WO2018041173A1 - Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle - Google Patents

Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle Download PDF

Info

Publication number
WO2018041173A1
WO2018041173A1 PCT/CN2017/099810 CN2017099810W WO2018041173A1 WO 2018041173 A1 WO2018041173 A1 WO 2018041173A1 CN 2017099810 W CN2017099810 W CN 2017099810W WO 2018041173 A1 WO2018041173 A1 WO 2018041173A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical
waveguide
thin film
magnetic surface
Prior art date
Application number
PCT/CN2017/099810
Other languages
English (en)
Chinese (zh)
Inventor
郑耀贤
欧阳征标
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018041173A1 publication Critical patent/WO2018041173A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the invention relates to a magneto-optical material, a surface wave and a photodiode, in particular to a non-leakage low-loss magneto-optical film magnetic surface fast mode controllable one-way arbitrary bending waveguide.
  • a curved waveguide is an optical device used as a conversion optical path, which occupies an important position in an optical waveguide device. Bending in the optical waveguide is necessary due to the change in the direction of beam propagation in the optical waveguide, the displacement of the beam transmission axis, and the need to reduce the volume of the device. The bending of the waveguide causes a change in the optical characteristic distribution of the waveguide material in the direction of light transmission, so that the curved waveguide has a high loss.
  • the field of turning waveguides has been extensively studied, and the curved turning type curved waveguide is the main content of this research. But even for this type of waveguide, the bending loss and transition loss that are present still severely restrict the transmission efficiency. In addition, structural defects and the like can also cause other losses to the waveguide.
  • Photodiodes and isolators are optics that only allow light to travel in one direction and are used to prevent unwanted light feedback.
  • the main component of conventional photodiodes and isolators is the Faraday rotator, which applies the Faraday effect (magneto-optical effect) as its working principle.
  • Conventional Faraday isolators consist of a polarizer, a Faraday rotator, and an analyzer. This device is complex in structure and is commonly used in free-space optical systems.
  • integrated optical devices such as fiber optics or waveguides are non-polarization-maintaining systems that cause loss of polarization angle and are therefore not suitable for use with pull-up isolators.
  • the object of the present invention is to overcome the deficiencies in the prior art, and provide a leakage-free low-loss magneto-optical film magnetic surface fast mode controllable single-single structure with simple and effective structure, low loss, high optical transmission efficiency, small volume and easy integration. Fly to any bend.
  • the leakage-free low-loss magneto-optical film magnetic surface fast mode controllable unidirectional arbitrary bending waveguide comprises a light input end 1, a light output end 2, a magneto-optical film 3, a background medium 4, and two absorbing layers 5, 6 and a bias magnetic field;
  • the port 1 of the unidirectional turning waveguide is an optical input end, and the port 2 is a light output end;
  • the magneto-optical film 3 is disposed in a background medium; and the magneto-optical film 3 is magnetized
  • the magneto-optical film 3 and the background medium 4 are curved at an arbitrary angle; the magneto-optical film 3 is provided with a bias magnetic field, and the direction is controllable;
  • the curved portion of the magneto-optical film 3 is a ring shape;
  • the magneto-optical material and the surface of the background medium 4 are magnetic surface fast waves.
  • the interface between the magneto-optical material and the background medium 4 constitutes an optical waveguide.
  • the magneto-optical film 3 and the background medium 4 are connected to the light input end and the light output end by an arbitrary angle curved shape.
  • the magneto-optical film 3 and the background medium 4 structure waveguide are straight waveguides.
  • the magneto-optical material is magneto-optical glass or various rare earth element-doped garnets and rare earth-transition metal alloy films.
  • the background medium 4 is a common dielectric material or air.
  • the arbitrary angle curved shape is a 30 degree turn shape, a 45 degree turn shape, a 60 degree turn shape, a 90 degree turn shape, a 120 degree turn shape, a 135 degree turn shape, 150 degrees. Turn shape, 180 degree turn shape.
  • the absorbing layers 5, 6 are the same or different absorbing materials; the absorbing materials are polyurethane, graphite, graphene, carbon black, carbon fiber epoxy resin mixture, graphite thermoplastic material mixture, boron fiber epoxy Resin mixture, graphite fiber epoxy resin mixture, epoxy polysulfide, silicone rubber, urethane, fluoroelastomer, polyether ether ketone, polyether sulfone, polyaryl sulfone or polyethyleneimine.
  • the absorbing materials are polyurethane, graphite, graphene, carbon black, carbon fiber epoxy resin mixture, graphite thermoplastic material mixture, boron fiber epoxy Resin mixture, graphite fiber epoxy resin mixture, epoxy polysulfide, silicone rubber, urethane, fluoroelastomer, polyether ether ketone, polyether sulfone, polyaryl sulfone or polyethyleneimine.
  • the absorbing layers 5, 6 are each at a distance of 1/4 to 1/2 wavelength from the surface of the flat waveguide; the thickness of the absorbing layers 5, 6 are each not less than 1/4 wavelength.
  • the bias magnetic field is generated by a current direction controllable electromagnet or a permanent magnet, and the permanent magnet can rotate;
  • the direction controllable corner waveguide unidirectional corner waveguide is composed of a magneto-optical material thin film waveguide; the working mode of the one-way curved waveguide For the TE mode.
  • the invention is suitable for large-scale optical path integration and has wide application prospects. Compared with the prior art, it has the following positive effects.
  • the structure is simple and easy to implement.
  • Magnetic surface waves have immune characteristics to structural defects, have ultra-low loss and ultra-high transmission efficiency, and are widely used in the design of various optical waveguides.
  • Figure 1 is a structural diagram of a non-leakage low-loss magneto-optical thin film magnetic surface fast mode controllable unidirectional arbitrary bend waveguide.
  • optical input port 1 optical output port 2 magneto-optical film 3 background medium 4 first absorbing layer 5 second absorbing layer 6 bias magnetic field ⁇ H 0 (outer) bias magnetic field (Li)
  • the thickness of the magneto-optical film w The distance between the absorbing layer and the waveguide w 1 The radius of the inner arc of the ring r The radius of the outer arc of the ring r+w
  • FIG. 2 is a first working principle diagram of a non-leakage magneto-optical thin film magnetic surface fast mode controllable one-way arbitrary corner waveguide conduction.
