WO2018037980A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018037980A1
WO2018037980A1 PCT/JP2017/029444 JP2017029444W WO2018037980A1 WO 2018037980 A1 WO2018037980 A1 WO 2018037980A1 JP 2017029444 W JP2017029444 W JP 2017029444W WO 2018037980 A1 WO2018037980 A1 WO 2018037980A1
Authority
WO
WIPO (PCT)
Prior art keywords
dead time
value
compensation
axis
unit
Prior art date
Application number
PCT/JP2017/029444
Other languages
English (en)
French (fr)
Inventor
博明 高瀬
亮 皆木
澤田 英樹
孝義 菅原
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201780050730.4A priority Critical patent/CN109792223B/zh
Priority to JP2018535622A priority patent/JP6521185B2/ja
Priority to EP17843463.5A priority patent/EP3477848B1/en
Priority to US16/320,664 priority patent/US10427710B2/en
Priority to BR112019001636-8A priority patent/BR112019001636B1/pt
Publication of WO2018037980A1 publication Critical patent/WO2018037980A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time

Definitions

  • the present invention controls the driving of a three-phase brushless motor in the dq axis rotation coordinate system and performs a plurality of dead time compensation functions (for example, an inverter dead time compensation function based on a motor terminal voltage and a motor rotation angle (electricity)).
  • the inverter deadtime compensation function based on the function of the angle is gradually switched while mixing, and the steering performance is improved by implementing the deadtime compensation according to the steering state, and the assist control is smooth and free of steering noise.
  • the present invention relates to an electric power steering apparatus that can be used.
  • An electric power steering device that applies a steering assist force (assist force) to a steering mechanism of a vehicle by a rotational force of a motor transmits a driving force of a motor as an actuator to a transmission mechanism such as a gear or a belt via a reduction gear.
  • a steering assist force is applied to the steering shaft or the rack shaft.
  • Such a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
  • the adjustment of the motor applied voltage is generally performed by PWM (pulse width). Modulation) is done by adjusting the duty of control.
  • the general configuration of the electric power steering apparatus will be described with reference to FIG. 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a steering angle sensor 14 for detecting the steering angle ⁇ of the handle 1 and a torque sensor 10 for detecting the steering torque Th of the handle 1 to assist the steering force of the handle 1.
  • a motor 20 is connected to the column shaft 2 via the reduction gear 3.
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 30 calculates the current command value of the assist (steering assistance) command based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and the calculated current command value
  • the current supplied to the motor 20 is controlled by the voltage control command value Vref for which compensation has been applied.
  • the steering angle sensor 14 is not essential and may not be provided, and the steering angle (motor rotation angle) ⁇ can be obtained from a rotation sensor such as a resolver connected to the motor 20.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that exchanges various vehicle information, and the vehicle speed Vs can be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a CPU (Central Processing Unit) (including MPU (Micro Processor Unit), MCU (Micro Controller Unit), etc.).
  • CPU Central Processing Unit
  • MPU Micro Processor Unit
  • MCU Micro Controller Unit
  • FIG. 2 A general function to be executed is shown in FIG. 2, for example.
  • the function and operation of the control unit 30 will be described with reference to FIG. 2.
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vs from the vehicle speed sensor 12 are input to the steering assist command value calculation unit 31 to calculate the steering assist command value.
  • the unit 31 calculates a steering assist command value Iref1 using an assist map or the like based on the steering torque Th and the vehicle speed Vs.
  • the calculated steering assist command value Iref1 is added by the adder 32A and the compensation signal CM from the compensator 34 for improving characteristics, and the added steering assist command value Iref2 limits the maximum value by the current limiter 33.
  • the current command value Irefm whose maximum value is limited is input to the subtraction unit 32B, and is subtracted from the motor current detection value Im.
  • the duty command value is input to the PWM controller 36 together with the CF, and the duty command value is calculated, and the motor 20 is PWM driven via the inverter 37 with the PWM signal from which the duty command value is calculated.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
  • the compensation unit 34 adds the detected or estimated self-aligning torque (SAT) to the inertia compensation value 342 by the addition unit 344, and further adds the convergence control value 341 to the addition result by the addition unit 345, and the addition The result is input to the adder 32A as a compensation signal CM to improve the characteristics.
  • SAT detected or estimated self-aligning torque
  • the current waveform is distorted, and the current control response and steering feel deteriorate.
  • the current control response and steering feel deteriorate.
  • the steering is slowly performed with the steering wheel in the vicinity of the on-center, discontinuous steering feeling due to torque ripple or the like occurs.
  • the back electromotive voltage of the motor during middle / high speed steering and the interference voltage between the windings act as disturbances on the current control, the followability and the steering feeling during turn-back steering are deteriorated.
  • the q axis that controls the torque which is the coordinate axis of the rotor of the three-phase brushless motor, and the d axis that controls the strength of the magnetic field are set independently, and the dq axis is in a 90 ° relationship.
  • a vector control method for controlling current corresponding to an axis (d-axis current command value and q-axis current command value) is known.
  • FIG. 3 shows a configuration example in the case where the three-phase brushless motor 100 is driven and controlled by the vector control method.
  • the steering assist command values for the two axes (dq axis coordinate system) ( Iref2 (i dref , i qref )) is calculated, and the two-axis d-axis current command value i d * and q-axis current command value i q * whose maximum values are limited are input to the subtracting units 131 d and 131 q, respectively.
  • the current deviations ⁇ i d * and ⁇ i q * obtained by the subtraction units 131d and 131q are input to PI (Proportional-Integral) control units 120d and 120q, respectively.
  • the voltage command values v d and v q subjected to PI control by the PI control units 120d and 120q are respectively input to the subtraction unit 141d and the addition unit 141q, and the subtraction unit 141d receives the voltage v d1 from the dq non-interference control unit 140.
  • a voltage v q1 * is inputted from the dq non-interference control unit 140 to the adder 141q, and a command voltage ⁇ v q which is the addition result is obtained. It is done.
  • the command voltages ⁇ v d and ⁇ v q are input to the dq axis / 3-phase AC converter 150.
  • the voltage command values Vu * , Vv * , Vw * converted into three phases by the dq-axis / 3-phase AC converter 150 are input to the PWM controller 160, and the calculated three-phase duty command values (Duty u , Duty u
  • the motor 100 is driven by the PWM signals U PWM , V PWM , W PWM based on v , Duty w ) via an inverter (inverter applied voltage VR) 161 having a bridge configuration of upper and lower arms as shown in FIG.
  • the upper arm is composed of FETs Q1, Q3, and Q5 as switching elements, and the lower arm is composed of FETs Q2, Q4, and Q6.
  • the three-phase motor currents i u , i v , i w of the motor 100 are detected by the current detector 162, and the detected three-phase motor currents i u , i v , i w are supplied to the three-phase AC / dq axis converter 130.
  • the feedback current i d and i q of the two phases converted by the 3-phase / 2-phase conversion unit 130 together are subtracted respectively input to the subtraction unit 131d and 131q, is input to the d-q decoupling control unit 140
  • a rotation sensor or the like is attached to the motor 100, and the motor rotation angle ⁇ and the motor rotation number (rotation speed) ⁇ are output from the angle detection unit 110 that processes the sensor signal.
  • the motor rotation angle ⁇ is input to the dq axis / three-phase AC conversion unit 150 and the three-phase AC / dq axis conversion unit 130, and the motor rotation speed ⁇ is input to the dq non-interference control unit 140.
  • the d-axis voltage v d1 * from the dq non-interference control unit 140 is input to the subtraction unit 141 d, and a command voltage ⁇ v d that is the difference between them is calculated, and the q-axis voltage v d1 * from the dq non-interference control unit 140 is calculated.
  • the voltage v q1 * is input to the adding unit 141 q , and a command voltage ⁇ v q as a result of the addition is calculated.
  • Such a vector control type electric power steering device is a device that assists the driver's steering, and at the same time, the sound, vibration, ripple, etc. of the motor are transmitted to the driver as a sense of force through the steering wheel.
  • FETs are used as power devices for driving the inverter, and the motor is energized.
  • upper and lower arms are connected in series for each phase as shown in FIG. FET is used.
  • the FETs on the upper and lower arms are alternately turned ON / OFF alternately, but the FET is not an ideal switch, and does not turn ON / OFF instantaneously according to the command of the gate signal, requiring a turn-on time or a turn-off time.
  • the ON command is issued to the upper FET and the turn-on time is short (for example, 100 ns)
  • the FET is immediately turned on and the lower FET If the turn-off time is long even if an OFF command is issued (for example, 400 ns), the FET is not immediately turned OFF, and the upper FET is instantaneously turned ON and the lower FET is ON (for example, ON for 400 ns to 100 ns) -ON) may occur.
  • an ON signal is given to the gate drive circuit after a predetermined time called a dead time so that the upper arm FET and the lower arm FET are not turned ON at the same time. Since this dead time is non-linear, the current waveform is distorted, the response performance of the control is deteriorated, and sound, vibration, and ripple are generated.
  • the arrangement of the motor directly connected to the gear box connected to the steering wheel and the steel column shaft is very close to the driver due to its structure, resulting in the motor. Noise, vibration, ripple, etc. need to be considered especially compared to the downstream assist type electric power steering device.
  • the timing at which the dead time occurs is detected and the compensation value is added, or the dead time is compensated by a disturbance observer on the dq axis in current control.
  • Patent Document 1 An electric power steering device that compensates for the dead time of an inverter is disclosed in, for example, Japanese Patent No. 4681453 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2015-171251 (Patent Document 2).
  • Patent Document 1 a current command value is input to a reference model circuit of a current control loop including a motor and an inverter, a model current is created based on the current command value, and the effect of the inverter dead time is compensated based on the model current.
  • a dead band compensation circuit is provided.
  • Patent Document 2 includes a dead time compensation unit that performs correction based on the dead time compensation value for the duty command value, and calculates a basic compensation value that is a basic value of the dead time compensation value based on the current command value.
  • a basic compensation value calculation unit and a filter unit that performs filtering processing corresponding to the LPF on the basic compensation value.
