100質量部
 溶剤2(γ-ブチロラクトン):25質量部
<ネガ型感光性組成物の解像性の評価>
 Si基板上に、ネガ型感光性樹脂組成物を塗布して、塗布膜を形成した。次いで、100℃のホットプレートを用いて240秒間加熱処理を行い膜厚15μmのネガ型感光性樹脂組成物層を形成した。次いで、ネガ型感光性樹脂組成物層に対し、ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、15μm四方のベイヤーを有するパターンマスクを介してi線(365nmの波長の光)を100~1000mJ/cmにて100mJ/cmずつ露光量を変化させて照射し、次いで、露光後のネガ型感光性樹脂組成物層が形成されているSi基板をスピン・シャワー現像機(DW-30型;(株)ケミトロニクス製)の水平回転テーブル上に載置し、シクロペンタノンを用いて23℃で60秒間現像を行なって未露光部を現像除去してパターンを形成した。ネガ型感光性組成物の解像性を以下の基準で評価した。なお、下地基板の露出幅が15μm±3μmである場合を、線幅15μmのパターン(15μm四方のパターン)を解像可能であるとした。
 A:厚さ15μm、線幅15μmのパターンを解像可能な露光量の最大値と最小値との差が900mJ/cm以上である。
 B:厚さ15μm、線幅15μmのパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上900mJ/cm未満である。
 C:厚さ15μm、線幅15μmのパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm未満である。
Figure JPOXMLDOC01-appb-T000041
 表に記載した略称は以下の通りである。
(樹脂)
P-1~P-4:合成例1~4で合成したポリイミド前駆体(P-1)~(P-4)
P-5:Matrimid5218(Huntsman Corporation製、閉環型ポリイミド)
P-6:合成例5で合成したアクリル系ポリマー(P-6)
P-7:ポリメタクリル酸メチル(Mw=15000、シグマアルドリッチジャパン合同会社製)
(ラジカル重合性化合物)
B-1:SR209(サートマー社製、テトラエチレングリコールジアクリレート)
B-2:NKエステルA-9300(新中村化学工業(株)製、エトキシ化イソシアヌル酸トリアクリレート)
B-3:A-TMMT(新中村化学工業(株)製、ペンタエリスリトールテトラアクリレート)
B-4:A-DPH(新中村化学工業(株)製、ジペンタエリスリトールヘキサアクリレート)
(光ラジカル重合開始剤)
C-1:IRGACURE OXE 01(BASF社製、オキシム化合物)
C-2:IRGACURE OXE 02(BASF社製、オキシム化合物)
C-3:IRGACURE-784(BASF製、メタロセン化合物)
C-4:アデカアークルズNCI-831((株)ADEKA製、オキシム化合物)
(シランカップリング剤)
D-1:KBM-602(信越化学工業(株)製、アミノ基を有するシラン化合物)
D-2:2-((3-(トリエトキシシリル)プロピル)カルバモイル)安息香酸(Aquila Pharmatech LLC製、カルボキシル基を有するシラン化合物)
D-3:トリエトキシシリルプロピルマレインアミド酸(Gelest,Inc製、カルボキシル基を有するシラン化合物)
(防錆剤)
 E-1:KEMITEC BT-C(ケミプロ化成(株)製、1,2,3-ベンゾトリアゾール)
 E-2:1HT(東洋紡(株)製、1H-テトラゾール)
 E-3:P5T(東洋紡(株)製、5-フェニル-1H-テトラゾール)
(重合禁止剤)
 F-1:4-メトキシフェノール
 F-2:pーベンゾキノン
 F-3:1-ニトロソ-2-ナフトール
(塩基発生剤)
A-1、A-21、A-40:下記構造の化合物(熱塩基発生剤)
A-43:WPBG-266(和光純薬工業(株)製、光塩基発生剤。加熱によって分解して塩基を発生する化合物でもある)
Figure JPOXMLDOC01-appb-C000042
<パターン形成方法>
 図5に示す段差を有するSi基板(t1~t8=2μm、t9=0.5μm、t10=0.5μm、t11=1μm)上に、ネガ型感光性樹脂組成物を塗布し、一番厚い箇所で塗布膜の乾燥後の膜厚T1が20μmになるように、塗布回転数を調整して塗膜を形成し、100℃のホットプレートを用いて240秒間加熱処理を行い、ネガ型感光性樹脂組成物層を形成した。ネガ型感光性樹脂組成物層に対し、ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、15μm四方のベイヤーを有するパターンマスクを介してi線(365nmの波長の光)を100~1000mJ/cmにて100mJ/cmずつ露光量を変化させて照射した。次いで、露光後のネガ型感光性樹脂組成物層が形成されているSi基板をスピン・シャワー現像機(DW-30型;(株)ケミトロニクス製)の水平回転テーブル上に載置してシクロペンタノンを用いて23℃で60秒間現像を行ない、未露光部を現像除去した。次いで、窒素オーブンにて230℃で180分間加熱処理を実施することで、Si基板の各段差上にパターンを形成した。なお、図5において形成されるパターンの厚みは、2μm、3μm、3.5μm、4μm、6μm、8μm、10μm、12μm、14μm、16μm、18μm、20μmである。
<解像性の評価>
 以下の基準で解像性を評価した。なお、現像後における下地基板の露出幅が15μm±3μmである場合を、線幅15μmのパターン(15μm四方のパターン)を解像可能であるとした。
 A:厚さ2~20μmの範囲にて、線幅15μmのパターンを形成できた。
 B:厚さ2~16μmの範囲にて、線幅15μmのパターンを形成できたが、厚さ16μmを超える部分において、線幅15μmのパターンを形成できなかった。
 C:厚さ2~12μmの範囲にて、線幅15μmのパターンを形成できたが、厚さ12μmを超える部分において、線幅15μmのパターンを形成できなかった。
 D:上記A~Cのいずれにも該当しない。
厚さ2~20μmのいずれにおいても、線幅15μmのパターンを形成できなかった。
Figure JPOXMLDOC01-appb-T000043
 上記表に示す通り実施例は、幅広い露光量にて、厚みの異なるパターンを解像性良く形成することができた。
10:樹脂層
11:ネガ型感光性樹脂組成物層
20:支持体
50:マスク
100:電子デバイス
101a~101d:半導体素子
101:積層体
102b~102d:貫通電極
103a~103e:金属バンプ
105:再配線層
110、110a、110b:アンダーフィル層
115:絶縁層
120:配線基板
120a:表面電極
201~204:樹脂層
301~303:金属層
401~403:溝
500:積層体

