WO2018042598A1 - ジカウイルス検出用プライマーセット - Google Patents

ジカウイルス検出用プライマーセット Download PDF

Info

Publication number
WO2018042598A1
WO2018042598A1 PCT/JP2016/075697 JP2016075697W WO2018042598A1 WO 2018042598 A1 WO2018042598 A1 WO 2018042598A1 JP 2016075697 W JP2016075697 W JP 2016075697W WO 2018042598 A1 WO2018042598 A1 WO 2018042598A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer set
seq
copies
primer
zika virus
Prior art date
Application number
PCT/JP2016/075697
Other languages
English (en)
French (fr)
Inventor
晶平 仙波
Original Assignee
栄研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栄研化学株式会社 filed Critical 栄研化学株式会社
Priority to PCT/JP2016/075697 priority Critical patent/WO2018042598A1/ja
Priority to JP2018536620A priority patent/JPWO2018042598A1/ja
Publication of WO2018042598A1 publication Critical patent/WO2018042598A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for detecting a Zika virus, and more particularly to a method for diagnosing a Zika virus infection using a highly sensitive and rapid method for detecting a gene.
  • Zika virus is a virus belonging to the Flaviviridae genus Flaviviridae, and is an RNA virus having a single-stranded RNA + strand as a viral genome.
  • Humans infected with Zika virus are influenza-like, such as fever (Dika fever), headache, joint pain, myalgia, malaise, loss of appetite, rash, asthenia, retro-orbital pain, edema, lymphadenopathy, diarrhea, etc. Symptoms of onset.
  • Zika virus infection itself is an infectious disease with a low fatality rate, but it has been reported that infection of pregnant women causes the development of microcephaly in fetuses and newborns.
  • Non-Patent Documents 1 and 2 disclose a method for detecting a Zika virus using one-step RT-PCR. However, a test method that can detect Zika virus with high sensitivity and speed has been desired.
  • An object of the present invention is to provide a method capable of detecting a Zika virus with high sensitivity and speed.
  • oligonucleotide primers that selectively hybridize with base sequences specific to Zika virus were prepared, and specific to Zika virus using the LAMP (Loop-mediated Isothermal Amplification) method.
  • LAMP Loop-mediated Isothermal Amplification
  • the present invention includes the following.
  • a primer set for amplifying a base sequence specific to Zika virus including all the following oligonucleotide primers (a) to (d).
  • the primer set according to (1) further comprising the following oligonucleotide primers (e) and / or (f): (e) 5'-TGGAACCCAGTCAACTG-3 '(SEQ ID NO: 5) (f) 5'-AGACATGCTTGTGGTGT-3 '(SEQ ID NO: 6)
  • a primer set for amplifying a base sequence specific to Zika virus including all the oligonucleotide primers (j) to (m) below.
  • (j) 5'-TGGCCTTTCCAAATTCCCCTTGCTGAGAGGAGAGTGCCAGAG-3 '(SEQ ID NO: 10)
  • (k) 5'-TCTGGTATATGTGGCTAGGGGCCCCATCCAGTGATCCTCGTT-3 '(SEQ ID NO: 11)
  • the primer set according to (4) further comprising the following oligonucleotide primers (n) and / or (o): (n) 5'-AGATGGAGCTTGTTGAAGTG-3 '(SEQ ID NO: 14) (o) 5'-CTCTCCAGGGGCGGGATGGA-3 '(SEQ ID NO: 15)
  • a primer set for amplifying a base sequence specific to Zika virus including all the oligonucleotide primers (q) to (t) below.
  • (q) 5'-AGGGTTTCCACTCTTGTGTGTCCACATGCCCTCAGGTTCTT-3 '(SEQ ID NO: 17)
  • (r) 5'-AGTTCCGTTTTGCTCCCACCCACAATGGACCTCCCGTC-3 '(SEQ ID NO: 18)
  • s 5'-TTGCGTTGTGAAGCCAATT-3 '(SEQ ID NO: 19)
  • the primer set according to (6) further comprising the following oligonucleotide primers (u) and / or (v): (u) 5'-CTTTTTCCCATCATGTTGTACACAC-3 '(SEQ ID NO: 21) (v) 5'-TAGAGTTCGAAGCCCTTGGATTCT-3 '(SEQ ID NO: 22)
  • a kit for detecting a Zika virus or diagnosing a Zika virus infection comprising the primer set according to any one of (1) to (7).
  • a method for detecting Zika virus comprising:
  • a test method for a Zika virus infection comprising a step of testing for the presence or absence of a Zika virus infection.
  • an oligonucleotide primer that selectively hybridizes with a base sequence specific to Zika virus is prepared, and the base sequence specific to Zika virus is amplified by the LAMP method, thereby making Zika virus highly sensitive. And it can detect rapidly.
  • the amplification curve of the real-time fluorescence measurement of PCR method using the primer set (1) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of PCR method using the primer set (2) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of PCR method using the primer set (3) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of LAMP method using the primer set (1) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of LAMP method using the primer set (2) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of LAMP method using the primer set (3) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of LAMP method using the primer set (4) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of LAMP method using the primer set (5) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of LAMP method using the primer set (6) in Example 1 is shown.
  • the amplification curve of the real-time fluorescence measurement of LAMP method using the primer set (7) in Example 1 is shown. It is a photograph which shows the detection sensitivity and specificity of PCR method by electrophoresis using the amplification product of real-time fluorescence detection shown in Table 1.
  • Lanes 1 and 11 are markers (following from 100 bp, 200 bp, 300 bp, and 400 bp from the bottom, and 500 bp where the color band is dark).
  • Lane 2 is 10,000 copies / test of the primer set (1).
  • 3 is 100 copies / test of primer set (1)
  • lane 4 is 0 copies / test of primer set (1)
  • lane 5 is 10000 copies / test of primer set (2)
  • lane 6 is 100 copies / test of primer set (2)
  • lane 7 is 0 copy / test of primer set (2)
  • lane 8 is 10000 copies / test of primer set (3)
  • lane 9 is primer set
  • Lane 3 is 100 copies / test for (3) and Lane 10 is 0 copies / test for primer set (3).
  • Lanes 1 and 14 are markers (100 bp, 200 bp, 300 bp, 400 bp from the bottom, 500 bp where the dark band is dark), lane 2 is 10,000 copies / test of primer set (4), lane 3 is 100 copies / test of primer set (4), lane 4 is 0 copies / test of primer set (4), lane 5 is 10000 copies / test of primer set (5), lane 6 is 1000 copies / test of primer set (5), lane 7 is 0 copy / test of primer set (5), lane 8 is 10000 copies / test of primer set (6), lane 9 is primer set (6) 100 copies / test, lane 10 is 0 copies / test of primer set (6), lane 11 is 10000 copies / test of primer set (7), lane 12 is primer set (7 ) 100 copies / test Lane 13
  • the amplification curve of the real-time turbidity measurement of the LAMP method using the primer set (4) in Example 2 is shown.
  • the amplification curve of the real-time turbidity measurement of the LAMP method using the primer set (5) in Example 2 is shown.
  • the amplification curve of the real-time turbidity measurement of the LAMP method using the primer set (6) in Example 2 is shown.
  • the amplification curve of the real-time turbidity measurement of the LAMP method using the primer set (7) in Example 2 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (4) in Example 3 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (5) in Example 3 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (6) in Example 3 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (7) in Example 3 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (4) in Example 4 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (5) in Example 4 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (6) in Example 4 is shown.
  • the quenching curve of the real-time fluorescence measurement using QProbe of the LAMP method using the primer set (7) in Example 4 is shown.
  • the primer set according to the present invention is a primer set for amplifying a base sequence specific to Zika virus by the LAMP method, including an oligonucleotide primer that selectively hybridizes with a base sequence specific to Zika virus.
  • the primer set according to the present invention can detect Zika virus in a sample derived from a subject with high sensitivity and speed.
  • Samples used in the present invention include samples derived from living organisms of humans or other animals suspected of having a Zika virus infection, such as sputum, bronchoalveolar lavage fluid, nasal discharge, nasal aspirate, nasal rinse, nasal wipe, pharyngeal wipe Examples thereof include body fluids such as fluid, gargle, saliva, blood, serum, plasma, spinal fluid, urine, semen, and amniotic fluid, feces, and tissues.
  • body fluids such as fluid, gargle, saliva, blood, serum, plasma, spinal fluid, urine, semen, and amniotic fluid, feces, and tissues.
  • cells used in infection experiments, culture solutions thereof, specimens containing viruses isolated from biological specimens, cultured cells, and the like can also serve as samples. These samples may be subjected to pretreatment such as separation, extraction, concentration and purification.
  • Nucleic acid amplification in the present invention is achieved by a loop-mediated isothermal amplification method (International Publication No. 00/28082) called the LAMP method, which was developed by Natomi et al. can do.
  • the template nucleotide is annealed at its 3 'end to serve as the starting point for complementary strand synthesis, and the primer that anneals to the loop formed at this time is combined to perform isothermal complementary strand synthesis reaction.
  • This is a possible nucleic acid amplification method.
  • the 3 'end of the primer always anneals to the region derived from the sample, and the check mechanism based on complementary binding of the base sequence functions repeatedly, resulting in high sensitivity and specificity. Highly efficient nucleic acid amplification reaction is possible.
  • the oligonucleotide primer used in the LAMP reaction consists of a total of 6 regions of the base sequence of the template nucleic acid, that is, the bases of the region of F3c, F2c, F1c from the 3 ′ end and the region of B3, B2, B1 from the 5 ′ end.
  • These are at least four kinds of primers for recognizing sequences, and are called inner primers F (FIP) and B (BIP) and outer primers F (F3) and B (B3), respectively.
