WO2018041186A1 - Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte - Google Patents

Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte Download PDF

Info

Publication number
WO2018041186A1
WO2018041186A1 PCT/CN2017/099823 CN2017099823W WO2018041186A1 WO 2018041186 A1 WO2018041186 A1 WO 2018041186A1 CN 2017099823 W CN2017099823 W CN 2017099823W WO 2018041186 A1 WO2018041186 A1 WO 2018041186A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical
waveguide
optical material
magnetic surface
Prior art date
Application number
PCT/CN2017/099823
Other languages
English (en)
Chinese (zh)
Inventor
欧阳征标
郑耀贤
艾月霞
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018041186A1 publication Critical patent/WO2018041186A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the invention relates to a magneto-optical material, a magnetic surface wave, a unidirectional transmission and a curved waveguide, in particular to a low-loss magneto-optical magnetic surface fast mode arbitrary angle one-way cornering waveguide.
  • a curved waveguide is an optical device used as a conversion optical path, which occupies an important position in an optical waveguide device. Bending in the optical waveguide is necessary due to the change in the direction of beam propagation in the optical waveguide, the displacement of the beam transmission axis, and the need to reduce the volume of the device. The bending of the waveguide causes a change in the optical characteristic distribution of the waveguide material in the direction of light transmission, so that the curved waveguide has a high loss.
  • the field of turning waveguides has been extensively studied, and the curved turning type curved waveguide is the main content of this research. But even for this type of waveguide, the bending loss and transition loss that are present still severely restrict the transmission efficiency. In addition, structural defects and the like can also cause other losses to the waveguide.
  • Photodiodes and isolators are optics that only allow light to travel in one direction and are used to prevent unwanted light feedback.
  • the main component of conventional photodiodes and isolators is the Faraday rotator, which applies the Faraday effect (magneto-optical effect) as its working principle.
  • the traditional Faraday isolator consists of three polarizers, a Faraday rotator and an analyzer. This device is complex in structure and is usually used in free-space optical systems.
  • integrated optical devices such as fiber optics or waveguides are non-polarization-maintaining systems that cause loss of polarization angle and are therefore not suitable for use with pull-up isolators.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a low-loss magneto-optical magnetic surface fast mode arbitrary angle one-way with simple structure, low loss, high optical transmission efficiency, small volume and easy integration. Turn the waveguide.
  • the present invention adopts the following design:
  • the low loss type magneto-optical gap magnetic surface fast mode arbitrary angle one-way bending waveguide of the invention comprises an optical input port 1, a light output port 2, a magneto-optical material layer 3, 4, a dielectric layer 5 and two opposite directions. a magnetic field; the magneto-optical material layers 3, 4 and the dielectric layer 5 are a three-layer structure optical waveguide, the three-layer structure is curved at an arbitrary angle, and two are disposed at the magneto-optical material layers 3, 4.
  • a bias magnetic field having opposite directions; a gap between the layers of magneto-optical materials 3, 4 is a dielectric layer 5, port 1 of the unidirectional curved waveguide is an optical input port, and a right port 2 is a light output port;
  • the layer 5 is in the shape of a ring in the curved portion of the waveguide; the surface of the magneto-optical material 3, 4 and the surface of the dielectric layer 5 are magnetic surface fast waves.
  • the photodiode and the isolator are composed of magneto-optical material layers 3, 4 and a dielectric layer 5.
  • the magneto-optical material is magneto-optical glass or various rare earth element-doped garnets and rare earth-transition metal alloy films.
  • the magneto-optical material layers 3, 4 and the dielectric layer 5 are connected to the optical input port 1 and the light output port 2 by any angular bending.
  • the dielectric layer 5 is a vacuum, air, silicon dioxide, and a transparent plastic wave.
  • the three-layer structure is a flat structure.
  • the arbitrary angle curved shape is a 30 degree turn shape, a 45 degree turn shape, a 60 degree turn shape, a 90 degree turn shape, a 120 degree turn shape, a 135 degree turn shape, a 150 degree turn Shape, 180 degree turn shape.
  • the bias magnetic field is generated by an electromagnet or a permanent magnet.
  • the one-way cornering waveguide is composed of a magneto-optical gap waveguide; the working mode of the one-way cornering waveguide is a TE mode.
  • the invention is suitable for large-scale optical path integration and has broad application prospects. Compared with the prior art, it has the following positive effects.
  • the structure is simple and easy to implement.
  • Magnetic surface waves have immune characteristics to structural defects, have ultra-low loss and ultra-high transmission efficiency, and are widely used in the design of various optical waveguides.
  • 1 is a structural view of a low-loss magneto-optical magnetic surface fast mode arbitrary angle one-way turning waveguide.
  • optical input port 1 optical output port 2 first magneto-optical material layer 3 second magneto-optical material layer 4 dielectric layer 5 bias magnetic field ⁇ H 0 (outer) bias magnetic field ⁇ H 0 (inner) dielectric layer thickness w
  • the radius of the inner arc of the ring r The radius of the outer arc of the ring is r+w
