WO2018041174A1 - Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique - Google Patents

Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique Download PDF

Info

Publication number
WO2018041174A1
WO2018041174A1 PCT/CN2017/099811 CN2017099811W WO2018041174A1 WO 2018041174 A1 WO2018041174 A1 WO 2018041174A1 CN 2017099811 W CN2017099811 W CN 2017099811W WO 2018041174 A1 WO2018041174 A1 WO 2018041174A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical
thin film
photodiode
magnetic surface
Prior art date
Application number
PCT/CN2017/099811
Other languages
English (en)
Chinese (zh)
Inventor
欧阳征标
郑耀贤
王琼
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018041174A1 publication Critical patent/WO2018041174A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators

Definitions

  • the present invention relates to a magneto-optical material, a surface acoustic wave and a photodiode, and more particularly to a magneto-optical thin film magnetic surface fast wave photodiode.
  • Photodiodes and isolators are optics that only allow light to travel in one direction and are used to prevent unwanted light feedback.
  • the main component of conventional photodiodes and isolators is the Faraday rotator, which applies the Faraday effect (magneto-optical effect) as its working principle.
  • Conventional Faraday isolators consist of a polarizer, a Faraday rotator, and an analyzer. This device is complex in structure and is commonly used in free-space optical systems.
  • integrated optical devices such as fiber optics or waveguides are non-polarization-maintaining systems that cause loss of polarization angle and are therefore not suitable for use with pull-up isolators.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a magneto-optical material thin film magnetic surface fast wave photodiode with simple and effective structure, high light transmission efficiency, small volume and easy integration.
  • the magneto-optical thin film magnetic surface fast wave light tube comprises a light input end, a light output end, a magneto-optical film, a background medium, and a bias magnetic field; the magneto-optical film is disposed in the background medium;
  • the magneto-optical film uses a magneto-optical material; the photodiode and the spacer
  • the separator is composed of a magneto-optical material and a background medium; the left end of the photodiode and the isolator is a light input end, and the right end thereof is a light output end; and the surface of the magneto-optical material and the background medium is a magnetic surface fast wave;
  • a bias magnetic field is disposed at the magneto-optical film.
  • the magnetic surface fast wave photodiode is composed of a magneto-optical film disposed in a background medium.
  • the photodiode is composed of an interface of a magneto-optical film and a background medium to form an optical waveguide for unidirectionally transmitting optical signals.
  • the interface between the magneto-optical film and the background medium is a straight waveguide structure.
  • the straight waveguide is a TE working mode waveguide.
  • the magneto-optical material is magneto-optical glass or various rare earth element-doped garnets and rare earth-transition metal alloy films.
  • the background dielectric material is a material that is transparent to the working wave.
  • the background medium material is a common dielectric material, air, glass.
  • the bias magnetic field is generated by an electromagnet or a permanent magnet.
  • the invention is suitable for large-scale optical path integration and has wide application prospects. Compared with the prior art, it has the following positive effects.
  • the structure is simple and easy to implement.
  • FIG. 1 is a structural view of a magneto-optical thin film magnetic surface fast wave photodiode.
  • FIG. 2 is a schematic diagram of the unidirectional conduction operation of a magneto-optical thin film magnetic surface fast wave photodiode.
  • Fig. 3 is a graph showing a first embodiment of the forward and reverse transmission efficiency of a magneto-optical thin film magnetic surface fast wave photodiode as a function of lightwave frequency.
  • Figure 4 is a graph showing a second embodiment of the forward and reverse transmission efficiency of a magneto-optical thin film magnetic surface fast wave photodiode as a function of lightwave frequency.
  • Fig. 5 is a graph showing a third embodiment of the forward and reverse transmission efficiency of the magneto-optical thin film magnetic surface fast wave photodiode as a function of the light wave frequency.
  • the magneto-optical material thin film magnetic surface fast wave photodiode of the present invention comprises a light input end 1, a light output end 2, a magneto-optical film 3, a background medium 4 and a bias magnetic field H 0 ;
  • the fast-wavelength photodiode is formed by the magneto-optical material film 3 disposed in the background medium 4.
  • the magneto-optical film 3 is made of a magneto-optical material, that is, a magneto-optical material film, and the interface between the magneto-optical material film 3 and the background medium 4 is a region where the light energy is mainly concentrated.
  • the optical waveguide formed by the interface between the magneto-optical material film and the background medium can transmit optical signals unidirectionally, that is, the photodiode, and the photodiode and the isolator are composed of the magneto-optical material and the background medium.
  • the magneto-optical material is magneto-optical glass or various rare earth-doped garnets and rare earth-transition metal alloy films; the interface between the magneto-optical material film 3 and the background medium 4 is a straight waveguide structure, and the waveguide of the present invention is a TE working mode.
  • the waveguide; the surface of the magneto-optical material film 3 and the background medium 4 are magnetic surface fast waves; the background medium material may be a transparent material of working wave, or a common dielectric material, air or glass.
