WO2009081488A1 - Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque - Google Patents

Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque Download PDF

Info

Publication number
WO2009081488A1
WO2009081488A1 PCT/JP2007/074866 JP2007074866W WO2009081488A1 WO 2009081488 A1 WO2009081488 A1 WO 2009081488A1 JP 2007074866 W JP2007074866 W JP 2007074866W WO 2009081488 A1 WO2009081488 A1 WO 2009081488A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
layer
magneto
optical
material layer
Prior art date
Application number
PCT/JP2007/074866
Other languages
English (en)
Japanese (ja)
Inventor
Hideki Yokoi
Original Assignee
Shibaura Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Institute Of Technology filed Critical Shibaura Institute Of Technology
Priority to PCT/JP2007/074866 priority Critical patent/WO2009081488A1/fr
Publication of WO2009081488A1 publication Critical patent/WO2009081488A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/105Materials and properties semiconductor single crystal Si

Definitions

  • the present invention relates to an optical nonreciprocal element.
  • Non-Patent Document 1 discloses a method of manufacturing an optical nonreciprocal element by bonding a magnetic garnet to a Si waveguide layer on which a rib waveguide is formed by direct bonding (wafer bonding). .
  • a hetero bond is usually formed by applying a heat treatment (for example, 800 ° C. to 900 ° C.) to the bonded substrate surface, but the substrate is shrunk by being cooled after the heat treatment, and cracks are likely to occur. Has the problem. To deal with this problem, it is conceivable to suppress the occurrence of cracks by lowering the temperature during heat treatment (for example, 220 ° C.).
  • a heat treatment for example, 800 ° C. to 900 ° C.
  • the present invention provides sufficient adhesion between the Si waveguide layer and the magneto-optical material layer when an optical nonreciprocal element is manufactured by laminating the Si waveguide layer in which the waveguide is formed and the magneto-optical material layer.
  • the purpose is to provide a new technology capable of ensuring the above.
  • the optical nonreciprocal element of the present invention includes a Si waveguide layer having a top surface on which a waveguide is formed and a flat bottom surface, and light propagating through the waveguide by being bonded to the bottom surface of the Si waveguide layer. And a magneto-optical material layer that causes a non-reciprocal phase change, and the lower surface of the Si waveguide layer and the magneto-optical material layer are bonded by wafer bonding.
  • the magneto-optical material layer is formed of magnetic garnet grown on a substrate.
  • the Si waveguide layer is obtained by forming a waveguide in the Si layer of an SOI substrate and then removing the Si layer by epitaxial lift-off.
  • the magneto-optical material layer is magnetized in a direction perpendicular to the light propagation direction of the waveguide.
  • the optical nonreciprocal device manufacturing method of the present invention includes a step of forming a waveguide in a Si layer of an SOI substrate as a first substrate, and a step of taking out only the Si layer in which the waveguide is formed by epitaxial lift-off from the SOI substrate. And the flat surface of the magneto-optical material layer deposited on the second substrate and the flat surface of the extracted Si layer on which the waveguide is not formed, the waveguide is formed by the magneto-optical material layer. And a step of bonding by wafer bonding in an arrangement capable of causing a non-reciprocal phase change in propagating light.
  • an optical nonreciprocal element is manufactured by bonding a Si waveguide layer in which a waveguide is formed and a magneto-optic material layer, the Si waveguide layer and the magneto-optic material layer are sufficient. Secure adhesion.
  • FIG. 1 is a diagram showing an embodiment of the present invention, and shows a structure of an optical isolator using an optical nonreciprocal phase shift effect.
  • FIG. 2 is a view showing a structure when cut along AA ′ of FIG.
  • the optical isolator 100 is arranged by adhering to the Si waveguide layer 1 having an upper surface on which the rib waveguide 3 is formed and a flat lower surface, and the lower surface of the Si waveguide layer 1.
  • the magneto-optical material layer 2 is provided.
  • the Si waveguide layer 1 is rib-guided to the surface Si layer (thickness of about 200 nm) of the SOI substrate (first substrate) adopting the Si / SiO 2 / Si layer structure.
  • the surface Si layer is obtained by epitaxial lift-off.
  • the magneto-optical material layer 2 a magneto-optical material obtained by crystal growth on a suitable substrate 4 (second substrate) can be used.
  • the magneto-optical material layer 2 is magnetized in a direction perpendicular to the light propagation direction of the rib waveguide 3 within the film surface so as to cause a non-reciprocal phase change in the light propagating through the rib waveguide 3.
  • the portions corresponding to the two waveguides are magnetized so that the magnetization directions are opposite to each other (see FIG. 2).
  • the magneto-optical material layer 2 may be pre-magnetized, or, as shown in FIG. 2, the magnetization direction of the magneto-optical material layer 2 is set in the vicinity of the magneto-optical material layer 2 with respect to the light propagation direction.
  • magnetic field applying means 5 such as a pair of small permanent magnets for applying a magnetic field from the outside may be provided.
  • the optical isolator 100 is multiplexed / demultiplexed by two tapered three-branch optical couplers, has two waveguides 21 and 22 between the two tapered three-branch optical couplers, and has a 90 ° reciprocal transition. It consists of a Mach-Zehnder interferometer including a phaser and a 90 ° nonreciprocal phase shifter.
  • the tapered three-branch optical coupler may be an optical branch coupler called a so-called Y branch.
  • the nonreciprocal phase shifter is realized by a layer structure of Si / magneto-optic material.
  • the magnetization of the magneto-optical material layer 2 is oriented in the film plane and perpendicular to the light propagation direction, thereby causing a nonreciprocal phase shift effect in the propagating TM mode light.
  • the nonreciprocal phase shifter is designed such that the difference in nonreciprocal phase change in the two waveguides 21 and 22 in the interferometer is 90 ° in the forward direction ( ⁇ 90 ° in the reverse direction).
  • Such a design can be realized by adjusting the respective refractive indexes of the Si waveguide layer 1 and the magneto-optical material layer 2, the direction of magnetization applied to each waveguide, the propagation length at which the light wave receives the magneto-optical effect, and the like.
