WO2018043029A1 - 電子増倍体の製造方法及び電子増倍体 - Google Patents

電子増倍体の製造方法及び電子増倍体 Download PDF

Info

Publication number
WO2018043029A1
WO2018043029A1 PCT/JP2017/028280 JP2017028280W WO2018043029A1 WO 2018043029 A1 WO2018043029 A1 WO 2018043029A1 JP 2017028280 W JP2017028280 W JP 2017028280W WO 2018043029 A1 WO2018043029 A1 WO 2018043029A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
end surface
channel
plate
hole
Prior art date
Application number
PCT/JP2017/028280
Other languages
English (en)
French (fr)
Inventor
小林 浩之
銀治 杉浦
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US16/321,552 priority Critical patent/US10522334B2/en
Priority to CN201780052951.5A priority patent/CN109643627B/zh
Publication of WO2018043029A1 publication Critical patent/WO2018043029A1/ja
Priority to US16/661,184 priority patent/US10957522B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/20Dynodes consisting of sheet material, e.g. plane, bent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • H01J9/125Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/32Secondary-electron-emitting electrodes

Definitions

  • One embodiment of the present invention relates to an electron multiplier production method and an electron multiplier.
  • Patent Document 1 describes a CEM (channel electron multiplier).
  • the CEM includes a base body and a channel that is provided in the base body so as to open to one end surface and the other end surface of the base body and emits secondary electrons according to incident electrons.
  • Patent Document 1 discloses that an electron emission layer is formed on a substrate by an atomic layer deposition method in order to improve secondary electron emission efficiency.
  • Patent Document 2 describes MCP (microchannel plate). This MCP includes a substrate and a number of channels made up of millions that are provided in the substrate so as to open on the upper and lower surfaces of the substrate and emit secondary electrons in response to incident electrons. . Patent Document 2 discloses that a resistance layer having a laminated structure of a conductive material and an insulating material is formed on a substrate by an atomic layer deposition method so that the resistance value of the resistance layer is an optimum value. .
  • Acceleration voltage is applied to the CEM during the operation of the CEM described in Patent Document 1.
  • electrons traveling in the channel are accelerated and collide with the resistance layer.
  • secondary electrons are amplified and emitted.
  • the emitted secondary electrons are accelerated by the acceleration voltage and collide with the resistance layer, and new secondary electrons are further amplified and emitted, and this is repeated thereafter.
  • a resistance layer may be formed only on the inner surface of the channel.
  • the entire surface of the substrate is formed.
  • a resistance layer is formed. That is, the resistance layer is formed not only on the inner surface of the channel but also on the outer surface of the substrate.
  • this inventor has also acquired the following knowledge regarding MCP. That is, also in the MCP described in Patent Document 2, the resistance layer is formed on the outer surface of the substrate by the atomic layer deposition method. However, in MCP, since the surface area of the outer surface of the substrate is very small compared to the surface area of the channel, the current flowing on the outer surface of the substrate is extremely small, and thus the above-described problems that occur in CEM are unlikely to occur.
  • An object of one embodiment of the present invention is to provide an electron multiplier production method and an electron multiplier that can suppress an increase in temperature.
  • the manufacturing method of the electron multiplier according to one aspect of the present invention is provided in the main body portion so as to open to the main body portion and one end surface and the other end surface of the main body portion, and secondary electrons are formed according to incident electrons.
  • a body member provided with a communication hole for a channel having one end face and the other end face and communicating the one end face and the other end face.
  • a first step to be prepared a second step of forming a channel by forming at least a resistance layer by an atomic layer deposition method on the outer surface of the main body member and the inner surface of the communication hole; and a resistance formed on the outer surface of the main body member And a third step of forming the main body by removing the layer.
  • a deposition layer including at least a resistance layer is formed by an atomic layer deposition method on the outer surface of the main body member for the main body and the inner surface of the communication hole for the channel. To form a channel. Thereafter, the deposited layer formed on the outer surface of the main body member is removed to form the main body portion. Therefore, even when a potential difference is applied between the one end surface and the other end surface during the operation of the electron multiplier, current is prevented from flowing to the outer surface side of the main body through the resistance layer. For this reason, heat generation is suppressed on the outer surface of the main body. Therefore, the electron multiplier manufactured by such a method can solve the above-described problems and suppress an increase in temperature.
  • the deposition layer including the resistance layer and a secondary electron multiplication layer stacked on the resistance layer is formed. May be.
  • the deposited layer including the secondary electron multiplication layer can be efficiently removed and removed from the outer surface.
  • the main body member may be made of an insulating material.
  • the above-described effects obtained by removing the resistance layer are more effective.
  • the deposited layer may be removed by sandblasting in the third step.
  • the deposited layer at a desired location (outer surface) of the main body member can be appropriately removed.
  • the outer surface of the main body member has one end surface, the other end surface, and a side surface connecting the one end surface and the other end surface, and in the third step
  • the deposition layer formed on the side surface may be removed while maintaining the deposition layer formed on the one end surface and the other end surface. In this case, it is not necessary to perform the removal processing of the deposited layer on the one end surface and the other end surface where the channel is open, so that the influence of the removal processing on the channel can be reduced.
  • a fourth step of thermally connecting a heat sink to the outer surface of the main body may be further provided after the third step.
  • the main body can be cooled by the heat sink.
  • the influence on the heat sink due to the potential difference applied between the one end surface and the other end surface of the main body portion can be reduced.
  • the heat sink is made of metal, and in the fourth step, the heat sink may be in contact with the outer surface.
  • the resistance layer is not interposed between the outer surface of the main body and the heat sink, there is no possibility of current flowing through the heat sink due to the potential difference applied between the one end surface and the other end surface of the main body. .
  • the metal heat sink can be brought into contact with the outer surface of the main body to cool the main body efficiently.
  • An electron multiplier includes a main body having one end surface, the other end surface, and a side surface that connects the one end surface and the other end surface, and a main body portion that opens to the one end surface and the other end surface.
  • a channel provided, and the channel has a deposited layer including a resistance layer and a secondary electron multiplier layer formed on the inner surface of the communication hole for the channel, and has one end surface and the other end surface.
  • the deposition layer is formed, the side surface is exposed from at least the resistance layer, and the deposition layer is formed by an atomic layer deposition method.
  • the side surface of the main body is exposed at least from the resistance layer (that is, the resistance layer is not formed on the side surface). Therefore, even when a potential difference is applied between the one end surface and the other end surface during the operation of the electron multiplier, current is prevented from flowing to the outer surface side of the main body through the resistance layer. For this reason, heat generation is suppressed on the outer surface of the main body. Therefore, this electron multiplier can solve the above-mentioned problems and suppress the temperature rise.
  • a secondary electron multiplication layer may be formed on the side surface.
  • an electron multiplier production method and an electron multiplier that can suppress an increase in temperature it is possible to provide an electron multiplier production method and an electron multiplier that can suppress an increase in temperature.
  • FIG. 2 is a perspective view of the electron multiplier shown in FIG. 1.
  • FIG. 2 is a perspective view of the electron multiplier shown in FIG. 1.
  • FIG. 4 is an exploded perspective view of the electron multiplier shown in FIGS.
  • FIG. 5 is a plan view of a first plate member and a second plate member shown in FIG. 4. It is a figure which shows each process of the manufacturing method of the electron multiplier shown by FIG. It is a figure which shows each process of the manufacturing method of the electron multiplier shown by FIG. It is a figure which shows each process of the manufacturing method of the electron multiplier shown by FIG. It is a figure which shows each process of the manufacturing method of the electron multiplier shown by FIG. It is a figure which shows each process of the manufacturing method of the electron multiplier shown by FIG. It is a figure which shows each process of the manufacturing method of the electron multiplier shown by FIG.
  • each figure may show an orthogonal coordinate system S that defines the first direction D1, the second direction D2, and the third direction D3.
  • FIG. 1 is a schematic cross-sectional view of a photomultiplier tube according to this embodiment.
  • 2 and 3 are perspective views of the electron multiplier shown in FIG.
  • the photomultiplier tube 1 includes an electron multiplier (channel electron multiplier: CEM) 2, a tube body 3, a photocathode 4, and an anode 5. Yes.
  • the electron multiplier 2 has a rectangular parallelepiped main body 20 extending along the first direction D1.
  • the main body 20 includes an insulating material such as ceramic.
  • the outer surface 20d of the main body 20 connects the end surface (one end surface) 20a in the first direction D1, the end surface (other end surface) 20b opposite to the end surface 20a in the first direction D1, and the end surface 20a and the end surface 20b. Side surface 20c.
  • the end surface 20a is provided with a rectangular annular input electrode A along the outer edge of the end surface 20a.
  • the end surface 20b is provided with a rectangular annular output electrode B along the outer edge of the end surface 20b.
  • the electron multiplier 2 has a plurality of first channels (channels) 21 and a plurality of second channels (channels) 22. That is, the photomultiplier tube 1 and the electron multiplier 2 are multi-channeled.
  • the first channel 21 and the second channel 22 are open on the end surfaces 20 a and 20 b of the main body 20. That is, the first channel 21 and the second channel 22 extend from the end surface 20a of the main body 20 to the end surface 20b.
  • the first channel 21 includes an electron incident part 23 and an electron multiplying part 25.
  • the electron incident part 23 includes an opening 23a that opens to the end face 20a.
  • the electron incident part 23 is connected to the electron multiplying part 25 at the end opposite to the opening 23a.
  • the electron multiplying portion 25 extends from the connecting portion with the electron incident portion 23 along the first direction D1, reaches the end surface 20b, and opens to the end surface 20b.
  • the first channel 21 emits secondary electrons in the electron multiplying unit 25 in accordance with the electrons incident from the electron incident unit 23.
  • the second channel 22 includes an electron incident part 24 and an electron multiplication part 26.
  • the electron incident portion 24 includes an opening 24a that opens to the end face 20a.
  • the electron incident portion 24 is connected to the electron multiplying portion 26 at the end opposite to the opening 24a.
  • the electron multiplying portion 26 extends from the connection portion with the electron incident portion 24 along the first direction D1, reaches the end surface 20b, and opens to the end surface 20b.
  • the second channel 22 emits secondary electrons in the electron multiplying unit 26 in accordance with the electrons incident from the electron incident unit 24.
  • the first channel 21 and the second channel 22 are arranged along the second direction D2 (a direction in which the plate-like members described later are stacked and intersect (orthogonal) the first direction D1) with the electron incident portion 23. They overlap with each other in the electron incident portion 24 and do not overlap with each other in the electron multiplying portion 25 and the electron multiplying portion 26 (separated from each other along the third direction D3).
  • the third direction D3 is a direction intersecting (orthogonal) with the first direction D1 and the second direction D2.
  • the tube 3 accommodates the electron multiplier 2.
  • One end 3a of the tube body 3 in the first direction D1 is open, and the other end 3b is sealed.
  • the electron multiplier 2 is accommodated in the tube 3 so that the end surface 20a of the main body 20 is positioned on the end 3a side of the tube 3.
  • the photocathode 4 generates photoelectrons in response to the incidence of light.
  • the photocathode 4 is provided on the tube 3 so as to face the opening (opening) 23a of the first channel 21 and the opening (opening) 24a of the second channel 22 on the end face 20a.
  • the photocathode 4 is provided on the tube body 3 so as to seal the end portion 3 a of the tube body 3.
  • the photocathode 4 supplies photoelectrons to the first channel 21 and the second channel 22 via the electron incident portions 23 and 24.
  • the anode 5 is disposed in the tube 3 so as to face the openings of the first channel 21 and the second channel 22 (openings of the electron multipliers 25 and 26) on the end face 20b.
  • the anode 5 is attached to the output electrode B via a rectangular annular insulating layer C.
  • the central portion of the anode 5 is exposed from the openings of the output electrode B and the insulating layer C and faces the openings of the first channel 21 and the second channel 22.
  • the anode 5 receives secondary electrons emitted from the first channel 21 and the second channel 22 via the electron multipliers 25 and 26.
  • a detector (not shown) that detects a pulse of an electric signal corresponding to secondary electrons received by the anode 5 is connected to the anode 5.
  • FIG. 4 is an exploded perspective view of the electron multiplier shown in FIGS.
