WO2018041178A1 - Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte - Google Patents

Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte Download PDF

Info

Publication number
WO2018041178A1
WO2018041178A1 PCT/CN2017/099815 CN2017099815W WO2018041178A1 WO 2018041178 A1 WO2018041178 A1 WO 2018041178A1 CN 2017099815 W CN2017099815 W CN 2017099815W WO 2018041178 A1 WO2018041178 A1 WO 2018041178A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical
waveguide
dielectric layer
loss
Prior art date
Application number
PCT/CN2017/099815
Other languages
English (en)
Chinese (zh)
Inventor
欧阳征标
郑耀贤
艾月霞
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018041178A1 publication Critical patent/WO2018041178A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure

Definitions

  • the invention relates to a magneto-optical material, a magnetic surface wave, a unidirectional transmission and a curved waveguide, in particular to a low-loss magneto-optical gap magnetic surface fast mode controllable unidirectional turning waveguide in any direction.
  • a curved waveguide is an optical device used as a conversion optical path, which occupies an important position in an optical waveguide device. Bending in the optical waveguide is necessary due to the change in the direction of beam propagation in the optical waveguide, the displacement of the beam transmission axis, and the need to reduce the volume of the device. The bending of the waveguide causes a change in the optical characteristic distribution of the waveguide material in the direction of light transmission, so that the curved waveguide has a high loss.
  • the field of turning waveguides has been extensively studied, and the curved turning type curved waveguide is the main content of this research. But even for this type of waveguide, the bending loss and transition loss that are present still severely restrict the transmission efficiency. In addition, structural defects and the like can also cause other losses to the waveguide.
  • Photodiodes and isolators are optics that only allow light to travel in one direction and are used to prevent unwanted light feedback.
  • the main component of conventional photodiodes and isolators is the Faraday rotator, which applies the Faraday effect (magneto-optical effect) as its working principle.
  • Conventional Faraday isolators consist of a polarizer, a Faraday rotator, and an analyzer. This device is complex in structure and is commonly used in free-space optical systems.
  • integrated optical devices such as fiber optics or waveguides are non-polarization-maintaining systems that cause loss of polarization angle and are therefore not suitable for use with pull-up isolators.
  • the object of the present invention is to overcome the deficiencies in the prior art, and provide a simple and effective structure, low loss, high optical transmission efficiency, small volume, and easy integration.
  • Low-loss magneto-optical magnetic surface fast-mode arbitrary controllable single-control single Turn the waveguide.
  • the low loss magneto-optical gap magnetic surface fast mode controllable unidirectional cornering waveguide of the present invention comprises an optical input port 1, a light output port 2, a magneto-optical material layer 3, 4, a dielectric layer 5 and two opposite directions. a bias magnetic field; the magneto-optical material layers 3, 4 and the dielectric layer 5 are a three-layer structure optical waveguide, the three-layer structure is curved at an arbitrary angle, and two are disposed at the magneto-optical material layers 3, 4.
  • the gap between the layers of magneto-optical materials 3, 4 is a dielectric layer 5, the port 1 of the unidirectional curved waveguide is an optical input port, and the right port 2 is light An output port; the dielectric layer 5 is annular in shape at the curved portion of the waveguide; and the surface of the magneto-optical material 3, 4 and the dielectric layer 5 is a magnetic surface fast wave.
  • the photodiode and the isolator are composed of magneto-optical material layers 3, 4 and a dielectric layer 5.
  • the magneto-optical material is magneto-optical glass or various rare earth element-doped garnets and rare earth-transition metal alloy films.
  • the layers of magneto-optical material 3, 4 and dielectric layer 5 are connected to the light input end and the light output end by any angular bending.
  • the dielectric layer 5 is a vacuum, air, silicon dioxide, and a transparent plastic wave.
  • the three-layer structure is a flat waveguide structure.
  • the arbitrary angle curved shape is a 30 degree turn shape, a 45 degree turn shape, and a 60 degree turn Curved shape, 90 degree turn shape, 120 degree turn shape, 135 degree turn shape, 150 degree turn shape, 180 degree turn shape.
  • the bias magnetic field is generated by a current-direction controllable electromagnet or a permanent magnet.
  • the current of the electromagnet is a direction-controllable current, and the permanent magnet can rotate.
  • the direction-controlled curved waveguide or the unidirectional curved waveguide is composed of a magneto-optical gap waveguide.
  • the working mode of the one-way cornering waveguide is TE mode.
  • the invention is suitable for large-scale optical path integration and has wide application prospects. Compared with the prior art, it has the following positive effects.
  • the structure is simple and easy to implement.
  • Magnetic surface waves have immune characteristics to structural defects, have ultra-low loss and ultra-high transmission efficiency, and are widely used in the design of various optical waveguides.
  • FIG. 1 is a structural diagram of a controllable unidirectional turning waveguide in any direction of a low-loss magneto-optical gap magnetic surface fast mode.
  • optical input port 1 optical output port 2 first magneto-optical material layer 3 second magneto-optical material layer 4 dielectric layer 5 bias magnetic field ⁇ H 0 bias magnetic field ⁇ H 0 dielectric layer thickness w inner circular arc of the ring Radius r radius of the outer arc of the ring r+w
  • FIG. 2 is a first working principle diagram of a controllable one-way turning waveguide in any direction of a low-loss magneto-optical gap magnetic surface fast mode.
  • Fig. 3 is a second working principle diagram of the controllable one-way turning waveguide in any direction of the low-loss magneto-optical gap magnetic surface fast mode.
  • Fig. 4 is a graph showing a first embodiment of the forward-reverse transmission efficiency of the magneto-optical gap unidirectional turning waveguide as a function of the optical frequency.
  • Fig. 5 is a graph showing a second embodiment of the forward-reverse transmission efficiency of the magneto-optical gap unidirectional turning waveguide as a function of the optical frequency.