  • FIG. 2 is a working principle diagram of a low-loss magneto-optical void magnetic surface fast mode unidirectional turning waveguide.
  • Fig. 3 is a graph showing a first embodiment of the forward-reverse transmission efficiency of the low-loss type magneto-optical gap unidirectional turning waveguide as a function of the optical frequency.
  • Fig. 4 is a graph showing a second embodiment of the forward and reverse transmission efficiency of the low loss type magneto-optical void unidirectional turning waveguide as a function of the light wave frequency.
  • Figure 5 shows the forward and reverse transmission efficiency of a low-loss magneto-optical void unidirectional bending waveguide with light waves.
  • Fig. 6 is a graph showing a fourth embodiment of the forward-reverse transmission efficiency of the low-loss type magneto-optical void unidirectional turning waveguide as a function of the optical frequency.
  • the low loss type magneto-optical gap magnetic surface fast mode arbitrary angle one-way turning waveguide of the present invention comprises an optical input port 1, an optical output port 2, a first magneto-optical material layer 3, and a second magnetic field.
  • the unidirectional turning waveguide is composed of a magneto-optical gap waveguide, and the unidirectional turning waveguide operates in a TE mode, and the first magneto-optical material layer 3
  • the second magneto-optical material layer 4 and the dielectric layer 5 are a three-layer optical waveguide.
  • the optical waveguide can transmit optical signals in one direction, and is used as a photodiode and an isolator.
  • the photodiode and the isolator are composed of a first magneto-optical material layer 3.
  • the second magneto-optical material layer 4 and the dielectric layer 5 are formed.
  • the three-layer structure is a flat waveguide structure, and the three-layer structure is curved at an arbitrary angle, and the shape bent at any angle is a circular arc shape (arc-shaped turning type curved waveguide), and the turning angle can be any between 0 degrees and 180 degrees.
  • Angle, the bending angle of the unidirectional turning waveguide can also adopt an angle between 0 degrees and 180 degrees; several kinds of waveguide turning angles as shown in FIG. 1 include: 30 degrees, 45 degrees, 60 degrees, 90 degrees, 120 degrees. , 135 degrees, 150 degrees, 180 degrees.
  • Figure 1 (a) one-way turning angle is 30 degrees
  • Figure 1 (b) one-way turning angle is 45 degrees
  • Figure 1 (c) one-way turning angle is 60 degrees
  • Figure 1 (d) (i) single The turning angle is 90 degrees
  • the one-way turning angle of Figure 1 (e) is 120 degrees
  • the one-way turning angle of Figure 1 (f) is 135 degrees
  • the one-way turning angle of Figure 1 (g) is 150 degrees
  • Figure 1 (h) The one-way turning angle is 180 degrees.
  • the turning angle is 45 degrees, it is one-eighth of a ring
  • when the turning angle is 90 degrees, it is a quarter ring
  • when the turning angle is 180 degrees, it is a half ring, etc. And so on.
  • both of the structures of FIGS. 1(d) and (i) are mirror-symmetrical and have the same operational characteristics.
  • the first magneto-optical material layer 3, the second magneto-optical material layer 4, and the dielectric layer are connected to the optical input port and the light output end by an arbitrary angle curved shape.
  • the dielectric layer 5 is a region where the light energy is mainly concentrated, and the gap between the first magneto-optical material 3 and the second magneto-optical material 4 is the dielectric layer 5, and the dielectric layer 5 has a ring shape in the curved portion of the waveguide, and the inner arc of the ring
  • the radius is r
  • the outer arc radius is r+w
  • the length of the curved portion depends on the turning angle
  • the dielectric layer 5 is vacuum, air, silicon dioxide (glass), and transparent plastic working wave.
  • the first magneto-optical material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 constitute a photodiode and an isolator capable of unidirectionally transmitting optical signals, a first magneto-optical material layer 3, a second magneto-optical material layer 4 and a dielectric layer
  • the surface of 5 is a magnetic surface fast wave.
  • the magneto-optical material is magneto-optical glass or various rare earth-doped garnets and rare earth-transition metal alloy films.
  • the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are respectively provided with oppositely directed bias static magnetic fields H 0 , that is, a bias magnetic field ⁇ H 0 (outer) and a bias magnetic field ⁇ H 0 (in),
  • the bias magnetic field H 0 is generated by an electromagnet or a permanent magnet.
  • the magneto-optical material 4 is applied perpendicular to the static magnetic field H 0 in the paper facing, unidirectional turning port optical waveguide input port 1, port 2 Light output port.
  • the magnetic surface wave generated by the magneto-optical material-medium interface is a phenomenon similar to the metal surface plasmon (SPP).
  • SPP metal surface plasmon
  • the magneto-optical material Under the action of the biased static magnetic field, the magneto-optical material has a magnetic permeability of tensor, and at the same time, its effective refractive index is negative in a certain optical band.
  • the surface of the magneto-optical material is capable of producing a guided wave and has a property of unidirectional propagation, which is called a surface acoustic wave (Surface Magnetically Polarized Wave, SMP).
  • the low loss type magneto-optical gap magnetic surface fast mode arbitrary angle one-way turning waveguide has a three-layer structure of a magneto-optical material-medium-magneto-optical material, and the magnetic surface fast wave generated by the magneto-optical material-medium interface is used for light One-way bending transmission.
