WO2018041182A1 - Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique - Google Patents

Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique Download PDF

Info

Publication number
WO2018041182A1
WO2018041182A1 PCT/CN2017/099819 CN2017099819W WO2018041182A1 WO 2018041182 A1 WO2018041182 A1 WO 2018041182A1 CN 2017099819 W CN2017099819 W CN 2017099819W WO 2018041182 A1 WO2018041182 A1 WO 2018041182A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical material
waveguide
optical
magnetic surface
Prior art date
Application number
PCT/CN2017/099819
Other languages
English (en)
Chinese (zh)
Inventor
欧阳征标
郑耀贤
王琼
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018041182A1 publication Critical patent/WO2018041182A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators

Definitions

  • the invention relates to a magneto-optical material, a magnetic surface wave and a photodiode, in particular to a magneto-optical material void waveguide magnetic surface fast wave photodiode.
  • Photodiodes and isolators are optics that only allow light to travel in one direction and are used to prevent unwanted light feedback.
  • the main component of conventional photodiodes and isolators is the Faraday rotator, which applies the Faraday effect (magneto-optical effect) as its working principle.
  • the traditional Faraday isolator consists of a polarizer, a Faraday rotator and an analyzer. This device has a complicated structure and is usually used in a free-space optical system.
  • integrated optical devices such as fiber optics or waveguides are non-polarization-maintaining systems that cause loss of polarization angle and are therefore not suitable for use with pull-up isolators.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a magneto-optical material void waveguide magnetic surface fast wave photodiode with simple structure, high light transmission efficiency, small volume and easy integration.
  • a photodiode of a magneto-optical material void waveguide magnetic surface wave comprises a light input port, a light output port, two magneto-optical material layers, a dielectric layer and two bias magnetic fields; the photodiode and the isolator Consisting of two magneto-optical material layers and dielectric layers;
  • the left end of the photodiode and the isolator is an optical input port, and the right end thereof is a light output port;
  • the gap between the two magneto-optical material layers is a dielectric layer;
  • the surface of the magneto-optical material layer and the dielectric layer is a magnetic surface a fast wave; a bias magnetic field having opposite directions is respectively disposed at the two magneto-optical material layers, and the magnetic surface fast wave photodiode is composed of a magneto-optical material void waveguide.
  • the photodiode is composed of a magneto-optical material layer and a dielectric layer to form a three-layer optical waveguide.
  • the three-layer structure waveguide is a TE working mode waveguide.
  • the three-layer structure is a straight waveguide structure.
  • the magneto-optical material is magneto-optical glass, various rare earth element doped garnet or rare earth-transition metal alloy thin film material.
  • the dielectric layer is a material that is transparent to the working wave.
  • the dielectric layer is vacuum, air, glass or silicon dioxide.
  • the bias magnetic field is generated by an electromagnet or a permanent magnet.
  • the invention is suitable for large-scale optical path integration and has wide application prospects. Compared with the prior art, it has the following positive effects.
  • the structure is simple and easy to implement.
  • FIG. 1 is a structural view of a magneto-optical material void waveguide magnetic surface fast wave photodiode.
  • optical input port 1 optical output port 2 first magneto-optical material layer 3 second magneto-optical material layer 4 dielectric layer 5 bias magnetic field ⁇ H 0 (outer) bias magnetic field ⁇ H 0 (in) dielectric layer thickness w
  • FIG. 2 is a schematic diagram showing the rightward unidirectional conduction operation of a magneto-optical material void waveguide magnetic surface fast wave photodiode.
  • Figure 3 is a graph showing a first embodiment of the forward and reverse transmission efficiency of a magneto-optical material void waveguide magnetic surface fast wave photodiode as a function of lightwave frequency.
  • Figure 4 is a graph showing a second embodiment of the forward and reverse transmission efficiency of a magneto-optical material void waveguide magnetic surface fast wave photodiode as a function of lightwave frequency.
  • Fig. 5 is a graph showing a third embodiment of the forward and reverse transmission efficiency of the magneto-optical material void waveguide magnetic surface fast wave photodiode as a function of the light wave frequency.
  • the photodiode of the magneto-optical material void waveguide magnetic surface wave of the present invention comprises a light input port 1, a light output port 2, a first magneto-optical material layer 3, a second magneto-optical material layer 4, and a medium.
  • the photodiode and the isolator are composed of a first magneto-optical material layer 3, a first magneto-optical material layer 4 and a dielectric layer 5;
  • the magnetic surface fast-wave photodiode is composed of a magneto-optical material void waveguide;
  • the first magneto-optical material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 form a three-layer optical waveguide, which can transmit optical signals unidirectionally, that is, a photodiode, and the three-layer structure is a straight waveguide structure, and the waveguide of the present invention A working mode waveguide for TE.
  • the gap between the first magneto-optical material layer 3 and the second magneto-optical material layer 4 is a dielectric layer 5, and the dielectric layer 5 is a region where light energy is mainly concentrated.
  • the dielectric layer 5 may be a transparent material of a working wave, or may be vacuum. Air, glass, silica or working wave transparent plastic, preferably air or glass.
  • the surface of the first magneto-optical material layer 3 and the second magneto-optical material layer 4 and the dielectric layer 5 are magnetic surface fast waves;