  • the reciprocal phase shifter is realized by the optical path difference between the two waveguides in the interferometer, so that the difference in reciprocal phase change between the two waveguides 21 and 22 in the interferometer is ⁇ 90 °.
  • the TM mode light incident on the port 11 is branched into light waves having the same amplitude and phase by the input end side tapered three-branch optical coupler, and each light wave propagates in the forward direction through the waveguide 21 and the waveguide 22, respectively.
  • the light wave propagating in the forward direction through the waveguide 21 and the waveguide 22 has a difference in phase change of 90 ° due to the nonreciprocal phase shift effect, but the difference is canceled out by the reciprocal phase shift effect of the same magnitude.
  • the light wave propagating in the opposite direction through the waveguide 21 and the waveguide 22 has a difference in phase change of ⁇ 90 ° due to the nonreciprocal phase shift effect, and further has a difference in phase change of ⁇ 90 ° due to the reciprocal phase shift effect. Is done.
  • light waves propagating in the reverse direction through the waveguide 21 and the waveguide 22 are incident on the input end side tapered three-branch optical coupler with the same amplitude and a phase difference of 180 °.
  • each light wave is coupled to and output from the port 13 and the port 14 instead of the port 11.
  • the waveguide pattern is transferred to the surface Si layer of the SOI substrate by photolithography, the rib waveguide 3 is formed by etching, and the Si waveguide layer 1 is formed (FIG. 4A).
  • Various conventional techniques can be used for photolithography and etching.
  • only the Si waveguide layer 1 in which the rib waveguide 3 is formed is taken out from the SOI substrate by epitaxial lift-off (FIG.
  • Si waveguide layer 1 in which the rib waveguide 3 is formed by selectively etching away SiO 2 by immersing the SOI substrate in a hydrofluoric acid (HF) solution at room temperature to separate the Si layer. Can be taken out. In order to reduce the etching rate of SiO 2 , the HF temperature may be lowered to 0 ° C.
  • the Si waveguide layer 1 thus taken out is a thin film layer in which the rib waveguide 3 is formed on one surface (upper surface) and the other surface (lower surface) is flat.
  • the surface of the Si waveguide layer 1 (the surface on which the rib waveguide 3 is formed) on the surface of the Si waveguide layer 1 (the surface on which the rib waveguide 3 is formed) is lifted off.
  • Wax Apiezon W or the like may be applied. Such wax can be removed with an organic solvent such as trichloroethylene when it is no longer needed.
  • a flat magneto-optic material layer 2 is formed by crystal growth on the substrate 4 corresponding to the magneto-optic material (FIG. 4C).
  • magneto-optical material when a rare earth magnetic garnet (hereinafter, referred to as “magnetic garnet”) represented by a composition formula R 3 Fe 5 O 12 (R represents a rare earth element) is used as a magneto-optical material, a single crystal substrate 4 made of garnet is used.
  • a flat magnetic garnet layer 2 can be formed by liquid phase epitaxy. The film formation process of the magneto-optical material layer 2 may be performed before the Si waveguide layer 1 formation process or the epitaxial lift-off process. Further, if necessary, a planarization step may be provided after the magneto-optical material layer 2 is formed.
  • the flat upper surface of the formed magneto-optical material layer 2 and the lower surface of the extracted Si waveguide layer 1 are ribbed by the magneto-optical material layer 2.
  • An arrangement capable of causing a non-reciprocal phase change in the light propagating in the waveguide 3, specifically, bonding by wafer bonding so that the magneto-optical material layer 2 corresponds to the entire rib waveguide 3 (FIG. 4D)).
  • Various conventional techniques can be used for wafer bonding.
  • the magneto-optical material layer 2 is magnetized so as to cause a non-reciprocal phase change in the light propagating through the rib waveguide 3 before or after bonding.
  • the magnetic field applying means 5 may be provided in the vicinity of the magneto-optical material layer 2 (for example, under the substrate 4).
  • the magneto-optical material layer is bonded to the side on which the uneven rib waveguide is formed by wafer bonding.
  • bonding can be performed firmly and with high reproducibility even at low temperatures (eg, 220 ° C.).
  • wafer bonding can achieve stronger bonding as the material to be bonded is thinner, by performing wafer bonding using the Si waveguide layer 1 taken out as a thin film layer as in this embodiment, Strong bonding can be realized.
  • the present invention is not limited to the above-described embodiment, and can be variously modified and applied.
  • the magneto-optical material layer 2 is formed so as to correspond to the entire rib waveguide 3 as an arrangement capable of causing a non-reciprocal phase change in the light propagating through the rib waveguide 3.
  • the magneto-optical material layer 2 may be formed so as to correspond only to the vicinity of the center of the rib waveguide 3.
  • the nonreciprocal phase shifter is designed so that the difference in nonreciprocal phase change between the two waveguides is 90 ° in the forward direction ( ⁇ 90 ° in the reverse direction).
  • the phase shifter is designed to be ⁇ 90 °, but these signs may be reversed.
  • an optical isolator is described as an example of an optical nonreciprocal element, but the present invention is not limited to an optical isolator.
  • an optical circulator utilizing a nonreciprocal phase shift effect can be configured in the optical isolator 100 of FIG. 1.
  • the operation principle is the same as that of the optical isolator. That is, the non-reciprocal phase shift effect and the reciprocal phase shift effect cancel each other in the forward direction, and they are added together in the reverse direction, thereby realizing an optical circulator operation.
  • the configuration of the optical isolator is not limited to that shown in FIG. For example, as shown in FIG.
  • the structure of the present invention (Si waveguide)
  • Si waveguide A structure in which the flat surface of the layer and the magneto-optical material layer are bonded by wafer bonding may be employed.
  • the optical isolator shown in FIG. 5 includes a non-reciprocal phase shifter having a layer structure of a magneto-optical material magnetized in a direction perpendicular to Si / light propagation direction and at a predetermined angle with respect to the film surface. Non-reciprocal phase effect is generated in the TM mode light propagating through the waveguide.
  • FIG. 5 is a diagram for explaining a manufacturing process of the optical isolator 100.
  • FIG. It is a figure explaining the optical isolator of a modification.

