WO2018041182A1 - Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique - Google Patents
Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique Download PDFInfo
- Publication number
- WO2018041182A1 WO2018041182A1 PCT/CN2017/099819 CN2017099819W WO2018041182A1 WO 2018041182 A1 WO2018041182 A1 WO 2018041182A1 CN 2017099819 W CN2017099819 W CN 2017099819W WO 2018041182 A1 WO2018041182 A1 WO 2018041182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magneto
- optical material
- waveguide
- optical
- magnetic surface
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/093—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
- G02F1/0955—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
Definitions
- the invention relates to a magneto-optical material, a magnetic surface wave and a photodiode, in particular to a magneto-optical material void waveguide magnetic surface fast wave photodiode.
- Photodiodes and isolators are optics that only allow light to travel in one direction and are used to prevent unwanted light feedback.
- the main component of conventional photodiodes and isolators is the Faraday rotator, which applies the Faraday effect (magneto-optical effect) as its working principle.
- the traditional Faraday isolator consists of a polarizer, a Faraday rotator and an analyzer. This device has a complicated structure and is usually used in a free-space optical system.
- integrated optical devices such as fiber optics or waveguides are non-polarization-maintaining systems that cause loss of polarization angle and are therefore not suitable for use with pull-up isolators.
- the object of the present invention is to overcome the deficiencies in the prior art and provide a magneto-optical material void waveguide magnetic surface fast wave photodiode with simple structure, high light transmission efficiency, small volume and easy integration.
- a photodiode of a magneto-optical material void waveguide magnetic surface wave comprises a light input port, a light output port, two magneto-optical material layers, a dielectric layer and two bias magnetic fields; the photodiode and the isolator Consisting of two magneto-optical material layers and dielectric layers;
- the left end of the photodiode and the isolator is an optical input port, and the right end thereof is a light output port;
- the gap between the two magneto-optical material layers is a dielectric layer;
- the surface of the magneto-optical material layer and the dielectric layer is a magnetic surface a fast wave; a bias magnetic field having opposite directions is respectively disposed at the two magneto-optical material layers, and the magnetic surface fast wave photodiode is composed of a magneto-optical material void waveguide.
- the photodiode is composed of a magneto-optical material layer and a dielectric layer to form a three-layer optical waveguide.
- the three-layer structure waveguide is a TE working mode waveguide.
- the three-layer structure is a straight waveguide structure.
- the magneto-optical material is magneto-optical glass, various rare earth element doped garnet or rare earth-transition metal alloy thin film material.
- the dielectric layer is a material that is transparent to the working wave.
- the dielectric layer is vacuum, air, glass or silicon dioxide.
- the bias magnetic field is generated by an electromagnet or a permanent magnet.
- the invention is suitable for large-scale optical path integration and has wide application prospects. Compared with the prior art, it has the following positive effects.
- the structure is simple and easy to implement.
- FIG. 1 is a structural view of a magneto-optical material void waveguide magnetic surface fast wave photodiode.
- optical input port 1 optical output port 2 first magneto-optical material layer 3 second magneto-optical material layer 4 dielectric layer 5 bias magnetic field ⁇ H 0 (outer) bias magnetic field ⁇ H 0 (in) dielectric layer thickness w
- FIG. 2 is a schematic diagram showing the rightward unidirectional conduction operation of a magneto-optical material void waveguide magnetic surface fast wave photodiode.
- Figure 3 is a graph showing a first embodiment of the forward and reverse transmission efficiency of a magneto-optical material void waveguide magnetic surface fast wave photodiode as a function of lightwave frequency.
- Figure 4 is a graph showing a second embodiment of the forward and reverse transmission efficiency of a magneto-optical material void waveguide magnetic surface fast wave photodiode as a function of lightwave frequency.
- Fig. 5 is a graph showing a third embodiment of the forward and reverse transmission efficiency of the magneto-optical material void waveguide magnetic surface fast wave photodiode as a function of the light wave frequency.