  • the complementary sequences of F1c, F2c, and F3c are called F1, F2, and F3, respectively, and the complementary strands of B1, B2, and B3 are called B1c, B2c, and B3c, respectively.
  • the inner primer is a nucleic acid synthesis reaction product that recognizes a “specific nucleotide sequence region” on the target base sequence and has a base sequence that gives a synthesis origin at the 3 ′ end, and at the same time, uses this primer as the origin.
  • the primer containing “the base sequence selected from F2” and “the base sequence selected from F1c” was selected from the inner primer F (FIP), and “the base sequence selected from B2” and “B1c”.
  • a primer containing a “base sequence” is referred to as an inner primer B (BIP).
  • the outer primer is an oligo having a base sequence that recognizes “a specific nucleotide sequence region existing on the 3 ′ end side of a“ specific nucleotide sequence region ”” on the target base sequence and provides a starting point for synthesis. It is a nucleotide.
  • a primer including “a base sequence selected from F3” is referred to as an outer primer F (F3)
  • a primer including “a base sequence selected from B3” is referred to as an outer primer B (B3).
  • F in each primer is a primer indication that complementarily binds to the sense strand of the target base sequence and provides a starting point for synthesis, while B is complementary to the antisense strand of the target base sequence.
  • Primer display that binds and provides a starting point for synthesis.
  • the length of the oligonucleotide used as a primer is 10 bases or more, preferably 15 bases or more, either chemically synthesized or natural, and each primer may be a single oligonucleotide, It may be a mixture of oligonucleotides.
  • the loop primer LF and / or LB is a primer having a base sequence complementary to the base sequence of the single-stranded part of the loop structure on the 5 ′ end side of the dumbbell structure.
  • the base sequence of the loop primer may be selected from the base sequence of the target gene or its complementary strand as long as it is complementary to the base sequence of the single-stranded portion of the loop structure on the 5 ′ end side of the dumbbell structure described above. The base sequence may be used. Further, one or two kinds of loop primers may be used.
  • Zika virus is an RNA virus.
  • the nucleic acid amplification reaction can proceed similarly by adding reverse transcriptase to the reaction solution when the template is DNA (RT-LAMP method).
  • the target sequence is NS5 gene (GenBank Accession Number: KU312312.1, SEQ ID No. 24) of Zika virus.
  • the following three primer sets were selected.
  • Primer set 1-21 (a) FIP: 5'-TTGACCAGGTAGTTCTCCCAGTATGGCCAATGCCATTTGTTC-3 '(SEQ ID NO: 1) (b) BIP: 5'-AGGGAGAATGGATGACCACTGACTCCTCAATCCACACTCTGT-3 '(SEQ ID NO: 2) (c) F3: 5′-CAGAAGGGACCTCCGACT-3 ′ (SEQ ID NO: 3) (d) B3: 5′-CGTAACTGGGGTCTTGTCTT-3 ′ (SEQ ID NO: 4) (e) LF1: 5′-TGGAACCCAGTCAACTG-3 ′ (SEQ ID NO: 5) (f) LB1: 5'-AGACATGCTTGTGGTGT-3 '(SEQ ID NO: 6) (g) LFM1: 5′-CCCAGTCAACTGGCACAG-3 ′ (SEQ ID NO: 7) (h) LBM1: 5'-CATGCTTGTGGTGTG-3 '(SEQ ID
  • the enzyme used in nucleic acid synthesis is not particularly limited as long as it is a template-dependent nucleic acid synthase having strand displacement activity.
  • examples of such enzymes include Bst DNA polymerase (large fragment), Bca (exo-) DNA polymerase, Klenow fragment of E. coli DNA polymerase I, Csa DNA polymerase, etc., preferably Bst DNA polymerase (large fragment). Is mentioned.
  • the reverse transcriptase used in the RT-LAMP method is not particularly limited as long as it has an activity of synthesizing DNA using RNA as a template.
  • examples of such enzymes include AMV, ClonedlonAMV, MMLV, Recombinant HIV reverse transcriptase, Superscript II / III / IV, ReverTraAce, Thermoscript, Ominiscript, Sensiscript, etc., preferably AMV or Cloned AMV reverse transcriptase Is mentioned.
  • an enzyme having both reverse transcriptase activity and DNA polymerase activity such as BcaBDNA polymerase, is used, the RT-LAMP reaction can be performed with one enzyme.
  • Enzymes and reverse transcriptases used in nucleic acid synthesis may be purified from viruses, bacteria, etc., or may be prepared by genetic recombination techniques. These enzymes may be modified by fragmentation or amino acid substitution.
  • a known technique can be applied to detect the nucleic acid amplification product after the LAMP reaction.
  • a labeled oligonucleotide that specifically recognizes the amplified base sequence or a fluorescent intercalator method Japanese Patent Laid-Open No. 2001-242169
  • the reaction solution after completion of the reaction is directly subjected to agarose gel electrophoresis. Even it can be easily detected.
  • agarose gel electrophoresis a large number of bands with different base lengths are detected in a ladder form from the LAMP amplification product.
  • the nucleic acid amplification reaction can be confirmed by measuring this white turbidity with a measuring instrument that can optically observe the increase in turbidity over time after the reaction is completed or during the reaction, for example, a change in absorbance at 400 nm using a normal spectrophotometer. Can also be detected (WO 01/83817 pamphlet).
  • a method using a fluorescently labeled probe can be mentioned.
  • a fluorescently labeled probe called Quenching Probe (QProbe®), which is fluorescently labeled at the 3 ′ end or 5 ′ end, causes the fluorescent dye to reduce its emission when hybridized to the target nucleic acid.
  • QProbe® Quenching Probe
  • the amplification product can be detected or quantified (Japanese Patent Laid-Open No. 2001-286300).
  • the base portion of the hybridization is designed to form a G (guanine) and C (cytosine) pair at the terminal portion.
  • fluorescent label examples include BODIPY-FL, carboxyrhodamine 6G (CR6G), carboxytetramethylrhodamine (TAMRA), Pacific Blue, fluorescein-4-isothiocyanate (FITC), and the like.
  • QProbe can be used in accordance with the above three primer sets. Each QProbe is labeled with BODIPY-FL at the 3 ′ end.
  • QProbe for primer set 1-21 (i) ZK-LF21QP3G: 5'-TGGAACCCAGTCAACTGGCACAGATGAAC-3 '(SEQ ID NO: 9)
  • QProbe for primer set 1-1 (p) ZK-LB1QP3G: 5'-TAGATTTCTAGAGTTCGAAGCCCTTGGATTC-3 '(SEQ ID NO: 16)
  • QProbe for primer set 1-6 (w) ZK-LF6QP3G: 5'-CTTCCTAACTTTTCCCATATCATTCAAGAACC-3 '(SEQ ID NO: 23)
  • reagents necessary for detection of nucleic acid amplification using the primer set according to the present invention can be packaged in advance and used as a kit for detecting Zika virus or diagnosing Zika virus infection.
  • the primer set according to the present invention a fluorescently labeled probe, four types of dNTPs serving as a substrate for nucleic acid synthesis, a DNA polymerase that performs nucleic acid synthesis, an enzyme having reverse transcription activity, and a buffer that provides conditions suitable for the enzymatic reaction Protective agents that stabilize solutions and salts, enzymes and templates, and reagents necessary for detection of reaction products as necessary are provided as kits.
  • the amplification reaction (preferably LAMP method) of the target nucleic acid region of Zika virus can be performed to detect or quantify Dika virus.
  • the reaction solution of LAMP using the primer set according to the present invention includes, for example, 2.5 to 80 pmol (preferably 5 to 40 pmol) of each primer included in the primer set according to the present invention and 0.02 fg of nucleic acid for specimen per 25 ⁇ l of the reaction solution.
  • ⁇ 4 ⁇ g (preferably 8fg ⁇ 0.0004 ⁇ g), strand displacement DNA synthase 4 ⁇ 64U (preferably 8 ⁇ 32U), reverse transcriptase 0.1 ⁇ 10U (preferably 0.5 ⁇ 4U), final concentration 0.8 ⁇ 2.4mM (preferably Includes 1.2 to 1.8 mM dNTPs.
  • QProbe for example, 0.5 to 20 pmol (preferably 1 to 5 pmol) of QProbe is contained per 25 ⁇ l of LAMP reaction solution.
  • examples of the amplification reaction conditions for LAMP include a temperature of 60 ° C. to 65 ° C. (preferably 63 ° C.) and a time of 10 to 60 minutes (preferably 15 to 30 minutes). .
  • Example 1 Confirmation of detection sensitivity The detection sensitivity was compared between the LAMP method and the PCR method. 1. Preparation of Samples and Reagents 1) Sample RNA of SEQ ID NO: 24 selected from NS5 gene sequence of ZIKA virus was dissolved in 10 mM Tris buffer (manufactured by WAKO) pH 8.0, and 10,000 copies to 100 copies per test were prepared. A 2-fold serial dilution and 2-fold serial dilutions of 50 and 25 copies were prepared and used as sample solutions. The Tris buffer was used as a 0-copy sample solution.
  • Tris buffer manufactured as a 0-copy sample solution.
  • Primer set 1 consisting of the base sequences represented by F3 (AGTGGACAAGGAAAGAGAGC: SEQ ID NO: 12) and B3 (CACCACCTCCTGAGTTCTC: SEQ ID NO: 13) of primer set 1-1 for amplifying 219 bp of NS5 gene;
  • Primer set 2 consisting of the base sequences represented by F3 (TTGCGTTGTGAAGCCAATT: SEQ ID NO: 19) and B3 (CCGGCCAATCAGTTCATCT: SEQ ID NO: 20) of primer set 1-6 for amplifying 220 bp of NS5 gene;
  • Primer set 3 consisting of the nucleotide sequence represented by F3 (CAGAAGGGACCTCCGACT: SEQ ID NO: 3) and B3 (CGTAACTGGGGTCTTGTCTT: SEQ ID NO: 4) of primer set 1-21 for amplifying 190 bp of NS
  • QuantiTect Probe RT-PCR kit (QIAGEN), which is a one-step real-time quantitative RT-PCR kit, was used.
  • RT-PCR reaction solution composition ⁇ 2 ⁇ QuantiTect Probe RT-PCR MasterMix 12.5 ⁇ L ⁇ F3 primer (100pmol / ⁇ l) 0.15 ⁇ L ⁇ B3 primer (100pmol / ⁇ l) 0.15 ⁇ L ⁇ YO-PRO-1 160nM (Thermo Fisher Scientific) ⁇ QuantiTect RT Mix 0.25 ⁇ L ⁇ RNase Inhibitor (20U / ⁇ l) 0.1 ⁇ L ⁇ RNase Free Water 6.35 ⁇ L ⁇ RNA Template 5 ⁇ L
  • Reagent composition and concentration used in the LAMP method As a ZIKA virus detection primer used in the LAMP method, (1) Primer set excluding LF11 / LB11 from primer set 1-1 (2) Primer set excluding LF15 / LB15 from primer set 1-6 (3) Primer set excluding LF1 / LB1 and LFM1 / LBM1 from primer set 1-21 (4) Primer set 1-1 (5) Primer set 1-6 (6) Primer set excluding LFM1 / LBM1 from primer set 1-21 (7) A primer set excluding LF1 / LB1 from primer set 1-21 was used. * (1)-(3): Inner primer and outer primer only * (4)-(7): Inner primer, outer primer and loop primer