  • the technical solution of the present invention is based on the optical non-reciprocity of the magneto-optical material and the unique conductive surface wave characteristic of the magneto-optical material-medium interface to realize the design of the unidirectional turning waveguide.
  • the basic principles of this technical solution are as follows:
  • the magneto-optical material is a material having magnetic anisotropy, and the magnetic dipole inside the magneto-optical material is arranged in the same direction by the application of a static magnetic field, thereby generating a magnetic dipole moment.
  • the magnetic dipole moment will interact strongly with the optical signal, which in turn produces a non-reciprocal transmission of light.
  • the magnetic permeability tensor of the magneto-optical material is under the action of a bias magnetic field H 0 oriented in the direction perpendicular to the vertical paper:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M s is the saturation magnetization
  • is the operating frequency
  • is the loss coefficient. If the direction of the biasing magnetic field is changed to the vertical paper facing direction, H 0 and M s will change the sign.
  • the magnetic surface wave generated by the magneto-optical material-medium interface can be solved according to the magnetic permeability tensor of the magneto-optical material and Maxwell's equations. Satisfy surface waves (for TE waves)
  • the electric and magnetic fields present in the surface should have the following form:
  • the inner arc radius r 30mm
  • the YIG material loss factor ⁇ 3 ⁇ 10 -4 and the turning angle is 90°.
  • the magnetic field at the first magneto-optical material layer 3 faces the vertical paper facing outward, and the magnetic field at the second magneto-optical material layer 4 is in the vertical paper facing direction, when the light is input from the port 1, simultaneously in the two magneto-optical materials-medium
  • the interface generates a unidirectional forward-transferred magnetic surface wave, and finally outputs from port 2; when light is input from port 2, the light wave cannot be reversely transmitted inside the device due to the non-reciprocity of the surface acoustic wave, thereby failing to pass the port. 1 output, the light energy has been blocked at port 2.
  • the light wave can be well confined to the curved waveguide, and the loss value is very low.
  • the low loss type magneto-optical void magnetic surface fast mode arbitrary angle one-way turning waveguide of the device of the invention has three-layer structural characteristics of a magneto-optical material-medium-magneto-optical material, and its structural size and parameters, such as the inner arc radius of the ring r and the dielectric layer thickness w can be flexibly selected according to the working wavelength and actual needs. Changing the size has no major impact on device performance.
  • yttrium iron garnet (YIG) is used as the magnetic anisotropic material
  • the bias magnetic field size is 900 Oe
  • the magnetic field direction at the first magneto-optical material layer 3 is The vertical paper faces outward
  • the magnetic field direction at the second magneto-optical material layer 4 is in the vertical paper facing direction
  • the thickness w 5 mm
  • YIG material loss factor ⁇ 3 ⁇ 10 -4
  • the operating frequency f of the device is determined by the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ], ⁇ 2 of the magneto-optical material and the medium.
  • the one-way cornering waveguide is composed of a magneto-optical gap waveguide with a turning angle of 45 degrees.
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the unidirectional cornering waveguide is 5.12 GHz to 7.16 GHz.
  • the corner waveguide has a maximum forward and reverse transmission isolation of 23.6552 dB and a forward transmission insertion loss of 0.0194 dB.
  • the unidirectional turning waveguide is composed of a magneto-optical gap waveguide having a turning angle of 90 degrees.
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the unidirectional cornering waveguide is 5.10 GHz to 7.22 GHz. In the operating frequency range, considering the material loss, the one-way cornering waveguide has a maximum forward-reverse transmission isolation of 25.8838 dB and a forward transmission insertion loss of 0.0112 dB.
  • the one-way cornering waveguide is composed of a magneto-optical gap waveguide with a turning angle of 135 degrees.
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the unidirectional turning waveguide is 5.10 GHz to 7.18 GHz.
  • the one-way cornering waveguide has a maximum forward-reverse transmission isolation of 23.6067 dB and a forward transmission insertion loss of 0.0120 dB.
  • the one-way cornering waveguide is composed of a magneto-optical gap waveguide with a turning angle of 180 degrees.
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be used by the device. Blocked, cannot be output from port 1.
  • the unidirectional cornering waveguide has an operating frequency range of 5.00 GHz to 7.30 GHz. In the operating frequency range, considering the material loss, the one-way cornering waveguide has a maximum forward-reverse transmission isolation of 27.7469 dB and a forward transmission insertion loss of 0.0073 dB.
  • the transmission efficiency curve of the magneto-optical gap magnetic surface fast mode unidirectional turning waveguide with different turning angles of FIG. 3, FIG. 4, FIG. 5 and FIG. 6 can obtain the optical frequency range of the magnetic surface fast wave transmitted by the magneto-optical air-bending waveguide. That is, the operating frequency range of the unidirectional turning waveguide. It can be seen from the results that the low loss type magneto-optical gap magnetic surface fast mode arbitrary angle one-way corner waveguide of the present invention can work effectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