  • the main body 20 of the electron multiplier 2 is configured by laminating a plurality of plate-like members.
  • the main body 20 includes a plurality of first plate-like members 30, a plurality of second plate-like members 40, and a pair of third plate-like members 50 that are stacked together along the second direction D2. ing.
  • the first plate member 30, the second plate member 40, and the third plate member 50 form the first channel 21 and the second channel 22.
  • the number of the first plate-like member 30 and the second plate-like member 40 can be arbitrarily set according to the required number of channels, but is, for example, about two to four.
  • the first plate-like member 30 and the second plate-like member 40 are alternately stacked along the second direction D2.
  • the 3rd plate-shaped member 50 is the 1st plate-shaped member 30 and the 2nd plate-shaped member so that the laminated body of the 1st plate-shaped member 30 and the 2nd plate-shaped member 40 may be pinched
  • a part of the plurality of second plate-like members 40 is disposed between the pair of first plate-like members 30, and the rest is between the first plate-like member 30 and the third plate-like member 50. Can be arranged.
  • the arrangement of the first plate-like member 30 and the second plate-like member 40 differs depending on the number of the first plate-like member 30 and the second plate-like member 40, for example.
  • one first plate member 30 on the center side in the second direction D ⁇ b> 2 of the two first plate members 30 is disposed between the pair of second plate members 40.
  • One first plate-like member 30 outside the second direction D ⁇ b> 2 of the two first plate-like members 30 is disposed between the second plate-like member 40 and the third plate-like member 50.
  • one second plate-like member 40 on the center side in the second direction D ⁇ b> 2 of the two second plate-like members 40 is disposed between the pair of first plate-like members 30.
  • one second plate member 40 outside the second direction D2 is disposed between the first plate member 30 and the third plate member 50. ing.
  • FIG. 5 is a plan view of the first plate member and the second plate member shown in FIG. 4 and 5, the first plate member 30, the second plate member 40, and the third plate member 50 have the first direction D1 as the longitudinal direction and the second direction D2 as the thickness. It has a rectangular plate shape.
  • the first plate-like member 30 includes a front surface (first front surface) 31 and a back surface (first back surface) 32 that intersect with the second direction D2.
  • the first plate member 30 is formed with a hole that defines the first channel 21.
  • a hole (third hole) 33 and a hole (first hole) 35 from the front surface 31 to the back surface 32 are formed in the first plate member 30.
  • the hole 33 reaches the end surface 30a of the first plate member 30 in the first direction D1.
  • the hole 33 has a tapered shape that decreases from the end surface 30a in the first direction D1.
  • the hole 33 is connected to the hole 35.
  • the hole 35 extends in a wave shape from the connecting portion with the hole 33 along the first direction D1 and reaches the end face 30b of the first plate-like member 30 in the first direction D1.
  • the end surface 30 a is a surface that forms the end surface 20 a of the main body 20.
  • the end surface 30 b is a surface that forms the end surface 20 b of the main body 20. Therefore, the hole portion 33 corresponds to the electron incident portion 23 of the first channel 21 (defines the electron incident portion 23), and the hole portion 35 corresponds to the electron multiplier portion 25 of the first channel 21 (electron multiplication portion).
  • the multiplier 25 is defined).
  • the first plate member 30 includes a plurality of hole regions (first hole regions) 37 in which the holes 35 are formed, and a plurality of solid regions (first solid regions) adjacent to the hole regions 37. 38).
  • the hole region 37 has a shape along the hole 35.
  • the solid region 38 here has a shape complementary to the hole 35.
  • the hole regions 37 and the solid regions 38 are alternately arranged along the third direction D3.
  • the second plate-like member 40 includes a front surface (second surface) 41 and a back surface (second back surface) 42 that intersect the second direction D2.
  • the second plate-shaped member 40 is formed with a hole that defines the second channel 22. More specifically, a hole (fourth hole) 43 and a hole (second hole) 45 from the front surface 41 to the back surface 42 are formed in the second plate member 40.
  • the hole 43 reaches the end surface 40a of the second plate member 40 in the first direction D1.
  • the hole 43 has a tapered shape that decreases from the end surface 40a in the first direction D1.
  • the hole 43 is connected to the hole 45.
  • the hole 45 extends in a wave shape along the first direction D1 from the connection portion with the hole 43, and reaches the end surface 40b of the second plate-like member 40 in the first direction D1.
  • the end surface 40 a is a surface that forms the end surface 20 a of the main body 20.
  • the end surface 40 b is a surface that forms the end surface 20 b of the main body 20. Therefore, the hole 43 corresponds to the electron incident part 24 of the second channel 22 (defines the electron incident part 24), and the hole 45 corresponds to the electron multiplier 26 of the second channel 22 (electron multiplication). A multiplier 26 is defined).
  • a plurality (three in this case) of holes 43 and 45 arranged along the third direction D3 are formed with respect to the second plate-like member 40.
  • a region between the hole portions 45 in the second plate member 40 and a region outside the hole portion 45 are solid.
  • the second plate-shaped member 40 includes a plurality of hole regions (second hole regions) 47 in which the holes 45 are formed, and a plurality of solid regions (second solid regions) adjacent to the hole regions 47. 48).
  • the hole region 47 has a shape along the hole 45.
  • the solid region 48 here has a shape complementary to the hole 45.
  • the hole regions 47 and the solid regions 48 are alternately arranged along the third direction D3.
  • region shown with the dashed-dotted line in a figure is virtual.
  • the hole region 37 of the first plate member 30 is opposed to the solid region 48 of the second plate member 40 along the second direction D2. Further, the hole region 47 of the second plate-like member 40 faces the solid region 38 of the first plate-like member 30 along the second direction D2. That is, when viewed from the second direction D2, the hole 35 and the hole 45 do not overlap each other (are separated from each other along the third direction D3). For this reason, the opening in the second direction D2 of the hole 35 of the first plate member 30 is blocked by the solid region 48 of the pair of second plate members 40 or the second plate member 40 is solid. The region 48 and the third plate member 50 are closed.
  • the opening in the second direction D2 of the hole 45 of the second plate member 40 is closed by the solid region 38 of the pair of first plate members 30 or the solid region of the first plate member 30. 38 and the third plate member 50 are closed. Further, the openings of the holes 33 and 43 in the second direction D2 are continuous between the plurality of first plate members 30 and the second plate members 40 and are closed by the pair of third plate members 50. .
  • the first channel 21 (here, the electron multiplying portion 25) is formed to include at least the inner surface of the hole 35 and the surface facing the hole 35 in the solid region 48. More specifically, the first channel 21 on the center side of the main body 20 in the second direction D2 is formed by the inner surface of the hole 35 and the surface facing the hole 35 in the pair of solid regions 48.
  • the first channel 21 outside the main body 20 in the second direction D2 includes the inner surface of the hole 35, the surface facing the hole 35 in the solid region 48, and the hole 35 in the third plate member 50. And an inwardly facing surface.
  • the second channel 22 (here, the electron multiplying portion 26) is formed including at least the inner surface of the hole 45 and the surface facing the hole 45 in the solid region 38. More specifically, the second channel 22 on the center side of the main body 20 in the second direction D2 is formed by the inner surface of the hole 45 and the surface facing the hole 45 in the pair of solid regions 38. The Further, the second channel 22 outside the main body 20 in the second direction D2 includes an inner surface of the hole 45, a surface facing the hole 45 in the solid region 38, and a hole 45 in the third plate member 50. And an inwardly facing surface.
  • the main body portion 20 includes a plurality of first plate-like members 30 and second plate-like members 40 arranged along the second direction D2.
  • the first plate member 30 is formed with a plurality of holes 33 and 35 arranged along the third direction D3, and the second plate member 40 is formed along the third direction D3.
  • a plurality of holes 43 and 45 arranged are formed. Therefore, the electron multiplier 2 includes a plurality of channels (first channel 21 and second channel 22) arranged two-dimensionally along the second direction D2 and the third direction D3.
  • the inner surface of the hole 35, the surface facing the hole 35 in the solid region 48, and the surface facing the hole 35 in the third plate-like member 50 are the inner surface 21 s of the first channel 21.
  • the inner surface of the hole 45, the surface facing the hole 45 in the solid region 38, and the surface facing the hole 45 in the third plate member 50 form the inner surface 22 s of the second channel 22. (See FIG. 1).
  • the first channel 21 and the second channel 22 include a resistance layer and a secondary electron multiplication layer stacked on each other.
  • the first channel 21 has a deposited layer including a resistance layer and a secondary electron multiplication layer formed on the inner surface 81 s of the first communication hole 81 for the first channel 21.
  • the second channel 22 has a deposited layer including a resistance layer and a secondary electron multiplication layer formed on the inner surface 82 s of the second communication hole 82 for the second channel 22.
  • the surface layers of the first channel 21 and the second channel 22 are secondary electron multiplication layers. Therefore, the inner surface 21s and the inner surface 22s are surfaces of the secondary electron multiplication layer.
  • the material of the resistance layer for example, a mixed film of Al 2 O 3 (aluminum oxide) and ZnO (zinc oxide) or a mixed film of Al 2 O 3 and TiO 2 (titanium dioxide) can be used.
  • the material of the secondary electron multiplication layer it is possible to use for example, Al 2 O 3, or, MgO (magnesium oxide) and the like.
  • the deposition layer including the resistance layer and the secondary electron multiplication layer is formed by an atomic layer deposition (ALD) method.
  • ALD film resistance layer and secondary electron multiplication layer
  • At least a part of the outer surface 20d of the main body 20 is not provided with a deposition layer (resistance layer and secondary electron multiplication layer).
  • a deposition layer resistance layer and secondary electron multiplication layer
  • at least a resistance layer is not provided on the side surface 20c connecting the end surface 20a and the end surface 20b in the main body 20.
  • the side surface 20c is exposed from at least the resistance layer (here, further the secondary electron multiplication layer) (that is, the surface made of an insulating material is exposed).
  • the heat sink 70 is thermally connected to the side surface 20c (outer surface 20d) of the main-body part 20 (refer FIG.2, 3).
  • the heat sink 70 is in contact with the side surface 20 c of the main body 20.
  • the heat sink 70 is thermally connected to, for example, a flange (not shown) for sealing the tube body 3. Thereby, the heat sink 70 thermally connects the main-body part 20 to the said flange.
  • the heat sink 70 is made of metal, for example.
  • FIG. 6 to 14 are diagrams showing each step of the method for manufacturing the electron multiplier shown in FIG.
  • a body member for the body portion 20 is prepared (first step).
  • This first step will be specifically described.
  • a plurality of plate-like members 30A for the first plate-like member 30, a plurality of plate-like members 40A for the second plate-like member 40, and A pair of plate-like members 50A for the third plate-like member 50 is prepared.
  • the plate-like members 30A, 40A, and 50A are respectively a plurality (here, two) of the first plate-like member 30, the second plate-like member 40, and the third plate-like that are arranged along the first direction D1.
  • the part which becomes the member 50 is included.
  • a plurality of hole portions 33A and 35A for the hole portions 33 and 35 are formed in the plate-like member 30A by, for example, laser processing or punching with a mold.
  • a region between the hole portions 35A in the plate-like member 30A and a region outside the hole portion 35A are solid. That is, the plate-like member 30A includes a plurality of hole regions 37A in which the hole portions 35A are formed, and a plurality of solid regions 38 adjacent to the hole region 37A.
  • the holes 33A and 35A do not reach the end of the plate member 30A.
  • a plurality of hole portions 43A and 45A for the hole portions 43 and 45 are formed in the plate-like member 40A by, for example, laser processing or punching with a mold.
  • a region between the hole portions 45A in the plate-like member 40A and a region outside the hole portion 45A are solid. That is, the plate-like member 40A includes a plurality of hole regions 47A in which the holes 45A are formed, and a plurality of solid regions 48 adjacent to the hole regions 47A.
  • the holes 43A and 45A are made not to reach the end of the plate-like member 40A.
  • the plate-like member 30A and the plate-like member 40A are alternately laminated along the second direction D2, and the plate-like member is sandwiched between the plate-like members 30A and 40A from both sides in the second direction D2.
  • 50A is arranged.
  • a laminate 60 composed of the plate-like members 30A, 40A, and 50A is formed.
  • the plate-like members 30A, 40A and 50A are integrated with each other by pressing and sintering the laminate 60.
  • the hole region 37A of the plate member 30A faces the solid region 48 of the plate member 40A along the second direction D2.
  • the hole region 47A of the plate member 40A faces the solid region 38 of the plate member 30A along the second direction D2.
  • the opening in the second direction D2 of the hole 45A of the plate-like member 40A is blocked by the solid region 38 of the pair of plate-like members 30A, or the solid region 38 of the plate-like member 30A and the plate-like member 50A. It is blocked by. Further, the openings of the holes 33A and 43A in the second direction D2 are continuous between the plurality of plate-like members 30A and the plate-like members 40A, and are closed by the pair of plate-like members 50A.
  • each of a plurality (two in this case) of main body members 80 is cut out by cutting the integrated laminated body 60.
  • virtual cutting scheduled lines L1, L2, and L3 are set.