  • the apparatus of Patent Document 1 is a method for estimating a compensation code by using a calculation of a dead time compensation amount based on the magnitude of a q-axis current command value and a three-phase current reference model.
  • the output value of the compensation circuit When the output value of the compensation circuit is below a predetermined fixed value, it is a change value proportional to the model current.
  • the output value When the output value is above the predetermined fixed value, it is the sum of the fixed value and the change value proportional to the model current.
  • tuning work is required to determine the hysteresis characteristic for outputting a predetermined fixed value.
  • the dead time compensation is performed by using the q-axis current command value and the compensation value obtained by LPF processing. There is a problem that the dead time compensation value is not manipulated with respect to the final voltage command.
  • Feed-forward type dead time compensation locks the motor output shaft and current flows to the motor with dedicated software. Need to be measured. Further, it is necessary to perform a tuning operation of a threshold value for determining a compensation code by phase adjustment or a current command value by rotating the motor by a constant load and constant rotation using a motor test apparatus. It is necessary to allocate the inverter applied voltage, the motor rotation number, etc., and perform it a plurality of times, and it is required to reduce the tuning work.
  • dead time compensation In feed-forward type dead time compensation, if the sign is not switched at an appropriate compensation amount and at an appropriate timing, chattering will occur near the zero cross or during low load / low speed steering. By introducing dead time compensation that does not match the compensation amount or dead time compensation that does not match the timing, chattering may be caused by the control itself. In order to suppress such chattering, the feedforward type requires a considerably fine tuning work such as various ideas and strict switching of compensation codes.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vector control type electric power steering apparatus having a plurality of dead time compensation functions for compensating for dead time of an inverter, and performing tuning work.
  • the dead time compensation function is gradually switched by mixing according to the steering state to compensate, improve the steering performance, improve the current waveform distortion and improve the current control response, sound, vibration, ripple
  • An object of the present invention is to provide an electric power steering apparatus that suppresses the above-described problem.
  • the present invention calculates a steering assist command value for the dq axis based on at least the steering torque, calculates a dq axis current command value from the steering assist command value, and converts the dq axis current command value to a three-phase duty command value.
  • the present invention relates to a vector control type electric power steering device that converts and drives and controls a three-phase brushless motor by a PWM-controlled inverter and applies assist torque to a steering mechanism of a vehicle.
  • a plurality of dead time compensation functions having different performances, and performing the dead time compensation by gradually switching from one of the plurality of dead time compensation functions to another dead time compensation function while mixing Achieved.
  • the present invention calculates a dq axis steering assist command value based on at least the steering torque, calculates a dq axis current command value from the steering assist command value, and converts the dq axis current command value into a three-phase duty command value.
  • the present invention relates to a vector control type electric power steering apparatus that drives and controls a three-phase brushless motor by a PWM-controlled inverter, and applies assist torque to a steering mechanism of a vehicle.
  • a dead time compensator A for calculating a first dq axis compensation value for the dq axis of the inverter based on the three-phase terminal voltage of the inverter, and a dq axis for the dq axis of the inverter based on a motor rotation angle of the three-phase brushless motor.
  • a dead time compensator B that calculates a dq axis compensation value of 2, and the first dq axis compensation based on the steering assist command value of the q axis.
  • a compensation value switching unit that gradually switches between the compensation value and the second dq-axis compensation value while mixing and calculates and outputs a dq-axis dead time compensation value, and the dq-axis dead time compensation value This is achieved by correcting the dq-axis current command value to compensate for the dead time of the inverter.
  • a plurality of dead time compensation functions for example, an inverter dead time compensation function function (A) based on a motor terminal voltage
  • an inverter dead time based on a function of a motor rotation angle (electrical angle) are provided. Since the time compensation function (B)) is gradually switched by mixing that changes the ratio between the two to compensate for the dead time in an optimum state, the steering performance can be further improved.
  • the inverter dead time compensation function function (A) based on the motor terminal voltage automatically calculates the compensation amount and the compensation code, and thus has an advantage that compensation can be performed without chattering even in a low load / low steering state near the on-center.
  • the inverter dead time compensation function (B) based on the function of the motor rotation angle (electrical angle) has a high compensation accuracy in the low speed steering region and the medium speed steering region where the phase of the angle and the phase current matches, and the three-phase compensation.
  • the compensation functions A and B are gradually switched according to the steering conditions while mixing, optimum steering and smooth compensation value switching can be realized taking advantage of both features. As a result, there is no tuning work, the inverter dead time can be compensated, and the distortion of the current waveform can be improved and the response of the current control can be improved.
  • summary of a general electric power steering apparatus It is a block diagram which shows the structural example of the control system of an electric power steering apparatus. It is a block diagram which shows the structural example of a vector control system. It is a connection diagram which shows the structural example of a general inverter. It is a block diagram which shows the structural example of this invention. It is a block diagram which shows the structural example of a dead time compensation part (A). It is a block diagram which shows the structural example of a dead time compensation part (A) in detail. It is a block diagram which shows the structural example of a midpoint voltage estimation part. It is a block diagram which shows the detailed example of a correction timing determination part and a correction value holding part.
  • the present invention uses an inverter dead time compensation value as a dead time based on a motor terminal voltage.
  • the compensation function (A) and the dead time compensation function (B) based on a function corresponding to the motor rotation angle (electrical angle) are gradually switched by mixing, and compensated by feedforward to the dq axis.
  • the single-function single-algorithm dead-time compensation function compensates with high accuracy during low-speed steering, but sometimes the compensation accuracy deteriorates during high-speed steering, or is compensated with high accuracy during high loads. In some cases, the compensation accuracy deteriorates at low load. Therefore, it is difficult to compensate the entire steering region with high accuracy by the dead time compensation of a single algorithm with a single function.
  • a plurality of dead time compensation functions with high compensation accuracy in the steering conditions are prepared, and by gradually switching to the optimum dead time compensation function depending on the steering state by mixing, the compensation accuracy can be improved smoothly over the entire steering area. High dead time compensation can be implemented.
  • dead time compensation based on a plurality of compensation functions is separately performed on the d-axis voltage command value and the q-axis voltage command value of the dq-axis vector control method, and the dead time compensation function is provided for the q-axis steering assist.
  • switching is performed gradually by changing the ratio between the two, and optimal dead time compensation is performed in all of the low speed steering area, the medium speed steering area, and the high speed steering area.
  • the compensation value switching is determined by the q-axis steering assist command value
  • the mixing ratio is calculated when the switching determination flag is output, It is configured such that the dead time compensation function is switched by gradually switching at the calculated mixing ratio.
  • the motor rotation speed in the low-speed steering region is 0 to 300 [rpm]
  • the motor rotation speed in the medium-speed steering region is 300 to 1800, depending on the type of motor and the reduction ratio of the EPS reduction gear 3.
  • the motor rotation speed in the high-speed steering region is 1800 to 4000 [rpm], which is equal to or higher than the motor's rated rotation speed (rotation speed region requiring field-weakening control).
  • FIG. 5 shows the overall configuration of the present invention in correspondence with FIG. 3.
  • a dead time compensation function (A) unit 200 for calculating compensation values v dA and v qA on the dq axis, and a compensation value on the dq axis.
  • the dead time compensation function (B) unit 400 for calculating v dB and v qB and the compensation values v dA and v qA and the compensation values v dB and v qB are gradually switched by mixing, and the dead time compensation value v d * and A compensation value switching unit 500 that outputs v q * is provided.
  • the dead time compensation function (B) unit 400 has high compensation accuracy in the low speed steering region and the medium speed steering region, and the dead time compensation function (A) unit 200 has high compensation accuracy in a low load and low steering state. ing.
  • the dead time compensation function (A) is a terminal voltage feedback type dead time compensation function, and it is difficult to estimate the compensation code and adjust the compensation amount. In the case of swing steering, etc., the optimum compensation code and compensation amount are automatically calculated, so that highly accurate compensation is possible.
  • the dead time compensation function (B) is an angle feed forward type dead time compensation function, which does not require d-axis current from a low speed to a medium speed steering state (steering at a constant speed or gradually increasing the steering speed). In such a case, an ideal dead time compensation value can be input by feedforward without delaying at a predetermined angle, so that highly accurate compensation is possible.
  • the dead time compensation unit 200 receives motor terminal voltages Vu, Vv, and Vw via LPFs 163U, 163V, and 163W for noise removal, and a duty command value calculation unit in the PWM control unit 160.
  • the duty command values Duty u , Duty v , and Duty w are input from 160A.
  • the dead time compensation unit 200 further receives the motor rotation angle ⁇ , the motor rotation speed ⁇ , and the inverter applied voltage VR applied to the inverter 161.
  • the dead time compensation unit 400 receives a q-axis steering assist command value i qref corresponding to the steering assist command value Iref2 of FIG. 2, an inverter applied voltage VR, and a motor rotation angle ⁇ . And the motor rotation speed ⁇ is input.
  • Compensation value switching section 500 includes compensation value switching determination section 510 that determines switching of the compensation value based on steering assist command value i qref and outputs switching determination flag SF; Based on the switching determination flag SF, the mixing ratios R tA (for example, 0 to 100%) and R tB (for example, 100 to 0%) of the dead time compensation function (A) unit 200 and the dead time compensation function (B) unit 400 are calculated.
  • the mixing ratio calculation unit 520, multiplication units 531 to 534, and addition units 535 and 536 are configured, and dq axis dead time compensation values v d * and v q * are output from the addition units 535 and 536, respectively. .
  • the dead time compensation values v d * and v q * are input to the adders 121d and 121q of the dq axis control system.
  • the multiplication units 531 to 534 and the addition units 535 and 536 constitute a mixing unit 530.
  • the vector control d-axis current command value i d * and q-axis current command value i q * are respectively input to the subtraction units 131d and 131q, and the subtraction units 131d and 131q each have a current deviation ⁇ i d from the feedback currents i d and i q. * And ⁇ i q * are calculated.
  • the calculated current deviation ⁇ i d * is input to the PI control unit 120d, and the calculated current deviation ⁇ i q * is input to the PI control unit 120q.
  • the PI-controlled d-axis voltage command value v d and q-axis voltage command value v q are respectively input to adders 121d and 121q, and dead time compensation values v d * and v q * from a compensation value switching unit 500 described later .