  • Fig. 6 is a graph showing a third embodiment of the forward-reverse transmission efficiency of the magneto-optical gap unidirectional turning waveguide as a function of the optical frequency.
  • Fig. 7 is a graph showing a fourth embodiment of the forward-reverse transmission efficiency of the magneto-optical gap unidirectional turning waveguide as a function of the light wave frequency.
  • the low loss type magneto-optical gap magnetic surface fast mode arbitrary angle one-way turning waveguide of the present invention comprises an optical input port 1, an optical output port 2, a first magneto-optical material layer 3, and a second magnetic field. a light material layer 4, a dielectric layer 5 and two opposite bias magnetic fields, and the direction is controllable; the unidirectional turning waveguide is composed of a magneto-optical gap waveguide, and the working mode of the unidirectional turning waveguide of the present invention is TE mode, first
  • the magneto-optical material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 are a three-layer structure optical waveguide, and the optical waveguide can transmit optical signals in one direction, used as a photodiode and an isolator, and the photodiode and the isolator are first.
  • the magneto-optical material layer 3, the second magneto-optical material layer 4, and the dielectric layer 5 are formed.
  • the three-layer structure is a flat waveguide structure, and the three-layer structure is curved at an arbitrary angle, and the shape bent at any angle is a circular arc shape (arc-shaped turning type curved waveguide), and the turning angle can be any between 0 degrees and 180 degrees.
  • the angle of the bend of the unidirectional turning waveguide may also be an angle between 0 and 180 degrees; the invention may adopt any turning angle of 10 degrees, 50 degrees and 170 degrees, or may adopt a waveguide turning angle of 30 degrees, 45°, 60°, 90°, 120°, 135°, 150° and 180°.
  • Figure 1 (a) one-way turning angle is 30 degrees
  • Figure 1 (b) one-way turning angle is 45 degrees
  • Figure 1 (c) one-way turning angle is 60 degrees
  • Figure 1 (d) (i) single The turning angle is 90 degrees
  • the one-way turning angle of Figure 1 (e) is 120 degrees
  • the one-way turning angle of Figure 1 (f) is 135 degrees
  • the one-way turning angle of Figure 1 (g) is 150 degrees
  • the one-way turning angle is 180 degrees. For example, when the turning angle is 45 degrees, it is one-eighth of a ring; when the turning angle is 90 degrees, it is a quarter ring; when the turning angle is 180 degrees, it is a half ring, etc. And so on.
  • both of the structures of FIGS. 1(d) and (i) are mirror-symmetrical and have the same operational characteristics.
  • the first magneto-optical material layer 3, the second magneto-optical material layer 4, and the dielectric layer 5 are connected to the optical input port 1 and the optical output port 2 by an arbitrary angular bending shape.
  • the dielectric layer 5 is a region where the light energy is mainly concentrated, and the gap between the first magneto-optical material 3 and the second magneto-optical material 4 is the dielectric layer 5, and the dielectric layer 5 has a ring shape in the curved portion of the waveguide, and the inner arc of the ring
  • the radius is r
  • the outer arc radius is r+w
  • the length of the curved portion depends on the turning angle
  • the dielectric layer 5 is vacuum, air, silicon dioxide (glass), and transparent plastic working wave.
  • the magneto-optical material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 constitute a photodiode and an isolator capable of unidirectionally transmitting optical signals, the first magneto-optical material layer 3 and the second magneto-optical material layer 4 and the dielectric layer 5
  • the surface is a magnetic surface fast wave.
  • the magneto-optical material is magneto-optical glass or various rare earth-doped garnets and rare earth-transition metal alloy films.
  • the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are respectively provided with opposite bias magnetic fields, and the direction is controllable, that is, the bias magnetic field ⁇ H 0 (outer) and the bias magnetic field ⁇ H 0 (in)
  • the bias magnetic field H 0 is generated by an electromagnet whose current direction is controllable or by a rotatable permanent magnet, so that the direction of the current can be controlled to change the conduction direction of the waveguide or by rotating the permanent magnet.
  • the magnetic surface wave generated by the magneto-optical material-medium interface is a phenomenon similar to the metal surface plasmon (SPP).
  • SPP metal surface plasmon
  • the magneto-optical material Under the action of the biased static magnetic field, the magneto-optical material has a magnetic permeability of tensor, and at the same time, its effective refractive index is negative in a certain optical band.
  • the surface of the magneto-optical material is capable of producing a guided wave and has a property of unidirectional propagation, which is called a surface acoustic wave (Surface Magnetically Polarized Wave, SMP).
  • the invention relates to a low-loss magneto-optical gap magnetic surface fast mode controllable unidirectional turning waveguide in any direction, and has a three-layer structure of a magneto-optical material-medium-magneto-optical material, which is performed by using a magnetic surface fast wave generated by a magneto-optical material-medium interface
  • the unidirectional bending transmission of light uses an electromagnet with a controllable current direction to control the conduction direction of the waveguide, and the turning angle can be arbitrarily set.
  • the technical scheme of the invention realizes the design of the controllable unidirectional turning waveguide based on the optical non-reciprocity of the magneto-optical material and the unique conductive surface wave characteristic of the magneto-optical material-medium interface.
  • the basic principles of this technical solution are as follows:
  • the magneto-optical material is a material having magnetic anisotropy, and the magnetic dipole inside the magneto-optical material is arranged in the same direction by the application of a static magnetic field, thereby generating a magnetic dipole moment.
  • the magnetic dipole moment will interact strongly with the optical signal, which in turn produces a non-reciprocal transmission of light.
  • the magnetic permeability tensor of the magneto-optical material is under the action of a bias magnetic field H 0 oriented in the direction perpendicular to the vertical paper:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M s is the saturation magnetization
  • is the operating frequency
  • is the loss coefficient. If the direction of the biasing magnetic field is changed to the vertical paper facing direction, H 0 and M s will change the sign.