  • the planned cutting line L1 extends linearly along the third direction D3 so as to pass between the main body members 80.
  • the planned cutting line L2 extends linearly along both edges of the stacked body 60 in the first direction D1.
  • the planned cutting line L3 extends linearly along both edges of the stacked body 60 in the third direction D3.
  • the scheduled cutting line L1 is set so that the holes 33A and 43A open to the cut surface when the cutting along the planned cutting line L1 is performed.
  • the planned cutting line L2 is set so that the holes 35A and 45A open to the cut surface when the cutting along the planned cutting line L2 is performed. Therefore, by cutting the laminated body 60 along the scheduled cutting lines L1, L2, and L3, a plurality of (here, two) main body members 80 are cut out from the laminated body 60. The cut surface by this cutting becomes the end surface 20a and the end surface 20b. Further, by this cutting, the holes 33A and 43A are opened to the end surface 20a, and 35A and 45A are opened to the end surface 20b.
  • the main body member 80 prepared in the first step has end faces 20a and 20b. Further, the main body member 80 is formed with a first communication hole 81 that communicates the end surface 20a and the end surface 20b with the hole portion 33A and the hole portion 35A. The first communication hole 81 is a hole portion that will later become the first channel 21 (that is, for the first channel 21). Further, the body member 80 is formed with a second communication hole 82 that communicates the end surface 20a and the end surface 20b with the hole portion 43A and the hole portion 45A. The second communication hole 82 is a hole that will later become the second channel 22 (that is, for the second channel 22).
  • the plurality of plate-like members in which the holes for the channels are formed and the pair of solid plate-like members are stacked and integrated with each other, thereby the main body member.
  • a plurality of plate-like members 40A in which the holes 43A and 45A are formed are alternately laminated so as to close the holes, and sandwiched from both sides of the laminate of the plate-like member 30A and the plate-like member 40A.
  • the main body member 80 is prepared by further laminating and integrating the plate-like member 50 ⁇ / b> A (here, by further cutting).
  • the deposition layer 85 including the resistance layer 83 and the secondary electron multiplication layer 84 laminated on the resistance layer 83 is formed on the outer surface 20d of the main body member 80 by an atomic layer deposition method ( Second step). Further, the deposition layer 85 is formed on the inner surface 81s of the first communication hole 81 and the inner surface 82s of the second communication hole 82 by the atomic layer deposition method (second step). As a result, the first channel 21 is formed from the first communication hole 81 and the second channel 22 is formed from the second communication hole 82 (second step).
  • the main body member 80 is accommodated in the chamber C1.
  • the deposited layer 85 is formed from the above-described predetermined material. Therefore, in the second step, the outer surface 20d (that is, the end surface 20a, the end surface 20b, and the side surface 20c) of the main body member 80, the inner surface 81s of the first communication hole 81, and the inner surface 82s of the second communication hole 82 , The deposited layer 85 is formed collectively.
  • 11 to 13 are cross-sectional views corresponding to the cross section taken along the line AA in FIG.
  • the deposited layer 85 formed on the outer surface 20d of the main body member 80 is removed (third process).
  • both the resistance layer 83 and the secondary electron multiplication layer 84 are removed.
  • the deposited layer 85 is removed by sandblasting.
  • sandblasting as shown in FIG. 12, first, the main body member 80 is accommodated in the chamber C2, and particles of about 100 ⁇ m, for example, are sprayed onto the main body member 80.
  • the sandblast particles used here are, for example, particles (for example, alumina particles) made of the same material as that of the resistance layer 83 and the secondary electron multiplication layer 84.
  • the deposited layer 85 formed on the side surface 20c of the outer surface 20d of the main body member 80 is removed while maintaining the deposited layer 85 formed on the end surfaces 20a and 20b of the outer surface 20d of the main body member 80.
  • the sandblasting is performed on the main body member 80 in a state where the end faces 20a and 20b (and the opening of each channel) are masked.
  • the main body 20 is formed from the main body member 80 as shown in FIG.
  • a heat sink 70 made of metal is thermally connected to the outer surface 20d of the main body 20 (fourth process).
  • the heat sink 70 is brought into contact with the side surface 20 c of the outer surface 20 d of the main body 20 from which the deposited layer 85 has been removed.
  • the electron multiplier 2 is manufactured through the above steps.
  • the outer surface 20d of the main body member 80 for the main body portion 20 is formed on the inner surface 82 s of the second communication hole 82 for the second channel 22 by the atomic layer deposition method, thereby forming the first channel 21 and the second channel 21.
  • a channel 22 is formed.
  • the deposited layer 85 formed on the outer surface 20d (here, the side surface 20c) of the main body member 80 is removed, and the main body portion 20 is formed.
  • the deposition layer 85 including the resistance layer 83 and the secondary electron multiplication layer 84 laminated on the resistance layer 83 is formed. For this reason, the deposition layer 85 including the secondary electron multiplication layer 84 can be efficiently removed and removed from the outer surface 20d.
  • the main body member 80 is made of an insulating material. For this reason, since it is difficult for a current to flow through the main body 20 itself, the above-described effects obtained by removing the resistance layer 83 are more effective.
  • the deposited layer 85 is removed by sandblasting. For this reason, by using sandblasting, the deposited layer 85 at a desired location (for example, the side surface 20c) of the main body member 80 can be selectively removed appropriately.
  • the outer surface 20d of the main body member 80 has end surfaces 20a and 20b and side surfaces 20c that connect the end surfaces 20a and 20b.
  • the deposited layer 85 formed on the side surface 20c is removed while maintaining the deposited layer 85 formed on the end surfaces 20a and 20b. For this reason, it is not necessary to perform the removal processing of the deposited layer 85 on the end surface 20a and the end surface 20b where the first channel 21 and the second channel 22 are opened. Therefore, the influence on the first channel 21 and the second channel 22 due to the removal processing. Can be reduced.
  • the method for manufacturing the electron multiplier 2 further includes a fourth step of providing the heat sink 70 on the outer surface (side surface 20c) of the main body 20 after the third step. For this reason, the main body 20 can be cooled by the heat sink 70. Further, since the resistance layer 83 and the secondary electron multiplication layer 84 are not interposed between the side surface 20 c of the main body 20 and the heat sink 70, the heat sink 70 is generated by the potential difference applied between the end surfaces 20 a and 20 b of the main body 20. Can reduce the effects of
  • the heat sink 70 is made of metal, and in the fourth step, the heat sink 70 is brought into contact with the outer surface 20d (side surface 20c) of the main body portion 20.
  • the resistance layer 83 and the secondary electron multiplication layer 84 are not interposed between the outer surface 20d of the main body portion 20 and the heat sink 70, they are provided between the end surface 20a and the end surface 20b of the main body portion 20. There is no possibility of current flowing through the heat sink 70 due to the influence of the potential difference. For this reason, the metal heat sink 70 can be brought into contact with the outer surface 20d of the main body 20 to cool the main body 20 efficiently.
  • the side surface 20c of the main body 20 is exposed from at least the resistance layer 83 (here, the deposited layer 85) (that is, the resistance layer 83 is not formed on the side surface 20c). For this reason, during the operation of the electron multiplier 2, even when a potential difference is applied between the end surface 20a and the end surface 20b, a current may flow to the outer surface 20d side of the main body 20 via the resistance layer 83. Is prevented. For this reason, heat generation is suppressed on the outer surface 20 d of the main body 20. Therefore, according to this electron multiplier 2, the temperature rise can be suppressed.
  • the resistance layer 83 here, the deposited layer 85
  • the electron multiplier 2 is provided with a plurality of channels of a first channel 21 and a second channel 22 with respect to the main body 20.
  • the main body 20 includes a first plate-like member 30 and a second plate-like member 40 that are stacked on each other.
  • the first plate-like member 30 includes a hole area 37 in which the hole 35 is formed and a solid area 38 adjacent to the hole area 37.
  • the second plate-like member 40 includes a hole region 47 in which the hole 45 is formed and a solid region 48 adjacent to the hole region 47.
  • the hole region 37 of the first plate-like member 30 faces the solid region 48 of the second plate-like member 40 along the second direction D ⁇ b> 2 (stacking direction of the plate-like members).
  • the hole area 47 of the second plate member 40 faces the solid area 38 of the first plate member 30 along the second direction D2.
  • the first channel 21 is formed including the inner surface of the hole 35 and the surface facing the hole 35 in the solid region 48
  • the second channel 22 is formed with the inner surface of the hole 45, the middle And a surface facing the inside of the hole 45 in the real region 38.
  • the first plate member 30 contributes to the formation of the first channel 21 in the hole portion 35 and contributes to the formation of the second channel 22 in the solid region 38.
  • the second plate member 40 contributes to the formation of the first channel 21 in the solid region 48 and contributes to the formation of the second channel 22 in the hole 45. For this reason, compared with the case where a single channel is formed by a pair of blocks, multi-channeling can be performed while suppressing an increase in dead space.
  • the heat radiation path from the heat generating portion in each channel to the outside is shortened by reducing the dead space. Therefore, the structure of the above electron multiplier 2 contributes also to suppression of a temperature rise.
  • the above embodiment describes one embodiment of the electron multiplication manufacturing method according to one aspect of the present invention. Therefore, the method for producing the electron multiplier according to one aspect of the present invention is not limited to the method for producing the electron multiplier 2 described above, and any modifications thereof are made without departing from the scope of the claims. Is possible.
  • the method of removing the deposited layer 85 formed on the outer surface 20d of the main body member 80 is not limited to sandblasting, and may be mechanical polishing, for example.
  • the mechanical polishing include a polishing method using a cutting tool or a file, or a polishing method using a grinder or the like.
  • the deposited layer 85 formed on the end surfaces 20a and 20b may not be maintained. That is, in the third step, the deposited layer 85 may be removed in a lump on the entire outer surface 20d of the main body member 80.
  • the heat sink 70 may be made of a material other than metal. Or in the manufacturing method of the electron multiplier 2, the 4th process does not need to be performed. That is, the heat sink 70 may not be provided on the outer surface 20d of the main body 20.
  • the second step in the second step, only the resistance layer 83 is formed on the outer surface 20d of the main body member 80, the inner surface 81s of the first communication hole 81, and the inner surface 82s of the second communication hole 82 by atomic layer deposition.
  • a deposited layer containing may be formed.
  • only the resistance layer 83 formed on the outer surface 20d of the main body member 80 is removed in the third step.
  • the resistance layer 83 is deposited on the outer surface 20d of the main body member 80, the inner surface 81s of the first communication hole 81, and the inner surface 82s of the second communication hole 82 by atomic layer deposition.
  • the outer surface 20d (including the side surface 20c) of the main body 20, the inner surface 81s of the first communication hole 81, and the first step A fifth step of forming the secondary electron multiplication layer 84 on the entire inner surface 82s of the two communication holes 82 may be provided. That is, the resistance layer 83 that is a conductor layer is not formed on the outer surface 20d (particularly the side surface 20c) of the main body 20, and only the secondary electron multiplication layer 84 that is an insulator layer is formed. Also good.
  • the method for producing an electron multiplier according to one embodiment of the present invention may be applied to the production of another electron multiplier.
  • Another electron multiplier may be, for example, an electron multiplier including a single first channel 21 and a single second channel 22 along the third direction D3.
  • a plurality of first channels 21 and a plurality of second channels 22 may be formed along the second direction D2.
  • this electron multiplier compared with the case where a plurality of first channels 21 and second channels 22 are arranged along the third direction D3, the electron incident portions 23 and 24 along the third direction D3 The dead space between is reduced.
  • the holes 35 and 45 have a first portion extending along the first direction D1, a second portion extending along the third direction D3 intersecting the first direction D1, and And a third portion extending along the first direction D1.
  • the second part extends along the third direction D3 and connects the first part and the third part.
  • a channel is formed by sandwiching a single plate-like member in which a hole is formed between a pair of solid plate-like members. It may be an electron multiplier that is multi-channeled by arranging a plurality of sets of members and integrating them. Furthermore, an electron multiplier having a single channel may be used.
  • DESCRIPTION OF SYMBOLS 2 Electron multiplier, 20 ... Main-body part, 20a ... End surface (one end surface), 20b ... End surface (other end surface), 20d ... Outer surface, 21 ... 1st channel (channel), 22 ... 2nd channel (channel), DESCRIPTION OF SYMBOLS 70 ... Heat sink, 80 ... Main body member, 81 ... 1st communicating hole, 81s ... Inner surface, 82 ... 2nd communicating hole, 82s ... Inner surface, 83 ... Resistance layer, 84 ... Secondary electron multiplication layer, 85 ... Deposition layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Tubes For Measurement (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