  • each compensated voltage value is input to the subtracting unit 141d and the adding unit 141q.
  • a voltage v d1 * from the dq non-interference control unit 140 is input to the subtraction unit 141d, and a voltage command value v d ** that is a difference between them is obtained, and a dq non-interference control unit is added to the addition unit 141q.
  • a voltage v q1 * from 140 is input, and a voltage command value v q ** is obtained as a result of the addition.
  • Voltage command values v d ** and v q ** compensated for dead time are converted from two phases of the dq axis to three phases of U phase, V phase, and W phase, and a spatial vector that superimposes the third harmonic
  • the signal is input to the modulation unit 300 (details will be described later).
  • the three-phase voltage command values Vur * , Vvr * , and Vwr * vector-modulated by the space vector modulation unit 300 are input to the duty command value calculation unit 160A in the PWM control unit 160, and three-phase by the duty command value calculation unit 160A.
  • Duty command values Duty u , Duty v , and Duty w are calculated, and the Duty command values Duty u , Duty v , and Duty w are input to the dead time compensation unit (A) 200 and also to the PWM control circuit 160B.
  • the motor 100 is driven and controlled via the inverter 161 by the PWM signals (U PWM , V PWM , W PWM ) from the PWM control circuit 160B as described above.
  • the dead time compensation unit (A) 200 includes subtraction units 201 (201U, 201V, 201W) and 202, a midpoint voltage estimation unit 210, a three-phase command voltage calculation unit 220, a voltage detection delay model 230, The gain unit 240, the compensation amount limiting unit 250, and a three-phase AC / dq axis conversion unit 260 that outputs a d-axis compensation value C dA and a q-axis compensation value C qA are configured.
  • the motor rotation angle ⁇ is input to the midpoint voltage estimation unit 210 and the three-phase AC / dq axis conversion unit 260, and the motor rotation speed ⁇ is input to the midpoint voltage estimation unit 210.
  • the motor terminal voltages Vu, Vv, Vw are input to the midpoint voltage estimation unit 210 and the subtraction unit 201 (201U, 201V, 201W) via LPFs 163U to 163W.
  • the duty command values Duty u , Dutyv, and Duty w from the Duyt command value calculation unit 160A in the PWM control unit 160 are input to the three-phase application voltage calculation unit 220, and the inverter application voltage VR is the midpoint voltage estimation unit 210, It is input to the three-phase command voltage calculation unit 220 and the compensation amount limiting unit 250.
  • the midpoint voltage estimation unit 210 calculates a reference voltage of the midpoint voltage based on the inverter applied voltage VR.
  • the details are the configuration of FIG. 8, and the midpoint voltage is shifted due to the influence of the hardware configuration, detection error, etc., and is corrected from the difference between the inverter applied voltage VR and the three-phase motor terminal voltages Vu to Vw.
  • the correction timing is corrected under conditions of a specific motor rotation angle ⁇ and a specific motor rotation speed ⁇ .
  • the inverter applied voltage VR is halved (VR / 2) by the half part 211, and the half value (VR / 2) is added to the subtracting parts 217 and 218.
  • the terminal voltages Vu to Vw are input to the adder 216 and added, and the addition result (Vu + Vv + Vw) is multiplied by 1/3 by the divider (1/3) 212, and the voltage (Vu + Vv + Vw) / 3 is multiplied by 1/3.
  • Subtraction is input to the subtraction unit 217.
  • the subtraction unit 217 subtracts the voltage “(Vu + Vv + Vw) / 3” from the half value VR / 2, and inputs the subtraction result VR na to the correction value holding unit 214.
  • the correction timing determination unit 213 determines the correction timing based on the motor rotation angle ⁇ and the motor rotation number ⁇ , and inputs the correction signal CT to the correction value holding unit 214. Based on the voltage VR nb held by the correction value holding unit 214, the correction amount limiting unit 215 calculates a correction amount ⁇ Vm.
  • the details of the correction timing determination unit 213 and the correction value holding unit 214 are shown in FIG. 9, and the correction timing determination unit 213 includes an angle determination unit 213-1, an effective rotation number determination unit 213-2, and an AND circuit 213-3.
  • the correction value holding unit 214 includes a switching unit 214-1 and a holding unit (Z ⁇ 1 ) 214-2.
  • the motor rotation angle ⁇ is input to the angle determination unit 213-1 and the determination of the following equation 1 is performed.
  • the angle determination unit 213-1 outputs a determination signal JD1.
  • Equation 1 179 [deg] ⁇ ⁇ 180 [deg]
  • the voltage value of the zero cross point can be accurately sampled.
  • the third harmonic is superimposed on the motor terminal voltage, and a more accurate value cannot be detected.
  • the effective rotational speed determining portion 213-2 determines whether the motor rotational speed omega is the correction operation can be effective rotation speed omega 0 or less, the motor rotational speed omega correction calculation can enable rotation speed omega 0 following Sometimes the decision signal JD2 is output. (Equation 2) ⁇ ⁇ ⁇ 0
  • the determination signals JD1 and JD2 are input to the AND circuit 213-3, and the correction signal CT is output under the AND condition where the determination signals JD1 and JD2 are input.
  • the correction signal CT is input as a switching signal to the switching unit 214-1 in the correction value holding unit 214 and switches the contacts a and b.
  • the subtraction result VR na is input to the contact point a, and the output voltage VR nb is input to the contact point b through the holding unit (Z ⁇ 1 ) 214-2.
  • the correction value holding unit 214 holds a value in order to output a stable correction value until the next timing.
  • the correction amount limiting unit 213 determines that the correction amount is not correct and limits the correction amount to the maximum correction amount.
  • the voltage correction value ⁇ Vm limited to the maximum correction amount is input to the subtraction unit 218, and the midpoint voltage estimated value Vm calculated based on the following equation 3 is output by the subtraction unit 218.
  • the midpoint voltage estimated value Vm is subtracted and input to the subtraction units 201U, 201V, and 201W, respectively.
  • the three-phase command voltage calculation unit 220 is inputted with the three-phase duty command values Duty u , Duty v , Duty w and the inverter applied voltage VR, and the three-phase command voltage calculation unit 220 has the three-phase duty command value Duty.
  • u the Duty v, Duty w and the inverter application voltage VR
  • 3-phase command voltage V in is input to the voltage detection delay model 230.
  • Duty ref in Equation 4 indicates Duty u , Duty v , and Duty w .
  • the midpoint voltage estimated value Vm is subtracted and input to the subtraction unit 201 (201U, 201V, 201W), and the terminal voltages Vu, Vv, Vw that have passed through the LPFs 163U, 163V, 163W are subtracted to the subtraction unit 201 (201U, 201V, 201W). Have been entered.
  • the subtraction units 201U, 201V, and 201W subtract the midpoint voltage estimated value Vm from the three-phase terminal voltages Vu, Vv, and Vw by the subtraction units 201u, 201v, and 201w according to Equation 5. Thereby, the three-phase detection voltage V dn (V du , V dv , V dw ) is calculated.
  • the three-phase detection voltage V dn (V du , V dv , V dw ) is input to the subtraction unit 202 as a three-phase loss voltage calculation unit.
  • the detection of the three-phase terminal voltages Vu to Vw is delayed by the noise filter of the ECU. Therefore, when calculating the voltage loss taking the difference of the direct three-phase command voltage V in and the detected three-phase voltages V dn, errors caused by the phase difference.
  • the detection delay of hardware such as a filter circuit is approximated as a first-order filter model to improve the phase difference.
  • the voltage detection delay model 230 of the present embodiment is a first-order filter of Formula 6, where T is a filter time constant.
  • the voltage detection delay model 230 may have a configuration using a second-order or higher-order filter as a model.
  • 3-phase command voltage V in is added input to the subtraction unit 202, the detected three-phase voltage V dn are subtracted input, 3-phase loss by subtracting the detected three-phase voltage V dn from 3-phase command voltage V in
  • the voltage PLA (V loss_n ) is calculated. That is, the following equation 7 is calculated by the subtracting unit 202.
  • V loss_n 3-phase voltage loss PLA
  • gain P G for example, 0.8
  • gain section 240 3-phase voltage loss PLB to the gain P G is multiplied is inputted to the compensation amount limiting section 250.
  • the gain P G need not be essentially adjusted, alignment and vehicle tuning and other compensators, such as the components of the ECU are changed, the change in case of requiring output adjustment.
  • the compensation amount limiting unit 250 is sensitive to the inverter applied voltage VR, and its detailed configuration is as shown in FIG. That is, the inverter applied voltage VR is input to the compensation amount upper / lower limit value calculating unit 251 in the compensation amount limiting unit 250, and the compensation amount limit value DTCa is calculated with the characteristics shown in FIG.
  • the compensation amount limit value DTCa is a constant limit value DTCa1 up to the predetermined voltage VR1, increases linearly (or non-linearly) from the predetermined voltage VR1 to the predetermined voltage VR2 (> VR1), and maintains the constant limit value DTCa2 above the predetermined voltage VR2. It is a characteristic to do.
  • the compensation amount limit value DTCa is input to the contact point a1 of the switching unit 252 and the comparison unit 255 and is also input to the inversion unit 254. Also, 3-phase voltage loss PLB (V loss_u, V loss_v, V loss_w) with the input to the comparator 255 and 256 are inputted to the contact b1 of the switching unit 252.
  • the output -DTCa of the inverting unit 254 is input to the contact point a2 of the switching unit 253.
  • the contacts a1 and b1 of the switching unit 252 are switched based on the comparison result CP1 of the comparison unit 255, and the contacts a2 and b2 of the switching unit 253 are switched based on the comparison result CP2 of the comparison unit 256.
  • the comparison unit 255 compares the compensation amount limit value DTCa with the three-phase loss voltage PLB and switches the contacts a1 and b1 of the switching unit 252 according to the following formula 8.
  • the dead time compensation unit (B) 400 includes a current control delay model 401, a compensation code estimation unit 402, multiplication units 403, 404d and 404q, an addition unit 421, a phase adjustment unit 410, an inverter applied voltage sensitive gain.