  • the magneto-optical material is magneto-optical glass, various rare earth doped garnet or rare earth-transition metal The alloy thin film material;
  • the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are respectively disposed at opposite directions of the bias magnetic field, that is, the bias magnetic field ⁇ H 0 (outer) and the bias magnetic field ⁇ H 0 (Li), the bias magnetic field is generated by an electromagnet or a permanent magnet, and the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are in the opposite direction of the bias magnetic field H 0 , when the magneto-optical material layer 3 is applied vertically to the drawing static magnetic field H 0 outward, while the paper 4 is applied perpendicular to the static magnetic field oriented in the magneto-optical material layer H 0, and the left end to end LED
  • the magnetic surface wave generated by the magneto-optical material-medium interface is a phenomenon similar to the metal surface plasmon (SPP).
  • SPP metal surface plasmon
  • the magneto-optical material Under the action of the biased static magnetic field, the magneto-optical material has a magnetic permeability of tensor, and at the same time, its effective refractive index is negative in a certain optical band.
  • the surface of the magneto-optical material is capable of producing a guided wave and has a property of unidirectional propagation, which is called a surface acoustic wave (Surface Magnetically Polarized Wave, SMP).
  • the magneto-optical material void waveguide magnetic surface fast wave photodiode of the invention has a three-layer structure of a magneto-optical material-medium-magneto-optical material, and uses a magnetic surface fast wave generated by a magneto-optical material-medium interface to perform unidirectional transmission of light.
  • the technical scheme of the invention realizes the design of the photodiode and the isolator based on the optical non-reciprocity of the magneto-optical material and the unique conductive surface wave characteristic of the magneto-optical material-medium interface.
  • the basic principles of this technical solution are as follows:
  • the magneto-optical material is a material having magnetic anisotropy, and the magnetic dipole inside the magneto-optical material is arranged in the same direction by the application of a static magnetic field, thereby generating a magnetic dipole moment.
  • the magnetic dipole moment will interact strongly with the optical signal, which in turn produces a non-reciprocal transmission of light.
  • the magnetic permeability tensor of the magneto-optical material is under the action of a bias magnetic field H 0 oriented in the direction perpendicular to the vertical paper:
  • ⁇ 0 is the magnetic permeability in vacuum
  • is the gyromagnetic ratio
  • H 0 is the applied magnetic field
  • M s is the saturation magnetization
  • is the operating frequency
  • is the loss coefficient. If the direction of the biasing magnetic field is changed to the vertical paper facing direction, H 0 and M s will change the sign.
  • the magnetic surface wave generated by the magneto-optical material-medium interface can be solved according to the magnetic permeability tensor of the magneto-optical material and Maxwell's equations.
  • the electric and magnetic fields that satisfy the surface wave (which is a TE wave) at the interface should have the following form:
  • yttrium iron garnet (YIG) is used as the magnetic anisotropic material.
  • the magnetic field at the magneto-optical material layer 3 is outwardly facing the vertical paper, and the magnetic field at the second magneto-optical material layer 4 is in the vertical paper facing direction. When light is input from the port 1, it is simultaneously generated at the two magneto-optical material-medium interfaces.
  • the unidirectional forward-transferred magnetic surface wave is finally output from port 2; when light is input from port 2, the light wave cannot be reversely transmitted inside the device due to the non-reciprocity of the surface acoustic wave, and thus cannot be output from port 1. The light energy has all been blocked at port 2.
  • the magneto-optical material void-waveguide photodiode of the device of the invention has three-layer structure characteristics of magneto-optical material-medium-magneto-optical material, and the whole device is a flat structure, and the first magneto-optical material layer 3 and the second magneto-optical material layer 4
  • the size and thickness w of the dielectric layer 5 can be flexibly selected according to the operating wavelength and actual needs. Changing the size has no major impact on device performance.
  • yttrium iron garnet (YIG) is used as the magnetic anisotropic material
  • the bias magnetic field size is 900 Oe
  • the magnetic field direction at the first magneto-optical material layer 3 is The vertical paper faces outward
  • the magnetic field direction at the second magneto-optical material layer 4 is the vertical paper facing
  • the operating frequency f of the device is magneto-optical
  • the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ] of the material and medium are determined by ⁇ 2 .
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 5.02 GHz to 7.36 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 35.3991dB and a forward transmission insertion loss of 0.0016dB.
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the direct waveguide structure is 5.00 GHz to 7.36 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 35.5104 dB and a forward transmission insertion loss of 0.0014 dB.
  • the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
  • the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 4.94 GHz to 7.78 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 39.9206 dB and a forward transmission insertion loss of 0.0007 dB.
  • the transmission efficiency curve of the magneto-optical material void waveguide magnetic surface fast wave photodiode with different parameters of FIG. 3, FIG. 4 and FIG. 5 can obtain the optical frequency range of the magnetic surface fast wave transmitted by the magneto-optical material void waveguide, that is, the operation of the photodiode Frequency Range.
  • the present invention is based on a magneto-optical material void waveguide magnetic surface fast wave photodiode which can work effectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