本体部と、前記本体部の一端面及び他端面に開口するように前記本体部に設けられ、入射した電子に応じて二次電子を放出するチャネルと、を備える電子増倍体の製造方法であって、前記一端面及び前記他端面を有し、前記一端面と前記他端面とを連通する前記チャネルのための連通孔が設けられた本体部材を用意する第1工程と、前記本体部材の外面及び前記連通孔の内面に、原子層堆積法によって、少なくとも抵抗層を含む堆積層を形成することにより、前記チャネルを形成する第2工程と、前記本体部材の前記外面に形成された前記堆積層を除去することにより、前記本体部を形成する第3工程と、を備える、電子増倍体の製造方法。

Description

電子増倍体の製造方法及び電子増倍体
 本発明の一態様は、電子増倍体の製造方法及び電子増倍体に関する。
 特許文献1には、CEM(チャネル電子増倍体)が記載されている。このCEMは、基体と、基体の一端部表面及び他端部表面に開口するように基体に設けられ、入射した電子に応じて二次電子を放出するチャネルと、を備えている。また、特許文献1には、二次電子放出効率を向上させるために、原子層堆積法によって基板に電子放出層を形成することが開示されている。
 特許文献2には、MCP(マイクロチャネルプレート)が記載されている。このMCPは、基板と、基板の上部表面及び下部表面に開口するように基板に設けられ、入射した電子に応じて二次電子を放出する数百万からなる多数のチャネルと、を備えている。また、特許文献2には、導電材料及び絶縁材料の積層構造を有する抵抗層を原子層堆積法によって基板に形成することで、抵抗層の抵抗値を最適な値とすることが開示されている。
特表2011-513921号公報 特表2011―525294号公報
 特許文献1に記載のCEMの動作時には、CEMに加速電圧が印加される。これにより、チャネル内を進行する電子が加速されて抵抗層に衝突し、その結果、二次電子が増幅されて放出される。続いて、放出された二次電子が加速電圧によって加速されて抵抗層に衝突し、新たな二次電子が更に増幅されて放出され、その後もこれが繰り返される。
 CEMにおいて、本発明者らは、次のような問題点が生じ得るとの知見を得るに至った。すなわち、CEMにおいては、二次電子放出効率を向上させるために、チャネルの内面のみに抵抗層を形成すればよいが、例えば、抵抗層の形成に原子層堆積法を用いると、基体の表面全体に抵抗層が形成される。すなわち、チャネルの内面のみならず、基体の外面にも抵抗層が形成される。
 このため、このCEMの動作時において、CEMに加速電圧が印加されると、基体の外面に形成された抵抗層にも電位差が生じ、当該抵抗層に電流が流れてしまう。このため、基体の外面に形成された抵抗層においてジュール熱が発生して、CEM全体の温度が上昇するおそれがある。
 なお、本発明者は、MCPに関する次のような知見も得ている。すなわち、特許文献2に記載のMCPにおいても、原子層堆積法によって基板の外面に抵抗層が形成される。しかしながら、MCPでは、チャネルの表面積と比べて基板の外面の表面積が非常に小さいことから、基板の外面に流れる電流が極微量となるため、CEMにおいて生じる上記の問題は生じにくい。
 本発明の一態様は、温度上昇を抑制することができる電子増倍体の製造方法及び電子増倍体を提供することを目的とする。
 本発明の一態様は、本発明者が、上記知見に基づいて鋭意検討を重ねた結果としてなされたものである。すなわち、本発明の一態様に係る電子増倍体の製造方法は、本体部と、本体部の一端面及び他端面に開口するように本体部に設けられ、入射した電子に応じて二次電子を放出するチャネルと、を備える電子増倍体の製造方法であって、一端面及び他端面を有し、一端面と他端面とを連通するチャネルのための連通孔が設けられた本体部材を用意する第1工程と、本体部材の外面及び連通孔の内面に、原子層堆積法によって少なくとも抵抗層を形成することにより、チャネルを形成する第2工程と、本体部材の外面に形成された抵抗層を除去することにより、本体部を形成する第3工程と、を備える。
 この電子増倍体の製造方法では、本体部のための本体部材の外面、及び、チャネルのための連通孔の内面に対して、原子層堆積法によって少なくとも抵抗層を含む堆積層を形成することにより、チャネルを形成する。その後、本体部材の外面に形成された堆積層を除去し、本体部を形成する。このため、電子増倍体の動作時において、一端面と他端面との間に電位差を付与した場合にも、抵抗層を介して、本体部の外面側に電流が流れることが防止される。このため、本体部の外面において発熱が抑制される。よって、このような方法によって製造された電子増倍体では、上記の問題点を解決し、温度上昇を抑制することができる。
 本発明の一態様に係る電子増倍体の製造方法においては、前記第2工程においては、前記抵抗層と前記抵抗層上に積層された二次電子増倍層とを含む前記堆積層を形成してもよい。この場合、二次電子増倍層を含む堆積層を効率的に形成しつつ、外面から除去することができる。
 本発明の一態様に係る電子増倍体の製造方法においては、本体部材は、絶縁材料からなっていてもよい。この場合、本体部自体に電流が流れ難いため、抵抗層を除去することによって得られる上記作用効果がより有効となる。
 本発明の一態様に係る電子増倍体の製造方法においては、第3工程においては、堆積層をサンドブラストにより除去してもよい。この場合、サンドブラストを用いることにより、本体部材の所望の箇所(外面)の堆積層を適切に除去することができる。
 本発明の一態様に係る電子増倍体の製造方法においては、本体部材の外面は、一端面、他端面、及び、一端面と他端面とを接続する側面を有し、第3工程においては、一端面及び他端面に形成された堆積層を維持しながら、側面に形成された堆積層を除去してもよい。この場合、チャネルが開口する一端面及び他端面における堆積層の除去加工を行う必要がないので、当該除去加工によるチャネルへの影響を低減できる。
 本発明の一態様に係る電子増倍体の製造方法においては、第3工程の後に、本体部の外面にヒートシンクを熱的に接続する第4工程を更に備えてもよい。この場合、ヒートシンクによって本体部を冷却することができる。また、本体部の外面とヒートシンクとの間に少なくとも抵抗層が介在しないため、本体部の一端面と他端面との間に付与された電位差によるヒートシンクへの影響を低減できる。
 本発明の一態様に係る電子増倍体の製造方法においては、ヒートシンクは、金属からなり、第4工程においては、ヒートシンクを外面に接触させていてもよい。上述したように、本体部の外面とヒートシンクとの間に少なくとも抵抗層が介在しないため、本体部の一端面と他端面との間に付与された電位差の影響によってヒートシンクに電流が流れるおそれがない。このため、金属製のヒートシンクを本体部の外面に接触させて本体部を効率よく冷却することが可能となる。
 本発明の一態様に係る電子増倍体は、一端面、他端面、及び、一端面と他端面とを接続する側面を有する本体部と、一端面及び他端面に開口するように本体部に設けられたチャネルと、を備え、チャネルは、チャネルのための連通孔の内面に形成された抵抗層及び二次電子増倍層を含む堆積層を有し、一端面、及び、他端面には、堆積層が形成されており、側面は、少なくとも抵抗層から露出しており、堆積層は、原子層堆積法によって形成されている。
 この電子増倍体では、本体部の側面が、少なくとも抵抗層から露出している(すなわち、側面に抵抗層が形成されていない)。このため、電子増倍体の動作時において、一端面と他端面との間に電位差を付与した場合にも、抵抗層を介して、本体部の外面側に電流が流れることが防止される。このため、本体部の外面において発熱が抑制される。よって、この電子増倍体では、上記の問題点を解決し、温度上昇を抑制することができる。なお、側面には、二次電子増倍層が形成されていてもよい。
 本発明の一態様によれば、温度上昇を抑制することができる電子増倍体の製造方法及び電子増倍体を提供することができる。
本実施形態に係る光電子増倍管の概略的な断面図である。 図1に示された電子増倍体の斜視図である。 図1に示された電子増倍体の斜視図である。 図2,3に示された電子増倍体の分解斜視図である。 図4に示された第1板状部材及び第2板状部材の平面図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。 図1に示された電子増倍体の製造方法の各工程を示す図である。
 以下、本発明の一態様の一実施形態について、図面を参照して詳細に説明する。なお、各図において、同一又は相当する要素同士には互いに同一の符号を付し、重複する説明を省略する場合がある。また、各図には、第1方向D1、第2方向D2、及び、第3方向D3を規定する直交座標系Sを示す場合がある。
 図1は、本実施形態に係る光電子増倍管の概略的な断面図である。図2及び図3は、図1に示された電子増倍体の斜視図である。図1~3に示されるように、光電子増倍管1は、電子増倍体(チャネル電子増倍体:CEM)2と、管体3と、光電面4と、陽極5と、を備えている。電子増倍体2は、第1方向D1に沿って延在する直方体状の本体部20を有する。本体部20は、例えばセラミック等の絶縁材料を含む。本体部20の外面20dは、第1方向D1における端面(一端面)20aと、第1方向D1における端面20aの反対側の端面(他端面)20bと、端面20aと端面20bとを互いに接続する側面20cと、を含む。
 端面20aには、端面20aの外縁に沿った矩形環状の入力電極Aが設けられている。端面20bには、端面20bの外縁に沿った矩形環状の出力電極Bが設けられている。これらの入力電極A及び出力電極Bによって、端面20aよりも端面20b側が相対的に高電位となるように、本体部20の全体に第1方向D1に沿った電位差が付与されている。
 電子増倍体2は、複数の第1チャネル(チャネル)21と、複数の第2チャネル(チャネル)22と、を有する。すなわち、光電子増倍管1及び電子増倍体2は、マルチチャネル化されている。第1チャネル21及び第2チャネル22は、本体部20の端面20a,20bに開口している。すなわち、第1チャネル21及び第2チャネル22は、本体部20の端面20aから端面20bに至るように延在している。
 第1チャネル21は、電子入射部23と、電子増倍部25と、を含む。電子入射部23は、端面20aに開口する開口部23aを含む。電子入射部23は、開口部23aと反対側の端部において電子増倍部25に接続されている。電子増倍部25は、電子入射部23との接続部分から第1方向D1に沿って延在して端面20bに至り、端面20bに開口している。第1チャネル21は、電子入射部23から入射した電子に応じて、電子増倍部25において二次電子を放出する。