Claims (12)

  1.  樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いて支持体上にネガ型感光性樹脂組成物層を形成し、前記ネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成するパターン形成方法であって、
     同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5~10倍であり、
     前記ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いる、パターン形成方法。
  2.  支持体上に前記ネガ型感光性樹脂組成物層を2層以上積層し、前記2層以上積層したネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成する、請求項1に記載のパターン形成方法。
  3.  同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.75~8倍である、請求項1または2に記載のパターン形成方法。
  4.  同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの2~6倍である、請求項1または2に記載のパターン形成方法。
  5.  前記ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値の差が900mJ/cm以上であるネガ型感光性樹脂組成物を用いる、請求項1~4のいずれか1項に記載のパターン形成方法。
  6.  前記樹脂がポリイミド前駆体である、請求項1~5のいずれか1項に記載のパターン形成方法。
  7.  前記ポリイミド前駆体が、下記式(1)で表される、請求項6に記載のパターン形成方法;
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、A21およびA22は、それぞれ独立に、酸素原子または‐NH‐を表し、R21は、2価の有機基を表し、R22は、4価の有機基を表し、R23およびR24はそれぞれ独立に、水素原子または1価の有機基を表す。
  8.  前記式(1)中、R23およびR24の少なくとも一方が、ラジカル重合性基を含む、請求項7に記載のパターン形成方法。
  9.  前記式(1)における、R22は、芳香環を含む4価の基である、請求項7または8に記載のパターン形成方法。
  10.  更に、金属層を形成する工程を含む、請求項1~9のいずれか1項に記載のパターン形成方法。
  11.  請求項1~10のいずれか1項に記載のパターン形成方法を含む、積層体の製造方法。
  12.  請求項1~10のいずれか1項に記載のパターン形成方法を含む、電子デバイスの製造方法。
PCT/JP2017/030218 2016-08-31 2017-08-24 パターン形成方法、積層体の製造方法および電子デバイスの製造方法 WO2018043262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537191A JP6745344B2 (ja) 2016-08-31 2017-08-24 パターン形成方法、積層体の製造方法および電子デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-170211 2016-08-31
JP2016170211 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043262A1 true WO2018043262A1 (ja) 2018-03-08

Family

ID=61301791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030218 WO2018043262A1 (ja) 2016-08-31 2017-08-24 パターン形成方法、積層体の製造方法および電子デバイスの製造方法

Country Status (3)