  • the magnetic surface wave generated by the magneto-optical material-medium interface can be solved according to the magnetic permeability tensor of the magneto-optical material and Maxwell's equations.
  • the electric and magnetic fields that satisfy the surface wave (which is a TE wave) at the interface should have the following form:
  • YIG yttrium iron garnet
  • the bias magnetic field is 900 Oe
  • the operating frequency f of the device is determined by the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ], ⁇ 2 of the magneto-optical material and the medium
  • the operating frequency f is 6 GHz
  • the YIG material loss coefficient ⁇ 3 ⁇ 10 -4
  • the turning angle is 90°.
  • the magnetic field direction at the first magneto-optical material layer 3 is perpendicular to the paper facing outward, and when the magnetic field direction at the second magneto-optical material layer 4 is perpendicular to the paper facing inward, when light is input from the port 1, it will be simultaneously in the two magneto-optical materials -
  • the medium interface generates a unidirectional forward-transferred magnetic surface wave, and finally outputs from port 2.
  • the light wave cannot be reversely transmitted inside the device due to the non-reciprocity of the surface acoustic wave, thereby failing to Port 1 output, the light energy has all been blocked at port 2.
  • the light wave can be well confined to the curved waveguide, and the loss value is very low.
  • the conduction direction of the curved waveguide is determined by the direction of the applied magnetic field.
  • yttrium iron garnet YIG
  • the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ], determined by ⁇ 2 , the operating frequency f is 6 GHz, the YIG material loss factor ⁇ 3 ⁇ 10 -4 , and the turning angle is 90 degrees.
  • the magnetic field direction at the first magneto-optical material layer 3 is perpendicular to the paper surface, and the magnetic field direction at the second magneto-optical material layer 4 is perpendicular to the paper surface, and the conduction direction of the corner waveguide is opposite.
  • the low loss magneto-optical gap magnetic surface fast mode of the device of the invention has a three-layer structure characteristic of a magneto-optical material-medium-magneto-optical material, and its structural size and parameters, such as an inner circular arc of a ring
  • the radius r and the thickness w of the dielectric layer 5 can be flexibly selected according to the operating wavelength and actual needs. Changing the size has no major impact on device performance.
  • YIG yttrium iron garnet
  • the bias magnetic field is generated by an electromagnet with a controllable current direction
  • the size is 900 Oe, and the direction will be determined.
  • the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ] of the magneto-optical material and the medium are determined by ⁇ 2 .
  • the direction-controllable cornering waveguide is composed of a magneto-optical gap waveguide with a turning angle of 45 degrees.
  • the direction of the magnetic field at the first magneto-optical material layer 3 is controlled by the electromagnet current, and the direction of the magnetic field at the second magneto-optical material layer 4 is perpendicular to the paper surface, and the curved waveguide will be from port 1 to port. 2 conducting; on the contrary, controlling the magnetic field direction of the first magneto-optical material layer 3 to face the paper direction, and the magnetic field direction of the second magneto-optical material layer 4 Straight paper faces outward and the curved waveguide will conduct from port 2 to port 1.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is 5.12 GHz to 7.16 GHz.
  • the direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 23.6552 dB and a forward transmission insertion loss of 0.0194 dB.
  • the unidirectional turning waveguide is composed of a magneto-optical gap waveguide having a turning angle of 90 degrees.
  • the direction of the magnetic field at the first magneto-optical material layer 3 is controlled by the electromagnet current, and the direction of the magnetic field at the second magneto-optical material layer 4 is perpendicular to the paper surface, and the curved waveguide will be from port 1 to port.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is 5.10 GHz to 7.22 GHz. In the operating frequency range, considering the material loss, the direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 25.8838 dB and a forward transmission insertion loss of 0.0112 dB.
  • the unidirectional turning waveguide is constituted by a magneto-optical gap waveguide to constitute a unidirectional turning waveguide, and the turning angle is 135 degrees.
  • the direction of the magnetic field at the first magneto-optical material layer 3 is controlled by the electromagnet current, and the direction of the magnetic field at the second magneto-optical material layer 4 is perpendicular to the paper surface, and the curved waveguide will be from port 1 to port.
  • the direction perpendicular to the paper faces outward and the curved waveguide will conduct from port 2 to port 1.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is 5.10 GHz to 7.18 GHz. In the operating frequency range, considering the material loss, the direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 23.6067 dB and a forward transmission insertion loss of 0.0120 dB.
  • the one-way cornering waveguide is composed of a magneto-optical gap waveguide with a turning angle of 180 degrees.
  • the direction of the magnetic field at the first magneto-optical material layer 3 is controlled by the electromagnet current, and the direction of the magnetic field at the second magneto-optical material layer 4 is perpendicular to the paper surface, and the curved waveguide will be from port 1 to port.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is 5.00 GHz to 7.30 GHz. In the operating frequency range, considering the material loss, the direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 27.7469 dB and a forward transmission insertion loss of 0.0073 dB.
  • the transmission efficiency curve of the magneto-optical gap magnetic surface fast mode unidirectional turning waveguide with different turning angles of FIG. 4, FIG. 5, FIG. 6 and FIG. 7 can obtain the optical frequency range of the magnetic surface fast wave transmitted by the magneto-optical air-bending waveguide. That is, the operating frequency range of the unidirectional turning waveguide. It can be seen from the results that the controllable unidirectional turning waveguide of the low loss magneto-optical gap magnetic surface fast mode in any direction of the present invention can work effectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