  • Fig. 3 is a second working principle diagram of the non-leakage magneto-optical film magnetic surface fast mode controllable one-way arbitrary corner waveguide conduction.
  • Fig. 4 is a graph showing a first embodiment of the forward-reverse transmission efficiency of the unidirectional arbitrary-bending waveguide of the magneto-optical film as a function of the frequency of the light wave.
  • Fig. 5 is a graph showing a second embodiment of the forward-reverse transmission efficiency of the magneto-optical film unidirectional arbitrary-bending waveguide as a function of the light-wave frequency.
  • Fig. 6 is a graph showing a third embodiment of the forward-reverse transmission efficiency of the magneto-optical film unidirectional arbitrary-bending waveguide as a function of the light-wave frequency.
  • Fig. 7 is a graph showing a fourth embodiment of the forward-reverse transmission efficiency of the magneto-optical film unidirectional arbitrary bending waveguide as a function of the optical frequency.
  • the leakage-free low-loss magneto-optical film magnetic surface fast mode controllable unidirectional arbitrary bending waveguide of the present invention comprises an optical input end 1, a light output end 2, a magneto-optical film 3, a background medium 4, and a first An absorber layer 5, a second absorber layer 6 and a bias magnetic field H 0 ,
  • the working mode of the unidirectional cornering waveguide is TE mode
  • the unidirectional cornering waveguide is composed of a magneto-optical material film waveguide, a magneto-optical film" and a background medium 4
  • the interface is a region where the light energy is mainly concentrated, the magneto-optical film 3 is disposed in the background medium 4, and the magneto-optical film 3 is a magneto-optical material, that is, a magneto-optical material film
  • the magneto-optical material is magneto-optical glass or various rare earth elements doped a material such as a garnet and a rare earth-transition metal alloy film;
  • the film of magneto-optical material 3 And the background medium 4 is curved at any angle, and the shape bent at any angle is a circular arc shape (arc-shaped turning type curved waveguide), and the arbitrary bending angle may be an angle between 0 degrees and 180 degrees, and the bending angle of the unidirectional turning waveguide Can also be used: 0 degrees to 180 degrees The angle between; for example: 30 degrees, 45 degrees, 60 degrees, 90 degrees, 120 degrees, 135 degrees, 150 degrees and 180 degrees.
  • Figure 1 (a) one-way turning angle is 30 degrees
  • Figure 1 (b) single The turning angle is 45 degrees
  • the one-way turning angle of Figure 1 (c) is 60 degrees
  • the one-way turning angle of Figure 1 (d) is 90 degrees
  • the one-way turning angle of Figure 1 (e) is 120 degrees.
  • Fig. 1(f) has a one-way turning angle of 135 degrees
  • Fig. 1 (g) has a one-way turning angle of 150 degrees
  • Fig. 1 (h) has a one-way turning angle of 180 degrees.
  • the length of the curved portion depends on the turning angle.
  • the turning angle when the turning angle is 45 degrees, it is one-eighth of a ring; when the turning angle is 90 degrees, it is a quarter ring; when the turning angle is 180 degrees, it is a half ring, etc. Etc., etc. Since the device structure of the present invention satisfies the symmetry conservation, that is, its corresponding mirror structure can also work effectively, the structures of both of Figures 1(d) and (i) are mirror-symmetrical and have the same operational characteristics.
  • the surfaces of the magneto-optical material 3 and the background medium 4 are magnetic surface fast waves, and the magneto-optical material film 3 and the background medium 4 are structured as a flat waveguide structure, and the interface between the magneto-optical material 3 and the background medium 4 is formed.
  • the waveguide, the optical waveguide transmits optical signals unidirectionally, and functions as a photodiode or an isolator;
  • the magneto-optical material film 3 and the background medium 4 are connected to the optical input port 1 and the optical output port 2 by any angle bending;
  • the background medium 4 is made of a common dielectric material.
  • the first absorbing layer 5, the second absorbing layer 6 absorbing layer is the same or different absorbing materials, and the absorbing material is polyurethane, graphite, graphene, carbon black, carbon fiber epoxy resin mixture, graphite Thermoplastic material mixture, boron fiber epoxy resin mixture, graphite fiber epoxy resin mixture, epoxy polysulfide, silicone rubber, urethane, fluoroelastomer, polyetheretherketone, polyethersulfone, polyarylsulfone or poly Ethyleneimine; the distance between the first absorbing layer 5 and the second absorbing layer 6 respectively from the surface of the flat waveguide is 1/4 to 1/2 wavelength; the thickness of the first absorbing layer 5 and the second absorbing layer They are each not less than 1/4 wavelength.
  • a bias magnetic field is provided at the magneto-optical material film 3, that is, a bias magnetic field ⁇ H 0 (outer) and a bias magnetic field (in), and the direction is controllable, the applied magnetic field H 0 is generated by an electromagnet with a controllable current direction or by a rotatable permanent magnet, so that the direction of the current can be controlled to change the conduction direction of the waveguide, or by rotating a permanent magnet. change.
  • the port 1 of the direction-controlled unidirectional turning waveguide is an optical input port, and the port 2 is an optical output port;
  • the direction is controllable Port 2 to the cornering waveguide is an optical input port, and port 1 is an optical output port.
  • the magnetic surface wave generated by the magneto-optical material-medium interface is a phenomenon similar to the metal surface plasmon (SPP).
  • SPP metal surface plasmon
  • the magneto-optical material Under the action of the biased static magnetic field, the magneto-optical material has a magnetic permeability of tensor, and at the same time, its effective refractive index is negative in a certain optical band.
  • the surface of the magneto-optical material is capable of producing a guided wave and has a property of unidirectional propagation, which is called a surface acoustic wave (Surface Magnetically Polarized Wave, SMP).
  • the invention relates to a leakage-free low-loss magneto-optical film magnetic surface fast mode controllable unidirectional arbitrary bending waveguide.
  • the device is based on the non-reciprocity of the magneto-optical material, and the surface wave characteristic can be generated by combining the magneto-optical material-medium interface.
  • a single-conducting cornering waveguide with excellent performance has been developed and its conduction direction is controllable.
  • the magneto-optical material film is disposed in the background medium and combined with the two absorbing layers to make the magnetic surface fast wave generated by the uniform magneto-optical material-medium interface
