WO2018041179A1 - Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite - Google Patents

Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite Download PDF

Info

Publication number
WO2018041179A1
WO2018041179A1 PCT/CN2017/099816 CN2017099816W WO2018041179A1 WO 2018041179 A1 WO2018041179 A1 WO 2018041179A1 CN 2017099816 W CN2017099816 W CN 2017099816W WO 2018041179 A1 WO2018041179 A1 WO 2018041179A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical material
waveguide
optical
photodiode
Prior art date
Application number
PCT/CN2017/099816
Other languages
English (en)
Chinese (zh)
Inventor
欧阳征标
郑耀贤
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018041179A1 publication Critical patent/WO2018041179A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators

Definitions

  • the invention relates to a magneto-optical material, a surface wave and a photodiode, in particular to a leak-free magneto-optical material void waveguide magnetic surface fast wave photodiode.
  • Photodiodes and isolators are optics that only allow light to travel in one direction and are used to prevent unwanted light feedback.
  • the main component of conventional photodiodes and isolators is the Faraday rotator, which applies the Faraday effect (magneto-optical effect) as its working principle.
  • Conventional Faraday isolators consist of a polarizer, a Faraday rotator, and an analyzer. The complex structure of this device is often used in free-space optical systems.
  • integrated optical devices such as fiber optics or waveguides are non-polarization-maintaining systems that cause loss of polarization angle and are therefore not suitable for use with pull-up isolators.
  • the object of the present invention is to overcome the deficiencies in the prior art, and to provide a leak-free magneto-optical material void waveguide magnetic surface fast wave photodiode with simple structure, high light transmission efficiency, small volume and easy integration.
  • the leakage-free magneto-optical material void waveguide magnetic surface fast wave photodiode of the invention comprises an optical input port, a light output port, two magneto-optical material layers, a dielectric layer, four absorbing layers and two bias static magnetic fields;
  • the photodiode and the isolator consist of two layers of magneto-optical material And a dielectric layer; the left end of the photodiode and the isolator is an optical input port, and the right end thereof is a light output port; the gap between the two magneto-optical material layers is a dielectric layer; the magneto-optical material layer and the dielectric layer
  • the surface is a magnetic surface fast wave; the two magneto-optical material layers are respectively provided with opposite bias magnetic fields, and the magnetic surface fast wave photodiode is composed of a magneto-optical material void waveguide.
  • the photodiode is composed of a magneto-optical material layer and a dielectric layer to form a three-layer optical waveguide.
  • the three-layer structure waveguide is a TE working mode waveguide.
  • the three-layer structure is a straight waveguide structure.
  • the magneto-optical material is magneto-optical glass, various rare earth element doped garnet or rare earth-transition metal alloy thin film material.
  • the dielectric layer is a material that is transparent to the working wave.
  • the dielectric layer is vacuum, air, glass, silicon dioxide.
  • Each of the four absorbing layers has a distance of 1/4 to 1/2 wavelength with respect to the surface of the optical waveguide; the thickness of each of the four absorbing layers is not less than 1/4 wavelength, respectively.
  • the absorbing layer is the same or different absorbing materials; the absorbing layer material is polyurethane, graphite, graphene, carbon black, carbon fiber epoxy resin mixture, graphite thermoplastic material mixture, boron fiber epoxy resin mixture, Graphite fiber epoxy resin mixture, epoxy polysulfide, silicone rubber, urethane, fluoroelastomer, polyetheretherketone, polyethersulfone, polyarylsulfone or polyethyleneimine.
  • the absorbing layer material is polyurethane, graphite, graphene, carbon black, carbon fiber epoxy resin mixture, graphite thermoplastic material mixture, boron fiber epoxy resin mixture, Graphite fiber epoxy resin mixture, epoxy polysulfide, silicone rubber, urethane, fluoroelastomer, polyetheretherketone, polyethersulfone, polyarylsulfone or polyethyleneimine.
  • the bias magnetic field is generated by an electromagnet or a permanent magnet.
  • the invention is suitable for large-scale optical path integration and has wide application prospects. Compared with the prior art, it has the following positive effects.
  • the structure is simple and easy to implement.
  • 1 is a structural view of a leak-free magneto-optical material void waveguide magnetic surface fast wave photodiode.