L'invention concerne une photodiode à onde rapide de surface magnétique avec un guide d'ondes à entrefer en matériau magnéto-optique, comprenant un port d'entrée optique (1), un port de sortie optique (2), deux couches de matériau magnéto-optique (3, 4), une couche de milieu (5) et deux champs magnétiques de polarisation (H 0 (vers l'extérieur), H 0 (vers l'intérieur)). La photodiode et un isolateur sont constitués par les deux couches de matériau magnéto-optique (3, 4) et la couche de support (5). Une extrémité gauche de la photodiode et l'isolateur sont l'orifice d'entrée optique (1), et une extrémité droite de celle-ci est le port de sortie optique (2). La couche de milieu (5) est dans un espace entre les deux couches de matériau magnéto-optique (3, 4). Des ondes rapides de surface magnétique sont sur les surfaces des couches de matériau magnéto-optique (3, 4) et de la couche de support (5). Les champs magnétiques de polarisation (H 0 (vers l'extérieur), H 0 (vers l'intérieur)) dans des directions opposées sont respectivement disposées au niveau des deux couches de matériau magnéto-optique (3, 4), et la photodiode à onde rapide de surface magnétique est constituée par un guide d'ondes à espacement de matériau magnéto-optique. La photodiode a une structure simple, une efficacité de transmission optique élevée, un petit volume, commode pour une intégration, applicable pour une intégration de trajet optique à grande échelle, et a une large perspective d'application.
PCT/CN2017/099819 2016-08-31 2017-08-31 Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique WO2018041182A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610798830.2 2016-08-31
CN201610798830.2A CN106226924A (zh) 2016-08-31 2016-08-31 磁光材料空隙波导磁表面快波光二极管

Publications (1)

Publication Number Publication Date
WO2018041182A1 true WO2018041182A1 (fr) 2018-03-08

Family

ID=58074136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099819 WO2018041182A1 (fr) 2016-08-31 2017-08-31 Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique

Country Status (2)