L'invention concerne un guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte. Le guide d'ondes à courbure unidirectionnelle comprend un port d'entrée optique (1), un port de sortie optique (2), des couches de matériau magnéto-optique (3, 4), une couche diélectrique (5) et deux champs magnétiques de polarisation réglables dans une direction (H 0 ) dans des directions opposées. Les couches de matériau magnéto-optique (3, 4) et la couche diélectrique (5) constituent un guide d'ondes optique d'une structure à trois couches, la structure à trois couches étant en forme de courbe au niveau d'un angle arbitraire. Les couches de matériau magnéto-optique (3, 4) sont pourvues des deux champs magnétiques de polarisation réglables dans une direction (H 0 ) dans des directions opposées. La couche diélectrique (5) est dans un espace entre les couches de matériau magnéto-optique (3, 4). Un port du guide d'ondes à courbure unidirectionnelle constitue le port d'entrée optique (1), et un port droit de ce dernier constitue le port de sortie optique (2). La couche diélectrique (5) présente la forme d'un anneau circulaire au niveau d'une partie de courbure de guide d'ondes. Des ondes rapides de surface magnétique sont sur des surfaces des couches de matériau magnéto-optique (3, 4) et la couche diélectrique (5). Le guide d'ondes à courbure unidirectionnelle présente une structure simple, présente une faible perte et présente une efficacité de transmission élevée, et est applicable à une intégration de trajet optique à grande échelle.
PCT/CN2017/099815 2016-08-31 2017-08-31 Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte WO2018041178A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610794202.7A CN106154415B (zh) 2016-08-31 2016-08-31 低损磁光空隙磁表面快模任意方向可控单向拐弯波导
CN201610794202.7 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041178A1 true WO2018041178A1 (fr) 2018-03-08