 第2チャネル22は、電子入射部24と、電子増倍部26と、を含む。電子入射部24は、端面20aに開口する開口部24aを含む。電子入射部24は、開口部24aと反対側の端部において電子増倍部26に接続されている。電子増倍部26は、電子入射部24との接続部分から第1方向D1に沿って延在して端面20bに至り、端面20bに開口している。第2チャネル22は、電子入射部24から入射した電子に応じて、電子増倍部26において二次電子を放出する。
 第1チャネル21と第2チャネル22とは、第2方向D2(後述する板状部材の積層方向であって、第1方向D1に交差(直交)する方向)に沿って、電子入射部23と電子入射部24とにおいて互いに重複すると共に、電子増倍部25と電子増倍部26とにおいて互いに重複していない(第3方向D3に沿って互いに離間している)。なお、第3方向D3は、第1方向D1及び第2方向D2に交差(直交)する方向である。
 管体3は、電子増倍体2を収容している。第1方向D1における管体3の一方の端部3aは開放されており、他方の端部3bは封止されている。電子増倍体2は、本体部20の端面20aが管体3の端部3a側に位置するように、管体3に収容されている。
 光電面4は、光の入射に応じて光電子を発生させる。光電面4は、端面20aにおける第1チャネル21の開口部(開口)23a及び第2チャネル22の開口部(開口)24aに臨むように管体3に設けられている。ここでは、光電面4は、管体3の端部3aを封止するように管体3に設けられている。光電面4は、電子入射部23,24を介して、第1チャネル21及び第2チャネル22に光電子を供給する。
 陽極5は、端面20bにおける第1チャネル21及び第2チャネル22の開口(電子増倍部25,26の開口)に臨むように管体3内に配置されている。ここでは、陽極5は、矩形環状の絶縁層Cを介して出力電極Bに取り付けられている。陽極5の中心部分は、出力電極B及び絶縁層Cの開口部から露出し、第1チャネル21及び第2チャネル22の開口に臨んでいる。このような構成により、陽極5は、電子増倍部25,26を介して第1チャネル21及び第2チャネル22から放出される二次電子を受ける。陽極5には、例えば、当該陽極5が受けた二次電子に対応した電気信号のパルスを検出する検出器(不図示)が接続されている。
 ここで、図4は、図2,3に示された電子増倍体の分解斜視図である。図2~4に示されるように、電子増倍体2の本体部20は、複数の板状部材を互いに積層することにより構成されている。ここでは、本体部20は、第2方向D2に沿って互いに積層された複数の第1板状部材30、複数の第2板状部材40、及び、一対の第3板状部材50を有している。第1板状部材30、第2板状部材40、及び、第3板状部材50は、第1チャネル21及び第2チャネル22を形成する。第1板状部材30及び第2板状部材40の数は、要求されるチャネルの数に応じて任意に設定され得るが、例えば、2つ~4つ程度である。
 第1板状部材30及び第2板状部材40は、第2方向D2に沿って交互に積層されている。第3板状部材50は、第2方向D2の両側から、第1板状部材30と第2板状部材40との積層体を挟むように、第1板状部材30及び第2板状部材40と共に積層されている。したがって、複数の第1板状部材30のうちの一部は、一対の第2板状部材40の間に配置され、残部は、第2板状部材40と第3板状部材50との間に配置され得る。また、複数の第2板状部材40のうちの一部は、一対の第1板状部材30の間に配置され、残部は、第1板状部材30と第3板状部材50との間に配置され得る。第1板状部材30と第2板状部材40との配置の態様は、例えば、第1板状部材30及び第2板状部材40の数等によって異なる。
 図4の例では、2つの第1板状部材30のうちの第2方向D2の中心側の1つの第1板状部材30が、一対の第2板状部材40の間に配置されており、2つの第1板状部材30のうちの第2方向D2の外側の1つの第1板状部材30が、第2板状部材40と第3板状部材50との間に配置されている。また、図4の例では、2つの第2板状部材40のうちの第2方向D2の中心側の1つの第2板状部材40が、一対の第1板状部材30の間に配置されており、2つの第2板状部材40のうちの第2方向D2の外側の1つの第2板状部材40が、第1板状部材30と第3板状部材50との間に配置されている。
 図5は、図4に示された第1板状部材及び第2板状部材の平面図である。図4,5に示されるように、第1板状部材30、第2板状部材40、及び、第3板状部材50は、第1方向D1を長手方向とし、第2方向D2を厚さ方向とする長方形板状を呈している。第1板状部材30は、第2方向D2に交差する表面(第1表面)31及び裏面(第1裏面)32を含む。第1板状部材30には、第1チャネル21を規定する孔が形成されている。
 より具体的には、第1板状部材30には、表面31から裏面32に至る孔部(第3孔部)33及び孔部(第1孔部)35が形成されている。孔部33は、第1方向D1における第1板状部材30の端面30aに至っている。孔部33は、端面30aから第1方向D1に向かって縮小するテーパ状である。孔部33は、孔部35に接続されている。孔部35は、孔部33との接続部分から第1方向D1に沿って波状に延在し、第1方向D1における第1板状部材30の端面30bに至っている。
 端面30aは、本体部20の端面20aを形成する面である。端面30bは、本体部20の端面20bを形成する面である。したがって、孔部33は、第1チャネル21の電子入射部23に対応し(電子入射部23を規定し)、孔部35は、第1チャネル21の電子増倍部25に対応する(電子増倍部25を規定する)。
 ここでは、第1板状部材30に対して、第3方向D3に沿って配列された複数(ここでは3つ)の孔部33,35が形成されている。第1板状部材30における孔部35同士の間の領域、及び、孔部35よりも外側の領域は、中実となっている。すなわち、第1板状部材30は、孔部35が形成された複数の孔部領域(第1孔部領域)37と、孔部領域37に隣接する複数の中実領域(第1中実領域)38と、を含む。ここでは、孔部領域37は、孔部35に沿った形状を有している。また、中実領域38は、ここでは、孔部35と相補的な形状を有している。孔部領域37及び中実領域38は、第3方向D3に沿って交互に配列されている。
 第2板状部材40は、第2方向D2に交差する表面(第2表面)41及び裏面(第2裏面)42を含む。第2板状部材40には、第2チャネル22を規定する孔が形成されている。より具体的には、第2板状部材40には、表面41から裏面42に至る孔部(第4孔部)43及び孔部(第2孔部)45が形成されている。孔部43は、第1方向D1における第2板状部材40の端面40aに至っている。孔部43は、端面40aから第1方向D1に向かって縮小するテーパ状である。孔部43は、孔部45に接続されている。
 孔部45は、孔部43との接続部分から第1方向D1に沿って波状に延在し、第1方向D1における第2板状部材40の端面40bに至っている。端面40aは、本体部20の端面20aを形成する面である。端面40bは、本体部20の端面20bを形成する面である。したがって、孔部43は、第2チャネル22の電子入射部24に対応し(電子入射部24を規定し)、孔部45は、第2チャネル22の電子増倍部26に対応する(電子増倍部26を規定する)。
 ここでは、第2板状部材40に対して、第3方向D3に沿って配列された複数(ここでは3つ)の孔部43,45が形成されている。第2板状部材40における孔部45同士の間の領域、及び、孔部45よりも外側の領域は、中実となっている。すなわち、第2板状部材40は、孔部45が形成された複数の孔部領域(第2孔部領域)47と、孔部領域47に隣接する複数の中実領域(第2中実領域)48と、を含む。ここでは、孔部領域47は、孔部45に沿った形状を有している。また、中実領域48は、ここでは、孔部45と相補的な形状を有している。孔部領域47及び中実領域48は、第3方向D3に沿って交互に配列されている。なお、図中の一点鎖線で示された各領域の境界は仮想的なものである。
 第1板状部材30の孔部領域37は、第2方向D2に沿って、第2板状部材40の中実領域48に対向している。また、第2板状部材40の孔部領域47は、第2方向D2に沿って、第1板状部材30の中実領域38に対向している。すなわち、第2方向D2からみて、孔部35と孔部45とは、互いに重複していない(第3方向D3に沿って互いに離間している)。このため、第1板状部材30の孔部35の第2方向D2における開口は、一対の第2板状部材40の中実領域48によって塞がれるか、第2板状部材40の中実領域48と第3板状部材50とによって塞がれる。
 また、第2板状部材40の孔部45の第2方向D2における開口は、一対の第1板状部材30の中実領域38によって塞がれるか、第1板状部材30の中実領域38と第3板状部材50とによって塞がれる。また、第2方向D2における孔部33,43の開口は、複数の第1板状部材30及び第2板状部材40間において連続し、且つ、一対の第3板状部材50によって塞がれる。
 したがって、第1チャネル21(ここでは電子増倍部25)は、少なくとも、孔部35の内面と、中実領域48における孔部35内に臨む面と、を含んで形成される。より具体的には、第2方向D2における本体部20の中心側の第1チャネル21は、孔部35の内面と、一対の中実領域48における孔部35内に臨む面と、によって形成される。また、第2方向D2における本体部20の外側の第1チャネル21は、孔部35の内面と、中実領域48における孔部35内に臨む面と、第3板状部材50における孔部35内に臨む面と、によって形成される。
 また、第2チャネル22(ここでは電子増倍部26)は、少なくとも、孔部45の内面と、中実領域38における孔部45内に臨む面と、を含んで形成される。より具体的には、第2方向D2における本体部20の中心側の第2チャネル22は、孔部45の内面と、一対の中実領域38における孔部45内に臨む面と、によって形成される。また、第2方向D2における本体部20の外側の第2チャネル22は、孔部45の内面と、中実領域38における孔部45内に臨む面と、第3板状部材50における孔部45内に臨む面と、によって形成される。
 ここでは、上述したように、本体部20は、第2方向D2に沿って配列された複数の第1板状部材30及び第2板状部材40を有する。そして、第1板状部材30には、第3方向D3に沿って配列された複数の孔部33,35が形成されており、第2板状部材40には、第3方向D3に沿って配列された複数の孔部43,45が形成されている。したがって、電子増倍体2は、第2方向D2及び第3方向D3に沿って2次元状に配列された複数のチャネル(第1チャネル21及び第2チャネル22)を備えることになる。