Country Link
JP (1) JP6745344B2 (ja)
TW (1) TWI732926B (ja)
WO (1) WO2018043262A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189110A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2020179671A1 (ja) * 2019-03-06 2020-09-10 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤
CN112513219A (zh) * 2018-09-10 2021-03-16 富士胶片株式会社 感光性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
WO2021100768A1 (ja) 2019-11-21 2021-05-27 富士フイルム株式会社 パターン形成方法、光硬化性樹脂組成物、積層体の製造方法、及び、電子デバイスの製造方法
JP7451969B2 (ja) 2019-11-29 2024-03-19 Hdマイクロシステムズ株式会社 樹脂組成物、硬化物の製造方法、硬化物、カバーコート層、表面保護膜及び電子部品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697023A (ja) * 1992-09-16 1994-04-08 Fujitsu Ltd 半導体装置の製造方法
JPH09213602A (ja) * 1996-01-30 1997-08-15 Nec Corp 露光方法および露光装置
JPH10256149A (ja) * 1997-03-14 1998-09-25 Nec Corp レジストパターンの形成方法
JP2001033983A (ja) * 1999-07-15 2001-02-09 Mitsubishi Electric Corp パターン形成方法およびこれを用いた半導体装置の製造方法、並びに半導体装置
JP2002003602A (ja) * 2000-06-21 2002-01-09 Asahi Kasei Corp 感光性ポリイミド前駆体の製造方法
JP2014146029A (ja) * 2013-01-25 2014-08-14 Rohm & Haas Electronic Materials Korea Ltd カラムスペーサーとブラックマトリックスの両方に適した着色感光性樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202066A (ja) * 2004-01-14 2005-07-28 Fuji Photo Film Co Ltd 感光性転写シート、感光性積層体、画像パターンを形成する方法、配線パターンを形成する方法
JP6306296B2 (ja) * 2013-07-09 2018-04-04 太陽インキ製造株式会社 感光性熱硬化性樹脂組成物およびフレキシブルプリント配線板
WO2015011893A1 (ja) * 2013-07-23 2015-01-29 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物、それを用いたパターン形成方法及び電子部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697023A (ja) * 1992-09-16 1994-04-08 Fujitsu Ltd 半導体装置の製造方法
JPH09213602A (ja) * 1996-01-30 1997-08-15 Nec Corp 露光方法および露光装置
JPH10256149A (ja) * 1997-03-14 1998-09-25 Nec Corp レジストパターンの形成方法
JP2001033983A (ja) * 1999-07-15 2001-02-09 Mitsubishi Electric Corp パターン形成方法およびこれを用いた半導体装置の製造方法、並びに半導体装置
JP2002003602A (ja) * 2000-06-21 2002-01-09 Asahi Kasei Corp 感光性ポリイミド前駆体の製造方法
JP2014146029A (ja) * 2013-01-25 2014-08-14 Rohm & Haas Electronic Materials Korea Ltd カラムスペーサーとブラックマトリックスの両方に適した着色感光性樹脂組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102461621B1 (ko) * 2018-03-29 2022-11-01 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
KR20200124714A (ko) * 2018-03-29 2020-11-03 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
CN111936930A (zh) * 2018-03-29 2020-11-13 富士胶片株式会社 感光性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
JPWO2019189110A1 (ja) * 2018-03-29 2021-03-11 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP7134224B2 (ja) 2018-03-29 2022-09-09 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2019189110A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
CN112513219A (zh) * 2018-09-10 2021-03-16 富士胶片株式会社 感光性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
CN112513219B (zh) * 2018-09-10 2023-10-20 富士胶片株式会社 感光性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
WO2020179671A1 (ja) * 2019-03-06 2020-09-10 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤
JPWO2020179671A1 (ja) * 2019-03-06 2021-12-16 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤
JP7426375B2 (ja) 2019-03-06 2024-02-01 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤
WO2021100768A1 (ja) 2019-11-21 2021-05-27 富士フイルム株式会社 パターン形成方法、光硬化性樹脂組成物、積層体の製造方法、及び、電子デバイスの製造方法
JP7451969B2 (ja) 2019-11-29 2024-03-19 Hdマイクロシステムズ株式会社 樹脂組成物、硬化物の製造方法、硬化物、カバーコート層、表面保護膜及び電子部品

Also Published As

Publication number Publication date
JP6745344B2 (ja) 2020-08-26
TW201826024A (zh) 2018-07-16
JPWO2018043262A1 (ja) 2019-04-18
TWI732926B (zh) 2021-07-11

Similar Documents

Publication Publication Date Title
JP6255096B2 (ja) 熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
WO2018025738A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
WO2018151195A1 (ja) 感光性樹脂組成物、複素環含有ポリマー前駆体、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2018043467A1 (ja) 樹脂組成物およびその応用
JP6745344B2 (ja) パターン形成方法、積層体の製造方法および電子デバイスの製造方法
JP6650517B2 (ja) 硬化膜の製造方法、積層体の製造方法および半導体素子の製造方法
JP6481032B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
WO2018038001A1 (ja) 膜の製造方法、積層体の製造方法および電子デバイスの製造方法
KR102147108B1 (ko) 적층체의 제조 방법, 반도체 소자의 제조 방법 및 적층체
JP6633767B2 (ja) 積層体の製造方法および電子デバイスの製造方法
JP6704048B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2018003725A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2018225676A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイスおよび化合物
JP6751159B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
WO2018221457A1 (ja) 感光性樹脂組成物、ポリマー前駆体、硬化膜、積層体、硬化膜の製造方法および半導体デバイス
WO2019146778A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
WO2020116238A1 (ja) パターン形成方法、感光性樹脂組成物、硬化膜、積層体、及び、デバイス
WO2020054226A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP6522756B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
WO2020066435A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、および熱塩基発生剤
KR20200128072A (ko) 감광성 수지 조성물, 경화막, 적층체, 이들의 제조 방법, 반도체 디바이스, 이들에 이용되는 열염기 발생제
WO2019189112A1 (ja) 積層体の製造方法および熱硬化性有機膜形成用組成物
WO2020116336A1 (ja) 感光性樹脂組成物、パターン形成方法、硬化膜、積層体、及び、デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846267

Country of ref document: EP

Kind code of ref document: A1