  • Reaction solution composition (turbidity detection system): ⁇ 20mM Trine pH8.6 ⁇ 30mM KCl ⁇ 8 mM MgSO 4 ⁇ 1.4mM dNTPs ⁇ 0.5% Tween20 ⁇ 1.6mM DTT ⁇ 1.6 ⁇ M FIP and BIP ⁇ 0.2 ⁇ M F3 and B3 ⁇ 0.8 ⁇ M LF and LB ⁇
  • Reverse Transcriptase 1.0U (20U / ⁇ l, Roche) ⁇ Bst DNApolymerase 22.8U (New England Biolabs) ⁇ RNase Inhibitor (40U / ⁇ l) 1 ⁇ L ⁇ RNA Template 5 ⁇ L
  • Reaction solution composition (intercalator system): It was prepared by further adding the following reagents to the reaction solution composition of the turbidity detection system. ⁇ PPase 20mU (New England Biolabs) ⁇ YO-PRO-1 160nM (Thermo Fisher Scientific)
  • Reaction solution composition (probe system): It was prepared by further adding the following reagents to the reaction solution composition of the turbidity detection system. ⁇ PPase 20mU (New England Biolabs) ⁇ QProbe 0.04 ⁇ M (Nippon Steel & Sumikin Environment Co., Ltd.)
  • QProbe was used in combination with the LAMP primer set (4)-(7).
  • (8) (4) + ZK-LB1QP3G (9) (5) + ZK-LF6QP3G (10) (6) + ZK-LF21QP3G (11) (7) + ZK-LF21QP3G
  • Reaction composition (electrophoresis): After amplification with the above intercalator reaction solution composition, 5 ⁇ L of the amplification product was applied to a 2% agarose gel and stained with a buffer containing the following reagents. ⁇ TBE buffer containing 0.1 ⁇ g / mL EtBr (Nippon Gene)
  • Reaction by nucleic acid amplification method 1 Reaction by PCR method PCR reaction is performed by adding 5 ⁇ L of RNA solution to make 25 ⁇ L of the final reaction solution, and using real-time quantitative PCR system Lightcycler480 (Roche) in a 0.2 mL dedicated tube, reverse transcription 50 ° C 30 ° C Minutes, heat denaturation at 95 ° C. for 15 minutes, heat denaturation at 94 ° C. for 15 seconds, and PCR reaction at 52 ° C. for 75 seconds, for 45 cycles. The journey took about 100 minutes.
  • Lightcycler480 Roche
  • reaction solution After completion of the reaction, 5 ⁇ L of the reaction solution was electrophoresed on a 2% agarose gel to confirm the amplified product.
  • Reaction by LAMP method For LAMP reaction, add 5 ⁇ L of RNA solution to LAMP reagent to make 25 ⁇ L of the final reaction solution, and use real-time quantitative PCR system Mx3005P (Agilent Technologies) for 30 minutes in a 0.2 mL dedicated tube at 63 ° C. A LAMP reaction was performed.
  • reaction solution was electrophoresed on a 2% agarose gel.
  • Table 1 shows the results of the reaction time of real-time fluorescence measurement by PCR using primer sets (1) to (3). Specifically, Table 1 shows the reaction time of the real-time fluorescence measurement of the PCR method using the primer sets (1) to (3). Duplicate measurements were performed for each copy number. From the top of the table, 10000c / t (copy / test), 1000 copy / test, 100 copy / test, 50 copy / test, 25 copy / test, NC (0 copy / test) are shown. The results of amplification curves are shown in FIGS.
  • primer set (1) 25 copies or more confirmed an increase in fluorescence by about 50 minutes after the start of measurement, but 0 copies also confirmed an increase in fluorescence about 50 minutes after the start of measurement. Whether this primer set was specific amplification could not be determined.
  • primer set (2) 25 copies or more confirmed an increase in fluorescence by about 75 minutes after the start of measurement, and 0 copies showed no increase during the measurement time.
  • primer set (3) more than 25 copies confirmed an increase in fluorescence by about 73 minutes after the start of measurement, but 0 copies also confirmed an increase in fluorescence about 80 minutes after the start of measurement.
  • Table 2 shows the reaction time results of real-time fluorescence measurement using the LAMP method using primer sets (1) to (7). Specifically, Table 2 shows the reaction time of the real-time fluorescence measurement of the LAMP method using the primer sets (1) to (7). Duplicate measurements were performed for each copy number. From the top of the table, 10000c / t (copy / test), 1000 copy / test, 100 copy / test, 50 copy / test, 25 copy / test, NC (0 copy / test) are shown. For primer set (1)-(3) (no loop primer), only 10,000 copies / test and NC were measured. The results of amplification curves are shown in FIGS.
  • primer set (1) 10000 copies confirmed fluorescence amplification by about 20 minutes of measurement time, and 0 copies showed no increase during the measurement time.
  • primer set (2) 10000 copies confirmed fluorescence amplification by about 22 minutes of measurement time, and 0 copies were not confirmed to increase during the measurement time.
  • primer set (3) 10000 copies confirmed fluorescence amplification by about 20 minutes of measurement time, and 0 copies showed no increase during the measurement time.
  • the primer set (4) 100 copies or more confirmed fluorescence amplification by about 14 minutes of measurement time, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was shortened by more than 10 minutes.
  • the primer set (5) 1000 copies or more confirmed fluorescence amplification by about 20 minutes, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was shortened by more than 8 minutes.
  • primer set (6) 50 copies or more confirmed fluorescence amplification by about 30 minutes of measurement time, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was shortened by more than 10 minutes by adding the loop primer to the primer set (3).
  • the primer set (7) 1000 copies or more confirmed fluorescence amplification by about 10 minutes of measurement time, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was shortened by more than 10 minutes by adding a loop primer to the primer set (3).
  • FIG. 11 shows the results of electrophoresis by PCR
  • FIG. 12 shows the results of electrophoresis of LAMP using primer sets (4)-(7). Show.
  • Example 2 Examination of detection time and sensitivity by real-time turbidity measurement method of LAMP method Examination of detection time and sensitivity of LAMP method using primer set (4)-(7) described in Example 1 was conducted. Using 25 ⁇ L of the reaction solution composition (turbidity detection system) of the LAMP method of Example 1, a LAMP reaction was performed at 63 ° C. for 30 minutes using a real-time turbidity measuring device LoopampEXIA (measurement wavelength: 650 nm, Eiken Chemical).
  • LoopampEXIA measurement wavelength: 650 nm, Eiken Chemical
  • Table 3 shows the results of the LAMP method using primer sets (4)-(7). Specifically, Table 3 shows the reaction time for real-time turbidity measurement by the LAMP method using the primer sets (4) to (7). Duplicate measurements were performed for each copy number. From the top of the table, 10000 copies / test, 1000 copies / test, 100 copies / test, 50 copies / test, 25 copies / test, NC (0 copy / test) are shown. The results of amplification curves are shown in FIGS.
  • primer set (4) 1000 copies or more confirmed the amplification of turbidity by about 18 minutes, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was delayed by about 5 minutes from the real-time fluorescence measurement method.
  • primer set (5) 10000 copies or more confirmed amplification of turbidity by about 18 minutes of measurement time, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was delayed by about 5 minutes from the real-time fluorescence measurement method.
  • primer set (6) 1000 copies or more confirmed amplification of turbidity by about 19 minutes, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was delayed by about 5 minutes from the real-time fluorescence measurement method.
  • primer set (7) 25 copies or more confirmed the turbidity of fluorescence by about 26 minutes, and 0 copies showed no increase during the measurement time.
  • the reaction time of 10,000 copies / test was delayed by about 4 minutes from the real-time fluorescence measurement method.
  • Example 3 Examination of detection time and sensitivity by real-time fluorescence measurement method using QProbe of LAMP method Examination of detection time and sensitivity of LAMP method using primer set (4)-(7) described in Example 1
  • the LAMP reaction solution composition (probe system) 25 ⁇ L of Example 1 was used, and a LAMP reaction was performed at 63 ° C. for 30 minutes using a real-time quantitative PCR system Mx3005P (Agilent Technologies).
  • Table 4 shows the reaction time of real-time measurement using the LAMP method QProbe of the primer sets (4) to (7). Duplicate measurements were performed for each copy number. From the top of the table, 10000 copies / test, 1000 copies / test, 100 copies / test, 50 copies / test, 25 copies / test, NC (0 copy / test) are shown. The results of the extinction curve are shown in FIGS.
  • primer set (5) 10000 copies or more confirmed fluorescence quenching by about 26 minutes of measurement time, and 0 copy did not confirm quenching during the measurement time.
  • the reaction time of 10,000 copies / test was delayed by about 5 minutes from the real-time fluorescence measurement method.
  • primer set (6) 100 copies or more confirmed the quenching of fluorescence by about 26 minutes of measurement time, and 0 copies were not quenched during the measurement time.
  • the reaction time of 10,000 copies / test was delayed by about 3 minutes from the real-time fluorescence measurement method.
  • Table 5 shows the results of the LAMP method using primer sets (4)-(7). Specifically, Table 5 shows the reaction time of real-time measurement using the LAMP method QProbe of the primer sets (4) to (7). A single measurement was performed for each item. From above, D-1 to D-4 represent Dengue virus serotypes 1 to 4, RNA, WNV99 to WNV Eg101 represent West Nile virus RNA, and CHIK represents Chikungunya virus RNA. The results of the extinction curve are shown in FIGS.
  • Zika virus can be detected with high sensitivity and speed, and Zika virus infection can be diagnosed efficiently.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、ジカウイルスを高感度且つ迅速に検出できる方法を提供することを目的とし、具体的には、ジカウイルスに特異的な塩基配列と選択的にハイブリダイズするオリゴヌクレオチドプライマーを用いて、LAMP法によりジカウイルスに特異的な塩基配列を増幅することを含む、ジカウイルスの検出方法に関する。