 ここで、孔部35の内面と、中実領域48における孔部35内に臨む面と、第3板状部材50における孔部35内に臨む面と、は、第1チャネル21の内面21sを形成する(図1参照)。また、孔部45の内面と、中実領域38における孔部45内に臨む面と、第3板状部材50における孔部45内に臨む面と、は、第2チャネル22の内面22sを形成する(図1参照)。第1チャネル21及び第2チャネル22は、後述するように、互いに積層された抵抗層及び二次電子増倍層を含む。換言すれば、後述するように、第1チャネル21は、第1チャネル21のための第1連通孔81の内面81sに形成された抵抗層及び二次電子増倍層を含む堆積層を有する。また、第2チャネル22は、第2チャネル22のための第2連通孔82の内面82sに形成された抵抗層及び二次電子増倍層を含む堆積層を有する。第1チャネル21及び第2チャネル22の表層は二次電子増倍層である。したがって、内面21s及び内面22sは、二次電子増倍層の表面である。
 抵抗層の材料としては、例えばAl(酸化アルミニウム)とZnO(酸化亜鉛)との混合膜、又は、AlとTiO(二酸化チタン)との混合膜等を用いることができる。また、二次電子増倍層の材料としては、例えばAl3、又は、MgO(酸化マグネシウム)等を用いることができる。抵抗層及び二次電子増倍層を含む堆積層は、原子層堆積法(ALD:Atomic Layer Deposition)によって形成される。
 ここで、原子層堆積法によって形成された堆積層(抵抗層及び二次電子増倍層)(以下、本段落において「ALD膜」という)の構造又は特性を特定するためには、ALD膜の表面状態を解析することが必要である。しかしながら、電子増倍体2のような高アスペクト比の構造体に成膜したALD膜について、表面状態を具体的に解析可能な機器は、現時点、知られておらず、ALD膜の積層構造自体を解析することは困難である。このように、出願時において、ALD膜の構造又は特性を解析することが技術的に不可能である又は実際的でない(非実際的である)ことから、電子増倍体2においては、ALD膜をその構造又は特性により直接特定することが不可能又は実際的でないという事情が存在する。
 一方、本体部20の外面20dの少なくとも一部には、堆積層(抵抗層及び二次電子増倍層)が設けられていない。一例として、本体部20における端面20aと端面20bとを接続する側面20cには、少なくとも抵抗層(ここでは、さらに二次電子増倍層)が設けられていない。換言すれば、側面20cは、少なくとも抵抗層(ここでは、さらに二次電子増倍層)から露出している(すなわち、絶縁材料からなる面が露出している)。そして、本体部20の側面20c(外面20d)には、ヒートシンク70が熱的に接続されている(図2,3参照)。ここでは、ヒートシンク70は、本体部20の側面20cに接触している。また、ヒートシンク70は、例えば、管体3を封止するためのフランジ(不図示)に熱的に接続されている。これにより、ヒートシンク70は、本体部20を当該フランジに熱的に接続する。ヒートシンク70は、例えば金属からなる。
 引き続いて、以上の電子増倍体2の製造方法の一例を説明する。図6~14は、図1に示された電子増倍体の製造方法の各工程を示す図である。この方法では、まず、本体部20のための本体部材を用意する(第1工程)。この第1工程について具体的に説明する。図6に示されるように、この第1工程では、まず、第1板状部材30のための複数の板状部材30A,第2板状部材40のための複数の板状部材40A、及び、第3板状部材50のための一対の板状部材50Aを準備する。板状部材30A,40A,50Aは、それぞれ、第1方向D1に沿って配列された複数(ここでは2つ)の第1板状部材30、第2板状部材40、及び、第3板状部材50となる部分を含む。
 板状部材30Aには、例えばレーザ加工や金型による打ち抜き等によって、孔部33,35のための複数の孔部33A,35Aが形成されている。板状部材30Aにおける孔部35A同士の間の領域、及び、孔部35Aよりも外側の領域は、中実となっている。すなわち、板状部材30Aは、孔部35Aが形成された複数の孔部領域37Aと、孔部領域37Aに隣接する複数の中実領域38と、を含む。ここでは、孔部33A,35Aは、板状部材30Aの端部に至らないようにされている。
 板状部材40Aには、例えばレーザ加工や金型による打ち抜き等によって、孔部43,45のための複数の孔部43A,45Aが形成されている。板状部材40Aにおける孔部45A同士の間の領域、及び、孔部45Aよりも外側の領域は、中実となっている。すなわち、板状部材40Aは、孔部45Aが形成された複数の孔部領域47Aと、孔部領域47Aに隣接する複数の中実領域48と、を含む。ここでは、孔部43A,45Aは、板状部材40Aの端部に至らないようにされている。
 続いて、板状部材30Aと板状部材40Aとを第2方向D2に沿って交互に積層すると共に、第2方向D2における両側から板状部材30A,40Aの積層体を挟むように板状部材50Aを配置する。これにより、図7に示されるように、板状部材30A,40A,50Aからなる積層体60を形成する。その状態において、積層体60をプレス及び焼結することにより、板状部材30A,40A,50Aを互いに一体化する。
 このとき、板状部材30Aの孔部領域37Aが、第2方向D2に沿って、板状部材40Aの中実領域48に対向する。また、板状部材40Aの孔部領域47Aが、第2方向D2に沿って、板状部材30Aの中実領域38に対向する。これにより、積層体60において、板状部材30Aの孔部35Aの第2方向D2における開口が、一対の板状部材40Aの中実領域48によって塞がれるか、板状部材40Aの中実領域48と板状部材50Aとによって塞がれる。
 また、板状部材40Aの孔部45Aの第2方向D2における開口が、一対の板状部材30Aの中実領域38によって塞がれるか、板状部材30Aの中実領域38と板状部材50Aとによって塞がれる。また、第2方向D2における孔部33A,43Aの開口は、複数の板状部材30A及び板状部材40A間において連続し、且つ、一対の板状部材50Aによって塞がれる。
 続いて、図8及び図9に示されるように、一体化された積層体60を切断することにより複数(ここでは2つ)の本体部材80のそれぞれを切り出す。この工程においては、まず、仮想的な切断予定ラインL1,L2,L3を設定する。切断予定ラインL1は、本体部材80の間を通るように第3方向D3に沿って直線状に延びている。切断予定ラインL2は、第1方向D1における積層体60の両縁部に沿って直線状に延びている。切断予定ラインL3は、第3方向D3における積層体60の両縁部に沿って直線状に延びている。
 切断予定ラインL1は、切断予定ラインL1に沿った切断が行われたときに、孔部33A,43Aがその切断面に開口するように設定されている。また、切断予定ラインL2は、切断予定ラインL2に沿った切断が行われたときに、孔部35A,45Aがその切断面に開口するように設定されている。したがって、切断予定ラインL1,L2,L3に沿って積層体60を切断することにより、積層体60から複数(ここでは2つ)の本体部材80が切り出される。この切断による切断面が、端面20a及び端面20bとなる。また、この切断によって、端面20aに対して孔部33A,43Aが開口すると共に、端面20bに対して35A,45Aが開口する。
 すなわち、図10に示されるように、この第1工程において用意される本体部材80は、端面20a,20bを有する。また、本体部材80には、孔部33Aと孔部35Aとによって、端面20aと端面20bとを連通する第1連通孔81が形成される。第1連通孔81は、後に第1チャネル21となる(すなわち第1チャネル21のための)孔部である。また、本体部材80には、孔部43Aと孔部45Aとによって、端面20aと端面20bとを連通する第2連通孔82が形成される。第2連通孔82は、後に第2チャネル22となる(すなわち第2チャネル22のための)孔部である。
 このように、この第1工程においては、チャネルのための孔部が形成された複数の板状部材と、一対の中実状の板状部材とを互いに積層して一体化することにより、本体部材を用意する。より具体的には、第1チャネル21(第1連通孔81)のための孔部33A,35Aが形成された複数の板状部材30Aと、第2チャネル22(第2連通孔82)のための孔部43A,45Aが形成された複数の板状部材40Aと、互いの孔部を塞ぐように交互に積層すると共に、板状部材30Aと板状部材40Aとの積層体の両側から挟むように板状部材50Aをさらに積層して一体化することにより(ここではさらに切断を行うことにより)、本体部材80を用意する。
 引き続いて、第1工程の後工程について説明する。続く工程においては、原子層堆積法によって、本体部材80の外面20dに対して、抵抗層83と抵抗層83上に積層された二次電子増倍層84とを含む堆積層85を形成する(第2工程)。また、原子層堆積法によって、第1連通孔81の内面81s及び第2連通孔82の内面82sに対して堆積層85を形成する(第2工程)。これにより、第1連通孔81から第1チャネル21が形成されると共に、第2連通孔82から第2チャネル22が形成される(第2工程)。
 より具体的には、この第2工程においては、まず、図11に示されるように、本体部材80をチャンバC1に収容する。そして、図12に示されるように、上述した所定の材料によって、堆積層85を形成する。したがって、この第2工程においては、本体部材80の外面20d(すなわち、端面20a、端面20b、及び、側面20c)と、第1連通孔81の内面81sと、第2連通孔82の内面82sと、の全体に対して、一括して、堆積層85が形成される。なお、図11~図13は、図10のA-A線に沿っての断面に相当する断面を示す図である。
 続く工程においては、本体部材80の外面20dに形成された堆積層85を除去する(第3工程)。ここでは、抵抗層83及び二次電子増倍層84の両方を除去する。また、ここでは、堆積層85をサンドブラストによって除去する。サンドブラストでは、まず、図12に示されるように、本体部材80をチャンバC2に収容し、本体部材80に対して例えば100μm程度の粒子を吹き付ける。ここで用いられるサンドブラストの粒子は、例えば、抵抗層83や二次電子増倍層84を構成する材料と同様の材料からなる粒子(例えばアルミナ粒子)である。