  • the d-axis compensation value C dB and the q-axis compensation value C qB are output from the multipliers 404d and 404q, respectively.
  • the multiplication units 431U, 431V and 431W and the three-phase AC / dq axis conversion unit 440 constitute a compensation value output unit.
  • the current control delay model 401, the compensation code estimation unit 402, the current command value sensitive gain unit 450, and the multiplication unit 403 constitute a current command value sensitive gain calculation unit.
  • the detailed configuration of the dead time compensation unit 400 is shown in FIG. 13, and will be described below with reference to FIG.
  • the q-axis steering assist command value i qref is input to the current control delay model 401.
  • the delay of the entire current control is approximated as a first-order filter model to improve the phase difference.
  • the current control delay model 401 is the first-order filter of Equation 6 where T is a filter time constant.
  • the current control delay model 401 may be configured using a second or higher order filter as a model.
  • the current command value I cm output from the current control delay model 401 is input to the current command value sensitive gain unit 450 and the compensation code estimation unit 402.
  • the dead time compensation amount may be overcompensated in the low current region, and the current command value sensitive gain unit 450 calculates a gain that lowers the compensation amount depending on the magnitude of the current command value I cm (steering assist command value i qref ). It has a function to do. Further, a noise reduction process is performed by using a weighted average filter so that a gain that lowers the compensation amount does not vibrate due to noise from the current command value I cm (steering assist command value i qref ).
  • the current command value sensitive gain unit 450 is configured as shown in FIG. 14, and the current command value I cm becomes an absolute value in the absolute value unit 451.
  • the absolute value of the absolute value is limited by the input limiting unit 452, and the current command value of the absolute value whose maximum value is limited is input to the weighted average filter 454 via the scale conversion unit 453.
  • the current command value I am from which noise has been reduced by the weighted average filter 454 is added to the subtraction unit 455, and the subtraction unit 455 subtracts a predetermined offset OS.
  • the reason for subtracting the offset OS is to prevent chattering due to the minute current command value, and the input value below the offset OS is fixed to the minimum gain.
  • the offset OS is a constant value.
  • the current command value I as obtained by subtracting the offset OS by the subtracting unit 455 is input to the gain unit 456, and a current command value sensitive gain G c is output according to the gain characteristics as shown in FIG.
  • Current command value sensitive gain G c outputted from the current command value sensitive gain unit 450 a characteristic as shown in FIG. 16, for example with respect to the current command value I cm inputted. That is, a constant gain G cc1 to a predetermined current I cm1, increases linearly (or non-linear) from the predetermined current I cm1 to a predetermined current I cm @ 2 (> I cm1), maintain a constant gain G cc2 at a predetermined current I cm @ 2 or more It is a characteristic to do.
  • the predetermined current I cm1 may be zero.
  • the compensation code estimation unit 402 outputs a positive (+1) or negative ( ⁇ 1) compensation code SN with hysteresis characteristics shown in FIGS. 17A and 17B with respect to the input current command value I cm .
  • the compensation code SN is estimated based on the point where the current command value I cm crosses zero, but has hysteresis characteristics to suppress chattering.
  • the estimated compensation code SN is input to the multiplication unit 203. Note that the positive / negative threshold value of the hysteresis characteristic can be changed as appropriate.
  • the current command value sensitive gain G cs is input to the multipliers 404d and 404q.
  • the inverter applied voltage sensitive gain unit 420 that inputs the inverter applied voltage VR and outputs the voltage sensitive gain G v is configured as shown in FIG. 18, and the inverter applied voltage VR is limited to the maximum value by the input restricting unit 421, and is the maximum.
  • the inverter application voltage VR 1 whose value is limited is input to the inverter application voltage / dead time compensation gain conversion table 422.
  • the characteristics of the inverter applied voltage / dead time compensation gain conversion table 422 are as shown in FIG. 19, for example.
  • Voltage sensitive gain G v is the multiplication unit 431U, 431V, is input to 431W.
  • the phase adjustment unit 410 is provided for the function of calculating the adjustment angle according to the motor rotation speed ⁇ .
  • the phase adjustment unit 410 has characteristics as shown in FIG. 20 in the case of the advance angle control, and the calculated phase adjustment angle ⁇ is input to the addition unit 421 and added to the detected motor rotation angle ⁇ .
  • the motor rotation angle ⁇ m ( ⁇ + ⁇ ), which is the addition result of the adder 421, is input to the angle-dead time compensation value function units 430U, 430V, and 430W, and is input to the three-phase AC / dq axis converter 440.
  • Angle - dead time compensation value function unit 430U, 430V, 430W as shown in detail in Figure 21, the motor rotation angle theta m which is the phase adjustment, 120 [deg in the range of electrical angle 0 ⁇ 359 [deg] ] Outputs three-phase dead time reference compensation values U dt , V dt , and W dt of rectangular waves that are out of phase with each other.
  • the dead time compensation value angle function units 430U, 430V, and 430W use the dead time compensation value required for the three phases as a function of the angle, and calculate the actual time of the ECU to calculate the dead time reference compensation values U dt and V dt. , W dt is output.
  • the angle function of the dead time reference compensation value differs depending on the dead time characteristic of the ECU.
  • Dead time reference compensation values U dt , V dt , and W dt are respectively input to multipliers 431U, 431V, and 431W, and are multiplied by voltage sensitive gain G v .
  • the three-phase AC / dq axis converter 440 converts the three-phase compensation values U dtc , V dtc , and W dtc into two-phase dq axis compensation values v da * and v qa * in synchronization with the motor rotation angle ⁇ m . Convert to The compensation values v da * and v qq * are respectively input to the multipliers 404d and 404q, and are multiplied by the current command value sensitive gain G cs .
  • the multiplication results in the multiplication units 404 d and 404 q are dq axis compensation values C dB and C qB , and the compensation values C dB and C qB are input to the compensation value switching unit 500.
  • the dq-axis compensation values C dA and C qA from the dead time compensation unit (A) 200 are input to the multiplication units 531 and 533 in the compensation value switching unit 500, respectively, and dq from the dead time compensation unit (B) 400.
  • the axis compensation values C dB and C qB are input to multiplication units 532 and 534 in the compensation value switching unit 500, respectively.
  • Compensation value switching determination unit 510 in compensation value switching unit 500 has a dead zone with respect to the input of steering assist command value iqref, and outputs a switching determination flag SF (for example, “H”) when a predetermined threshold value or more is reached. In addition, it has hysteresis characteristics. Switching determination flag SF is input to the mixing ratio calculating unit 520, mixing ratio calculating unit 520 calculates a compensation unit compensating unit (A) 200 ratio R tA (%) (B) 400 of the ratio R tB (%) .
  • A compensation unit compensating unit
  • the mixing ratio calculation unit 520 has a configuration shown in FIG. 22, for example, and includes a switch 523 for switching the contacts a and b by the switching determination flag SF.
  • the contact a receives a count-up value 521 and the contact b receives a count-down value. 522 is input.
  • the contact a is connected and the count up value 521 is output from the switch 523, and when the switching determination flag SF is input, the contact b is switched and the count down value 522 is switched. 523.
  • the output of the switch 523 is input to the adding unit 524, and the added value is limited as a maximum value by the count value limiting unit (0 to 100%) 525, and output as a ratio R tB (%), and is subtracted to the subtracting unit 527 It is input to the adding unit 524 through the holding unit (Z ⁇ 1 ) 526.
  • the ratio R tB is input to the subtraction unit 527, and a value obtained by subtracting from a fixed 100% is output as the ratio R tA (%).
  • the ratio R tA changes linearly from 100% to 0%
  • the ratio R tB changes linearly from 0% to 100%
  • the characteristic ratios R tA and R tB as shown by the solid line in FIG. Obtainable.
  • the ratio R tA calculated as described above is input to the multipliers 531 and 533, and the ratio R tB is input to the multipliers 532 and 534.
  • the multiplier 531 receives the d-axis compensation value C dA from the dead time compensation unit (A) 200, and the multiplier 533 receives the q-axis compensation value C qA .
  • the d-axis compensation value C dB from the dead time compensation unit (B) 400 is input to the multiplication unit 532, and the q-axis compensation value C qB is input to the multiplication unit 534.
  • R tA ⁇ C dA is output from the multiplier 531 and input to the adder 535
  • R tA ⁇ C dA is output from the multiplier 533 and input to the adder 536.
  • R tB ⁇ C dB is output from the multiplier 532 and input to the adder 535
  • R tB ⁇ C dB is output from the multiplier 534 and input to the adder 536. Therefore, the dead time compensation values v d * and v q * shown in the following equation 11 are output from the adders 535 and 536, and are input to the adders 121d and 121q of the dq axis control system to perform the dead time compensation. .
  • FIG. 24B shows a case where switching is performed instantaneously with a switch.
  • the space vector modulation unit 300 converts a two-phase voltage (v d ** , v q ** ) in the dq axis space into a three-phase voltage (Vua, Vva, Vwa), and converts the three-phase voltage ( Vua, Vva, Vwa) as long as it has a function of superimposing third-order harmonics.
  • the space vector modulation is based on the voltage command values v d ** and v q ** in the dq axis space, the motor rotation angle ⁇ , and the sector number n (# 1 to # 6) as shown below.
  • switching patterns S1 to S6 corresponding to sectors # 1 to # 6 for controlling ON / OFF of FETs (upper arms Q1, Q3, Q5, lower arms Q2, Q4, Q6) of the bridge configuration By supplying it to the motor, it has a function of controlling the rotation of the motor.
  • the voltage command values v d ** and v q ** are coordinate-converted into the voltage vectors V ⁇ and V ⁇ in the ⁇ - ⁇ coordinate system based on Equation 12. The relationship between the coordinate axis used for this coordinate conversion and the motor rotation angle ⁇ is shown in FIG.
  • Equation 13 there is a relationship as shown in Equation 13 between the target voltage vector in the dq coordinate system and the target voltage vector in the ⁇ - ⁇ coordinate system, and the absolute value of the target voltage vector V is stored.