Family

ID=57344823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099815 WO2018041178A1 (fr) 2016-08-31 2017-08-31 Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte

Country Status (2)

Country Link
CN (1) CN106154415B (fr)
WO (1) WO2018041178A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154415B (zh) * 2016-08-31 2021-05-04 深圳大学 低损磁光空隙磁表面快模任意方向可控单向拐弯波导
CN106200026B (zh) * 2016-08-31 2021-02-19 深圳大学 无泄漏低损磁光空隙磁表面快模可控单向任意拐弯波导
CN113488832B (zh) * 2021-06-29 2022-09-30 青岛海信宽带多媒体技术有限公司 一种具有调制器的激光器及光模块

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126624A1 (fr) * 2007-03-19 2008-10-23 National Institute For Materials Science Elément magnéto-optique sans plomb et son procédé de fabrication
JP2008268862A (ja) * 2007-03-28 2008-11-06 Toyohashi Univ Of Technology 磁気光学体
WO2009081488A1 (fr) * 2007-12-25 2009-07-02 Shibaura Institute Of Technology Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque
CN104932058A (zh) * 2015-07-15 2015-09-23 上海鸿辉光通科技股份有限公司 一种光隔离器
CN105549154A (zh) * 2016-03-03 2016-05-04 电子科技大学 一种单向磁化半导体波导集成多模干涉磁光隔离器
CN106154415A (zh) * 2016-08-31 2016-11-23 欧阳征标 低损磁光空隙磁表面快模任意方向可控单向拐弯波导
CN106200026A (zh) * 2016-08-31 2016-12-07 欧阳征标 无泄漏低损磁光空隙磁表面快模可控单向任意拐弯波导
CN106291811A (zh) * 2016-08-31 2017-01-04 欧阳征标 无泄漏低损型磁光空隙磁表面快模任意角单向拐弯波导