Abstract

L'invention vise à proposer une nouvelle technologie consistant à assurer une adhésion suffisante entre une couche de guidage de Si et une couche de matériau magnéto-optique dans le cas de la fabrication d'un dispositif optique non réciproque par liaison de la couche de guidage de Si avec un guide d'ondes formé et de la couche de matériau magnéto-optique. A cet effet, l'invention porte sur un procédé de fabrication d'un dispositif optique non réciproque, lequel procédé comporte une étape de formation d'un guide d'ondes dans la couche de Si d'un substrat silicium sur isolant (SOI) qui est un premier substrat, une étape d'extraction uniquement de la couche de Si avec le guide d'ondes formé par retrait épitaxial à partir du substrat SOI, et une étape de liaison d'une surface plate de la couche de matériau magnéto-optique qui est déposée sur un second substrat et d'une surface plate où le guide d'ondes de la couche de Si extraite n'est pas formé par liaison de tranches dans l'agencement, ce qui permet de générer un changement de phase qui est non réciproque à la lumière se propageant à travers le guide d'ondes par la couche de matériau magnéto-optique.
PCT/JP2007/074866 2007-12-25 2007-12-25 Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque WO2009081488A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/074866 WO2009081488A1 (fr) 2007-12-25 2007-12-25 Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/074866 WO2009081488A1 (fr) 2007-12-25 2007-12-25 Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque

Publications (1)

Publication Number Publication Date
WO2009081488A1 true WO2009081488A1 (fr) 2009-07-02

Family

ID=40800806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074866 WO2009081488A1 (fr) 2007-12-25 2007-12-25 Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque

Country Status (1)