  • optical input port 1 optical output port 2 magneto-optical material 3 magneto-optical material 4 dielectric layer 5 first absorbing layer 6 second absorbing layer 7 third absorbing layer 8 fourth absorbing layer 9 bias magnetic field ⁇ H 0 (outer) bias magnetic field H 0 (in) dielectric layer thickness w distance between the absorber layer and the waveguide w 1
  • FIG. 2 is a schematic diagram showing the rightward unidirectional operation of a leak-free magneto-optical material void waveguide magnetic surface fast wave photodiode.
  • Fig. 3 is a graph showing a first embodiment of the forward-reverse transmission efficiency of a leak-free magneto-optical material void waveguide magnetic surface fast-wave photodiode as a function of lightwave frequency.
  • FIG. 4 is a graph showing a second embodiment of the forward-reverse transmission efficiency of a leak-free magneto-optical material void waveguide magnetic surface fast-wave photodiode as a function of lightwave frequency.
  • Fig. 5 is a graph showing a third embodiment of the forward-reverse transmission efficiency of the leak-free magneto-optical material void waveguide magnetic surface fast-wave photodiode as a function of the light-wave frequency.
  • the photodiode of the leakage-free magneto-optical material void waveguide magnetic surface wave of the present invention comprises an optical input port 1, a light output port 2, a first magneto-optical material layer 3, and a second magneto-optical material layer 4.
  • the photodiode and the isolator are made of the first magneto-optical
  • the material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 are formed; the left end of the photodiode and the isolator is the optical input port 1, and the right end is the optical output port 2; the magnetic surface fast-wave photodiode is composed of the magneto-optical material void waveguide
  • the first magneto-optical material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 form a three-layer optical waveguide, which can transmit optical signals unidirectionally, that is, a photodiode, and the three-layer structure is a straight waveguide structure, and the present invention
  • the waveguide is a TE working mode waveguide.
  • the gap between the first magneto-optical material layer 3 and the second magneto-optical material layer 4 is a dielectric layer 5, and the dielectric layer 5 is a region where light energy is mainly concentrated.
  • the dielectric layer 5 may be a transparent material of a working wave, or may be vacuum. Air, glass, silica.
  • the surface of the first magneto-optical material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 is a magnetic surface fast wave;
  • the magneto-optical material is magneto-optical glass, various rare earth doped garnet or rare earth-transition metal
  • the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are respectively provided with opposite bias magnetic fields, that is, the bias magnetic field ⁇ H 0 (outer) and the bias magnetic field H 0 (in), the bias magnetic field is generated by an electromagnet or a permanent magnet, and the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are in the opposite direction of the bias magnetic field H 0 , when the first magneto-optical material Layer 3 is applied with a static magnetic field H 0 perpendicular to the paper facing outward, and when the second magneto-optical material layer 4 is applied perpendicular to the static magnetic field H 0 in the paper facing direction, the
  • the distances of the first wave absorbing layer 6, the second wave absorbing layer 7, the third absorbing layer 8 and the fourth absorbing layer 9 from the surface of the optical waveguide are respectively 1/4 to 1/2 wavelength; the first absorbing layer 6
  • the thickness of the second wave absorbing layer 7, the third wave absorbing layer 8, and the fourth wave absorbing layer 9 are each not less than 1/4 wavelength.
  • the magnetic surface wave generated by the magneto-optical material-dielectric layer interface is a phenomenon similar to the metal surface plasmon (SPP).
  • SPP metal surface plasmon
  • the magneto-optical material Under the action of the biased static magnetic field, the magneto-optical material has a magnetic permeability of tensor, and at the same time, its effective refractive index is negative in a certain optical band.
  • the surface of the magneto-optical material is capable of producing a guided wave and has a property of unidirectional propagation, which is called a surface acoustic wave (Surface Magnetically Polarized Wave, SMP).
  • the leakage-free magneto-optical material void waveguide magnetic surface fast wave photodiode of the invention combines a magneto-optical material-medium-magneto-optical material three-layer structure waveguide and four absorbing layers, and uses a magneto-optical material-medium interface to generate a magnetic surface fast wave To perform one-way transmission of light, the absorbing layer absorbs unwanted waves and eliminates optical path interference.
  • the technical scheme of the invention realizes the design of the photodiode and the isolator based on the optical non-reciprocity of the magneto-optical material and the unique conductive surface wave characteristic of the magneto-optical material-medium interface.