  • the unidirectional bending transmission of light is performed, and the conduction direction of the waveguide is controlled by an electromagnet with a controllable current direction, and the turning angle is an arbitrary value, and the absorbing layer absorbs unnecessary waves and eliminates optical path interference.
  • the technical scheme of the invention is based on the optical non-reciprocity of the magneto-optical material and the unique conductive surface wave characteristic of the magneto-optical material-medium interface to realize the design of the direction controllable curved waveguide.
  • the basic principles of this technical solution are as follows:
  • the magneto-optical material is a material having magnetic anisotropy, and the magnetic dipole inside the magneto-optical material is arranged in the same direction by the application of a static magnetic field, thereby generating a magnetic dipole moment.
  • the magnetic dipole moment will interact strongly with the optical signal, which in turn produces a non-reciprocal transmission of light.
  • the magnetic permeability tensor of the magneto-optical material is under the action of a bias magnetic field H 0 oriented in the direction perpendicular to the vertical paper:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M s is the saturation magnetization
  • is the operating frequency
  • is the loss coefficient. If the direction of the biasing magnetic field is changed to the vertical paper facing direction, H 0 and M s will change the sign.
  • the magnetic surface wave generated by the magneto-optical material-medium interface can be solved according to the magnetic permeability tensor of the magneto-optical material and Maxwell's equations.
  • the electric and magnetic fields that satisfy the surface wave (which is a TE wave) at the interface should have the following form:
  • YIG yttrium iron garnet
  • the direction is vertical paper facing
  • the operating frequency f of the device is determined by the dielectric constants ⁇ 1 , ⁇ 2 and permeability [ ⁇ 1 ], ⁇ 2 of the magneto-optical material and the medium.
  • the YIG material is depleted.
  • the coefficient ⁇ 3 ⁇ 10 -4 and the turning angle is 90°.
  • the direction of the biasing magnetic field is the direction perpendicular to the paper, and the conduction direction of the curved waveguide is opposite.
  • the low-loss magneto-optical film of the device of the invention has a magnetic surface fast mode controllable one-way arbitrary bending waveguide which is arranged in a common dielectric material by a magneto-optical material, and its structural size and parameters, such as the inner arc radius r of the ring and the magneto-optical film
  • the thickness w can be flexibly selected according to the working wavelength and actual needs. Changing the size has no major impact on device performance.
  • yttrium iron garnet (YIG) is used as the magnetic anisotropic material, and the bias magnetic field is generated by an electromagnet with a controllable current direction, and the size is 900 Oe, and the direction will be determined.
  • the operating frequency f of the device is determined by the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ], ⁇ 2 of the magneto-optical material and the medium, YIG
  • the material loss coefficient ⁇ 3 ⁇ 10 -4 .
  • the direction-controlled cornering waveguide is composed of a magneto-optical film waveguide with a turning angle of 45°.
  • the electromagnet current is controlled by the magneto-optical material to apply the magnetic field direction perpendicular to the paper facing outward, and the curved waveguide will be turned on from port 1 to port 2; on the contrary, the direction of the control magnetic field is perpendicular to the paper facing, and the curved waveguide will be from port 2 Turn on to port 1.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is 5.11 GHz to 7.38 GHz. In the operating frequency range, considering the material loss, the direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 28.446 dB and a forward transmission insertion loss of 0.0664 dB.
  • the directionally controllable cornering waveguide is formed by a magneto-optical film waveguide having a turning angle of 90°.
  • the electromagnet current is controlled by the magneto-optical material to apply the magnetic field direction perpendicular to the paper facing outward, and the curved waveguide will be turned on from port 1 to port 2; on the contrary, the direction of the control magnetic field is perpendicular to the paper facing, and the curved waveguide will be from port 2 Turn on to port 1.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is from 5.00 GHz to 7.40 GHz. Consider material damage in the operating frequency range The consuming and direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 31.993 dB and a forward transmission insertion loss of 0.0163 dB.
  • the direction-controllable cornering waveguide is composed of a magneto-optical film waveguide with a turning angle of 135°.
  • the electromagnet current is controlled by the magneto-optical material to apply the magnetic field direction perpendicular to the paper facing outward, and the curved waveguide will be turned on from port 1 to port 2; on the contrary, the direction of the control magnetic field is perpendicular to the paper facing, and the curved waveguide will be from port 2 Turn on to port 1.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is 5.06 GHz to 7.40 GHz. In the operating frequency range, considering the material loss, the direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 27.447 dB and a forward transmission insertion loss of 0.0490 dB.
  • the direction-controllable cornering waveguide is composed of a magneto-optical film waveguide with a turning angle of 180°.
  • the electromagnet current is controlled by the magneto-optical material to apply the magnetic field direction perpendicular to the paper facing outward, and the curved waveguide will be turned on from port 1 to port 2; on the contrary, the direction of the control magnetic field is perpendicular to the paper facing, and the curved waveguide will be from port 2 Turn on to port 1.
  • the forward and reverse transmissions have the same efficiency.
  • the operating frequency range of the directionally controllable cornering waveguide is from 5.00 GHz to 7.39 GHz. In the operating frequency range, considering the material loss, the direction-controlled cornering waveguide has a maximum forward-reverse transmission isolation of 35.752 dB and a forward transmission insertion loss of 0.0383 dB.
  • the transmission efficiency curve of the magneto-optical film magnetic surface fast mode unidirectional turning waveguide with different turning angles shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7 can be transmitted by the magneto-optical film turning waveguide
  • the optical frequency range of the magnetic surface fast wave that is, the operating frequency range of the unidirectional turning waveguide. It can be seen from the results that the low-loss magneto-optical thin film magnetic surface fast-wave mode controlled unidirectional arbitrary curved waveguide of the present invention can work effectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