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788727B (zh) * 2009-12-14 2011-11-09 深圳大学 基于磁光腔耦合的光子晶体四端口环行器
CN102544660B (zh) * 2012-01-12 2013-11-06 中国科学院上海微系统与信息技术研究所 基于各向异性磁回旋媒质的可调控单向波导控制方法
CN102916238A (zh) * 2012-11-07 2013-02-06 南开大学 磁表面等离子体波导太赫兹隔离器
CN103592781B (zh) * 2013-11-12 2015-12-30 上海理工大学 一种基于光子晶体异质结的太赫兹隔离器
CN103854939B (zh) * 2014-01-10 2016-05-25 中国电子科技集团公司第十二研究所 一种弧形弯曲边界折叠波导慢波结构
BR102014016547B1 (pt) * 2014-05-22 2022-05-31 Universidade Federal Do Pará Chave óptica compacta baseada em um cristal fotônico bidimensional com dobramento de 60 graus
JP6416703B2 (ja) * 2014-06-24 2018-10-31 日本電信電話株式会社 フォトニック結晶連結共振器
WO2016100723A1 (fr) * 2014-12-18 2016-06-23 The Regents Of The University Of California Capsules nanoparticulaires pour un affichage couleur à cristaux photoniques dans un champ magnétique
CN204925441U (zh) * 2015-09-02 2015-12-30 中国计量学院 可调频率太赫兹分路器
CN105607303B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体t型波导的直角输出磁光调制器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126624A1 (fr) * 2007-03-19 2008-10-23 National Institute For Materials Science Elément magnéto-optique sans plomb et son procédé de fabrication
JP2008268862A (ja) * 2007-03-28 2008-11-06 Toyohashi Univ Of Technology 磁気光学体
WO2009081488A1 (fr) * 2007-12-25 2009-07-02 Shibaura Institute Of Technology Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque
CN104932058A (zh) * 2015-07-15 2015-09-23 上海鸿辉光通科技股份有限公司 一种光隔离器
CN105549154A (zh) * 2016-03-03 2016-05-04 电子科技大学 一种单向磁化半导体波导集成多模干涉磁光隔离器
CN106154415A (zh) * 2016-08-31 2016-11-23 欧阳征标 低损磁光空隙磁表面快模任意方向可控单向拐弯波导
CN106200026A (zh) * 2016-08-31 2016-12-07 欧阳征标 无泄漏低损磁光空隙磁表面快模可控单向任意拐弯波导
CN106291811A (zh) * 2016-08-31 2017-01-04 欧阳征标 无泄漏低损型磁光空隙磁表面快模任意角单向拐弯波导

Also Published As

Publication number Publication date
CN106154415B (zh) 2021-05-04
CN106154415A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2018041185A1 (fr) Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
WO2018041173A1 (fr) Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle
WO2018041189A1 (fr) Guide d'ondes à courbure unidirectionnelle, angle arbitraire, mode rapide de surface magnétique avec espace magnéto-optique de type à faible perte sans fuite
WO2010023738A1 (fr) Procédé de fabrication d'un dispositif optique non réciproque et dispositif optique non réciproque
WO2018041178A1 (fr) Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041177A1 (fr) Guide d'ondes à courbure unidirectionnelle contrôlable dans la direction arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte
WO2018041175A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte d'étanchéité
WO2018041183A1 (fr) Photodiode réglable dans la direction d'onde rapide de surface magnétique à film fin magnéto-optique sans fuite
WO2018041184A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique sans fuite
WO2018041179A1 (fr) Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite
WO2018041188A1 (fr) Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
WO2018041176A1 (fr) Photodiode pouvant être commandée par une direction d'onde rapide de surface magnétique avec guide d'onde d'espace de matériau magnéto-optique
WO2018041182A1 (fr) Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique
WO2018041186A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte
WO2018041180A1 (fr) Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite
WO2018041181A1 (fr) Photodiode à direction d'onde rapide de surface magnétique pouvant être commandée avec couche mince magnéto-optique
WO2018041174A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique
Shirato et al. High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift
CN210428000U (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器
CN112526775B (zh) 基于磁光材料的与偏振无关的光子晶体环行器
CN110646958B (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法
CN219843149U (zh) 一种双极化非对称传输、吸波超材料结构
Jiang et al. A Low-Loss Broadband One-Way Transmission Structure Based on Nonreciprocal Coupling
Yokoi et al. Interferometric optical isolator with Si guiding layer operated in unidirectional magnetic field
JPS6343726B2 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845480

Country of ref document: EP

Kind code of ref document: A1