 このとき、本体部材80の外面20dのうちの端面20a,20bに形成された堆積層85を維持しながら、本体部材80の外面20dのうちの側面20cに形成された堆積層85を除去する。具体的には、例えば、端面20a,20b(及び各チャネルの開口)をマスクした状態で、本体部材80に対してサンドブラストを行う。以上により、図13に示されるように、本体部材80から本体部20が形成される。
 続く工程においては、本体部20の外面20dに、金属からなるヒートシンク70を熱的に接続する(第4工程)。ここでは、図2,3に示されるように、本体部20の外面20dのうちの堆積層85が除去された状態の側面20cに対して、ヒートシンク70を接触させる。以上の工程により、電子増倍体2が製造される。
 以上説明したように、電子増倍体2の製造方法では、本体部20のための本体部材80の外面20d、第1チャネル21のための第1連通孔81の内面81s、及び、第2チャネル22のための第2連通孔82の内面82sに対して、原子層堆積法によって抵抗層83及び二次電子増倍層84を含む堆積層85を形成することにより、第1チャネル21及び第2チャネル22を形成する。その後、本体部材80の外面20d(ここでは側面20c)に形成された堆積層85を除去し、本体部20を形成する。このため、電子増倍体2の動作時において、端面20a,20bの間に電位差を付与した場合にも、抵抗層83を介して、本体部20の外面20d側に電流が流れることが防止される。このため、本体部20の外面20dにおいて発熱が抑制される。よって、このような方法によって製造された電子増倍体2では、動作時の温度上昇を抑制することができる。
 また、電子増倍体2の製造方法においては、第2工程においては、抵抗層83と抵抗層83上に積層された二次電子増倍層84とを含む堆積層85を形成する。このため、二次電子増倍層84を含む堆積層85を効率的に形成しつつ、外面20dから除去することができる。
 また、電子増倍体2の製造方法においては、本体部材80は、絶縁材料からなる。このため、本体部20自体に電流が流れ難いため、抵抗層83を除去することによって得られる上記作用効果がより有効となる。
 また、電子増倍体2の製造方法においては、第3工程においては、堆積層85をサンドブラストにより除去する。このため、サンドブラストを用いることにより、本体部材80の所望の箇所(例えば側面20c)の堆積層85を選択的に適切に除去することができる。
 また、電子増倍体2の製造方法においては、本体部材80の外面20dは、端面20a,20b、及び、端面20aと端面20bとを接続する側面20cを有している。そして、第3工程においては、端面20a,20bに形成された堆積層85を維持しながら、側面20cに形成された堆積層85を除去する。このため、第1チャネル21及び第2チャネル22が開口する端面20a及び端面20bにおける堆積層85の除去加工を行う必要がないので、当該除去加工による第1チャネル21及び第2チャネル22への影響を低減できる。
 また、電子増倍体2の製造方法においては、第3工程の後に、本体部20の外面(側面20c)にヒートシンク70を設ける第4工程を更に備えている。このため、ヒートシンク70によって本体部20を冷却することができる。また、本体部20の側面20cとヒートシンク70との間に抵抗層83及び二次電子増倍層84が介在しないため、本体部20の端面20a,20bの間に付与された電位差によるヒートシンク70への影響を低減できる。
 特に、ヒートシンク70は金属からなり、第4工程においては、ヒートシンク70を本体部20の外面20d(側面20c)に接触させる。上述したように、本体部20の外面20dとヒートシンク70との間に抵抗層83及び二次電子増倍層84が介在しないため、本体部20の端面20aと端面20bとの間に付与された電位差の影響によってヒートシンク70に電流が流れるおそれがない。このため、金属製のヒートシンク70を本体部20の外面20dに接触させて本体部20を効率よく冷却することが可能となる。
 また、電子増倍体2において、本体部20の側面20cが、少なくとも抵抗層83(ここでは、堆積層85)から露出している(すなわち、側面20cに抵抗層83が形成されていない)。このため、電子増倍体2の動作時において、端面20aと端面20bとの間に電位差を付与した場合にも、抵抗層83を介して、本体部20の外面20d側に電流が流れることが防止される。このため、本体部20の外面20dにおいて発熱が抑制される。よって、この電子増倍体2によれば、温度上昇を抑制することができる。
 ここで、電子増倍体2の別の作用効果について説明する。電子増倍体2は、本体部20に対して第1チャネル21と第2チャネル22との複数のチャネルが設けられている。本体部20は、互いに積層された第1板状部材30及び第2板状部材40を有する。第1板状部材30は、孔部35が形成された孔部領域37と孔部領域37に隣接する中実領域38とを含む。第2板状部材40は、孔部45が形成された孔部領域47と孔部領域47に隣接する中実領域48とを含む。第1板状部材30の孔部領域37は、第2方向D2(板状部材の積層方向)に沿って第2板状部材40の中実領域48に対向する。第2板状部材40の孔部領域47は、第2方向D2に沿って第1板状部材30の中実領域38に対向する。
 つまり、第2方向D2における孔部35の少なくとも一方の開口は、第2板状部材40の中実領域48によって塞がれ、第2方向D2における孔部45の少なくとも一方の開口は、第1板状部材30の中実領域38によって塞がれる。これにより、第1チャネル21は、孔部35の内面と、中実領域48における孔部35内に臨む面と、を含んで形成され、第2チャネル22は、孔部45の内面と、中実領域38における孔部45内に臨む面と、を含んで形成される。
 このように、電子増倍体2においては、第1板状部材30が、孔部35において第1チャネル21の形成に寄与すると共に、中実領域38において第2チャネル22の形成に寄与する。また、第2板状部材40は、中実領域48において第1チャネル21の形成に寄与すると共に、孔部45において第2チャネル22の形成に寄与する。このため、一対のブロックによって単一のチャネルを形成する場合と比較して、デッドスペースの増加を抑制しながらマルチチャネル化を行うことが可能となる。
 このように、電子増倍体2においては、デッドスペースの削減によって、各チャネル内の発熱箇所から外部への放熱経路が短縮される。よって、以上の電子増倍体2の構成は、温度上昇の抑制にも寄与する。
 以上の実施形態は、本発明の一態様に係る電子増倍の製造方法の一実施形態について説明したものである。したがって、本発明の一態様に係る電子増倍体の製造方法は、上記の電子増倍体2の製造方法に限定されず、各請求項の要旨を変更しない範囲においてそれらを任意に変形したものとすることが可能である。
 例えば、第3工程において、本体部材80の外面20dに形成された堆積層85を除去する方法は、サンドブラストに限定されず、例えば機械研磨であってもよい。機械研磨とは、例えば、刃具やヤスリ等を用いた研磨方法、或いは、グラインダー等を用いた研磨方法等が例示される。
 また、第3工程において、本体部材80の側面20cに形成された堆積層85を除去する際に、端面20a,20bに形成された堆積層85を維持しなくてもよい。すなわち、第3工程においては、本体部材80の外面20dの全体について、堆積層85を一括して除去してもよい。また、第4工程において、ヒートシンク70は金属以外の材料からなるものであってもよい。或いは、電子増倍体2の製造方法において、第4工程を行わなくてもよい。すなわち、本体部20の外面20dにヒートシンク70を設けなくてもよい。
 さらに、当該製造方法は、第2工程においては、本体部材80の外面20d、第1連通孔81の内面81s、及び、第2連通孔82の内面82sに、原子層堆積法によって抵抗層83のみを含む堆積層を形成してもよい。この場合、第3工程においては、本体部材80の外面20dに形成された抵抗層83のみが除去されることとなる。
 また、当該製造方法は、第2工程においては、本体部材80の外面20d、第1連通孔81の内面81s、及び、第2連通孔82の内面82sに、原子層堆積法によって抵抗層83のみを含む堆積層を形成しておき、第3工程の後であって第4工程の前において、本体部20の(側面20cを含む)外面20dと、第1連通孔81の内面81sと、第2連通孔82の内面82sと、の全体に対して二次電子増倍層84を形成する第5工程を備えていてもよい。すなわち、本体部20の外面20d(特に側面20c)に対して導電体層である抵抗層83が形成されていなければよく、絶縁体層である二次電子増倍層84のみが形成されていてもよい。
 一方、本発明の一態様に係る電子増倍体の製造方法は、別の電子増倍体の製造に適用されてもよい。別の電子増倍体としては、例えば、第3方向D3に沿って、単一の第1チャネル21及び単一の第2チャネル22を備える電子増倍体とすることができる。この場合、第2方向D2に沿っては、複数の第1チャネル21及び複数の第2チャネル22を形成してもよい。この電子増倍体によれば、第3方向D3に沿って複数の第1チャネル21及び第2チャネル22を配列する場合と比較して、第3方向D3に沿った電子入射部23,24同士の間のデッドスペースが削減される。
 さらに別の電子増倍体としては、孔部35,45が、第1方向D1に沿って延びる第1部分と、第1方向D1に交差する第3方向D3に沿って延びる第2部分と、第1方向D1に沿って延びる第3部分と、を含むものであってもよい。第2部分は、第3方向D3に沿って延びて第1部分と第3部分とを接続する。このような電子増倍体によれば、第1チャネル21及び第2チャネル22を長くしてゲインを向上させることができる。また、この電子増倍体によれば、孔部35及び孔部45のそれぞれの第2部分によって、第1チャネル21及び第2チャネル22におけるイオンフィードバックが抑制される。
 さらに別の電子増倍体の別の例としては、孔部が形成された単一の板状部材を、一対の中実状の板状部材で挟むことによってチャネルを構成すると共に、これらの板状部材の組を複数配列して一体化することによりマルチチャネル化した電子増倍体であってもよい。さらにいえば、単一のチャネルを有する電子増倍体であってもよい。
 温度上昇を抑制することができる電子増倍体の製造方法及び電子増倍体を提供することができる。
 2…電子増倍体、20…本体部、20a…端面(一端面)、20b…端面(他端面)、20d…外面、21…第1チャネル(チャネル)、22…第2チャネル(チャネル)、70…ヒートシンク、80…本体部材、81…第1連通孔、81s…内面、82…第2連通孔、82s…内面、83…抵抗層、84…二次電子増倍層、85…堆積層。