  • the basic principles of this technical solution are as follows:
  • the magneto-optical material is a material having magnetic anisotropy, and the magnetic dipole inside the magneto-optical material is arranged in the same direction by the application of a static magnetic field, thereby generating a magnetic dipole moment.
  • the magnetic dipole moment will interact strongly with the optical signal, which in turn produces a non-reciprocal transmission of light.
  • the magnetic permeability tensor of the magneto-optical material is under the action of a bias magnetic field H 0 oriented in the direction perpendicular to the vertical paper:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M s is the saturation magnetization
  • is the operating frequency
  • is the loss coefficient. If the direction of the biasing magnetic field is changed to the vertical paper facing direction, H 0 and M s will change the sign.
  • the surface acoustic wave generated by the interface of the magneto-optical material-dielectric layer can be solved according to the magnetic permeability tensor of the magneto-optical material and Maxwell's equations.
  • the electric and magnetic fields that satisfy the surface wave (TE wave) at the interface should have the following form:
  • a three-layer structure of the first magneto-optical material 3, the second magneto-optical material 4 and the dielectric layer 5 is used, and a static magnetic field in the opposite direction is added to the first magneto-optical material 3 and the second magneto-optical material 4, then Will constitute an effective photodiode.
  • YIG yttrium iron garnet
  • the bias magnetic field size is 900 Oe
  • the operating frequency f of the device is composed of a magneto-optical material and
  • the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ] of the medium are determined by ⁇ 2
  • the YIG material loss coefficient ⁇ 3 ⁇ 10 -4 .
  • the magnetic field at the first magneto-optical material layer 3 is outwardly facing the vertical paper, and the magnetic field at the second magneto-optical material layer 4 is in the direction perpendicular to the paper, when the light is input from the port 1, while at the first layer of the magneto-optical material material 3.
  • the interface between the second magneto-optical material layer 4 and the dielectric layer 5 generates a unidirectional forward-transferred magnetic surface wave photodiode and an isolator (a magnetic surface wave is generated inside the device), and finally outputs from the port 2; when the light is from the port 2 In the input, due to the non-reciprocity of the magnetic surface wave, the non-reciprocity of the device causes the internal light wave to be unable to propagate, and the light wave cannot be reversely transmitted inside the device, so that it cannot be output from port 1, and the light energy has been All are blocked at port 2.
  • the magneto-optical material void waveguide photodiode of the device of the present invention has a three-layer structure characteristic of a magneto-optical material-medium-magneto-optical material, a size of the first magneto-optical material layer 3 and the second magneto-optical material 4, and a thickness of the dielectric layer 5 Flexibility to choose according to the working wavelength and actual needs. Changing the size has no major impact on device performance.
  • yttrium iron garnet (YIG) is used as the magnetic anisotropic material
  • the bias magnetic field size is 900 Oe
  • the magnetic field direction of the first magneto-optical material 3 is vertical paper.
  • the YIG material loss coefficient ⁇ 3 ⁇ 10 -4
  • the operating frequency f of the device is the dielectric constant ⁇ 1 , ⁇ 2 and permeability of the magneto-optical material and the medium [ ⁇ 1 ], determined by ⁇ 2 .
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 5.02 GHz to 7.36 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 32.8 dB and a forward transmission insertion loss of 0.00369 dB.
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the direct waveguide structure is 5.00 GHz to 7.36 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 31.7 dB and a forward transmission insertion loss of 0.00295 dB.
  • the operating band the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 4.94 GHz to 7.78 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 33.0 dB and a forward transmission insertion loss of 0.00217 dB.
  • the transmission efficiency curve of the magneto-optical material void waveguide magnetic surface fast wave photodiode with different parameters of FIG. 4 and FIG. 5 can obtain the optical frequency range of the magnetic surface fast wave transmitted by the magneto-optical material void waveguide, that is, the operating frequency range of the photodiode.
  • the present invention is based on a magneto-optical material void waveguide magnetic surface fast wave photodiode which can work effectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Led Device Packages (AREA)