La présente invention concerne un guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau d'une surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle, comprenant : une extrémité d'entrée de lumière (1) ; une extrémité de sortie de lumière (2) ; un film mince magnéto-optique (3) ; un milieu d'arrière-plan (4) ; deux couches d'absorption d'ondes (5, 6) ; et un champ magnétique de polarisation (H0). Le film mince magnéto-optique (3) est disposé dans le milieu d'arrière-plan (4). Le film mince magnéto-optique (3) est constitué d'un matériau magnéto-optique. Le film mince magnéto-optique (3) et le milieu d'arrière-plan (4) peuvent être courbés selon n'importe quel angle. Le champ magnétique de polarisation (H0) est disposé au niveau du film mince magnéto-optique (3), et son orientation peut être réglée. Le film mince magnéto-optique (3) présente une partie courbée en forme d'anneau. Une onde rapide de surface magnétique existe au niveau d'une surface entre le matériau magnéto-optique et le milieu d'arrière-plan (4). Le guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau d'une surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle présente une structure simple, une petite taille, de faibles pertes et une efficacité de transmission élevée, facilite l'intégration, convient à des circuits intégrés optiques à grande échelle, et peut largement s'appliquer à diverses conceptions de guide d'ondes optique.
PCT/CN2017/099810 2016-08-31 2017-08-31 Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle WO2018041173A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610796438.4 2016-08-31
CN201610796438.4A CN106154416B (zh) 2016-08-31 2016-08-31 无泄漏低损磁光薄膜磁表面快模可控单向任意拐弯波导