L'invention concerne un guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec un espace magnéto-optique à faible perte, comprenant un port d'entrée optique (1), un port de sortie optique (2), des couches de matériau magnéto-optique (3, 4), une couche de support (5) et deux champs magnétiques de polarisation dans des directions opposées. Les couches de matériau magnéto-optique (3, 4) et la couche de milieu (5) sont un guide d'ondes optique à structure à trois couches, dans lequel celle-ci est courbée selon un angle arbitraire. Les deux champs magnétiques de polarisation dans des directions opposées sont agencés au niveau des couches de matériau magnéto-optique (3, 4). La couche de support (5) est disposée dans un espace entre les couches de matériau magnéto-optique (3, 4). La couche de support (5) se présente sous la forme d'un anneau circulaire au niveau d'une partie de courbure de guide d'ondes. Les surfaces des couches de matériau magnéto-optique (3, 4) et la couche de milieu (5) sont pourvues d'ondes rapides de surface magnétique. Le guide d'ondes courbé possède une simple structure, est pratique à intégrer, a une faible perte, a une efficacité de transmission élevée, et est applicable à une intégration de trajet optique à grande échelle.
PCT/CN2017/099823 2016-08-31 2017-08-31 Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte WO2018041186A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610796867.1A CN106249352B (zh) 2016-08-31 2016-08-31 低损型磁光空隙磁表面快模任意角单向拐弯波导
CN201610796867.1 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041186A1 true WO2018041186A1 (fr) 2018-03-08