Country Link
WO (1) WO2009081488A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154416A (zh) * 2016-08-31 2016-11-23 欧阳征标 无泄漏低损磁光薄膜磁表面快模可控单向任意拐弯波导
CN106249444A (zh) * 2016-08-31 2016-12-21 欧阳征标 无泄漏磁光材料空隙波导磁表面快波方向可控光二极管
WO2018041185A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
WO2018041178A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041188A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
CN108267814A (zh) * 2016-12-30 2018-07-10 三星电子株式会社 非互易光传输器件及包括其的光学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318876A (ja) * 1994-05-19 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> 光非相反回路
JPH08507160A (ja) * 1993-02-22 1996-07-30 ザ トラスティーズ オブ コロンビア ユニバーシティー イン ザ シティー オブ ニューヨーク 薄膜磁気光学偏光回転子
JP2001350039A (ja) * 2000-06-06 2001-12-21 Tokyo Inst Of Technol 光アイソレータ及び光エレクトロニクス装置
JP2003302603A (ja) * 2002-04-11 2003-10-24 Tokyo Inst Of Technol 干渉計型光アイソレータ及び光サーキュレータ
JP2004240003A (ja) * 2003-02-04 2004-08-26 Rikogaku Shinkokai シリコン導波層を有する磁気光学導波路及びそれを用いた光非相反素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507160A (ja) * 1993-02-22 1996-07-30 ザ トラスティーズ オブ コロンビア ユニバーシティー イン ザ シティー オブ ニューヨーク 薄膜磁気光学偏光回転子
JPH07318876A (ja) * 1994-05-19 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> 光非相反回路
JP2001350039A (ja) * 2000-06-06 2001-12-21 Tokyo Inst Of Technol 光アイソレータ及び光エレクトロニクス装置
JP2003302603A (ja) * 2002-04-11 2003-10-24 Tokyo Inst Of Technol 干渉計型光アイソレータ及び光サーキュレータ
JP2004240003A (ja) * 2003-02-04 2004-08-26 Rikogaku Shinkokai シリコン導波層を有する磁気光学導波路及びそれを用いた光非相反素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEKI YOKOI: "Si-doharo o Yusuru Hikari- isolator", 2005 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, ELECTRONICS SOCIETY C-3-52, 7 March 2005 (2005-03-07), pages 222 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154416A (zh) * 2016-08-31 2016-11-23 欧阳征标 无泄漏低损磁光薄膜磁表面快模可控单向任意拐弯波导
CN106249444A (zh) * 2016-08-31 2016-12-21 欧阳征标 无泄漏磁光材料空隙波导磁表面快波方向可控光二极管
WO2018041173A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle
WO2018041180A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite
WO2018041185A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
WO2018041178A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041188A1 (fr) * 2016-08-31 2018-03-08 深圳大学 Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
CN108267814A (zh) * 2016-12-30 2018-07-10 三星电子株式会社 非互易光传输器件及包括其的光学装置
CN108267814B (zh) * 2016-12-30 2021-03-19 三星电子株式会社 非互易光传输器件及包括其的光学装置
US11262606B2 (en) 2016-12-30 2022-03-01 Samsung Electronics Co., Ltd. Nonreciprocal optical transmission device and optical apparatus including the same

Similar Documents

Publication Publication Date Title
JP4456663B2 (ja) 光非相反素子製造方法
WO2010023738A1 (fr) Procédé de fabrication d&#39;un dispositif optique non réciproque et dispositif optique non réciproque
Shoji et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding
Ghosh et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce: YIG on silicon-on-insulator waveguide circuits
WO2009081488A1 (fr) Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque
KR101656183B1 (ko) 평면 도파로 집적형 비가역 편광 회전기
Hutchings et al. Quasi-phase-matched faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators
Ghosh et al. Compact Mach–Zehnder interferometer Ce: YIG/SOI optical isolators
Yan et al. On-chip nonreciprocal photonic devices based on hybrid integration of magneto-optical garnet thin films on silicon
WO2009016972A1 (fr) Dispositif optique, dispositif optique intégré et son procédé de fabrication
JP7062937B2 (ja) 光学素子およびその製造方法
JP6338404B2 (ja) 導波路型磁気光学デバイス及びその製造方法
JP4653391B2 (ja) 光制御素子の製造方法
JP2001350039A (ja) 光アイソレータ及び光エレクトロニクス装置
Shirato et al. High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift
WO2009081487A1 (fr) Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque
JP4171831B2 (ja) シリコン導波層を有する光非相反素子
TWI810493B (zh) 介電光電相移器
JP7295467B2 (ja) 光学素子及びその製造方法
JP2010191260A (ja) 導波路型アイソレータ、光集積デバイス、及びその製造方法
JP2006284962A (ja) 光学素子
Ghosh et al. Ce: YIG/SOI optical isolator realized by BCB bonding
Yokoi et al. Interferometric optical isolator with air/Si/magnetic-garnet waveguide operated in unidirectional magnetic field
Shirato Optical Isolator for TE Polarized Light Realized by Adhesive Bonding of Ce: YIG on Silicon-on-Insulator Waveguide Circuits
Fujie et al. Silicon waveguide optical isolator integrated with TE-TM mode converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07860095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP