CN102544660B - 基于各向异性磁回旋媒质的可调控单向波导控制方法 - Google Patents

基于各向异性磁回旋媒质的可调控单向波导控制方法 Download PDF

Info

Publication number
CN102544660B
CN102544660B CN 201210009079 CN201210009079A CN102544660B CN 102544660 B CN102544660 B CN 102544660B CN 201210009079 CN201210009079 CN 201210009079 CN 201210009079 A CN201210009079 A CN 201210009079A CN 102544660 B CN102544660 B CN 102544660B
Authority
CN
China
Prior art keywords
externally
magnetic field
magnetic
anisotropic
gyromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210009079
Other languages
English (en)
Other versions
CN102544660A (zh
Inventor
蒋寻涯
张小刚
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN 201210009079 priority Critical patent/CN102544660B/zh
Publication of CN102544660A publication Critical patent/CN102544660A/zh
Application granted granted Critical
Publication of CN102544660B publication Critical patent/CN102544660B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及一种基于各向异性磁回旋媒质的可调控单向波导控制方法,包括以下步骤:将两块磁导率为张量的各向异性磁回旋媒质材料表面相接触,以形成磁畴壁,并确定好准备作为传输波导的磁畴壁的平面;对两块磁回旋媒质外加磁场,磁场方向为平行于磁畴壁且垂直于磁回旋媒质平面,且两块旋磁媒质外加磁场方向相反;根据外加磁场的大小,计算给出入射信号的单向模式频率范围;根据外加磁场方向,确定给出入射信号的单向模式的方向。本发明可以使电磁波从垂直去磁场方向从接触面的一端入射到另外一端,而相对入射的电磁波得到抑制,且在不需要辅助波导的情况下,使电磁波局域在接触面上,实现电磁波低损耗,宽频高效的传输。

Description

基于各向异性磁回旋媒质的可调控单向波导控制方法
技术领域
本发明涉及电磁波传输控制技术领域,特别是涉及一种基于各向异性磁回旋媒质的可调控单向波导控制方法。
背景技术
各向异性的磁回旋材料,主要是指铁氧体,单晶铁氧体主要是指钇铁石榴石(YIG),可以制成体材料单晶。铁氧体与其他铁磁材料的差别在于一般铁磁材料具有高地电导率,是导体,而铁氧体是高导磁体又是性能优良的绝缘体。当铁氧体被具有一定方向的恒定磁场沿某一方向磁化后,它具有磁回旋媒质的特性,这就是旋磁媒质。通常在微波和光波段常用的旋磁媒质就是磁化铁氧体。
这种材料在沿着饱和磁化方向,磁导率成为厄米矩阵,通常表示为: μ ↔ = μ 1 jμ 2 0 - jμ 2 μ 1 0 0 0 μ 3 , 其中 μ 1 = μ 0 ( 1 + ω 0 ω m ω 0 2 - ω 2 ) , μ 2 = μ 0 ω ω m ω 0 2 - ω 2 , μ3=μ0,ω0为进动角频率,ωm为铁磁的特征频率。这种材料有着一系列旋光效应,诸如沿垂直于磁化方向传播的平面波,有科顿-冒顿效应,沿平行于磁化方向传播的平面波有法拉第效应。近年来,随着拓扑绝缘体被发现,类比拓扑绝缘体,此种材料被用来制作光子晶体,被称为旋磁光子晶体,此种光子晶体在边界上由于只有一个方向的群速度,可以形成具有单向传输电磁波的波导。
而由于现有的电磁波在波导中的传播方式都有着这样和那样的不足:例如,以磁性光子晶体的单向波导的传输,因光子晶体对于频率依赖比较敏感,一旦入射波频率稍有偏差,局域波导传输就会大打折扣,由于光子晶体制作工艺要求较高,成本要求较高,如果参数有稍微的偏离就会是传输性质收到较大的影响;而以金属波导传输电磁波的方式,一方面金属存在会有较强的吸收,电磁波会有损耗,另一方面一旦金属波导制定好对它进行频率的调控比较困难,而且不具有单向传输的特性,如果制作的不好会有较大的反射。
发明内容
本发明所要解决的技术问题是提供一种基于各向异性磁回旋媒质的可调控单向波导控制方法,使得电磁波低损耗,宽频高效的传输。
本发明解决其技术问题所采用的技术方案是:提供一种基于各向异性磁回旋媒质的可调控单向波导控制方法,包括以下步骤:
(1)将两块磁导率为张量的各向异性磁回旋媒质材料表面相接触,以形成磁畴壁,并确定好准备作为传输波导的磁畴壁的平面;
(2)对两块磁回旋媒质加磁场,磁场方向为平行于磁畴壁且垂直于磁回旋媒质平面,且两块旋磁媒质外加磁场方向相反;
(3)根据外加磁场的大小,计算给出入射信号的单向模式频率范围;根据外加磁场方向,确定给出入射信号的单向模式的方向。
所述步骤(3)中还包括通过调节外加磁场的大小,改变入射信号的频率范围的步骤。
所述步骤(3)中还包括通过调节外加磁场方向,改变入射信号传播方向,或停止入射信号的传播。
所述步骤(3)中波导允许传播的单向模式频率范围为ω2~ω1
Figure BDA0000130444260000021
ω2=γ(B0H0)1/2,其中,γ为磁回旋媒质的旋磁比,B0为磁感应强度,H0为外加的磁场强度,磁感应强度B0=H0+4πM0,其中,M0为饱和磁场强度。
所述入射信号为光信号或光束。
所述入射信号为可见光、红外光、微波、或电磁波。
有益效果
由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明可以使电磁波从垂直于磁场方向从接触面的一端入射到另外一端,而相对入射的电磁波得到抑制,通过调节外加磁场的方向,可以使得允许传播的单向模式得到翻转,通过调节外加磁场的大小,可以调节允许通过的频率范围,且在不需要辅助波导的情况下,使电磁波局域在接触面上,实现电磁波低损耗,宽频高效的传输。
附图说明
图1是本发明的流程图;
图2A是本发明施加磁场后结构示意图;
图2B是本发明施加磁场后的电磁波传播效果图;
图3是本发明施加磁场后的色散曲线图;
图4是本发明在界面粗糙情况下场图的分布示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明的实施方式涉及一种基于各向异性磁回旋媒质的可调控单向波导控制方法,如图1所示,包括以下步骤:
第一步:将两块磁导率为各向异性的旋磁材料的一表面相接触,即将两块磁导率为张量的各向异性磁回旋媒质材料表面相接触,以形成磁畴壁,并确定好准备作为传输波导的磁畴壁的平面。其中,在平行于接触面且垂直于旋磁媒质平面的方向加相反的外磁场,使得两块旋磁材料磁导率张量互为厄米矩阵。
第二步:确定允许传播的模式频率范围和方向。根据外加磁场强度H0和饱和磁场强度M0的大小,给出允许传播的单向模式的频率范围ω2~ω1,按照公式计算给出磁感应强度B0=H0+4πM0,进而得到:
Figure BDA0000130444260000031
ω2=γ(B0H0)1/2,γ为旋磁比。根据外加磁场的方向,确定允许传播的单向模式的方向,此时电磁波允许传播的方向,与其中旋磁材料界面的法向(体内到体外),外加磁场方向(体内到体外)构成符合右手法则的电磁波允许传播,否则抑制。图2A和图2B所示的是基于各向异性磁回旋媒质的可调控单向波导控制方法的结构示意图及电磁波传播效果图。图3所示的是基于各向异性磁回旋媒质的可调控单向波导控制方法结构的色散曲线,其中,中间长方形区域为给出的频率范围。图4基于各向异性磁回旋媒质的可调控单向波导控制方法的界面粗糙情况下场图的分布。
第三步:调节外加磁场的方向可以使得电磁波传输方向相反(调节外加磁场方向与原外加磁场方向相反)或者关闭波导(调节使得两块媒质外加磁场方向相同);调节外加磁场的大小可以调节该波导允许传输的频率范围,可以覆盖大部分的电磁波范围,只要调节外加静磁场的大小即可。
在本实施方式中,第一步中外加z方向静磁场的典型磁导率参数为1600G时,在4.28GHz时,μ1=14μ0,μ2=12.4μ0,磁回旋媒质厚度为7mm,第二步中频率范围为6.84GHz-10GHz,如图2所示,y>0区域和y<0区域分别加-z和+z方向静磁场,传输方向沿+x方向传播。但是并不仅限于该频率范围和该方向,可以通过调节外加磁场大小来改变频率范围,调节外加磁场方向改变传输方向。其中,入射信号可以是光信号或光束,也可以是可见光、红外光、微波和电磁波中的一种。
不难发现,本发明可以使电磁波从垂直于磁场方向从接触面的一端入射到另外一端,而相对入射的电磁波得到抑制,通过调节外加磁场的方向,可以使得允许传播的单向模式得到翻转,通过调节外加磁场的大小,可以调节允许通过的频率范围,且在不需要辅助波导的情况下,使电磁波局域在接触面上,实现电磁波低损耗,宽频高效的传输。

Claims (5)

1.一种基于各向异性磁回旋媒质的可调控单向波导控制方法,其特征在于,包括以下步骤:
(1)将两块磁导率为张量的各向异性磁回旋媒质材料表面相接触,以形成磁畴壁,并确定好准备作为传输波导的磁畴壁的平面;
(2)对两块磁回旋媒质外加磁场,磁场方向为平行于磁畴壁且垂直于磁回旋媒质平面,且两块旋磁媒质外加磁场方向相反;
(3)根据外加磁场的大小,计算给出入射信号的单向模式频率范围,即根据外加磁场强度H0和饱和磁场强度M0的大小,给出允许传播的单向模式的频率范围ω2~ω1,按照公式计算给出磁感应强度B0=H0+4πM0,进而得到:
Figure FDA0000364308010000011
ω2=γ(B0H0)1/2,γ为旋磁比;根据外加磁场方向,确定给出入射信号的单向模式的方向,此时电磁波允许传播的方向,与其中旋磁材料界面的法向,外加磁场方向构成符合右手法则的电磁波允许传播,否则抑制。
2.根据权利要求1所述的基于各向异性磁回旋媒质的可调控单向波导控制方法,其特征在于,所述步骤(3)中还包括通过调节外加磁场的大小,改变入射信号的频率范围的步骤。
3.根据权利要求1所述的基于各向异性磁回旋媒质的可调控单向波导控制方法,其特征在于,所述步骤(3)中还包括通过调节外加磁场方向,改变入射信号传播方向,或停止入射信号的传播。
4.根据权利要求1所述的基于各向异性磁回旋媒质的可调控单向波导控制方法,其特征在于,所述入射信号为光信号或光束。
5.根据权利要求1所述的基于各向异性磁回旋媒质的可调控单向波导控制方法,其特征在于,所述入射信号为可见光、红外光、微波、或电磁波。
CN 201210009079 2012-01-12 2012-01-12 基于各向异性磁回旋媒质的可调控单向波导控制方法 Expired - Fee Related CN102544660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210009079 CN102544660B (zh) 2012-01-12 2012-01-12 基于各向异性磁回旋媒质的可调控单向波导控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210009079 CN102544660B (zh) 2012-01-12 2012-01-12 基于各向异性磁回旋媒质的可调控单向波导控制方法

Publications (2)

Publication Number Publication Date
CN102544660A CN102544660A (zh) 2012-07-04
CN102544660B true CN102544660B (zh) 2013-11-06

Family

ID=46351009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210009079 Expired - Fee Related CN102544660B (zh) 2012-01-12 2012-01-12 基于各向异性磁回旋媒质的可调控单向波导控制方法

Country Status (1)

Country Link
CN (1) CN102544660B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154415B (zh) * 2016-08-31 2021-05-04 深圳大学 低损磁光空隙磁表面快模任意方向可控单向拐弯波导
CN106353853B (zh) * 2016-11-04 2019-08-23 中国科学院物理研究所 单向波导与单向光纤
CN113552211B (zh) * 2021-07-14 2023-05-16 安徽工业大学 一种基于各向异性导电媒质磁场调控的裂纹方向识别方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129868A (zh) * 2010-01-12 2011-07-20 中国科学院上海微系统与信息技术研究所 基于各向异性复合材料的信息存储方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129868A (zh) * 2010-01-12 2011-07-20 中国科学院上海微系统与信息技术研究所 基于各向异性复合材料的信息存储方法

Also Published As

Publication number Publication date
CN102544660A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
Kumar et al. Numerical calculation of spin wave dispersions in magnetic nanostructures
Yang et al. Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals
Gruszecki et al. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films
US7689068B1 (en) One-way waveguides using gyrotropic photonic crystals
Mruczkiewicz et al. Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation
Liu et al. Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials
Sadovnikov et al. Frequency selective tunable spin wave channeling in the magnonic network
Liu et al. Molding reflection from metamaterials based on magnetic surface plasmons
Sadovnikov et al. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic
Morozova et al. Band gap formation and control in coupled periodic ferromagnetic structures
Gangaraj et al. Topologically protected unidirectional surface states in biased ferrites: duality and application to directional couplers
CN102544660B (zh) 基于各向异性磁回旋媒质的可调控单向波导控制方法
Sadovnikov et al. Nonreciprocal propagation of hybrid electromagnetic waves in a layered ferrite–ferroelectric structure with a finite width
Tuz Gyrotropic-nihility state in a composite ferrite-semiconductor structure
Li et al. Bending self-collimated one-way light by using gyromagnetic photonic crystals
CN104820298B (zh) 一种基于BiLuIG薄膜的TM‑TE磁光调制器
CN106291811B (zh) 无泄漏低损型磁光空隙磁表面快模任意角单向拐弯波导
Gomis-Bresco et al. Transition from Dirac points to exceptional points in anisotropic waveguides
Shen et al. Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration
Han et al. Valley kink states and valley-polarized chiral edge states in substrate-integrated topological photonic crystals
Hong et al. High-efficiency tunable t-shaped beam splitter based on one-way waveguide
Sen et al. Gyrotropy-governed isofrequency surfaces and photonic spin in gyromagnetic media
Jiang et al. A compact low-loss one-way transmission structure based on nonreciprocal coupling
CN110646958B (zh) 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法
Fang et al. Dispersionless and slow unidirectional air waveguide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131106

Termination date: 20170112