- the photodiode of the magneto-optical material void waveguide magnetic surface wave of the present invention comprises a light input port 1, a light output port 2, a first magneto-optical material layer 3, a second magneto-optical material layer 4, and a medium.
- the photodiode and the isolator are composed of a first magneto-optical material layer 3, a first magneto-optical material layer 4 and a dielectric layer 5;
- the magnetic surface fast-wave photodiode is composed of a magneto-optical material void waveguide;
- the first magneto-optical material layer 3, the second magneto-optical material layer 4 and the dielectric layer 5 form a three-layer optical waveguide, which can transmit optical signals unidirectionally, that is, a photodiode, and the three-layer structure is a straight waveguide structure, and the waveguide of the present invention A working mode waveguide for TE.
- the gap between the first magneto-optical material layer 3 and the second magneto-optical material layer 4 is a dielectric layer 5, and the dielectric layer 5 is a region where light energy is mainly concentrated.
- the dielectric layer 5 may be a transparent material of a working wave, or may be vacuum. Air, glass, silica or working wave transparent plastic, preferably air or glass.
- the surface of the first magneto-optical material layer 3 and the second magneto-optical material layer 4 and the dielectric layer 5 are magnetic surface fast waves;
- the magneto-optical material is magneto-optical glass, various rare earth doped garnet or rare earth-transition metal The alloy thin film material;
- the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are respectively disposed at opposite directions of the bias magnetic field, that is, the bias magnetic field ⁇ H 0 (outer) and the bias magnetic field ⁇ H 0 (Li), the bias magnetic field is generated by an electromagnet or a permanent magnet, and the first magneto-optical material layer 3 and the second magneto-optical material layer 4 are in the opposite direction of the bias magnetic field H 0 , when the magneto-optical material layer 3 is applied vertically to the drawing static magnetic field H 0 outward, while the paper 4 is applied perpendicular to the static magnetic field oriented in the magneto-optical material layer H 0, and the left end to end LED
- the magnetic surface wave generated by the magneto-optical material-medium interface is a phenomenon similar to the metal surface plasmon (SPP).
- SPP metal surface plasmon
- the magneto-optical material Under the action of the biased static magnetic field, the magneto-optical material has a magnetic permeability of tensor, and at the same time, its effective refractive index is negative in a certain optical band.
- the surface of the magneto-optical material is capable of producing a guided wave and has a property of unidirectional propagation, which is called a surface acoustic wave (Surface Magnetically Polarized Wave, SMP).
- the magneto-optical material void waveguide magnetic surface fast wave photodiode of the invention has a three-layer structure of a magneto-optical material-medium-magneto-optical material, and uses a magnetic surface fast wave generated by a magneto-optical material-medium interface to perform unidirectional transmission of light.
- the technical scheme of the invention realizes the design of the photodiode and the isolator based on the optical non-reciprocity of the magneto-optical material and the unique conductive surface wave characteristic of the magneto-optical material-medium interface.
- the basic principles of this technical solution are as follows:
- the magneto-optical material is a material having magnetic anisotropy, and the magnetic dipole inside the magneto-optical material is arranged in the same direction by the application of a static magnetic field, thereby generating a magnetic dipole moment.
- the magnetic dipole moment will interact strongly with the optical signal, which in turn produces a non-reciprocal transmission of light.
- the magnetic permeability tensor of the magneto-optical material is under the action of a bias magnetic field H 0 oriented in the direction perpendicular to the vertical paper:
- ⁇ 0 is the magnetic permeability in vacuum
- ⁇ is the gyromagnetic ratio
- H 0 is the applied magnetic field
- M s is the saturation magnetization
- ⁇ is the operating frequency
- ⁇ is the loss coefficient. If the direction of the biasing magnetic field is changed to the vertical paper facing direction, H 0 and M s will change the sign.