Abstract

L'invention concerne une photodiode à ondes rapides de surface magnétique avec un guide d'ondes à espace en matériau magnéto-optique sans fuite, comprenant un port d'entrée optique (1), un port de sortie optique (2), deux couches de matériau magnéto-optique (3, 4), une couche de milieu (5), quatre couches d'absorption d'ondes (6, 7, 8, 9) et deux champs magnétiques statiques de polarisation. La photodiode est composée des deux couches de matériau magnéto-optique (3, 4) et de la couche de milieu (5). L'extrémité gauche de la photodiode est le port d'entrée optique (1), et son extrémité droite est le port de sortie optique (2). La couche de milieu (5) est située dans un espace entre les deux couches de matériau magnéto-optique (3, 4). Les surfaces des couches de matériau magnéto-optique (3, 4) et de la couche de milieu (5) contiennent des ondes rapides de surface magnétique. Les deux couches de matériau magnéto-optique (3, 4) sont respectivement pourvues de champs magnétiques de polarisation dans des directions opposées. La photodiode à ondes rapides de surface magnétique est composée du guide d'ondes à espace en matériau magnéto-optique. La photodiode à ondes rapides de surface magnétique avec un guide d'ondes à espace en matériau magnéto-optique sans fuite a une structure simple, est pratique à mettre en œuvre, a une efficacité de transmission optique élevée, est de petite taille, est pratique à intégrer, et est applicable à une intégration de trajet optique à grande échelle.
PCT/CN2017/099816 2016-08-31 2017-08-31 Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite WO2018041179A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610794201.2A CN106200025A (zh) 2016-08-31 2016-08-31 无泄漏磁光材料空隙波导磁表面快波光二极管
CN201610794201.2 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041179A1 true WO2018041179A1 (fr) 2018-03-08

Family

ID=58086899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099816 WO2018041179A1 (fr) 2016-08-31 2017-08-31 Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite

Country Status (2)