Country Link
CN (1) CN106226924A (fr)
WO (1) WO2018041182A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200023A (zh) * 2016-08-31 2016-12-07 欧阳征标 磁光材料空隙波导磁表面快波方向可控光二极管
CN106226924A (zh) * 2016-08-31 2016-12-14 欧阳征标 磁光材料空隙波导磁表面快波光二极管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199556A (ja) * 2005-01-24 2006-08-03 National Institute For Materials Science チタニア磁性半導体ナノ薄膜及びその製造方法
WO2008126624A1 (fr) * 2007-03-19 2008-10-23 National Institute For Materials Science Elément magnéto-optique sans plomb et son procédé de fabrication
JP2008268862A (ja) * 2007-03-28 2008-11-06 Toyohashi Univ Of Technology 磁気光学体
CN101788720A (zh) * 2010-03-03 2010-07-28 成都优博创技术有限公司 一种光隔离方法和装置
CN103984126A (zh) * 2014-05-23 2014-08-13 电子科技大学 一种平面磁光隔离器
CN106200023A (zh) * 2016-08-31 2016-12-07 欧阳征标 磁光材料空隙波导磁表面快波方向可控光二极管
CN106226924A (zh) * 2016-08-31 2016-12-14 欧阳征标 磁光材料空隙波导磁表面快波光二极管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955058A (zh) * 2014-05-07 2014-07-30 山东省科学院激光研究所 利用光子晶体方向带隙实现的光隔离器
CN104101947B (zh) * 2014-07-28 2017-07-04 欧阳征标 基于光子晶体波导的超高效紧凑t字型环行器
CN104932058B (zh) * 2015-07-15 2018-07-10 上海鸿辉光通科技股份有限公司 一种光隔离器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199556A (ja) * 2005-01-24 2006-08-03 National Institute For Materials Science チタニア磁性半導体ナノ薄膜及びその製造方法
WO2008126624A1 (fr) * 2007-03-19 2008-10-23 National Institute For Materials Science Elément magnéto-optique sans plomb et son procédé de fabrication
JP2008268862A (ja) * 2007-03-28 2008-11-06 Toyohashi Univ Of Technology 磁気光学体
CN101788720A (zh) * 2010-03-03 2010-07-28 成都优博创技术有限公司 一种光隔离方法和装置
CN103984126A (zh) * 2014-05-23 2014-08-13 电子科技大学 一种平面磁光隔离器
CN106200023A (zh) * 2016-08-31 2016-12-07 欧阳征标 磁光材料空隙波导磁表面快波方向可控光二极管
CN106226924A (zh) * 2016-08-31 2016-12-14 欧阳征标 磁光材料空隙波导磁表面快波光二极管

Also Published As

Publication number Publication date
CN106226924A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018041185A1 (fr) Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque
US5408565A (en) Thin-film magneto-optic polarization rotator
WO2018041173A1 (fr) Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle
WO2018041189A1 (fr) Guide d'ondes à courbure unidirectionnelle, angle arbitraire, mode rapide de surface magnétique avec espace magnéto-optique de type à faible perte sans fuite
WO2018041184A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique sans fuite
WO2018041183A1 (fr) Photodiode réglable dans la direction d'onde rapide de surface magnétique à film fin magnéto-optique sans fuite
WO2018041179A1 (fr) Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite
WO2018041175A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte d'étanchéité
WO2018041178A1 (fr) Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte
WO2018041182A1 (fr) Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique
WO2018041177A1 (fr) Guide d'ondes à courbure unidirectionnelle contrôlable dans la direction arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte
WO2018041176A1 (fr) Photodiode pouvant être commandée par une direction d'onde rapide de surface magnétique avec guide d'onde d'espace de matériau magnéto-optique
WO2018041180A1 (fr) Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite
WO2018041174A1 (fr) Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique
WO2018041181A1 (fr) Photodiode à direction d'onde rapide de surface magnétique pouvant être commandée avec couche mince magnéto-optique
WO2018041188A1 (fr) Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle
US3860325A (en) Electric field displacing type optical isolator
Levy et al. Permanent magnet film magneto‐optic waveguide isolator
WO2018041186A1 (fr) Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte
Shirato et al. High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift
CN210428000U (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器
CN110646958B (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法
CN219843149U (zh) 一种双极化非对称传输、吸波超材料结构
JPS6343726B2 (fr)
Guo et al. Faraday rotation in magneto-optical semiconductor waveguides for integrated isolators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845484

Country of ref document: EP

Kind code of ref document: A1