- the magnetic surface wave generated by the magneto-optical material-medium interface can be solved according to the magnetic permeability tensor of the magneto-optical material and Maxwell's equations.
- the electric and magnetic fields that satisfy the surface wave (which is a TE wave) at the interface should have the following form:
- yttrium iron garnet (YIG) is used as the magnetic anisotropic material.
- the magnetic field at the magneto-optical material layer 3 is outwardly facing the vertical paper, and the magnetic field at the second magneto-optical material layer 4 is in the vertical paper facing direction. When light is input from the port 1, it is simultaneously generated at the two magneto-optical material-medium interfaces.
- the unidirectional forward-transferred magnetic surface wave is finally output from port 2; when light is input from port 2, the light wave cannot be reversely transmitted inside the device due to the non-reciprocity of the surface acoustic wave, and thus cannot be output from port 1. The light energy has all been blocked at port 2.
- the magneto-optical material void-waveguide photodiode of the device of the invention has three-layer structure characteristics of magneto-optical material-medium-magneto-optical material, and the whole device is a flat structure, and the first magneto-optical material layer 3 and the second magneto-optical material layer 4
- the size and thickness w of the dielectric layer 5 can be flexibly selected according to the operating wavelength and actual needs. Changing the size has no major impact on device performance.
- yttrium iron garnet (YIG) is used as the magnetic anisotropic material
- the bias magnetic field size is 900 Oe
- the magnetic field direction at the first magneto-optical material layer 3 is The vertical paper faces outward
- the magnetic field direction at the second magneto-optical material layer 4 is the vertical paper facing
- the operating frequency f of the device is magneto-optical
- the dielectric constants ⁇ 1 , ⁇ 2 and magnetic permeability [ ⁇ 1 ] of the material and medium are determined by ⁇ 2 .
- the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
- the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 5.02 GHz to 7.36 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 35.3991dB and a forward transmission insertion loss of 0.0016dB.
- the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
- the operating frequency range of the photodiode and the isolator of the direct waveguide structure is 5.00 GHz to 7.36 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 35.5104 dB and a forward transmission insertion loss of 0.0014 dB.
- the light wave input from port 1 will generate a magnetic surface wave inside the device, which is then output from port 2 through the device; and the light wave input from port 2 will be blocked by the device and cannot be output from port 1.
- the operating frequency range of the photodiode and the isolator of the straight waveguide structure is 4.94 GHz to 7.78 GHz. In the operating frequency range, considering the material loss, the photodiode and the isolator have a maximum forward-reverse transmission isolation of 39.9206 dB and a forward transmission insertion loss of 0.0007 dB.
- the transmission efficiency curve of the magneto-optical material void waveguide magnetic surface fast wave photodiode with different parameters of FIG. 3, FIG. 4 and FIG. 5 can obtain the optical frequency range of the magnetic surface fast wave transmitted by the magneto-optical material void waveguide, that is, the operation of the photodiode Frequency Range.