Description

ジカウイルス検出用プライマーセット
 本発明は、ジカウイルスの検出方法に関し、さらに詳しくは遺伝子の、高感度且つ迅速な検出法を利用したジカウイルス感染症の診断方法に関するものである。
 ジカウイルスは、フラビウイルス科フラビウイルス属のウイルスであり、1本鎖RNA+鎖をウイルスゲノムとして有するRNAウイルスである。ジカウイルスに感染したヒトは、例えば熱(ジカ熱)、頭痛、関節痛、筋痛症、倦怠感、食欲不振、発疹、無力症、後眼窩痛、浮腫、リンパ節症、下痢等といったインフルエンザ様の症状を発症する。また、ジカウイルス感染症自体は致死率の低い感染症であるが、妊婦が感染すると胎児や新生児の小頭症の発症の原因となることが報告されている。2016年リオデジャネイロオリンピックの開催地であるブラジルをはじめ、パラグアイ、コロンビア等の南米大陸、メキシコ、エルサルバドル等の中米で流行が確認されている。その地域を訪問した人が帰国した後に発症したケースが欧米など世界各地で確認されていることから世界的な流行が懸念されているため、ワクチンや効率的なジカウイルスの検出方法の開発が望まれている。
 非特許文献1及び2は、一段階(One-step)RT-PCRを用いてジカウイルスを検出する方法を開示する。しかしながら、さらに、ジカウイルスを高感度且つ迅速に検出できる検査法が望まれていた。
Faye O.ら, Journal of Clinical Virology, 2008年, Vol. 43, pp. 96-101 Balm M.N.D.ら, Journal of Medical Virology, 2012年, Vol. 84, pp. 1501-1505
 本発明は、ジカウイルスを高感度且つ迅速に検出できる方法を提供することを目的とする。
 上記課題を解決するために鋭意研究を行った結果、ジカウイルスに特異的な塩基配列と選択的にハイブリダイズするオリゴヌクレオチドプライマーを作製し、LAMP(Loop-mediated Isothermal Amplification)法によりジカウイルスに特異的な塩基配列を増幅することで、ジカウイルスを高感度且つ迅速に検出できることを見出し、本発明を完成した。
 すなわち、本発明は、以下を包含する。
(1)以下の(a)~(d)のオリゴヌクレオチドプライマー全てを含む、ジカウイルスに特異的な塩基配列を増幅するためのプライマーセット。
 (a) 5'-TTGACCAGGTAGTTCTCCCAGTATGGCCAATGCCATTTGTTC-3'(配列番号1)
 (b) 5'-AGGGAGAATGGATGACCACTGACTCCTCAATCCACACTCTGT-3'(配列番号2)
 (c) 5'-CAGAAGGGACCTCCGACT-3'(配列番号3)
 (d) 5'-CGTAACTGGGGTCTTGTCTT-3'(配列番号4)
(2)以下の(e)及び/又は(f)のオリゴヌクレオチドプライマーをさらに含む、(1)記載のプライマーセット。
 (e) 5'-TGGAACCCAGTCAACTG-3'(配列番号5)
 (f) 5'-AGACATGCTTGTGGTGT-3'(配列番号6)
(3)以下の(g)及び/又は(h)のオリゴヌクレオチドプライマーをさらに含む、(1)記載のプライマーセット。
 (g) 5'-CCCAGTCAACTGGCACAG-3'(配列番号7)
 (h) 5'-CATGCTTGTGGTGTG-3'(配列番号8)
(4)以下の(j)~(m)のオリゴヌクレオチドプライマー全てを含む、ジカウイルスに特異的な塩基配列を増幅するためのプライマーセット。
 (j) 5'-TGGCCTTTCCAAATTCCCCTTGCTGAGAGGAGAGTGCCAGAG-3'(配列番号10)
 (k) 5'-TCTGGTATATGTGGCTAGGGGCCCCATCCAGTGATCCTCGTT-3'(配列番号11)
 (l) 5'-AGTGGACAAGGAAAGAGAGC-3'(配列番号12)
 (m) 5'-CACCACCTCCTGAGTTCTC-3'(配列番号13)
(5)以下の(n)及び/又は(o)のオリゴヌクレオチドプライマーをさらに含む、(4)記載のプライマーセット。
 (n) 5'-AGATGGAGCTTGTTGAAGTG-3'(配列番号14)
 (o) 5'-CTCTCCAGGGGCGGGATGGA-3'(配列番号15)
(6)以下の(q)~(t)のオリゴヌクレオチドプライマー全てを含む、ジカウイルスに特異的な塩基配列を増幅するためのプライマーセット。
 (q) 5'-AGGGTTTCCACTCTTGTGTGTCCACATGCCCTCAGGTTCTT-3'(配列番号17)
 (r) 5'-AGTTCCGTTTTGCTCCCACCCACAATGGACCTCCCGTC-3'(配列番号18)
 (s) 5'-TTGCGTTGTGAAGCCAATT-3'(配列番号19)
 (t) 5'-CCGGCCAATCAGTTCATCT-3'(配列番号20)
(7)以下の(u)及び/又は(v)のオリゴヌクレオチドプライマーをさらに含む、(6)記載のプライマーセット。
 (u) 5'-CTTTTTCCCATCATGTTGTACACAC-3'(配列番号21)
 (v) 5'-TAGAGTTCGAAGCCCTTGGATTCT-3'(配列番号22)
(8)(1)~(7)のいずれか1記載のプライマーセットを含む、ジカウイルス検出又はジカウイルス感染症診断用キット。
(9)蛍光標識プローブをさらに含む、(8)記載のキット。
(10)(1)~(3)のいずれか1記載のプライマーセットを含み、蛍光標識プローブが以下の(i)のオリゴヌクレオチドを有する蛍光標識プローブである、(9)記載のキット。
 (i) 5'-TGGAACCCAGTCAACTGGCACAGATGAAC-3'(配列番号9)
(11)(4)又は(5)記載のプライマーセットを含み、蛍光標識プローブが以下の(p)のオリゴヌクレオチドを有する蛍光標識プローブである、(9)記載のキット。
 (p) 5'-TAGATTTCTAGAGTTCGAAGCCCTTGGATTC-3'(配列番号16)
(12)(6)又は(7)記載のプライマーセットを含み、蛍光標識プローブが以下の(w)のオリゴヌクレオチドを有する蛍光標識プローブである、(9)記載のキット。
 (w) 5'-CTTCCTAACTTTTCCCATATCATTCAAGAACC-3'(配列番号23)
(13)(1)~(7)のいずれか1記載のプライマーセット又は(8)~(12)のいずれか1記載のキットを用いて、ジカウイルスの標的核酸領域の増幅反応を行う工程を含む、ジカウイルスの検出方法。
(14)ジカウイルスの標的核酸領域の増幅反応がLAMP法である、(13)記載の方法。
(15)(1)~(7)のいずれか1記載のプライマーセット又は(8)~(12)のいずれか1記載のキットを用いて、ジカウイルスの標的核酸領域の増幅を検出することにより、ジカウイルス感染の有無を検査する工程を含む、ジカウイルス感染症の検査方法。
 本発明によれば、ジカウイルスに特異的な塩基配列と選択的にハイブリダイズするオリゴヌクレオチドプライマーを作製し、LAMP法によりジカウイルスに特異的な塩基配列を増幅することで、ジカウイルスを高感度且つ迅速に検出することができる。
実施例1におけるプライマーセット(1)を用いたPCR法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(2)を用いたPCR法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(3)を用いたPCR法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(1)を用いたLAMP法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(2)を用いたLAMP法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(3)を用いたLAMP法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(4)を用いたLAMP法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(5)を用いたLAMP法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(6)を用いたLAMP法のリアルタイム蛍光測定の増幅曲線を示す。 実施例1におけるプライマーセット(7)を用いたLAMP法のリアルタイム蛍光測定の増幅曲線を示す。 表1で示したリアルタイム蛍光検出の増幅物を用いて電気泳動法によるPCR法の検出感度と特異性を示す写真である。レーン1と11はマーカー(下から100bp、200bp、300bp、400bpと続き、色のバンドが濃いところが500bpである。)であり、レーン2はプライマーセット(1)の10000コピー/テストであり、レーン3はプライマーセット(1)の100コピー/テストであり、レーン4はプライマーセット(1)の0コピー/テストであり、レーン5はプライマーセット(2)の10000コピー/テストであり、レーン6はプライマーセット(2)の100コピー/テストであり、レーン7はプライマーセット(2)の0コピー/テストであり、レーン8はプライマーセット(3)の10000コピー/テストであり、レーン9はプライマーセット(3)の100コピー/テストであり、レーン10はプライマーセット(3)の0コピー/テストである。 表2で示したリアルタイム蛍光検出の増幅物を用いて電気泳動法によるLAMP法の検出感度と特異性を示す写真である。レーン1と14はマーカー(下から100bp、200bp、300bp、400bpと続き、色のバンドが濃いところが500bpである。)であり、レーン2はプライマーセット(4)の10000コピー/テストであり、レーン3はプライマーセット(4)の100コピー/テストであり、レーン4はプライマーセット(4)の0コピー/テストであり、レーン5はプライマーセット(5)の10000コピー/テストであり、レーン6はプライマーセット(5)の1000コピー/テストであり、レーン7はプライマーセット(5)の0コピー/テストであり、レーン8はプライマーセット(6)の10000コピー/テストであり、レーン9はプライマーセット(6)の100コピー/テストであり、レーン10はプライマーセット(6)の0コピー/テストであり、レーン11はプライマーセット(7)の10000コピー/テストであり、レーン12はプライマーセット(7)の100コピー/テストであり、レーン13はプライマーセット(7)の0コピー/テストである。 実施例2におけるプライマーセット(4)を用いたLAMP法のリアルタイム濁度測定の増幅曲線を示す。 実施例2におけるプライマーセット(5)を用いたLAMP法のリアルタイム濁度測定の増幅曲線を示す。 実施例2におけるプライマーセット(6)を用いたLAMP法のリアルタイム濁度測定の増幅曲線を示す。 実施例2におけるプライマーセット(7)を用いたLAMP法のリアルタイム濁度測定の増幅曲線を示す。 実施例3におけるプライマーセット(4)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。 実施例3におけるプライマーセット(5)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。 実施例3におけるプライマーセット(6)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。 実施例3におけるプライマーセット(7)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。 実施例4におけるプライマーセット(4)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。 実施例4におけるプライマーセット(5)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。 実施例4におけるプライマーセット(6)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。 実施例4におけるプライマーセット(7)を用いたLAMP法のQProbeを用いたリアルタイム蛍光測定の消光曲線を示す。
 以下、本発明を詳細に説明する。
 本発明に係るプライマーセットは、ジカウイルスに特異的な塩基配列と選択的にハイブリダイズするオリゴヌクレオチドプライマーを含む、LAMP法によりジカウイルスに特異的な塩基配列を増幅するためのプライマーセットである。
 本発明に係るプライマーセットによれば、被験体由来のサンプル中のジカウイルスを高感度且つ迅速に検出することができる。
 本発明において使用されるサンプルとしては、ジカウイルス感染が疑われるヒト又は他の動物の生体由来のサンプル、例えば喀痰、気管支肺胞洗浄液、鼻汁、鼻腔吸引液、鼻腔洗浄液、鼻腔拭い液、咽頭拭い液、うがい液、唾液、血液、血清、血漿、髄液、尿、精液および羊水等の体液、糞便、組織等が挙げられる。また、感染実験等に用いられた細胞やその培養液、あるいは生体由来の検体や培養細胞等から分離したウイルスを含む検体等もサンプルとなりうる。これらのサンプルは分離、抽出、濃縮、精製等の前処理を行っても良い。
 本発明における核酸増幅は、納富らが開発した、PCR法で不可欠とされる温度制御が不要な核酸増幅法:LAMP法と呼ばれるループ媒介等温増幅法(国際公開第00/28082号パンフレット)で達成することができる。当該方法は、鋳型となるヌクレオチドに自身の3'末端をアニールさせて相補鎖合成の起点とすると共に、このとき形成されるループにアニールするプライマーを組み合わせることにより、等温での相補鎖合成反応を可能とした核酸増幅法である。また、LAMP法では、プライマーの3'末端が常にサンプルに由来する領域に対してアニールするために、塩基配列の相補的結合によるチェック機構が繰り返し機能するため、その結果として、高感度に且つ特異性の高い核酸増幅反応を可能としている。