Country Link
CN (1) CN106200025A (fr)
WO (1) WO2018041179A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296156A (zh) * 2021-12-30 2022-04-08 杭州电子科技大学 基于磁光材料与石墨烯复合层状周期结构的光学拓扑转换方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200025A (zh) * 2016-08-31 2016-12-07 欧阳征标 无泄漏磁光材料空隙波导磁表面快波光二极管
CN106249444A (zh) * 2016-08-31 2016-12-21 欧阳征标 无泄漏磁光材料空隙波导磁表面快波方向可控光二极管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102285A2 (fr) * 1999-10-27 2001-05-23 Minebea Co., Ltd. Elément magnéto-optique
WO2008126624A1 (fr) * 2007-03-19 2008-10-23 National Institute For Materials Science Elément magnéto-optique sans plomb et son procédé de fabrication
CN104090375A (zh) * 2014-07-30 2014-10-08 华为技术有限公司 光隔离装置和光隔离方法
US20140314371A1 (en) * 2008-07-01 2014-10-23 Duke University Polymer optical isolator
CN105531619A (zh) * 2013-09-12 2016-04-27 信越化学工业株式会社 磁光材料及其制造方法、以及磁光设备
CN106200025A (zh) * 2016-08-31 2016-12-07 欧阳征标 无泄漏磁光材料空隙波导磁表面快波光二极管
CN106249444A (zh) * 2016-08-31 2016-12-21 欧阳征标 无泄漏磁光材料空隙波导磁表面快波方向可控光二极管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785522A (ja) * 1993-09-16 1995-03-31 Olympus Optical Co Ltd 光磁気ディスク用ピックアップ
CN105093571A (zh) * 2015-07-31 2015-11-25 南京邮电大学 大入射角磁光子晶体宽带光隔离器
CN105842883A (zh) * 2016-05-12 2016-08-10 深圳市芯思杰智慧传感技术有限公司 光隔离器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102285A2 (fr) * 1999-10-27 2001-05-23 Minebea Co., Ltd. Elément magnéto-optique
WO2008126624A1 (fr) * 2007-03-19 2008-10-23 National Institute For Materials Science Elément magnéto-optique sans plomb et son procédé de fabrication
US20140314371A1 (en) * 2008-07-01 2014-10-23 Duke University Polymer optical isolator
CN105531619A (zh) * 2013-09-12 2016-04-27 信越化学工业株式会社 磁光材料及其制造方法、以及磁光设备
CN104090375A (zh) * 2014-07-30 2014-10-08 华为技术有限公司 光隔离装置和光隔离方法
CN106200025A (zh) * 2016-08-31 2016-12-07 欧阳征标 无泄漏磁光材料空隙波导磁表面快波光二极管
CN106249444A (zh) * 2016-08-31 2016-12-21 欧阳征标 无泄漏磁光材料空隙波导磁表面快波方向可控光二极管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296156A (zh) * 2021-12-30 2022-04-08 杭州电子科技大学 基于磁光材料与石墨烯复合层状周期结构的光学拓扑转换方法及系统

Also Published As

Publication number Publication date
CN106200025A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018041185A1 (fr) Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
WO2018041173A1 (fr) Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle
WO2018041179A1 (fr) Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite
WO2018041189A1 (fr) Guide d'ondes à courbure unidirectionnelle, angle arbitraire, mode rapide de surface magnétique avec espace magnéto-optique de type à faible perte sans fuite
WO2018041184A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique sans fuite
WO2018041183A1 (fr) Photodiode réglable dans la direction d'onde rapide de surface magnétique à film fin magnéto-optique sans fuite
WO2018041175A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte d'étanchéité
CN110501821B (zh) 一种基于pt对称结构与磁光子晶体的可调谐单向交叉波导分配器
WO2018041180A1 (fr) Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite
WO2018041178A1 (fr) Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041182A1 (fr) Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique
WO2018041177A1 (fr) Guide d'ondes à courbure unidirectionnelle contrôlable dans la direction arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte
WO2018041176A1 (fr) Photodiode pouvant être commandée par une direction d'onde rapide de surface magnétique avec guide d'onde d'espace de matériau magnéto-optique
WO2018041188A1 (fr) Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
Otmani et al. Nonreciprocal TE–TM mode conversion based on photonic crystal fiber of air holes filled with magnetic fluid into a terbium gallium garnet fiber
WO2018041174A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique
US3860325A (en) Electric field displacing type optical isolator
WO2018041181A1 (fr) Photodiode à direction d'onde rapide de surface magnétique pouvant être commandée avec couche mince magnéto-optique
WO2018041186A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte
CN110646958B (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法
US20030147579A1 (en) Inline ferromagnetic-composite isolator and method
Shirato et al. High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift
CN219843149U (zh) 一种双极化非对称传输、吸波超材料结构
Tong et al. Magnetically tunable unidirectional waveguide based on magnetic photonic crystals
Rao et al. Design of One-way Structure for Spatial EM Wave Based on the Magnetic Surface Plasmon States

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845481

Country of ref document: EP

Kind code of ref document: A1