  • the magneto-optical material film 3 is provided with a bias magnetic field ⁇ H 0 (in), and the bias magnetic field H 0 is generated by an electromagnet or a permanent magnet by a bias magnetic field; when the bias magnetic field H 0 is perpendicular to the paper surface, the photodiode
  • the left end of the isolator is the optical input end, and the right end is the optical output end; the light wave is input from port 1 to port 2 and the output is unidirectional.
  • the magnetic surface wave generated by the magneto-optical material-medium interface is a phenomenon similar to the metal surface plasmon (SPP).
  • SPP metal surface plasmon
  • the magneto-optical material Under the action of the biased static magnetic field, the magneto-optical material has a magnetic permeability of tensor, and at the same time, its effective refractive index is negative in a certain optical band.
  • the surface of the magneto-optical material is capable of producing a guided wave and has a property of unidirectional propagation, which is called a surface acoustic wave (Surface Magnetically Polarized Wave, SMP).
  • the magneto-optical material thin film waveguide magnetic surface fast wave photodiode of the present invention is configured by disposing a magneto-optical material film in a background medium (air), and unidirectionally transmitting light by using a magnetic surface fast wave generated by a magneto-optical material-medium interface.
  • the technical scheme of the invention realizes the design of the photodiode and the isolator based on the optical non-reciprocity of the magneto-optical material and the unique conductive surface wave characteristic of the magneto-optical material-medium interface.
  • the basic principles of this technical solution are as follows:
  • the magneto-optical material is a material having magnetic anisotropy, and the magnetic dipole inside the magneto-optical material is arranged in the same direction by the application of a static magnetic field, thereby generating a magnetic dipole moment.
  • the magnetic dipole moment will interact strongly with the optical signal, which in turn produces a non-reciprocal transmission of light.
  • the magnetic permeability tensor of the magneto-optical material is under the action of a bias magnetic field H 0 oriented in the direction perpendicular to the vertical paper:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M s is the saturation magnetization
  • is the operating frequency
  • is the loss coefficient. If the direction of the biasing magnetic field is changed to the vertical paper facing direction, H 0 and M s will change the sign.
  • the magnetic surface wave generated by the magneto-optical material-medium interface can be solved according to the magnetic permeability tensor of the magneto-optical material and Maxwell's equations.
  • the electric and magnetic fields that satisfy the surface wave (which is a TE wave) at the interface should have the following form:
  • yttrium iron garnet (YIG) is used as the magnetic anisotropic material
  • the bias magnetic field of the magneto-optical film is 900 Oe
  • the magneto-optical film 3 is long in size.
  • the direction of the biasing static magnetic field is the vertical paper surface.
  • a magnetic surface wave is generated in the unidirectional forward transmission at the magneto-optical material-medium interface, and finally from the port 2 Output; when light is input from port 2, the light wave cannot be reversely transmitted inside the device due to the non-reciprocity of the surface acoustic wave, so that it cannot be output from port 1, and the light energy is all blocked at port 2.
  • the conduction direction of the photodiode and the isolator is determined by the direction of the applied magnetic field. When the direction of the static magnetic field to which the magneto-optical material is applied is opposite to that described above, the conduction direction is opposite.
  • the magneto-optical thin film magnetic surface fast wave photodiode of the device of the invention is disposed in a common dielectric material by using a magneto-optical material, and the size length l and the thickness w of the magneto-optical film 3 can be flexibly selected according to the working wavelength and actual requirements.
  • yttrium iron garnet (YIG) is used as the magnetic anisotropic material
  • the bias magnetic field is 900 Oe
  • the magnetic field direction is vertical paper facing
  • the magneto-optical film 3 is The thickness w
  • the YIG material loss coefficient ⁇ 3 ⁇ 10 -4
  • the operating frequency f of the device is determined by the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ], ⁇ 2 of the magneto-optical material and the medium.
  • the operating band the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 4.52 GHz to 7.26 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 21.9586 dB and a forward transmission insertion loss of 0.0146 dB.
  • the operating band the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 4.58 GHz to 7.20 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 25.0863 dB and a forward transmission insertion loss of 0.0146 dB.
  • the operating band the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 4.62 GHz to 7.16 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 23.6151 dB and a forward transmission insertion loss of 0.0622 dB.
  • the transmission efficiency curve of the magneto-optical thin film magnetic surface fast wave photodiode with different parameters of FIG. 3, FIG. 4 and FIG. 5 can obtain the optical frequency range of the magnetic surface fast wave transmitted by the magneto-optical thin film waveguide, that is, the operating frequency range of the photodiode. It can be seen from the results that the magnetic surface fast wave photodiode based on the magneto-optical material thin film waveguide of the present invention can work effectively.

Abstract

L'invention concerne une photodiode à onde rapide de surface magnétique avec un film mince magnéto-optique, comprenant un port d'entrée optique (1), un port de sortie optique (2), un film mince magnéto-optique (3), un support d'arrière-plan (4) et un champ magnétique de polarisation. Le film mince magnéto-optique (3) est disposé dans le support d'arrière-plan (4). Le film mince magnéto-optique (3) utilise un matériau magnéto-optique. La photodiode est composée du film mince magnéto-optique (3) et du support d'arrière-plan (4). L'extrémité gauche de la photodiode est une extrémité d'entrée optique, et son extrémité droite est une extrémité de sortie optique. Les surfaces du film mince magnéto-optique (3) et du support d'arrière-plan (4) sont pourvues d'ondes rapides de surface magnétique. Le champ magnétique de polarisation est disposé au niveau du film mince magnéto-optique (3). La photodiode a une simple structure, a une efficacité de transmission optique élevée, est de petite taille, est pratique à intégrer, est applicable à une intégration de trajet optique à grande échelle, et présente de larges perspectives d'application.
PCT/CN2017/099811 2016-08-31 2017-08-31 Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique WO2018041174A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610796109.XA CN106200024A (zh) 2016-08-31 2016-08-31 磁光薄膜磁表面快波光二极管
CN201610796109.X 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041174A1 true WO2018041174A1 (fr) 2018-03-08

Family

ID=58085857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099811 WO2018041174A1 (fr) 2016-08-31 2017-08-31 Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique

Country Status (2)

Country Link
CN (1) CN106200024A (fr)
WO (1) WO2018041174A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200024A (zh) * 2016-08-31 2016-12-07 欧阳征标 磁光薄膜磁表面快波光二极管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215362A (ja) * 2000-01-31 2001-08-10 Nec Eng Ltd 光ファイバコネクタ
CN1427274A (zh) * 2001-12-20 2003-07-02 住友电气工业株式会社 法拉第旋转器、光学隔离器、偏振器和类金刚石碳薄膜
CN101375200A (zh) * 2006-01-31 2009-02-25 国立大学法人东京工业大学 光隔离器
CN101672987A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 光隔离器、光分插复用器和光合束器
CN102138089A (zh) * 2008-06-26 2011-07-27 手性光子公司 光学手征光纤隔离器及其制作方法
CN106200024A (zh) * 2016-08-31 2016-12-07 欧阳征标 磁光薄膜磁表面快波光二极管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626576B2 (ja) * 1997-05-14 2005-03-09 株式会社リコー 磁気光学素子
JP2000162566A (ja) * 1998-11-27 2000-06-16 Tokyo Inst Of Technol 磁気光学効果増大素子およびその製造方法
WO2008068753A2 (fr) * 2006-12-04 2008-06-12 Ben-Gurion University Of The Negev - Research And Development Authority Filtres accordables biréfringents indépendants de la polarisation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215362A (ja) * 2000-01-31 2001-08-10 Nec Eng Ltd 光ファイバコネクタ
CN1427274A (zh) * 2001-12-20 2003-07-02 住友电气工业株式会社 法拉第旋转器、光学隔离器、偏振器和类金刚石碳薄膜
CN101375200A (zh) * 2006-01-31 2009-02-25 国立大学法人东京工业大学 光隔离器
CN102138089A (zh) * 2008-06-26 2011-07-27 手性光子公司 光学手征光纤隔离器及其制作方法
CN101672987A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 光隔离器、光分插复用器和光合束器
CN106200024A (zh) * 2016-08-31 2016-12-07 欧阳征标 磁光薄膜磁表面快波光二极管

Also Published As

Publication number Publication date
CN106200024A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018041185A1 (fr) Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
Shoji et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding
EP1039330A2 (fr) Isolateur optique pour guide d' onde
WO2018041173A1 (fr) Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle
WO2018041189A1 (fr) Guide d'ondes à courbure unidirectionnelle, angle arbitraire, mode rapide de surface magnétique avec espace magnéto-optique de type à faible perte sans fuite
WO2018041184A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique sans fuite
WO2018041183A1 (fr) Photodiode réglable dans la direction d'onde rapide de surface magnétique à film fin magnéto-optique sans fuite
WO2018041175A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte d'étanchéité
WO2018041179A1 (fr) Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite
WO2018041177A1 (fr) Guide d'ondes à courbure unidirectionnelle contrôlable dans la direction arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte
WO2018041178A1 (fr) Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041182A1 (fr) Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique
WO2018041176A1 (fr) Photodiode pouvant être commandée par une direction d'onde rapide de surface magnétique avec guide d'onde d'espace de matériau magnéto-optique
WO2018041174A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique
WO2018041180A1 (fr) Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite
WO2018041181A1 (fr) Photodiode à direction d'onde rapide de surface magnétique pouvant être commandée avec couche mince magnéto-optique
WO2018041188A1 (fr) Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
WO2018041186A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte
Levy et al. Permanent magnet film magneto‐optic waveguide isolator
Shirato et al. High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift
CN210428000U (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器
CN219843149U (zh) 一种双极化非对称传输、吸波超材料结构
Jiang et al. A Low-Loss Broadband One-Way Transmission Structure Based on Nonreciprocal Coupling
JPS6343726B2 (fr)
TAKI et al. Nonreciprocal properties of waveguide-type mono-sectional optical isolators using Bi: YIG thin-films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845476

Country of ref document: EP

Kind code of ref document: A1