Claims (9)

  1.  本体部と、前記本体部の一端面及び他端面に開口するように前記本体部に設けられ、入射した電子に応じて二次電子を放出するチャネルと、を備える電子増倍体の製造方法であって、
     前記一端面及び前記他端面を有し、前記一端面と前記他端面とを連通する前記チャネルのための連通孔が設けられた本体部材を用意する第1工程と、
     前記本体部材の外面及び前記連通孔の内面に、原子層堆積法によって、少なくとも抵抗層を含む堆積層を形成することにより、前記チャネルを形成する第2工程と、
     前記本体部材の前記外面に形成された前記堆積層を除去することにより、前記本体部を形成する第3工程と、を備える、
     電子増倍体の製造方法。
  2.  前記第2工程においては、前記抵抗層と前記抵抗層上に積層された二次電子増倍層とを含む前記堆積層を形成する、
     請求項1に記載の電子増倍体の製造方法。
  3.  前記本体部材は、絶縁材料からなる、
     請求項1又は2に記載の電子増倍体の製造方法。
  4.  前記第3工程においては、前記堆積層をサンドブラストにより除去する、
     請求項1~3のいずれか一項に記載の電子増倍体の製造方法。
  5.  前記本体部材の前記外面は、前記一端面、前記他端面、及び、前記一端面と前記他端面とを接続する側面を含み、
     前記第3工程においては、前記一端面及び前記他端面に形成された前記堆積層を維持しながら、前記側面に形成された前記堆積層を除去する、
     請求項1~4のいずれか一項に記載の電子増倍体の製造方法。
  6.  前記第3工程の後に、前記本体部の前記外面にヒートシンクを熱的に接続する第4工程を更に備える、
     請求項1~5のいずれか一項に記載の電子増倍体の製造方法。
  7.  前記ヒートシンクは、金属からなり、
     前記第4工程においては、前記ヒートシンクを前記外面に接触させる、
     請求項6に記載の電子増倍体の製造方法。
  8.  一端面、他端面、及び、前記一端面と前記他端面とを接続する側面を有する本体部と、
     前記一端面及び前記他端面に開口するように前記本体部に設けられたチャネルと、を備え、
     前記チャネルは、前記チャネルのための連通孔の内面に形成された抵抗層及び二次電子増倍層を含む堆積層を有し、
     前記一端面、及び、前記他端面には、前記堆積層が形成されており、
     前記側面は、少なくとも前記抵抗層から露出しており、
     前記堆積層は、原子層堆積法によって形成されている、
     電子増倍体。
  9.  前記側面には、前記二次電子増倍層が形成されている、
     請求項8に記載の電子増倍体。
PCT/JP2017/028280 2016-08-31 2017-08-03 電子増倍体の製造方法及び電子増倍体 WO2018043029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/321,552 US10522334B2 (en) 2016-08-31 2017-08-03 Electron multiplier production method and electron multiplier
CN201780052951.5A CN109643627B (zh) 2016-08-31 2017-08-03 电子倍增器的制造方法及电子倍增器
US16/661,184 US10957522B2 (en) 2016-08-31 2019-10-23 Electron multiplier production method and electron multiplier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169809A JP6738244B2 (ja) 2016-08-31 2016-08-31 電子増倍体の製造方法及び電子増倍体
JP2016-169809 2016-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/321,552 A-371-Of-International US10522334B2 (en) 2016-08-31 2017-08-03 Electron multiplier production method and electron multiplier
US16/661,184 Continuation US10957522B2 (en) 2016-08-31 2019-10-23 Electron multiplier production method and electron multiplier

Publications (1)

Publication Number Publication Date
WO2018043029A1 true WO2018043029A1 (ja) 2018-03-08

Family

ID=61300579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028280 WO2018043029A1 (ja) 2016-08-31 2017-08-03 電子増倍体の製造方法及び電子増倍体

Country Status (4)

Country Link
US (2) US10522334B2 (ja)
JP (1) JP6738244B2 (ja)
CN (2) CN113223909A (ja)
WO (1) WO2018043029A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591687A1 (en) * 2018-07-02 2020-01-08 Photonis Scientific, Inc. Channel electron multiplier having two are more resistive coating layers in different zones along its length and method to produce the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033119A1 (en) * 2018-08-08 2020-02-13 Skyfinis Inc. Integrated native oxide device based on aluminum, aluminum alloys or beryllium copper (inod) and discrete dynode electron multiplier (ddem)
JP7176927B2 (ja) * 2018-10-30 2022-11-22 浜松ホトニクス株式会社 Cemアセンブリおよび電子増倍デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115970A (ja) * 1974-02-22 1975-09-10
JPH02297857A (ja) * 1989-02-13 1990-12-10 Galileo Electro Opt Corp 伝導冷却マイクロチャネルプレート電子増倍装置
JPH03116626A (ja) * 1989-08-18 1991-05-17 Galileo Electro Opt Corp 電子増倍管用薄膜連続的ダイノードの製法
WO2014050260A1 (ja) * 2012-09-25 2014-04-03 浜松ホトニクス株式会社 マイクロチャンネルプレート、マイクロチャンネルプレートの製造方法、及びイメージインテンシファイア

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244922A (en) 1962-11-05 1966-04-05 Itt Electron multiplier having undulated passage with semiconductive secondary emissive coating
JPS465767Y1 (ja) 1965-10-19 1971-03-01
FR2676862B1 (fr) 1991-05-21 1997-01-03 Commissariat Energie Atomique Structure multiplicatrice d'electrons en ceramique notamment pour photomultiplicateur et son procede de fabrication.
US5581151A (en) 1993-07-30 1996-12-03 Litton Systems, Inc. Photomultiplier apparatus having a multi-layer unitary ceramic housing
US7855493B2 (en) 2008-02-27 2010-12-21 Arradiance, Inc. Microchannel plate devices with multiple emissive layers
US8052884B2 (en) * 2008-02-27 2011-11-08 Arradiance, Inc. Method of fabricating microchannel plate devices with multiple emissive layers
US8227965B2 (en) 2008-06-20 2012-07-24 Arradiance, Inc. Microchannel plate devices with tunable resistive films
US8237129B2 (en) * 2008-06-20 2012-08-07 Arradiance, Inc. Microchannel plate devices with tunable resistive films
JP5290804B2 (ja) * 2009-02-25 2013-09-18 浜松ホトニクス株式会社 光電子増倍管
FR2964785B1 (fr) 2010-09-13 2013-08-16 Photonis France Dispositif multiplicateur d'électrons a couche de nanodiamant.
JP6407767B2 (ja) * 2015-03-03 2018-10-17 浜松ホトニクス株式会社 電子増倍体の製造方法、光電子増倍管、及び光電子増倍器
JP6496217B2 (ja) * 2015-09-04 2019-04-03 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115970A (ja) * 1974-02-22 1975-09-10
JPH02297857A (ja) * 1989-02-13 1990-12-10 Galileo Electro Opt Corp 伝導冷却マイクロチャネルプレート電子増倍装置
JPH03116626A (ja) * 1989-08-18 1991-05-17 Galileo Electro Opt Corp 電子増倍管用薄膜連続的ダイノードの製法
WO2014050260A1 (ja) * 2012-09-25 2014-04-03 浜松ホトニクス株式会社 マイクロチャンネルプレート、マイクロチャンネルプレートの製造方法、及びイメージインテンシファイア

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591687A1 (en) * 2018-07-02 2020-01-08 Photonis Scientific, Inc. Channel electron multiplier having two are more resistive coating layers in different zones along its length and method to produce the same

Also Published As

Publication number Publication date
US10522334B2 (en) 2019-12-31
CN109643627A (zh) 2019-04-16
US10957522B2 (en) 2021-03-23
JP6738244B2 (ja) 2020-08-12
JP2018037297A (ja) 2018-03-08
CN109643627B (zh) 2021-04-02
CN113223909A (zh) 2021-08-06
US20200058477A1 (en) 2020-02-20
US20190164734A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US10957522B2 (en) Electron multiplier production method and electron multiplier
JP6817160B2 (ja) 電子増倍体
WO2019003567A1 (ja) 電子増倍体
US10170268B2 (en) Discrete dynode electron multiplier fabrication method
EP2634791B1 (en) Microchannel plate for electron multiplier
JP6983956B2 (ja) 電子増倍体
US10037871B2 (en) Method of manufacturing electron multiplier body, photomultiplier tube, and photomultiplier
JP6474281B2 (ja) 電子増倍体、光電子増倍管、及び光電子増倍器
KR20180065861A (ko) 전계 방출 장치
WO2018043024A1 (ja) 電子増倍体、及び、光電子増倍管
JP6694033B2 (ja) 電子増倍体及び光電子増倍管
JP6434361B2 (ja) マイクロチャンネルプレート
JP6411277B2 (ja) マイクロチャンネルプレート、光電子増倍管、及びイメージインテンシファイア
JP6875217B2 (ja) 電子増倍体
JP5827076B2 (ja) 電極構造体
JPH0512994A (ja) 積層型マイクロチヤネルの製造方法
JP5829460B2 (ja) 電子増倍器
JP2007012308A (ja) 二次電子増倍電極及び光電子増倍管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846038

Country of ref document: EP

Kind code of ref document: A1