Publications (1)

Publication Number Publication Date
WO2018041173A1 true WO2018041173A1 (fr) 2018-03-08

Family

ID=57345182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099810 WO2018041173A1 (fr) 2016-08-31 2017-08-31 Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle

Country Status (2)

Country Link
CN (1) CN106154416B (fr)
WO (1) WO2018041173A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249445A (zh) * 2016-08-31 2016-12-21 欧阳征标 低损型磁光薄膜磁表面快模任意角单向拐弯波导
CN106154416B (zh) * 2016-08-31 2021-02-19 深圳大学 无泄漏低损磁光薄膜磁表面快模可控单向任意拐弯波导
CN106291812B (zh) * 2016-08-31 2019-04-30 欧阳征标 低损磁光薄膜磁表面快模任意方向可控单向拐弯波导
CN106405729B (zh) * 2016-08-31 2019-04-23 欧阳征标 无泄漏低损型磁光薄膜磁表面快模任意角单向拐弯波导

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375200A (zh) * 2006-01-31 2009-02-25 国立大学法人东京工业大学 光隔离器
WO2009081488A1 (fr) * 2007-12-25 2009-07-02 Shibaura Institute Of Technology Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque
CN101672987A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 光隔离器、光分插复用器和光合束器
CN104570409A (zh) * 2014-09-29 2015-04-29 欧阳征标 一种紧凑型六端口光子晶体环行器
CN106154416A (zh) * 2016-08-31 2016-11-23 欧阳征标 无泄漏低损磁光薄膜磁表面快模可控单向任意拐弯波导
CN106249445A (zh) * 2016-08-31 2016-12-21 欧阳征标 低损型磁光薄膜磁表面快模任意角单向拐弯波导
CN106405729A (zh) * 2016-08-31 2017-02-15 欧阳征标 无泄漏低损型磁光薄膜磁表面快模任意角单向拐弯波导