Family

ID=58080003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099823 WO2018041186A1 (fr) 2016-08-31 2017-08-31 Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte

Country Status (2)

Country Link
CN (1) CN106249352B (fr)
WO (1) WO2018041186A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249352B (zh) * 2016-08-31 2019-04-30 欧阳征标 低损型磁光空隙磁表面快模任意角单向拐弯波导

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457009A (zh) * 2013-08-16 2013-12-18 上海理工大学 太赫兹低损耗弯曲波导
CN103905139A (zh) * 2012-12-25 2014-07-02 深圳大学 一种可重构分插复用器及信号分插复用方法
CN104362419A (zh) * 2014-11-28 2015-02-18 桂林电子科技大学 一种超宽带人工表面等离子激元弯曲波导
CN104698606A (zh) * 2015-03-11 2015-06-10 南京邮电大学 磁光效应的二维三角晶格光子晶体模分复用与解复用器
CN105137623A (zh) * 2015-09-17 2015-12-09 浙江工业大学 基于光子晶体非对易单向波导的波分解复用器
CN106249352A (zh) * 2016-08-31 2016-12-21 欧阳征标 低损型磁光空隙磁表面快模任意角单向拐弯波导

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437214C (zh) * 2002-03-14 2008-11-26 Tdk株式会社 光学器件与法拉第旋转器的制造方法、光学器件及光通信系统
US7324723B2 (en) * 2003-10-06 2008-01-29 Mitsui Chemicals, Inc. Optical waveguide having specular surface formed by laser beam machining
KR100851973B1 (ko) * 2006-11-02 2008-08-12 삼성전자주식회사 굽은 도파로, 이의 제조방법, 굽은 도파로를 이용한 광전송모듈 및 굽은 도파로를 채용한 열보조 자기기록 헤드
CN101145627A (zh) * 2007-09-26 2008-03-19 北京交通大学 孔缝阵列速度补偿方法及孔缝阵列弯曲共面波导
CN101750651B (zh) * 2009-11-25 2011-07-20 南京大学 基于单层亚波长金属光栅的磁场可调控的电磁波透射的器件与制备
CN104932058B (zh) * 2015-07-15 2018-07-10 上海鸿辉光通科技股份有限公司 一种光隔离器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103905139A (zh) * 2012-12-25 2014-07-02 深圳大学 一种可重构分插复用器及信号分插复用方法
CN103457009A (zh) * 2013-08-16 2013-12-18 上海理工大学 太赫兹低损耗弯曲波导
CN104362419A (zh) * 2014-11-28 2015-02-18 桂林电子科技大学 一种超宽带人工表面等离子激元弯曲波导
CN104698606A (zh) * 2015-03-11 2015-06-10 南京邮电大学 磁光效应的二维三角晶格光子晶体模分复用与解复用器
CN105137623A (zh) * 2015-09-17 2015-12-09 浙江工业大学 基于光子晶体非对易单向波导的波分解复用器
CN106249352A (zh) * 2016-08-31 2016-12-21 欧阳征标 低损型磁光空隙磁表面快模任意角单向拐弯波导

Also Published As

Publication number Publication date
CN106249352B (zh) 2019-04-30
CN106249352A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2018041185A1 (fr) Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
WO2018041189A1 (fr) Guide d'ondes à courbure unidirectionnelle, angle arbitraire, mode rapide de surface magnétique avec espace magnéto-optique de type à faible perte sans fuite
WO2018041173A1 (fr) Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle
WO2018041178A1 (fr) Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041177A1 (fr) Guide d'ondes à courbure unidirectionnelle contrôlable dans la direction arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte
WO2018041175A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte d'étanchéité
CN109193174A (zh) 一种基于超材料的单向非互易吸波器及其产生方法
WO2018041184A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique sans fuite
WO2018041179A1 (fr) Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite
WO2018041183A1 (fr) Photodiode réglable dans la direction d'onde rapide de surface magnétique à film fin magnéto-optique sans fuite
WO2018041188A1 (fr) Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
WO2018041186A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte
WO2018041182A1 (fr) Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique
WO2018041176A1 (fr) Photodiode pouvant être commandée par une direction d'onde rapide de surface magnétique avec guide d'onde d'espace de matériau magnéto-optique
WO2018041180A1 (fr) Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite
WO2018041174A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique
WO2018041181A1 (fr) Photodiode à direction d'onde rapide de surface magnétique pouvant être commandée avec couche mince magnéto-optique
Levy et al. Permanent magnet film magneto‐optic waveguide isolator
CN210428000U (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器
CN110646958B (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法
CN219843149U (zh) 一种双极化非对称传输、吸波超材料结构
Rao et al. Design of One-way Structure for Spatial EM Wave Based on the Magnetic Surface Plasmon States
Jiang et al. A Low-Loss Broadband One-Way Transmission Structure Based on Nonreciprocal Coupling
Yokoi Interferometric optical isolator with TiO2/magnetic garnet waveguide operated in unidirectional magnetic field
JPS6343726B2 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845488

Country of ref document: EP

Kind code of ref document: A1