 LAMP反応で使用されるオリゴヌクレオチドプライマーは、鋳型核酸の塩基配列の計6領域、すなわち3'末端側からF3c、F2c、F1cという領域と、5'末端側からB3、B2、B1という領域の塩基配列を認識する少なくとも4種類のプライマーであって、各々インナープライマーF(FIP)及びB(BIP)とアウタープライマーF(F3)及びB(B3)と呼ぶ。また、F1c、F2c、F3cの相補配列をそれぞれF1、F2、F3、またB1、B2、B3の相補鎖をB1c、B2c、B3cと呼ぶ。インナープライマーとは、標的塩基配列上の「ある特定のヌクレオチド配列領域」を認識し、且つ合成起点を与える塩基配列を3'末端に有し、同時にこのプライマーを起点とする核酸合成反応生成物の任意の領域に対して相補的な塩基配列を5'末端に有するオリゴヌクレオチドである。ここで、「F2より選ばれた塩基配列」及び「F1cより選ばれた塩基配列」を含むプライマーをインナープライマーF(FIP)、そして「B2より選ばれた塩基配列」と「B1cより選ばれた塩基配列」を含むプライマーをインナープライマーB(BIP)と呼ぶ。一方、アウタープライマーとは、標的塩基配列上の『「ある特定のヌクレオチド配列領域」の3'末端側に存在するある特定のヌクレオチド配列領域』を認識し、且つ合成起点を与える塩基配列を有するオリゴヌクレオチドである。ここで、「F3より選ばれた塩基配列」を含むプライマーをアウタープライマーF(F3)、「B3より選ばれた塩基配列」を含むプライマーをアウタープライマーB(B3)と呼ぶ。ここで、各プライマーにおけるFとは、標的塩基配列のセンス鎖と相補的に結合し、合成起点を提供するプライマー表示であり、一方、Bとは、標的塩基配列のアンチセンス鎖と相補的に結合し、合成起点を提供するプライマー表示である。ここで、プライマーとして用いられるオリゴヌクレオチドの長さは、10塩基以上、好ましくは15塩基以上で、化学合成あるいは天然のどちらでも良く、各プライマーは単一のオリゴヌクレオチドであってもよく、複数のオリゴヌクレオチドの混合物であってもよい。
 LAMP法においては、インナープライマーとアウタープライマーに加え、さらにこれとは別のプライマー、すなわちループプライマー(Loop Primer)を用いることができる。ループプライマーLF及び/又はLBは、ダンベル構造の5'末端側のループ構造の一本鎖部分の塩基配列に相補的な塩基配列を持つプライマーである。このプライマーを用いると、核酸合成の起点が増加し、反応時間の短縮と検出感度の上昇が可能となる(国際公開第02/24902号パンフレット)。ループプライマーの塩基配列は上述のダンベル構造の5'末端側のループ構造の一本鎖部分の塩基配列に相補的であれば、標的遺伝子の塩基配列又はその相補鎖から選ばれても良く、他の塩基配列でも良い。また、ループプライマーは1種類でも2種類でも良い。
 ジカウイルスはRNAウイルスである。LAMP法は鋳型がRNAの場合には、鋳型がDNAの場合の反応液に逆転写酵素を添加することで、同様に核酸増幅反応を進めることができる(RT-LAMP法)。
 ジカウイルスに特異的な塩基配列を迅速に増幅できるLAMP法のプライマーの塩基配列とその組み合わせを鋭意研究した結果、ジカウイルスのNS5遺伝子(GenBank Accession Number: KU312312.1、配列番号24)を標的配列として、以下の3組のプライマーセットを選定した。
プライマーセット1-21:
 (a) FIP:5'-TTGACCAGGTAGTTCTCCCAGTATGGCCAATGCCATTTGTTC-3'(配列番号1)
 (b) BIP:5'-AGGGAGAATGGATGACCACTGACTCCTCAATCCACACTCTGT-3'(配列番号2)
 (c) F3:5'-CAGAAGGGACCTCCGACT-3'(配列番号3)
 (d) B3:5'-CGTAACTGGGGTCTTGTCTT-3'(配列番号4)
 (e) LF1:5'-TGGAACCCAGTCAACTG-3'(配列番号5)
 (f) LB1:5'-AGACATGCTTGTGGTGT-3'(配列番号6)
 (g) LFM1:5'-CCCAGTCAACTGGCACAG-3'(配列番号7)
 (h) LBM1:5'-CATGCTTGTGGTGTG-3'(配列番号8)
プライマーセット1-1:
 (j) FIP:5'-TGGCCTTTCCAAATTCCCCTTGCTGAGAGGAGAGTGCCAGAG-3'(配列番号10)
 (k) BIP:5'-TCTGGTATATGTGGCTAGGGGCCCCATCCAGTGATCCTCGTT-3'(配列番号11)
 (l) F3:5'-AGTGGACAAGGAAAGAGAGC-3'(配列番号12)
 (m) B3:5'-CACCACCTCCTGAGTTCTC-3'(配列番号13)
 (n) LF11:5'-AGATGGAGCTTGTTGAAGTG-3'(配列番号14)
 (o) LB11:5'-CTCTCCAGGGGCGGGATGGA-3'(配列番号15)
プライマーセット1-6:
 (q) FIP:5'-AGGGTTTCCACTCTTGTGTGTCCACATGCCCTCAGGTTCTT-3'(配列番号17)
 (r) BIP:5'-AGTTCCGTTTTGCTCCCACCCACAATGGACCTCCCGTC-3'(配列番号18)
 (s) F3:5'-TTGCGTTGTGAAGCCAATT-3'(配列番号19)
 (t) B3:5'-CCGGCCAATCAGTTCATCT-3'(配列番号20)
 (u) LF15:5'-CTTTTTCCCATCATGTTGTACACAC-3'(配列番号21)
 (v) LB15:5'-TAGAGTTCGAAGCCCTTGGATTCT-3'(配列番号22)
 核酸合成で使用する酵素は、鎖置換活性を有する鋳型依存性核酸合成酵素であれば特に限定されない。このような酵素としては、例えばBst DNAポリメラーゼ(ラージフラグメント)、Bca(exo-)DNAポリメラーゼ、大腸菌DNAポリメラーゼIのクレノウフラグメント、Csa DNAポリメラーゼ等が挙げられ、好ましくはBst DNAポリメラーゼ(ラージフラグメント)が挙げられる。
 RT-LAMP法に用いる逆転写酵素としては、RNAを鋳型としてDNAを合成する活性を有する酵素であれば特に限定されない。このような酵素としては、例えばAMV、Cloned AMV、MMLV、Recombinant HIVの逆転写酵素、SuperscriptII/III/IV、ReverTraAce、Thermoscript、Ominiscript、Sensiscript等が挙げられ、好ましくは、AMV又はCloned AMV逆転写酵素が挙げられる。またBca DNAポリメラーゼのように、逆転写酵素活性とDNAポリメラーゼ活性の両活性を有する酵素を用いると、RT-LAMP反応を1つの酵素で行うことができる。
 核酸合成で使用する酵素や逆転写酵素は、ウイルスや細菌等から精製されたものでも良く、遺伝子組み換え技術によって作製されたものでも良い。またこれらの酵素はフラグメント化やアミノ酸の置換等の改変をされたものでも良い。
 LAMP反応後の核酸増幅産物の検出には公知の技術が適用できる。例えば、増幅された塩基配列を特異的に認識する標識オリゴヌクレオチドや蛍光性インターカレーター法(特開2001-242169号公報)を用いたり、あるいは反応終了後の反応液をそのままアガロースゲル電気泳動にかけたりしても容易に検出できる。アガロースゲル電気泳動では、LAMP増幅産物は、塩基長の異なる多数のバンドがラダー(はしご)状に検出される。また、LAMP法では核酸の合成により基質が大量に消費され、副産物であるピロリン酸が、共存するマグネシウムと反応してピロリン酸マグネシウムとなり、反応液が肉眼でも確認できる程に白濁する。従って、この白濁を、反応終了後あるいは反応中の濁度上昇を経時的に光学的に観察できる測定機器、例えば400nmの吸光度変化を通常の分光光度計を用いて確認することで、核酸増幅反応を検出することも可能である(国際公開第01/83817号パンフレット)。
 LAMP反応の核酸増幅産物の検出の一態様としては、蛍光標識プローブを用いる方法が挙げられる。例えば、蛍光消光プローブ(Quenching Probe:QProbe(登録商標))と称される3'末端または5'末端に蛍光標識されたプローブは、標的核酸にハイブリダイゼーションしたときに蛍光色素がその発光を減少させることで、増幅産物を検出又は定量することができる(特開2001-286300号公報)。また末端部分において、ハイブリダイゼーションの塩基対がG(グアニン)とC(シトシン)のペアを形成するように設計されることを特徴としている。ここで使用される蛍光標識としては、例えば、BODIPY-FL、カルボキシローダミン6G(CR6G)、カルボキシテトラメチルローダミン(TAMRA)、Pacific Blue、フルオレセイン-4-イソチオシアネート(FITC)等が挙げられる。
 本発明においては、上記3組のプライマーセットに合わせて、以下のQProbeを使用することができる。なお、各QProbeは、3'末端にBODIPY-FLで標識されている。
プライマーセット1-21に対するQProbe:
 (i) ZK-LF21QP3G:5'-TGGAACCCAGTCAACTGGCACAGATGAAC-3'(配列番号9)
プライマーセット1-1に対するQProbe:
 (p) ZK-LB1QP3G:5'-TAGATTTCTAGAGTTCGAAGCCCTTGGATTC-3'(配列番号16)
プライマーセット1-6に対するQProbe:
 (w) ZK-LF6QP3G:5'-CTTCCTAACTTTTCCCATATCATTCAAGAACC-3'(配列番号23)
 本発明に係るプライマーセットを用いて核酸増幅の検出を行う際に必要な各種の試薬類は、予めパッケージングしてジカウイルス検出又はジカウイルス感染症診断用にキット化することができる。具体的には、本発明に係るプライマーセット、蛍光標識プローブ、核酸合成の基質となる4種類のdNTP、核酸合成を行うDNAポリメラーゼ、逆転写活性を持つ酵素、酵素反応に好適な条件を与える緩衝液や塩類、酵素や鋳型を安定化する保護剤、さらに必要に応じて反応生成物の検出に必要な試薬類がキットとして提供される。
 以上に説明した本発明に係るプライマーセット又はキットを用いて、ジカウイルスの標的核酸領域の増幅反応(好ましくはLAMP法)を行い、ジカウイルスを検出又は定量することができる。換言すれば、当該検出又は定量により、ジカウイルス感染の有無を検査し、ジカウイルス感染症を検査又は評価することができる。本発明に係るプライマーセットを用いたLAMPの反応液には、例えば、反応液25μl当たり、本発明に係るプライマーセットに含まれる各プライマー2.5~80pmol(好ましくは5~40pmol)、検体用核酸0.02fg~4μg(好ましくは8fg~0.0004μg)、鎖置換型DNA合成酵素4~64U(好ましくは8~32U)、逆転写酵素0.1~10U(好ましくは0.5~4U)、最終濃度0.8~2.4mM(好ましくは1.2~1.8mM)のdNTPが含まれる。また、QProbeを使用する場合には、例えば、LAMPの反応液25μl当たり0.5~20pmol(好ましくは1~5pmol)のQProbeを含む。さらに、LAMPの増幅反応条件としては、例えば、温度60℃~65℃(好ましくは63℃)で10~60分(好ましくは15~30分)が挙げられる。     
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれによって限定されるものではない。
〔実施例1〕検出感度の確認
 LAMP法と、PCR法との検出感度の比較を行った。
1.試料及び試薬の調製
1)試料
 ZIKAウイルスのNS5遺伝子配列より選ばれた配列番号24のRNAを、10mM Tris buffer(WAKO製) pH8.0に溶解し、1テスト当たり10,000コピーから100コピーまでの10倍段階希釈液と、50、25コピーの2倍段階希釈液を作製し、試料溶液とした。また同Tris bufferを0コピーの試料溶液とした。
2)PCR法に用いる試薬組成及び濃度
 PCR法で使用するZIKAウイルス検出用プライマーとして、
(1)NS5遺伝子の219bpを増幅するプライマーセット1-1のF3(AGTGGACAAGGAAAGAGAGC:配列番号12)及びB3(CACCACCTCCTGAGTTCTC:配列番号13)で示される塩基配列から成るプライマーセット1;
(2)NS5遺伝子の220bpを増幅するプライマーセット1-6のF3(TTGCGTTGTGAAGCCAATT:配列番号19)及びB3(CCGGCCAATCAGTTCATCT:配列番号20)で示される塩基配列から成るプライマーセット2;
(3)NS5遺伝子の190bpを増幅するプライマーセット1-21のF3(CAGAAGGGACCTCCGACT:配列番号3)及びB3(CGTAACTGGGGTCTTGTCTT:配列番号4)で示される塩基配列から成るプライマーセット3;
を使用した。
 反応には、1ステップリアルタイム定量RT-PCRキットであるQuantiTect Probe RT-PCR kit(QIAGEN)を使用した。
RT-PCR反応溶液組成:
・2×QuantiTect Probe RT-PCR MasterMix 12.5μL
・F3 primer(100pmol/μl) 0.15μL
・B3 primer(100pmol/μl) 0.15μL
・YO-PRO-1 160nM(Thermo Fisher Scientific)
・QuantiTect RT Mix 0.25μL
・RNase Inhibitor(20U/μl) 0.1μL
・RNase Free Water 6.35μL
・RNA Template 5μL
3)LAMP法に用いる試薬組成及び濃度
 LAMP法で使用するZIKAウイルス検出用プライマーとして、
(1)プライマーセット1-1からLF11/LB11を除くプライマーセット
(2)プライマーセット1-6からLF15/LB15を除くプライマーセット
(3)プライマーセット1-21からLF1/LB1とLFM1/LBM1を除くプライマーセット
(4)プライマーセット1-1
(5)プライマーセット1-6