- the present invention is based on a magneto-optical material void waveguide magnetic surface fast wave photodiode which can work effectively.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
L'invention concerne une photodiode à onde rapide de surface magnétique avec un guide d'ondes à entrefer en matériau magnéto-optique, comprenant un port d'entrée optique (1), un port de sortie optique (2), deux couches de matériau magnéto-optique (3, 4), une couche de milieu (5) et deux champs magnétiques de polarisation (H 0 (vers l'extérieur), H 0 (vers l'intérieur)). La photodiode et un isolateur sont constitués par les deux couches de matériau magnéto-optique (3, 4) et la couche de support (5). Une extrémité gauche de la photodiode et l'isolateur sont l'orifice d'entrée optique (1), et une extrémité droite de celle-ci est le port de sortie optique (2). La couche de milieu (5) est dans un espace entre les deux couches de matériau magnéto-optique (3, 4). Des ondes rapides de surface magnétique sont sur les surfaces des couches de matériau magnéto-optique (3, 4) et de la couche de support (5). Les champs magnétiques de polarisation (H 0 (vers l'extérieur), H 0 (vers l'intérieur)) dans des directions opposées sont respectivement disposées au niveau des deux couches de matériau magnéto-optique (3, 4), et la photodiode à onde rapide de surface magnétique est constituée par un guide d'ondes à espacement de matériau magnéto-optique. La photodiode a une structure simple, une efficacité de transmission optique élevée, un petit volume, commode pour une intégration, applicable pour une intégration de trajet optique à grande échelle, et a une large perspective d'application.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610798830.2 | 2016-08-31 | ||
CN201610798830.2A CN106226924A (zh) | 2016-08-31 | 2016-08-31 | 磁光材料空隙波导磁表面快波光二极管 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018041182A1 true WO2018041182A1 (fr) | 2018-03-08 |
Family
ID=58074136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/099819 WO2018041182A1 (fr) | 2016-08-31 | 2017-08-31 | Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106226924A (fr) |
WO (1) | WO2018041182A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106200023A (zh) * | 2016-08-31 | 2016-12-07 | 欧阳征标 | 磁光材料空隙波导磁表面快波方向可控光二极管 |
CN106226924A (zh) * | 2016-08-31 | 2016-12-14 | 欧阳征标 | 磁光材料空隙波导磁表面快波光二极管 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199556A (ja) * | 2005-01-24 | 2006-08-03 | National Institute For Materials Science | チタニア磁性半導体ナノ薄膜及びその製造方法 |
WO2008126624A1 (fr) * | 2007-03-19 | 2008-10-23 | National Institute For Materials Science | Elément magnéto-optique sans plomb et son procédé de fabrication |
JP2008268862A (ja) * | 2007-03-28 | 2008-11-06 | Toyohashi Univ Of Technology | 磁気光学体 |
CN101788720A (zh) * | 2010-03-03 | 2010-07-28 | 成都优博创技术有限公司 | 一种光隔离方法和装置 |
CN103984126A (zh) * | 2014-05-23 | 2014-08-13 | 电子科技大学 | 一种平面磁光隔离器 |
CN106200023A (zh) * | 2016-08-31 | 2016-12-07 | 欧阳征标 | 磁光材料空隙波导磁表面快波方向可控光二极管 |
CN106226924A (zh) * | 2016-08-31 | 2016-12-14 | 欧阳征标 | 磁光材料空隙波导磁表面快波光二极管 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103955058A (zh) * | 2014-05-07 | 2014-07-30 | 山东省科学院激光研究所 | 利用光子晶体方向带隙实现的光隔离器 |
CN104101947B (zh) * | 2014-07-28 | 2017-07-04 | 欧阳征标 | 基于光子晶体波导的超高效紧凑t字型环行器 |
CN104932058B (zh) * | 2015-07-15 | 2018-07-10 | 上海鸿辉光通科技股份有限公司 | 一种光隔离器 |
-
2016
- 2016-08-31 CN CN201610798830.2A patent/CN106226924A/zh active Pending
-
2017
- 2017-08-31 WO PCT/CN2017/099819 patent/WO2018041182A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199556A (ja) * | 2005-01-24 | 2006-08-03 | National Institute For Materials Science | チタニア磁性半導体ナノ薄膜及びその製造方法 |
WO2008126624A1 (fr) * | 2007-03-19 | 2008-10-23 | National Institute For Materials Science | Elément magnéto-optique sans plomb et son procédé de fabrication |
JP2008268862A (ja) * | 2007-03-28 | 2008-11-06 | Toyohashi Univ Of Technology | 磁気光学体 |
CN101788720A (zh) * | 2010-03-03 | 2010-07-28 | 成都优博创技术有限公司 | 一种光隔离方法和装置 |
CN103984126A (zh) * | 2014-05-23 | 2014-08-13 | 电子科技大学 | 一种平面磁光隔离器 |
CN106200023A (zh) * | 2016-08-31 | 2016-12-07 | 欧阳征标 | 磁光材料空隙波导磁表面快波方向可控光二极管 |
CN106226924A (zh) * | 2016-08-31 | 2016-12-14 | 欧阳征标 | 磁光材料空隙波导磁表面快波光二极管 |
Also Published As
Publication number | Publication date |
---|---|
CN106226924A (zh) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018041185A1 (fr) | Guide d'ondes à faibles pertes ayant un mode rapide au niveau d'une surface magnétique d'une couche mince magnéto-optique de celui-ci et à flexibilité unidirectionnelle à un angle quelconque | |
US5408565A (en) | Thin-film magneto-optic polarization rotator | |
WO2018041173A1 (fr) | Guide d'ondes à faibles pertes sans fuite ayant un mode rapide au niveau de la surface magnétique d'un film mince magnéto-optique associé et étant flexible de manière unidirectionnelle selon n'importe quel angle | |
WO2018041189A1 (fr) | Guide d'ondes à courbure unidirectionnelle, angle arbitraire, mode rapide de surface magnétique avec espace magnéto-optique de type à faible perte sans fuite | |
WO2018041184A1 (fr) | Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique sans fuite | |
WO2018041183A1 (fr) | Photodiode réglable dans la direction d'onde rapide de surface magnétique à film fin magnéto-optique sans fuite | |
WO2018041179A1 (fr) | Photodiode à ondes rapides de surface magnétique avec guide d'ondes à espace en matériau magnéto-optique sans fuite | |
WO2018041175A1 (fr) | Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte d'étanchéité | |
WO2018041178A1 (fr) | Guide d'ondes à courbure unidirectionnelle réglable dans une direction arbitraire à mode rapide de surface magnétique comportant un intervalle magnéto-optique à faible perte | |
WO2018041182A1 (fr) | Photodiode à onde rapide à surface magnétique avec guide d'onde à entrefer en matériau magnéto-optique | |
WO2018041177A1 (fr) | Guide d'ondes à courbure unidirectionnelle contrôlable dans la direction arbitraire à mode rapide à surface magnétique avec film mince magnéto-optique à faible perte | |
WO2018041176A1 (fr) | Photodiode pouvant être commandée par une direction d'onde rapide de surface magnétique avec guide d'onde d'espace de matériau magnéto-optique | |
WO2018041180A1 (fr) | Photodiode contrôlable dans le sens de l'onde rapide de surface magnétique avec guide d'ondes à entrefer en matériau magnéto-optique sans fuite | |
WO2018041174A1 (fr) | Photodiode à onde rapide à surface magnétique avec film mince magnéto-optique | |
WO2018041181A1 (fr) | Photodiode à direction d'onde rapide de surface magnétique pouvant être commandée avec couche mince magnéto-optique | |
WO2018041188A1 (fr) | Guide d'ondes à faible perte sans fuite ayant un mode rapide au niveau de la surface magnétique d'un espace magnéto-optique de celui-ci et étant flexible de manière unidirectionnelle à n'importe quel angle | |
US3860325A (en) | Electric field displacing type optical isolator | |
Levy et al. | Permanent magnet film magneto‐optic waveguide isolator | |
WO2018041186A1 (fr) | Guide d'ondes courbé unidirectionnel à angle arbitraire à mode rapide à surface magnétique avec espace magnéto-optique à faible perte | |
Shirato et al. | High isolation in silicon waveguide optical isolator employing nonreciprocal phase shift | |
CN210428000U (zh) | 一种基于磁光介质与pt对称结构的多通道信号选择器 | |
CN110646958B (zh) | 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法 | |
CN219843149U (zh) | 一种双极化非对称传输、吸波超材料结构 | |
JPS6343726B2 (fr) | ||
Guo et al. | Faraday rotation in magneto-optical semiconductor waveguides for integrated isolators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17845484 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/06/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17845484 Country of ref document: EP Kind code of ref document: A1 |