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371775C (zh) * 2006-04-10 2008-02-27 浙江大学 波导型非互易光分束器件
CN100536226C (zh) * 2006-12-25 2009-09-02 北京交通大学 非对称结构栅格速度补偿方法及速度补偿型弯曲共面波导
KR100846515B1 (ko) * 2007-03-19 2008-07-17 삼성전자주식회사 테이퍼진 c-형 개구를 갖는 90도 굽어진 금속 도파로,상기 도파로의 제조 방법, 상기 도파로를 이용한 광전송모듈 및 상기 도파로를 채용한 열보조 자기기록 헤드
CN103901541B (zh) * 2012-12-25 2016-08-31 深圳大学 信号分插复用模块和信号分插复用器
CN103457009B (zh) * 2013-08-16 2016-01-20 上海理工大学 太赫兹低损耗弯曲波导
CN104133269B (zh) * 2014-08-04 2018-10-26 河海大学常州校区 基于超材料的表面波的激发和长距离传输结构
CN105720475B (zh) * 2016-03-23 2018-10-09 华南理工大学 一种基于光子晶体的全光二极管单向光传输方法及装置
CN105842883A (zh) * 2016-05-12 2016-08-10 深圳市芯思杰智慧传感技术有限公司 光隔离器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375200A (zh) * 2006-01-31 2009-02-25 国立大学法人东京工业大学 光隔离器
WO2009081488A1 (fr) * 2007-12-25 2009-07-02 Shibaura Institute Of Technology Dispositif optique non réciproque et procédé de fabrication du dispositif optique non réciproque
CN101672987A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 光隔离器、光分插复用器和光合束器
CN104570409A (zh) * 2014-09-29 2015-04-29 欧阳征标 一种紧凑型六端口光子晶体环行器
CN106154416A (zh) * 2016-08-31 2016-11-23 欧阳征标 无泄漏低损磁光薄膜磁表面快模可控单向任意拐弯波导
CN106249445A (zh) * 2016-08-31 2016-12-21 欧阳征标 低损型磁光薄膜磁表面快模任意角单向拐弯波导
CN106405729A (zh) * 2016-08-31 2017-02-15 欧阳征标 无泄漏低损型磁光薄膜磁表面快模任意角单向拐弯波导

Also Published As

Publication number Publication date
CN106154416B (zh) 2021-02-19
CN106154416A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2018041185A1 (fr) Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
WO2018041173A1 (fr) Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle
WO2018041189A1 (fr) Guide d'ondes à courbure unidirectionnelle, angle arbitraire, mode rapide de surface magnétique avec espace magnéto-optique de type à faible perte sans fuite
WO2018041175A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte d'étanchéité
WO2018041178A1 (fr) Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041177A1 (fr) Guide d'ondes à courbure unidirectionnelle contrôlable dans la direction arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte
WO2018041179A1 (fr) Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite
WO2018041183A1 (fr) Photodiode réglable dans la direction d'onde rapide de surface magnétique à film fin magnéto-optique sans fuite
WO2018041184A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique sans fuite
WO2018041188A1 (fr) Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
WO2018041180A1 (fr) Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite
WO2018041176A1 (fr) Photodiode pouvant être commandée par une direction d'onde rapide de surface magnétique avec guide d'onde d'espace de matériau magnéto-optique
WO2018041182A1 (fr) Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique
WO2018041186A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte
US3860325A (en) Electric field displacing type optical isolator
WO2018041181A1 (fr) Photodiode à direction d'onde rapide de surface magnétique pouvant être commandée avec couche mince magnéto-optique
WO2018041174A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique
Shirato et al. High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift
Jiang et al. A compact low-loss one-way transmission structure based on nonreciprocal coupling
CN219843149U (zh) 一种双极化非对称传输、吸波超材料结构
Jiang et al. A Low-Loss Broadband One-Way Transmission Structure Based on Nonreciprocal Coupling
Qian et al. Geometric similarities and topological phases in surface magnon polaritons
JPS6343726B2 (fr)
Ueda et al. Dispersion Engineering of Nonreciprocal Composite Right/Left Handed Metamaterials Using Ferrite Materials in Microwave Region
CN111816965A (zh) 波导隔离器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845475

Country of ref document: EP

Kind code of ref document: A1