(6)プライマーセット1-21からLFM1/LBM1を除くプライマーセット
(7)プライマーセット1-21からLF1/LB1を除くプライマーセット
を使用した。
※(1)-(3):インナープライマーとアウタープライマーのみ
※(4)-(7):インナープライマーとアウタープライマーとループプライマー
 最終反応溶液25μL中の各試薬濃度が下記になるよう調製した。
反応溶液組成(濁度検出系):
・20mM Trine pH8.6
・30mM KCl
・8mM MgSO4
・1.4mM dNTPs
・0.5%Tween20
・1.6mM DTT
・1.6μM FIP及びBIP
・0.2μM F3及びB3
・0.8μM LF及びLB
・AMV Reverse Transcriptase 1.0U(20U/μl、Roche)
・Bst DNApolymerase 22.8U(New England Biolabs)
・RNase Inhibitor(40U/μl) 1μL
・RNA Template 5μL
反応溶液組成(インターカレーター系):
 上記濁度検出系の反応溶液組成に、更に以下の試薬を添加して調製した。
・PPase 20mU(New England Biolabs)
・YO-PRO-1 160nM(Thermo Fisher Scientific)
反応溶液組成(probe系):
 上記濁度検出系の反応溶液組成に、更に以下の試薬を添加して調製した。
・PPase 20mU(New England Biolabs)
・QProbe 0.04μM(日鉄住金環境株式会社)
 QProbeは、LAMPプライマーセット(4)-(7)と組み合わせて使用した。
(8)(4)+ZK-LB1QP3G
(9)(5)+ZK-LF6QP3G
(10)(6)+ZK-LF21QP3G
(11)(7)+ZK-LF21QP3G
反応組成(電気泳動):
 上記インターカレーター系の反応溶液組成で増幅後、その増幅産物5μLを2%アガロースゲルに供し、以下の試薬を含むbufferで染色した。
・0.1μg/mL EtBr(ニッポンジーン)を含むTBE buffer
2.核酸増幅法による反応
1)PCR法による反応
 PCR反応は、RNA溶液5μLを加え、最終反応溶液25μLとし、0.2mLの専用チューブ内でリアルタイム定量PCRシステムLightcycler480(Roche)を用い、逆転写50℃30分、熱変性95℃15分後、熱変性94℃15秒、PCR反応52℃75秒を1サイクルとして計45サイクル行った。所要時間は約100分だった。
 反応終了後の反応溶液5μLを2%アガロースゲルで電気泳動し、増幅産物を確認した。
2)LAMP法による反応
 LAMP反応は、LAMP用試薬にRNA溶液5μLを加え、最終反応溶液25μLとし、0.2mLの専用チューブ内でリアルタイム定量PCRシステムMx3005P(Agilent Technologies)を用い、63℃で30分LAMP反応を行った。
 反応終了後の反応溶液5μLを2%アガロースゲルで電気泳動を行った。
3.リアルタイム蛍光(インターカレーター系)測定による検出感度の比較結果
 プライマーセット(1)-(3)を用いたPCR法のリアルタイム蛍光測定の反応時間の結果を表1に示す。具体的には、表1においては、プライマーセット(1)-(3)を用いたPCR法のリアルタイム蛍光測定の反応時間を示した。各コピー数について、2重測定を実施した。表の上から、10000c/t(コピー/テスト)、1000コピー/テスト、100コピー/テスト、50コピー/テスト、25コピー/テスト、NC(0コピー/テスト)を示す。また、増幅曲線の結果を図1~3に示す。
 PCR法は、プライマーセット(1)は、25コピー以上が測定開始後約50分までに蛍光の増加を確認したが、0コピーも測定開始後約50分に蛍光の増加を確認した。このプライマーセットでは特異的増幅であるかは判断できなかった。
 プライマーセット(2)は、25コピー以上が測定開始後約75分までに蛍光の増加を確認し、0コピーは測定時間中の増加が確認されなかった。
 プライマーセット(3)は、25コピー以上が測定開始後約73分までに蛍光の増加を確認したが、0コピーも測定開始後約80分に蛍光の増加を確認した。
Figure JPOXMLDOC01-appb-T000001
 プライマーセット(1)-(7)を用いたLAMP法のリアルタイム蛍光測定の反応時間の結果を表2に示す。具体的に、表2においては、プライマーセット(1)-(7)を用いたLAMP法のリアルタイム蛍光測定の反応時間を示した。各コピー数について、2重測定を実施した。表の上から、10000c/t(コピー/テスト)、1000コピー/テスト、100コピー/テスト、50コピー/テスト、25コピー/テスト、NC(0コピー/テスト)を示す。プライマーセット(1)-(3)(ループプライマー無し)では、10000コピー/テストとNCのみを計測した。また、増幅曲線の結果を図4~10に示す。
 プライマーセット(1)は、10000コピーが測定時間約20分までに蛍光の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。
 プライマーセット(2)は、10000コピーが測定時間約22分までに蛍光の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。
 プライマーセット(3)は、10000コピーが測定時間約20分までに蛍光の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。
 プライマーセット(4)は、100コピー以上が測定時間約14分までに蛍光の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。プライマーセット(1)にループプライマーを添加することで、10000コピー/テストの反応時間が10分以上短縮された。
 プライマーセット(5)は、1000コピー以上が測定時間約20分までに蛍光の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。プライマーセット(2)にループプライマーを添加することで、10000コピー/テストの反応時間が8分以上短縮された。
 プライマーセット(6)は、50コピー以上が測定時間約30分までに蛍光の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。プライマーセット(6)はプライマーセット(3)にループプライマーを添加することで、10000コピー/テストの反応時間が10分以上短縮された。
 プライマーセット(7)は、1000コピー以上が測定時間約10分までに蛍光の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。プライマーセット(7)はプライマーセット(3)にループプライマーを添加することで、10000コピー/テストの反応時間が10分以上短縮された。
Figure JPOXMLDOC01-appb-T000002
4.電気泳動法による各増幅反応の検出感度と特異性の確認
 PCR法の電気泳動の結果を図11に、プライマーセット(4)-(7)を用いたLAMP法の電気泳動の結果を図12に示す。
 PCR法では、プライマーセット(1)は219bpの特異的バンドが10000コピーで明瞭に認められ、100コピーは薄いバンド、0コピーは特異的バンドを認めなかった。
 プライマーセット(2)は220bpの特異的バンドが100コピーまで明瞭に認められ、0コピーは特異的バンドを認めなかった。
 プライマーセット(3)は190bpの特異的バンドが100コピーまで明瞭に認められ、0コピーは特異的バンドを認めなかった。
 これに対し、LAMP法では、
 プライマーセット(4)は100コピーまで特異的増幅のラダー状のバンドが明瞭に認められ、0コピーは特異的バンドを認めなかった。
 プライマーセット(5)は1000コピーまで特異的増幅のラダー状のバンドが明瞭に認められ、0コピーは特異的バンドを認めなかった。
 プライマーセット(6)は100コピーまで特異的増幅のラダー状のバンドが明瞭に認められ、0コピーは特異的バンドを認めなかった。
 プライマーセット(7)は1000コピーまで特異的増幅のラダー状のバンドが明瞭に認められ、0コピーは特異的バンドを認めなかった。
〔実施例2〕LAMP法のリアルタイム濁度測定法による検出時間と感度の検討
 実施例1に記載のプライマーセット(4)-(7)を用いたLAMP法の検出時間及び感度の検討は、実施例1のLAMP法の反応溶液組成(濁度検出系)25μLを用い、リアルタイム濁度測定装置LoopampEXIA(測定波長 650nm、栄研化学)によって63℃で30分LAMP反応を行った。
 プライマーセット(4)-(7)を用いたLAMP法のその結果を表3に示す。具体的に、表3においては、プライマーセット(4)-(7)を用いたLAMP法のリアルタイム濁度測定の反応時間を示した。各コピー数について、2重測定を実施した。表の上から、10000コピー/テスト、1000コピー/テスト、100コピー/テスト、50コピー/テスト、25コピー/テスト、NC(0コピー/テスト)を示す。また、増幅曲線の結果を図13~16に示す。
 プライマーセット(4)は、1000コピー以上が測定時間約18分までに濁度の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約5分遅延した。
 プライマーセット(5)は、10000コピー以上が測定時間約18分までに濁度の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約5分遅延した。
 プライマーセット(6)は、1000コピー以上が測定時間約19分までに濁度の増幅を確認し、0コピーは測定時間中の増加が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約5分遅延した。
 プライマーセット(7)は、25コピー以上が測定時間約26分までに蛍光の濁度を確認し、0コピーは測定時間中の増加が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約4分遅延した。
Figure JPOXMLDOC01-appb-T000003
〔実施例3〕LAMP法のQProbeを用いたリアルタイム蛍光測定法による検出時間と感度の検討
 実施例1に記載のプライマーセット(4)-(7)を用いたLAMP法の検出時間及び感度の検討は、実施例1のLAMP法の反応溶液組成(probe系)25μLを用い、リアルタイム定量PCRシステムMx3005P(Agilent Technologies)によって63℃で30分LAMP反応を行った。
 プライマーセット(4)-(7)を用いたLAMP法のその結果を表4に示す。具体的には、表4においては、プライマーセット(4)-(7)のLAMP法のQProbeを用いたリアルタイム測定の反応時間を示した。各コピー数について、2重測定を実施した。表の上から、10000コピー/テスト、1000コピー/テスト、100コピー/テスト、50コピー/テスト、25コピー/テスト、NC(0コピー/テスト)を示す。また、消光曲線の結果を図17~20に示す。
 プライマーセット(4)は、100コピー以上が測定時間約23分までに蛍光の消光を確認し、0コピーは測定時間中の消光が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約6分遅延した。
 プライマーセット(5)は、10000コピー以上が測定時間約26分までに蛍光の消光を確認し、0コピーは測定時間中の消光が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約5分遅延した。
 プライマーセット(6)は、100コピー以上が測定時間約26分までに蛍光の消光を確認し、0コピーは測定時間中の消光が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約3分遅延した。
 プライマーセット(7)は、50コピー以上が測定時間約28分までに蛍光の消光を確認し、0コピーは測定時間中の消光が確認されなかった。リアルタイム蛍光測定法より10000コピー/テストの反応時間が約2分遅延した。
Figure JPOXMLDOC01-appb-T000004
〔実施例4〕交差反応性の確認
 LAMP法の交差反応性を確認した。
1.試料及び試薬の調製
1)試料
 デングウイルス、ウエストナイルウイルス、チクングニアウイルスの抽出RNAを、100倍希釈になるように10mM Tris buffer(WAKO製) pH8.0に溶解し試料溶液とした。
2)LAMP法に用いる試薬組成及び濃度
 実施例1に記載のプライマーセット(4)-(7)と、反応組成(Probe系)を使用した。
2.LAMP法のQProbeを用いたリアルタイム蛍光測定法による交差反応の確認
 LAMP反応は、LAMP用試薬にRNA溶液5μLを加え、最終反応溶液25μLとし、0.2mLの専用チューブ内でリアルタイム定量PCRシステムMx3005P(Agilent Technologies)を用い、63℃で30分LAMP反応を行った。
 プライマーセット(4)-(7)を用いたLAMP法のその結果を表5に示す。具体的には、表5においては、プライマーセット(4)-(7)のLAMP法のQProbeを用いたリアルタイム測定の反応時間を示した。各項目について、1重測定を実施した。上から、D-1~D-4はデング熱ウイルス血清型1~4のRNAを示し、WNV99~WNV Eg101はウエストナイルウイルスのRNAを示し、CHIKはチクングニアウイルスのRNAを示す。また、消光曲線の結果を図21~24に示す。
 プライマーセット(4)-(7)は、10000コピー/テストを除き、いずれも測定時間中の消光は確認されなかった。
Figure JPOXMLDOC01-appb-T000005
 本発明によれば、ジカウイルスを高感度且つ迅速に検出することができ、ジカウイルス感染症を効率的に診断することができる。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (15)

  1.  以下の(a)~(d)のオリゴヌクレオチドプライマー全てを含む、ジカウイルスに特異的な塩基配列を増幅するためのプライマーセット。
     (a) 5'-TTGACCAGGTAGTTCTCCCAGTATGGCCAATGCCATTTGTTC-3'(配列番号1)
     (b) 5'-AGGGAGAATGGATGACCACTGACTCCTCAATCCACACTCTGT-3'(配列番号2)
     (c) 5'-CAGAAGGGACCTCCGACT-3'(配列番号3)
     (d) 5'-CGTAACTGGGGTCTTGTCTT-3'(配列番号4)
  2.  以下の(e)及び/又は(f)のオリゴヌクレオチドプライマーをさらに含む、請求項1記載のプライマーセット。
     (e) 5'-TGGAACCCAGTCAACTG-3'(配列番号5)
     (f) 5'-AGACATGCTTGTGGTGT-3'(配列番号6)
  3.  以下の(g)及び/又は(h)のオリゴヌクレオチドプライマーをさらに含む、請求項1記載のプライマーセット。
     (g) 5'-CCCAGTCAACTGGCACAG-3'(配列番号7)
     (h) 5'-CATGCTTGTGGTGTG-3'(配列番号8)
  4.  以下の(j)~(m)のオリゴヌクレオチドプライマー全てを含む、ジカウイルスに特異的な塩基配列を増幅するためのプライマーセット。
     (j) 5'-TGGCCTTTCCAAATTCCCCTTGCTGAGAGGAGAGTGCCAGAG-3'(配列番号10)
     (k) 5'-TCTGGTATATGTGGCTAGGGGCCCCATCCAGTGATCCTCGTT-3'(配列番号11)
     (l) 5'-AGTGGACAAGGAAAGAGAGC-3'(配列番号12)
     (m) 5'-CACCACCTCCTGAGTTCTC-3'(配列番号13)
  5.  以下の(n)及び/又は(o)のオリゴヌクレオチドプライマーをさらに含む、請求項4記載のプライマーセット。
     (n) 5'-AGATGGAGCTTGTTGAAGTG-3'(配列番号14)
     (o) 5'-CTCTCCAGGGGCGGGATGGA-3'(配列番号15)
  6.  以下の(q)~(t)のオリゴヌクレオチドプライマー全てを含む、ジカウイルスに特異的な塩基配列を増幅するためのプライマーセット。
     (q) 5'-AGGGTTTCCACTCTTGTGTGTCCACATGCCCTCAGGTTCTT-3'(配列番号17)
     (r) 5'-AGTTCCGTTTTGCTCCCACCCACAATGGACCTCCCGTC-3'(配列番号18)
     (s) 5'-TTGCGTTGTGAAGCCAATT-3'(配列番号19)
     (t) 5'-CCGGCCAATCAGTTCATCT-3'(配列番号20)
  7.  以下の(u)及び/又は(v)のオリゴヌクレオチドプライマーをさらに含む、請求項6記載のプライマーセット。
     (u) 5'-CTTTTTCCCATCATGTTGTACACAC-3'(配列番号21)
     (v) 5'-TAGAGTTCGAAGCCCTTGGATTCT-3'(配列番号22)
  8.  請求項1~7のいずれか1項記載のプライマーセットを含む、ジカウイルス検出又はジカウイルス感染症診断用キット。
  9.  蛍光標識プローブをさらに含む、請求項8記載のキット。
  10.  請求項1~3のいずれか1項記載のプライマーセットを含み、蛍光標識プローブが以下の(i)のオリゴヌクレオチドを有する蛍光標識プローブである、請求項9記載のキット。
     (i) 5'-TGGAACCCAGTCAACTGGCACAGATGAAC-3'(配列番号9)
  11.  請求項4又は5記載のプライマーセットを含み、蛍光標識プローブが以下の(p)のオリゴヌクレオチドを有する蛍光標識プローブである、請求項9記載のキット。
     (p) 5'-TAGATTTCTAGAGTTCGAAGCCCTTGGATTC-3'(配列番号16)
  12.  請求項6又は7記載のプライマーセットを含み、蛍光標識プローブが以下の(w)のオリゴヌクレオチドを有する蛍光標識プローブである、請求項9記載のキット。
     (w) 5'-CTTCCTAACTTTTCCCATATCATTCAAGAACC-3'(配列番号23)
  13.  請求項1~7のいずれか1項記載のプライマーセット又は請求項8~12のいずれか1項記載のキットを用いて、ジカウイルスの標的核酸領域の増幅反応を行う工程を含む、ジカウイルスの検出方法。
  14.  ジカウイルスの標的核酸領域の増幅反応がLAMP法である、請求項13記載の方法。
  15.  請求項1~7のいずれか1項記載のプライマーセット又は請求項8~12のいずれか1項記載のキットを用いて、ジカウイルスの標的核酸領域の増幅を検出することにより、ジカウイルス感染の有無を検査する工程を含む、ジカウイルス感染症の検査方法。 
PCT/JP2016/075697 2016-09-01 2016-09-01 ジカウイルス検出用プライマーセット WO2018042598A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/075697 WO2018042598A1 (ja) 2016-09-01 2016-09-01 ジカウイルス検出用プライマーセット
JP2018536620A JPWO2018042598A1 (ja) 2016-09-01 2016-09-01 ジカウイルス検出用プライマーセット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075697 WO2018042598A1 (ja) 2016-09-01 2016-09-01 ジカウイルス検出用プライマーセット

Publications (1)

Publication Number Publication Date
WO2018042598A1 true WO2018042598A1 (ja) 2018-03-08

Family

ID=61300435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075697 WO2018042598A1 (ja) 2016-09-01 2016-09-01 ジカウイルス検出用プライマーセット

Country Status (2)

Country Link
JP (1) JPWO2018042598A1 (ja)
WO (1) WO2018042598A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628949A (zh) * 2019-10-10 2019-12-31 中国检验检疫科学研究院 一种快速检测寨卡病毒的试剂盒
CN110699491A (zh) * 2019-11-13 2020-01-17 中国疾病预防控制中心病毒病预防控制所 寨卡病毒实时荧光定量rt-rpa检测引物和探针及检测试剂盒
CN110982934A (zh) * 2019-11-26 2020-04-10 广州迪澳生物科技有限公司 一种用于消除假阴性的寨卡病毒环介导恒温荧光检测引物组及试剂盒
CN113151594A (zh) * 2021-03-31 2021-07-23 青岛国际旅行卫生保健中心(青岛海关口岸门诊部) 液相芯片技术检测寨卡病毒核酸试剂盒及其检测方法
WO2021172370A1 (ja) 2020-02-27 2021-09-02 栄研化学株式会社 一本鎖rnaウイルスを検出する方法
JPWO2021095798A1 (ja) * 2019-11-15 2021-11-25 公立大学法人横浜市立大学 未分化マーカー遺伝子高感度検出法
CN115029479A (zh) * 2021-11-16 2022-09-09 江汉大学 一种寨卡病毒的mnp标记位点、引物组合物、试剂盒及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157377A1 (ja) * 2013-03-26 2014-10-02 株式会社ニッポンジーン 遺伝子多型の識別に用いるプライマーとプローブのセットおよびその利用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157377A1 (ja) * 2013-03-26 2014-10-02 株式会社ニッポンジーン 遺伝子多型の識別に用いるプライマーとプローブのセットおよびその利用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SONG, J. ET AL.: "Instrument-Free Point-of-Care Molecular Detection of Zika Virus", ANALYTICAL CHEMISTRY, vol. 88, 16 June 2016 (2016-06-16), pages 7289 - 7294, XP055473984 *
TIAN, B. ET AL.: "Attomolar Zika virus oligonucleotide detection based on loop- mediated isothermal amplification and AC susceptometry", BIOSENSORS AND BIOELECTRONICS, vol. 82, 29 June 2016 (2016-06-29), pages 420 - 425, XP055473982 *
YO UEKI ET AL.: "Detection of Norovirus using Loop-Meditated Isothermal Amplification Assay (LAMP) with Quenching Probe", ANNUAL REPORT OF MIYAGI PREFECTURAL INSTITUTE OF PUBLIC HEALTH AND ENVIRONMENT, vol. 32, 2014, pages 35 - 37 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628949A (zh) * 2019-10-10 2019-12-31 中国检验检疫科学研究院 一种快速检测寨卡病毒的试剂盒
CN110628949B (zh) * 2019-10-10 2022-11-15 中国检验检疫科学研究院 一种快速检测寨卡病毒的试剂盒
CN110699491A (zh) * 2019-11-13 2020-01-17 中国疾病预防控制中心病毒病预防控制所 寨卡病毒实时荧光定量rt-rpa检测引物和探针及检测试剂盒
CN110699491B (zh) * 2019-11-13 2022-05-03 中国疾病预防控制中心病毒病预防控制所 寨卡病毒实时荧光定量rt-rpa检测引物和探针及检测试剂盒
JPWO2021095798A1 (ja) * 2019-11-15 2021-11-25 公立大学法人横浜市立大学 未分化マーカー遺伝子高感度検出法
CN110982934A (zh) * 2019-11-26 2020-04-10 广州迪澳生物科技有限公司 一种用于消除假阴性的寨卡病毒环介导恒温荧光检测引物组及试剂盒
WO2021172370A1 (ja) 2020-02-27 2021-09-02 栄研化学株式会社 一本鎖rnaウイルスを検出する方法
CN113151594A (zh) * 2021-03-31 2021-07-23 青岛国际旅行卫生保健中心(青岛海关口岸门诊部) 液相芯片技术检测寨卡病毒核酸试剂盒及其检测方法
CN115029479A (zh) * 2021-11-16 2022-09-09 江汉大学 一种寨卡病毒的mnp标记位点、引物组合物、试剂盒及其应用
CN115029479B (zh) * 2021-11-16 2023-06-16 江汉大学 一种寨卡病毒的mnp标记位点、引物组合物、试剂盒及其应用

Also Published As

Publication number Publication date
JPWO2018042598A1 (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2018042598A1 (ja) ジカウイルス検出用プライマーセット
WO2017212904A1 (ja) 複数のプライマーセットを組み合わせたlamp法を用いたアフリカ豚コレラウイルスの迅速検出法
JP4786548B2 (ja) H5型トリインフルエンザウイルスの検出方法
US7595163B2 (en) Method for detecting SARS coronavirus
US20140017692A1 (en) Method and kit for detecting target nucleic acid
KR102030244B1 (ko) 뎅기 바이러스 검출용 올리고뉴클레오티드 세트 및 이의 용도
WO2009098789A1 (ja) Lamp法による甲殻類病原性ウイルスの検出方法及び検出試薬キット
JP2012065568A (ja) エンテロウイルス71rnaの検出方法および検出試薬
KR20200047384A (ko) 중증열성혈소판감소증후군(sfts) 바이러스 검출용 프라이머 세트
KR102030245B1 (ko) 치쿤군야 바이러스 검출용 올리고뉴클레오티드 세트 및 이의 용도
ES2850324T3 (es) Método de detección de hemoplasmas
JP2012143185A (ja) 口蹄疫ウィルスの包括的検出方法
TWI723675B (zh) 用於檢測登革熱病毒的方法以及套組
JP5315519B2 (ja) コイヘルペスウイルス(khv)の検出方法
KR102076341B1 (ko) Lamp를 이용한 중증열성혈소판감소증후군 바이러스 검출용 조성물 및 이의 용도
JP2019524063A (ja) Zikaウイルス核酸を検出するための組成物および方法
JP2007000040A (ja) B型肝炎ウイルスの検出方法
JP2013000093A (ja) 同じ属に属する菌またはウイルスの同定方法
JP2011078389A (ja) サポウイルスrnaの検出方法および検出試薬
JP2010115122A (ja) アスペルギルスフミガタス(Aspergillusfumigatus)類縁菌の検出方法
KR20190100675A (ko) Sfts 바이러스 검출용 올리고뉴클레오티드 세트 및 이의 용도
US9074248B1 (en) Primers for helicase dependent amplification and their methods of use
JP6593984B2 (ja) Rna増幅法およびhiv−1感染診断方法
JP2007135499A (ja) サルモネラo9群の検出法
JP2005245434A (ja) ノロウイルスの検出試薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915158

Country of ref document: EP

Kind code of ref document: A1