  • the output voltage of the inverter is changed according to the switching patterns S1 to S6 of the FETs (Q1 to Q6) according to the eight kinds of discrete reference voltage vectors V0 to V7 (shown in the space vector diagram of FIG. This is defined by non-zero voltage vectors V1 to V6 and zero voltage vectors V0 and V7) having phases different by ⁇ / 3 [rad].
  • the selection of the reference output voltage vectors V0 to V7 and the generation time thereof are controlled.
  • the space vector can be divided into six sectors # 1 to # 6 using six regions sandwiched between adjacent reference output voltage vectors, and the target voltage vector V is set to the sector # 1 to # 6. It belongs to any one and can be assigned a sector number.
  • the target voltage vector V which is a combined vector of V ⁇ and V ⁇ , exists in the sector as shown in FIG. 27 divided into a regular hexagon in the ⁇ - ⁇ space. It can be obtained based on the rotation angle ⁇ in the ⁇ coordinate system.
  • FIG. 28 shows switching pulses in the ON / OFF signals S1 to S6 (switching patterns) for the FET in order to output the target voltage vector V from the inverter in the digital control by the inverter switching patterns S1, S3, and S5 in the space vector control.
  • a basic timing chart for determining the width and its timing is shown. Space vector modulation is performed within the sampling period Ts every prescribed sampling period Ts, and the calculation result is converted into each switching pulse width and timing in the switching patterns S1 to S6 in the next sampling period Ts. And output.
  • Signals S1, S3 and S5 indicate gate signals of the FETs Q1, Q3 and Q5 corresponding to the upper arm.
  • the horizontal axis indicates time, and Ts corresponds to the switching period and is divided into 8 periods, and T0 / 4, T1 / 2, T2 / 2, T0 / 4, T0 / 4, T2 / 2, T1 / 2 And T0 / 4.
  • the periods T1 and T2 are times depending on the sector number n and the rotation angle ⁇ , respectively.
  • the dead time compensation of the present invention is applied on the dq axis, and the dead time compensation value waveform (U phase waveform) obtained by converting only the dead time compensation value to the dq axis / 3 phase is shown by a broken line in FIG.
  • U phase waveform the dead time compensation value waveform obtained by converting only the dead time compensation value to the dq axis / 3 phase
  • a third-order component is removed from the waveform.
  • V phase and the W phase By applying space vector modulation instead of dq axis / 3-phase conversion, it is possible to superimpose third-order harmonics on a three-phase signal, and to compensate for third-order components that are lost due to three-phase conversion. It is possible to generate an ideal dead time compensation waveform as shown by the solid line in FIG.
  • FIG. 30 is a result of an experiment by the steering experimental apparatus showing the effect of the present invention.
  • the compensation function A is gradually switched to the compensation function B by mixing.
  • the waveforms of the d-axis current and the q-axis current, the q-axis dead time compensation value, and the q-axis dead time compensation value are shown.
  • To time t 10 is dead time compensation according to the compensation function A, from the time t 10 to time t 11 is the mixing condition, the time t 11 and subsequent operation waveforms of the dead time compensation by the compensation function B. As shown in FIG.
  • the dead time compensation of the present invention when the dead time compensation of the present invention is applied and the dead time compensation value is gradually switched from A to B, the dead time compensation is changed even when the current control characteristic changes, such as when the d-axis current starts to flow. It can be confirmed that there is no waveform distortion of the dq-axis current due to the influence of time. Further, there is no torque ripple at the time of switching during steering.
  • 31 and 32 show other examples of the dead time compensation unit (A) 200 corresponding to FIG.
  • the calculation of the three-phase loss voltage PLA is obtained as the dq-axis loss voltage PLA dq . Therefore, in the three-phase AC / dq axis conversion unit 260B, the dq axis detection voltage V m is obtained from the three-phase motor terminal voltages Vu, Vv, Vw and the motor rotation angle ⁇ and is subtracted and input to the subtraction unit 202.
  • Duty command value of the three-phase Duty u, Duty v, Duty w is computed three-phase command voltage V in accordance with the number 4, the calculated three-phase command voltage V in three-phase AC / dq axis conversion section 260A 2 is converted into a two-phase command voltage V indq in synchronization with the motor rotation angle ⁇ , and added to the subtraction unit 202 via the voltage detection model 230.
  • the compensation amount limiting unit 250 outputs dq axis compensation values C dA and C qA .
  • the terminal voltages Vu, Vv, and Vw of the motor 110 are input to the three-phase AC / dq axis conversion unit 260B through the LPFs 163U, 163V, and 163W for noise removal, respectively, and the three-phase AC / dq axis conversion is performed.
  • the unit 210 converts the dq axis detection voltage Vm (V d , V q ) in synchronization with the motor rotation angle ⁇ .
  • the dq axis detection voltage Vm (V d , V q ) is subtracted and input to the subtraction unit 202.
  • the d-axis voltage command value v d and the q-axis voltage command value v q are input to the voltage ratio correction calculation unit 270, and the voltage ratio correction calculation unit 270 uses the PWM cycle as PWM_Time and DT as the dead time.
  • the dq axis correction command voltage V comp (V comp — d , V comp — q ) is calculated using the following equation ( 14 ).
  • the dq axis correction command voltage V comp (V comp — d , V comp — q ) is input to the voltage detection delay model 230.
  • the dq axis correction command voltage V inc from the voltage detection delay model 230 is added to the subtraction unit 202 and input. Also in this example, the compensation amount limiting unit 250 outputs the dq axis compensation values C dA and C qA .
  • FIG. 33 shows another example of the dead time compensation unit (B) 400 corresponding to FIG. 12, and in this embodiment, the compensation values C dB and C qB of the dq axis are directly calculated by the reference tables 440d and 440q. is doing.
  • the dq axis angle-dead time compensation value reference tables 440d and 440q calculate a dead time compensation value that is a function of the angle required for the three phases offline and convert it to a compensation value on the dq axis.
  • Output voltages v da and v qa indicating dead time reference compensation values from the angle-dead time compensation value reference tables 440d and 440q are input to the multipliers 405d and 405q, respectively, and multiplied by the voltage sensitive gain G v .
  • the dq axis compensation values v da * and v qa * multiplied by the voltage sensitive gain G v are respectively input to the multipliers 404 d and 404 q and multiplied by the current command value sensitive gain G cs .
  • the multiplication results in the multipliers 404d and 404q are dq axis compensation values C dB and C qB .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】インバータのデッドタイムを補償する複数のデッドタイム補償機能を有し、チューニング作業もなく、操舵状態に応じてデッドタイム補償機能をミキシングにより徐々に切り換えて補償し、操舵性能を向上すると共に、電流波形の歪み改善と電流制御の応答性の向上を図り、音や振動、リップルを抑制した電動パワーステアリング装置を提供する。 【解決手段】少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、操舵補助指令値からdq軸電流指令値を演算し、dq軸電流指令値を3相Duty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、インバータのデッドタイム補償を行う性能が異なる複数のデッドタイム補償機能を有し、デッドタイム補償機能の1つから他のデッドタイム補償機能に、ミキシングしながら徐々に切り換えてデッドタイム補償を実施する。

Description

電動パワーステアリング装置
 本発明は、3相ブラシレスモータの駆動をdq軸回転座標系でベクトル制御すると共に、性能の異なる複数のデッドタイム補償機能(例えばモータ端子電圧に基づくインバータのデッドタイム補償機能とモータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能)をミキシングしながら徐々に切り換え、操舵状態に応じたデッドタイム補償を実施することにより操舵性能を向上して、滑らかで操舵音のないアシスト制御を可能とした電動パワーステアリング装置に関する。
 車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS)は、アクチュエータとしてのモータの駆動力を、減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のDutyの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の舵角θを検出する舵角センサ14と、ハンドル1の操舵トルクThを検出するトルクセンサ10とが設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御指令値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結されたレゾルバ等の回転センサから舵角(モータ回転角)θを得ることもできる。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VsはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(Central Processing Unit)(MPU(Micro Processor Unit)やMCU(Micro Controller Unit)等を含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Vsは操舵補助指令値演算部31に入力され、操舵補助指令値演算部31は操舵トルクTh及び車速Vsに基づいてアシストマップ等を用いて操舵補助指令値Iref1を演算する。演算された操舵補助指令値Iref1は加算部32Aで、特性を改善するための補償部34からの補償信号CMと加算され、加算された操舵補助指令値Iref2が電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。
 減算部32Bでの減算結果である偏差ΔI(=Irefm-Im)はPI制御部35でPI(比例積分)等の電流制御をされ、電流制御された電圧制御指令値Vrefが変調信号(三角波キャリア)CFと共にPWM制御部36に入力されてDuty指令値を演算され、Duty指令値を演算されたPWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。
 補償部34は、検出若しくは推定されたセルフアライニングトルク(SAT)を加算部344で慣性補償値342と加算し、その加算結果に更に加算部345で収れん性制御値341を加算し、その加算結果を補償信号CMとして加算部32Aに入力し、特性改善を実施する。
 近年、電動パワーステアリング装置のアクチュエータは3相ブラシレスモータが主流となっていると共に、電動パワーステアリング装置は車載製品であるため、稼動温度範囲が広く、フェールセーフの観点からモータを駆動するインバータは家電製品を代表とする一般産業用と比較して、デッドタイムを大きく(産業用機器<EPS)する必要がある。一般にスイッチング素子(例えばFET(Field-Effect Transistor))にはOFFの際に遅れ時間があるため、上下アームのスイッチング素子のOFF/ON切り換えを同時に行うと、直流リンクを短絡する状況になり、これを防ぐため、上下アーム両方のスイッチング素子がOFFになる時間(デッドタイム)を設けている。
 その結果、電流波形が歪み、電流制御の応答性や操舵感が悪化する。例えばハンドルがオンセンター付近にある状態でゆっくり操舵すると、トルクリップル等による不連続な操舵感などが生じる。また、中・高速操舵時におけるモータの逆起電圧や、巻線間の干渉電圧が電流制御に対して外乱として作用するため、転追性や切り返し操舵時の操舵感を悪化させている。
 3相ブラシレスモータのロータの座標軸であるトルクを制御するq軸と、磁界の強さを制御するd軸とを独立に設定し、dq軸が90°の関係にあることから、そのベクトルで各軸に相当する電流(d軸電流指令値及びq軸電流指令値)を制御するベクトル制御方式が知られている。
 図3は、ベクトル制御方式で3相ブラシレスモータ100を駆動制御する場合の構成例を示しており、操舵トルクTh、車速Vs等に基づいて2軸(dq軸座標系)の操舵補助指令値(Iref2(idref,iqref))が演算され、最大値を制限された2軸のd軸電流指令値id *及びq軸電流指令値iq *はそれぞれ減算部131d及び131qに入力され、減算部131d及び131qで求められた電流偏差Δid *及びΔiq *はそれぞれPI(Proportional-Integral)制御部120d及び120qに入力される。PI制御部120d及び120qでPI制御された電圧指令値vd及びvqは、それぞれ減算部141d及び加算部141qに入力され、減算部141dにはd-q非干渉制御部140から電圧vd1 *が入力され、その差である指令電圧Δvdが求められ、加算部141qにはd-q非干渉制御部140から電圧vq1 *が入力され、その加算結果である指令電圧Δvqが求められる。指令電圧Δvd及びΔvqはdq軸/3相交流変換部150に入力される。dq軸/3相交流変換部150で3相に変換された電圧指令値Vu*,Vv*,Vw*はPWM制御部160に入力され、演算された3相のDuty指令値(Dutyu,Dutyv, Dutyw)に基づくPWM信号UPWM,VPWM,WPWMにより、図4に示すような上下アームのブリッジ構成で成るインバータ(インバータ印加電圧VR)161を介してモータ100が駆動される。上側アームはスイッチング素子としてのFETQ1,Q3,Q5で構成され、下側アームはFETQ2,Q4,Q6で構成されている。
 モータ100の3相モータ電流iu,iv,iwは電流検出器162で検出され、検出された3相モータ電流iu,iv,iwは3相交流/dq軸変換部130に入力され、3相/2相変換部130で変換された2相のフィードバック電流id及びiqはそれぞれ減算部131d及び131qに減算入力されると共に、d-q非干渉制御部140に入力される。また、モータ100には回転センサ等が取り付けられており、センサ信号を処理する角度検出部110からモータ回転角θ及びモータ回転数(回転速度)ωが出力される。モータ回転角θはdq軸/3相交流換部150及び3相交流/dq軸変換部130に入力され、モータ回転数ωはd-q非干渉制御部140に入力される。d-q非干渉制御部140からのd軸の電圧vd1 *は減算部141dに入力され、その差である指令電圧Δvdが算出され、d-q非干渉制御部140からのq軸の電圧vq1 *は加算部141qに入力され、その加算結果である指令電圧Δvqが算出される。
 このようなベクトル制御方式の電動パワーステアリング装置は、運転者の操舵をアシストする装置であると同時に、モータの音や振動、リップル等はハンドルを介して運転者へ力の感覚として伝達される。インバータを駆動するパワーデバイスは一般的にFETが用いられており、モータへ通電を行うが、3相モータの場合には、図4に示されるように各相毎に上下アームの直列接続されたFETが用いられている。上下アームのFETは交互にON/OFFを繰り返すが、FETは理想スイッチではなく、ゲート信号の指令通りに瞬時にON/OFFせず、ターンオン時間やターンオフ時間を要する。このため、上側アームFETへのON指令と下側アームのOFF指令が同時になされると、上側アームFETと下側アームFETが同時にONになって、上下アームが短絡する問題がある。FETのターンオン時間とターンオフ時間には差があり、同時にFETに指令を出した場合、上側FETにON指令を出してターンオン時間が短い場合(例えば100ns)、直ぐにFETがONになり、下側FETにOFF指令を出してもターンオフ時間が長い場合(例えば400ns)、直ぐにFETがOFFにならず、瞬間的に上側FETがON、下側FETがONになる状態(例えば、400ns-100ns間、ON-ON)が発生することがある。
 そこで、上側アームFETと下側アームFETが同時にONすることの無い様に、ゲート駆動回路にデッドタイムという所定時間をおいてON信号を与えることが行われる。このデッドタイムは非線形であるため電流波形は歪み、制御の応答性能が悪化し、音や振動、リップルが発生する。コラム式電動パワーステアリング装置の場合、ハンドルと鋼製のコラム軸で接続されるギアボックスに直結されるモータの配置が、その構造上運転者に極めて近い位置となっているため、モータに起因する音、振動、リップル等には、下流アシスト方式の電動パワーステアリング装置に比べて、特に配慮する必要がある。
 インバータのデッドタイムを補償する手法として、従来はデッドタイムが発生するタイミングを検出して補償値を足し込んだり、電流制御におけるdq軸上の外乱オブザーバによってデッドタイムを補償している。
 インバータのデッドタイムを補償する電動パワーステアリング装置は、例えば特許第4681453号公報(特許文献1)、特開2015-171251号公報(特許文献2)に開示されている。特許文献1では、モータ、インバータを含む電流制御ループのリファレンスモデル回路に電流指令値を入力して電流指令値を基にモデル電流を作成し、モデル電流を基にインバータのデッドタイムの影響を補償するデッドバンド補償回路を備えている。また、特許文献2では、Duty指令値に対してデッドタイム補償値に基づく補正を行うデッドタイム補償部を備え、電流指令値に基づいてデッドタイム補償値の基礎値である基本補償値を演算する基本補償値演算部と、基本補償値に対してLPFに対応するフィルタリング処理を施すフィルタ部とを有している。
特許第4681453号公報 特開2015-171251号公報
 特許文献1の装置は、q軸電流指令値の大きさによるデッドタイム補償量の計算と3相電流リファレンスモデルとを使用して、補償符号を推定する方式である。補償回路の出力値が、所定の固定値以下ではモデル電流に比例する変化値であり、所定の固定値以上では、固定値とモデル電流に比例する変化値の加算値であり、電流指令から電圧指令へと出力されるが、所定の固定値を出力するヒステリシス特性を決めるためのチューニング作業が必要である。
 また、特許文献2の装置は、デッドタイム補償値を決定する際、q軸電流指令値とそれをLPF処理した補償値とでデッドタイム補償を行っているが、LPF処理により遅れが生じ、モータへの最終的な電圧指令に対して、デッドタイム補償値を操作するものではないという問題がある。
 更に、操舵性能向上のため特定の領域で複数のデッドタイム補償機能を切り換える場合がある。例えば高速操舵時においてd軸電流指令値が0[A]以外の場合、デッドタイム補償値の特性が大きく変わることから、単一機能のデッドタイム補償で全領域を補償しようとした場合、特定の領域で補償精度が悪くなり、トルクリップルや音、振動が発生する場合がある。
 フィードフォワードタイプのデッドタイム補償(角度フィードフォワードタイプ、電流指令値モデルタイプ)は、モータ出力軸をロックして専用ソフトでモータに電流が流れるために、必要とされるデッドタイム補償量を実機にて測定する必要がある。また、モータ試験装置を用いてモータ単体で定負荷定回転で回転させ、位相合わせや電流指令値によって補償符号を決定するための閾値のチューニング作業が必要である。インバータ印加電圧やモータ回転数などを割り振り、複数回行う必要があり、チューニング作業の軽減化が要請されている。
 また、フィードフォワードタイプのデッドタイム補償では、適切な補償量と適切なタイミングで符号を切り換えないと、ゼロクロス付近や低負荷・低速操舵時にチャタリングが発生する。補償量が合わないデッドタイム補償やタイミングが合わないデッドタイム補償を入れることによって、制御自身でチャタリングを引き起こしてしまう場合がある。フィードフォワードタイプではかかるチャタリングを抑制するため、種々工夫したり、厳密に補償符号を切り換えるなど、かなり緻密なチューニング作業が必要となっている。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、ベクトル制御方式の電動パワーステアリング装置において、インバータのデッドタイムを補償する複数のデッドタイム補償機能を有し、チューニング作業もなく、操舵状態に応じてデッドタイム補償機能をミキシングにより徐々に切り換えて補償し、操舵性能を向上すると共に、電流波形の歪み改善と電流制御の応答性の向上を図り、音や振動、リップルを抑制した電動パワーステアリング装置を提供することにある。
 本発明は、少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、前記インバータのデッドタイム補償を行う性能が異なる複数のデッドタイム補償機能を有し、前記複数のデッドタイム補償機能の1つから他のデッドタイム補償機能に、ミキシングしながら徐々に切り換えて前記デッドタイム補償を実施することにより達成される。
 また、本発明は、少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相Duty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、前記3相ブラシレスモータの3相端子電圧に基づく前記インバータの前記dq軸に関する第1のdq軸補償値を演算するデッドタイム補償部Aと、前記3相ブラシレスモータのモータ回転角に基づく前記インバータの前記dq軸に関する第2のdq軸補償値を演算するデッドタイム補償部Bと、前記q軸の前記操舵補助指令値に基づいて前記第1のdq軸補償値と前記第2のdq軸補償値とをミキシングしながら徐々に相互に切り換え、dq軸デッドタイム補償値を演算して出力する補償値切換部とを具備し、前記dq軸デッドタイム補償値により前記dq軸電流指令値を補正して前記インバータのデッドタイム補償を実施することにより達成される。
 本発明の電動パワーステアリング装置によれば、複数のデッドタイム補償機能(例えばモータ端子電圧に基づくインバータのデッドタイム補償機能機能(A)と、モータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能機能(B))を両者の比率を変化させるミキシングで徐々に切り換えて、最適な状態でデッドタイムの補償を行うようにしているので、操舵性能を一層向上することができる。モータ端子電圧に基づくインバータのデッドタイム補償機能機能(A)は、補償量及び補償符号が自動計算されるため、オンセンター付近の低負荷・低操舵状態においてもチャタリングなく補償できる特長がある。3相の補償波形が矩形波でない場合においても補償可能である。また、モータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能(B)は、角度と相電流の位相が合う低速操舵領域及び中速操舵領域において補償精度が高く、3相の補償波形が矩形波でない場合においても補償可能であるといった特長がある。本発明によれば、操舵条件に従って補償機能A及びBをミキシングしながら徐々に切り換えているので、両者の特長を生かした最適な操舵及び滑らかな補償値切換を実現することができる。これにより、チューニング作業もなく、インバータのデッドタイムを補償し、電流波形の歪み改善と電流制御の応答性の向上を図ることができる。
一般的な電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 ベクトル制御方式の構成例を示すブロック図である。 一般的なインバータの構成例を示す結線図である。 本発明の構成例を示すブロック図である。 デッドタイム補償部(A)の構成例を示すブロック図である。 デッドタイム補償部(A)の構成例を詳細に示すブロック図である。 中点電圧推定部の構成例を示すブロック図である。 補正タイミング判定部及び補正値保持部の詳細例を示すブロック図である。 補償量制限部の構成例を示すブロック図である。 補償量上限値の一例を示す特性図である。 デッドタイム補償部(B)の構成例を示すブロック図である。 デッドタイム補償部(B)の構成例を詳細に示すブロック図である。 電流指令値感応ゲイン部の構成例を示すブロック図である。 電流指令値感応ゲイン部内のゲイン部の特性図である。 電流指令値感応ゲイン部の特性例を示す特性図である。 補償符号推定部の動作例を示す波形図である。 インバータ印加電圧感応ゲイン部の構成例を示すブロック図である。 インバータ印加電圧感応ゲイン部の特性例を示す特性図である。 位相調整部の特性例を示す特性図である。 3相角度-デッドタイム補償値関数部の動作例を示す線図である。 ミキシング比率演算部の構成例を示すブロック図である。 ミキシング比率の特性例を示す特性図である。 ミキシング動作を説明する線図である。 空間ベクトル変調部の構成例を示すブロック図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示すタイミングチャートである。 空間ベクトル変調の効果を示す波形図である。 本発明の効果を示す波形図である。 デッドタイム補償部(A)の他の構成例を示すブロック図である。 デッドタイム補償部(A)の他の構成例を示すブロック図である。 デッドタイム補償部(B)の他の構成例を示すブロック図である。
 本発明は、ECUのデッドタイムの影響により電流歪みが発生し、トルクリップルの発生や操舵音の悪化などの問題を解消するために、インバータのデッドタイム補償値を、モータ端子電圧に基づくデッドタイム補償機能(A)と、モータ回転角(電気角)に応じた関数に基づくデッドタイム補償機能(B)とをミキシングで徐々に切り換え、dq軸にフィードフォワードで補償するようにしている。
 単一機能の単一アルゴリズムのデッドタイム補償機能では、低速操舵時は精度よく補償されるが、高速操舵時は補償精度が悪くなる場合があったり、或いは高負荷時において精度よく補償されるが、低負荷時に補償精度が悪くなる場合もある。そのため、単一機能の単一アルゴリズムのデッドタイム補償では、操舵領域全体を精度よく補償するのは困難である。しかしながら、本発明では操舵条件において補償精度の高いデッドタイム補償機能を複数用意し、操舵状態によって最適なデッドタイム補償機能にミキシングで徐々に切り換えることにより、全操舵領域に対し滑らかに、補償精度の高いデッドタイム補償を実施することが可能となる。
 本発明では、dq軸ベクトル制御方式のd軸電圧指令値及びq軸電圧指令値に対し、複数の補償機能に基づくデッドタイム補償をそれぞれ別々に行うと共に、デッドタイム補償機能をq軸の操舵補助指令値に基づいて切り換えると共に、切換を両者の比率の変化で徐々に行い、低速操舵領域、中速操舵領域及び高速操舵領域の全ての領域で最適なデッドタイム補償を行う。本発明の実施形態では2つのデッドタイム補償機能A及びBを有し、q軸の操舵補助指令値で補償値切換の判定を行い、切換判定フラグが出力されたときにミキシング比率を演算し、演算されたミキシング比率で徐々に切換を行い、デットタイム補償機能を切り換える構成となっている。
 特性の異なるデッドタイム補償を切り換えるとき、補償量及び位相に差があり、単純に切り換えた場合、図24(A)に示すように、補償値にステップ状の偏差が発生し、トルクリップルが発生する。例えば、切り換え時のデットタイム補償機能Bの補償量を1.00とした場合、デットタイム補償機能Aの補償量は0.92~0.95など差がある。特にモータに流す電流量が少ない低負荷・低速領域の操舵では、デッドタイム補償量の影響は大きく(PI制御などの指令電圧よりもデッドタイム補償電圧の方が大きいため)、少しのステップ状の偏差でもトルクリップルを発生させる。そのため、本発明では、2つの補償値をミキシングし、変換期間を設けてスイープ状の偏差にすることにより、トルクリップルの発生を無くし、操舵する人に、いつ補償機能が切り換わったのかが分からないようにしている。
 なお、モータの種類やEPSの減速ギア3の減速比によっても相違するが、例えば低速操舵領域のモータ回転数は0~300[rpm]であり、中速操舵領域のモータ回転数は300~1800[rpm]、高速操舵領域のモータ回転数は1800~4000[rpm]で、モータの定格回転数以上(弱め界磁制御が必要となる回転数領域)の回転数である。
 以下に、本発明の実施の形態を図面を参照して説明する。
 図5は本発明の全体構成を図3に対応させて示しており、dq軸上の補償値vdA及びvqAを演算するデッドタイム補償機能(A)部200と、dq軸上の補償値vdB及びvqBを演算するデッドタイム補償機能(B)部400と、補償値vdA及びvqAと補償値vdB及びvqBとをミキシングで徐々に切り換え、デッドタイム補償値vd *及びvq *を出力する補償値切換部500とが設けられている。デッドタイム補償機能(B)部400は、低速操舵領域及び中速操舵領域において補償精度が高く、デッドタイム補償機能(A)部200は、低負荷、低操舵状態において補償精度が高い特性となっている。
 例えば、デッドタイム補償機能(A)は端子電圧フィードバック型のデッドタイム補償機能であり、補償符号の推定と補償量の調整が難しい低負荷・低速操舵状態(オンセンター付近でゆっくりと左右にステアリングを振る操舵など)において、自動的に最適な補償符号と補償量を計算するため、精度の高い補償が可能となる。一方、デッドタイム補償機能(B)は角度フィードフォワード型のデッドタイム補償機能であり、d軸電流を必要としない低速から中速操舵状態(一定速でステアリングを操舵したり、徐々に切増ししたりする操舵など)において、定められた角度で遅れることなく、理想的なデッドタイム補償値をフィードフォワードで入れられるため、精度の高い補償が可能である。また、角度に応じたデッドタイム補償値を算出するため、低負荷操舵領域(例えば電流指令値0~4[A]など)以外の操舵負荷領域では検出電流にノイズや小さなリップルが乗っている場合においても、補償値の演算に影響を受けず、安定した補償が可能である。
 デッドタイム補償部200(詳細は後述)には、モータ端子電圧Vu,Vv,Vwがそれぞれノイズ除去用のLPF163U,163V,163Wを経て入力されると共に、PWM制御部160内のDuty指令値演算部160AからDuty指令値Dutyu,Dutyv,Dutywが入力されている。デッドタイム補償部200には更に、モータ回転角θ、モータ回転数ω及びインバータ161に印加されているインバータ印加電圧VRが入力されている。また、デッドタイム補償部400(詳細は後述)には、図2の操舵補助指令値Iref2に相当するq軸の操舵補助指令値iqrefが入力されると共に、インバータ印加電圧VR、モータ回転角θ及びモータ回転数ωが入力されている。
 補償値切換部500(詳細は後述)は、操舵補助指令値iqrefに基づいて補償値の切換を判定して切換判定フラグSFを出力する補償値切換判定部510と、切換判定部510からの切換判定フラグSFによって、デッドタイム補償機能(A)部200及びデッドタイム補償機能(B)部400のミキシング比率RtA(例えば0~100%)及びRtB(例えば100~0%)を演算するミキシング比率演算部520と、乗算部531~534と、加算部535及び536とで構成されており、加算部535及び536からdq軸のデッドタイム補償値vd *及びvq *が出力される。デッドタイム補償値vd *及びvq *は、dq軸制御系の加算部121d及び121qに入力される。
 なお、乗算部531~534と、加算部535及び536とでミキシング部530を構成している。
 ベクトル制御のd軸電流指令値id *及びq軸電流指令値iq *はそれぞれ減算部131d及び131qに入力され、減算部131d及び131qでフィードバック電流id及びiqとの電流偏差Δid *及びΔi *が演算される。演算された電流偏差Δid *はPI制御部120dに入力され、演算された電流偏差Δi *はPI制御部120qに入力される。PI制御されたd軸電圧指令値vd及びq軸電圧指令値vqはそれぞれ加算部121d及び121qに入力され、後述する補償値切換部500からのデッドタイム補償値vd *及びvq *を加算されて補償され、その各補償された電圧値が減算部141d及び加算部141qに入力される。減算部141dにはd-q非干渉制御部140からの電圧vd1 *が入力され、その差である電圧指令値vd **が得られ、加算部141qにはd-q非干渉制御部140からの電圧vq1 *が入力され、その加算結果で電圧指令値vq **が得られる。デッドタイムを補償された電圧指令値vd **及びvq **は、dq軸の2相からU相,V相,W相の3相  に変換し、3次高調波を重畳する空間ベクトル変調部300(詳細は後述)に入力される。空間ベクトル変調部300でベクトル変調された3相の電圧指令値Vur*,Vvr*,Vwr*はPWM制御部160内のDuty 指令値演算部160Aに入力され、Duty指令値演算部160Aで3相のDuty指令値Dutyu,Dutyv,Dutywが演算され、Duty指令値Dutyu,Dutyv,Dutywはデッドタイム補償部(A)200に入力されると共に、PWM制御回路160Bに入力される。モータ100は前述と同様にPWM制御回路160BからのPWM信号(UPWM、VPWM、WPWM)により、インバータ161を介して駆動制御される。
 次に、デッドタイム補償部(A)200について説明する。
 デッドタイム補償部(A)200は図6に示すように、減算部201(201U、201V、201W)及び202、中点電圧推定部210、3相指令電圧演算部220、電圧検出遅れモデル230、ゲイン部240、補償量制限部250、d軸補償値CdA及びq軸補償値CqAを出力する3相交流/dq軸変換部260で構成されている。
 図7に詳細を示すように、モータ回転角θは中点電圧推定部210及び3相交流/dq軸変換部260に入力され、モータ回転数ωは中点電圧推定部210に入力される。モータ端子電圧Vu,Vv,VwはLPF163U~163Wを経て中点電圧推定部210及び減算部201(201U,201V,201W)に入力されている。また、PWM制御部160内のDuyt指令値演算部160AからのDuty指令値Dutyu,Dutyv,Dutywは3相印加電圧演算部220に入力され、インバータ印加電圧VRは中点電圧推定部210、3相指令電圧演算部220及び補償量制限部250に入力されている。
 中点電圧推定部210は、中点電圧の基準電圧をインバータ印加電圧VRにより算出する。詳細は図8の構成であり、ハードの構成、検出誤差などの影響により中点電圧はズレを生じるため、インバータ印加電圧VRと3相モータ端子電圧Vu~Vwの差分から補正する。補正するタイミングは、特定のモータ回転角θ及び特定のモータ回転数ωの条件で補正する。
 即ち、インバータ印加電圧VRは半減部211で半減(VR/2)され、半減値(VR/2)が減算部217及び218に加算入力される。端子電圧Vu~Vwは加算部216に入力されて加算され、加算結果(Vu+Vv+Vw)が除算部(1/3)212で1/3倍され、1/3倍された電圧(Vu+Vv+Vw)/3が減算部217に減算入力される。減算部217は半減値VR/2から電圧“(Vu+Vv+Vw)/3”を減算し、減算結果VRnaを補正値保持部214に入力する。補正タイミング判定部213は、モータ回転角θ及びモータ回転数ωに基づいて補正タイミングを判定し、補正信号CTを補正値保持部214に入力する。補正値保持部214で保持された電圧VRnbに基づき、補正量制限部215は補正量ΔVmを算出する。
 補正タイミング判定部213及び補正値保持部214の詳細は図9に示す構成であり、補正タイミング判定部213は角度判定部213-1、有効回転数判定部213-2及びAND回路213-3で構成され、補正値保持部214は切換部214-1及び保持ユニット(Z-1)214-2で構成されている。
 即ち、モータ回転角θは角度判定部213-1に入力され、下記数1の判定が行われる。数1が成立するとき、角度判定部213-1は判定信号JD1を出力する。
(数1)
179[deg]<θ<180[deg]
 
 中点補正値の演算において上記数1のタイミングを補正条件とした場合、ゼロクロスポイントの電圧値を正確にサンプリングできる。このポイント以外では、モータ端子電圧に3次高調波が重畳されており、より正確な値が検出できない。例えば数1の条件で検出された各端子電圧をVu=6.83[V]、Vv=7.55[V]、Vw=5.94[V]、モータ印加電圧を13.52[V]とすると、(Vu+Vv+Vw)/3=6.77[V]、VR/2=6.76[V]となり、VR/2≒(Vu+Vv+Vw)/3となり、中点電圧に近い値となる。また、モータ回転数ωが大きい場合、逆起電圧の影響が大きくなるため、正確な補正演算ができなくなる。このため、有効回転数判定部213-2はモータ回転数ωが補正演算可能な有効回転数ω以下であるかを判定し、モータ回転数ωが補正演算可能な有効回転数ω以下の時に判定信号JD2を出力する。
(数2)
ω≦ω
 
 判定信号JD1及びJD2はAND回路213-3に入力され、判定信号JD1及びJD2が入力されたAND条件で補正信号CTが出力される。補正信号CTは補正値保持部214内の切換部214-1に切換信号として入力され、接点a,bを切り換える。接点aには減算結果VRnaが入力され、接点bには出力電圧VRnbが保持ユニット(Z-1)214-2を経て入力されている。補正値保持部214は次のタイミングまで安定した補正値を出力するため、値を保持する。また、補正量制限部213は、ノイズや逆起電圧、補正タイミング誤判定などにより、補正量が通常よりも明らかに大きい場合、当該補正量が正しくないと判断して最大補正量に制限する。最大補正量に制限された電圧補正値ΔVmは減算部218に入力され、減算部218で下記数3に基づいて演算された中点電圧推定値Vmが出力される。中点電圧推定値Vmは、減算部201U,201V,201Wにそれぞれ減算入力される。
Figure JPOXMLDOC01-appb-M000001
 
 また、3相指令電圧演算部220には3相Duty指令値Dutyu,Dutyv,Dutyw及びインバータ印加電圧VRが入力されており、3相指令電圧演算部220は、3相Duty指令値Dutyu,Dutyv,Dutyw及びインバータ印加電圧VRにより、下記数4を用いて3相指令電圧Vinを算出する。3相指令電圧Vinは、電圧検出遅れモデル230に入力される。なお、数4中のDutyrefは、Dutyu,Dutyv,Dutywを示している。
Figure JPOXMLDOC01-appb-M000002
 
 中点電圧推定値Vmは減算部201(201U,201V,201W)に減算入力され、減算部201(201U,201V,201W)にはLPF163U,163V,163Wを経た端子電圧Vu,Vv,Vwが減算入力されている。減算部201U,201V,201Wは3相端子電圧Vu,Vv,Vwから中点電圧推定値Vmを減算部201u,201v,201wで、数5に従って減算する。これにより、3相検出電圧Vdn(Vdu,Vdv,Vdw)を演算する。3相検出電圧Vdn(Vdu,Vdv,Vdw)は、3相損失電圧演算部としての減算部202に入力される。
Figure JPOXMLDOC01-appb-M000003
 
 3相端子電圧Vu~Vwの検出は、ECUのノイズフィルタ等により遅れが生じる。このため、直接3相指令電圧Vinと3相検出電圧Vdnの差分をとって損失電圧を算出した場合、位相差により誤差が生じる。この問題を解決するため、本発明では、フィルタ回路等のハードウェアの検出遅れを1次のフィルタモデルとして近似し、位相差を改善する。本実施形態の電圧検出遅れモデル230は、Tをフィルタ時定数として、数6の1次フィルタとしている。電圧検出遅れモデル230は、2次以上のフィルタをモデルとした構成でもよい。
Figure JPOXMLDOC01-appb-M000004
 
 減算部202には3相指令電圧Vinが加算入力され、3相検出電圧Vdnが減算入力されており、3相指令電圧Vinから3相検出電圧Vdnを減算することにより3相損失電圧PLA(Vloss_n)が算出される。即ち、減算部202で下記数7が演算される。
Figure JPOXMLDOC01-appb-M000005
 
 3相損失電圧PLA(Vloss_n)はゲイン部240でゲインP(例えば0.8)を乗算され、ゲインPを乗算された3相損失電圧PLBは補償量制限部250に入力される。ゲインPは基本的に調整する必要はないが、他の補償器との整合や実車チューニング、ECUの部品が変わったときなど、出力調整を必要とする場合には変更する。
 補償量制限部250はインバータ印加電圧VRに感応しており、その詳細構成は図10のようになっている。即ち、インバータ印加電圧VRは、補償量制限部250内の補償量上下限値演算部251に入力され、図11に示すような特性で補償量制限値DTCaが演算される。補償量制限値DTCaは、所定電圧VR1まで一定制限値DTCa1であり、所定電圧VR1から所定電圧VR2(>VR1)まで線形(若しくは非線形)に増加し、所定電圧VR2以上で一定制限値DTCa2を保持する特性である。補償量制限値DTCaは切換部252の接点a1及び比較部255に入力されると共に、反転部254に入力される。また、3相損失電圧PLB(Vloss_u,Vloss_v,Vloss_w)は比較部255及び256に入力されると共に、切換部252の接点b1に入力されている。そして、反転部254の出力-DTCaは切換部253の接点a2に入力されている。切換部252の接点a1及びb1は、比較部255の比較結果CP1に基づいて切り換えられ、切換部253の接点a2及びb2は、比較部256の比較結果CP2に基づいて切り換えられる。
 比較部255は補償量制限値DTCaと3相損失電圧PLBとを比較し、下記数8に従って切換部252の接点a1及びb1を切り換える。また、比較部256は補償量制限値-DTCaと3相損失電圧PLBとを比較し、下記数9に従って切換部253の接点a2及びb2を切り換える。
(数8)
3相損失電圧PLB≧補償量上限値:(DTCa)のとき、切換部252の接点a1がON(切換部253の接点b2=DTCa)
3相損失電圧PLB<補償量上限値:(DTCa)のとき、切換部252の接点b1がON(切換部253の接点b2=3相損失電圧PLB)
(数9)
3相損失電圧PLB≦補償量下限値:(-DTCa)のとき、切換部253の接点a2がON(デッドタイム補償値DTC=-DTCa)
3相損失電圧PLB>補償量下限値:(-DTCa)のとき、切換部253の接点b2がON(デッドタイム補償値DTC=切換部252の出力)
 
 3相のデッドタイム補償値DTCがモータ回転角θと共に3相交流/dq軸変換部260に入力され、3相交流/dq軸変換部260から2相に変換されたd軸補償値CdA及びq軸補償値CqAが出力される。補償値CdA及び補償値CqAは補償値切換部500に入力される。
 次に、デッドタイム補償部(B)400について説明する。
 デッドタイム補償部(B)400は、図12に示すように電流制御遅れモデル401、補償符号推定部402、乗算部403、404d及び404q、加算部421、位相調整部410、インバータ印加電圧感応ゲイン部420、角度-デッドタイム補償値関数部430U、430V及び430W、乗算部431U、431V及び431W、3相交流/dq軸変換部440、電流指令値感応ゲイン部450で構成されている。乗算部404d及び404qからそれぞれ、d軸補償値CdB及びq軸補償値CqBが出力される。
 なお、乗算部431U、431V及び431Wと3相交流/dq軸変換部440とで補償値出力部を構成している。また、電流制御遅れモデル401、補償符号推定部402、電流指令値感応ゲイン部450、乗算部403で電流指令値感応ゲイン演算部を構成している。
 デッドタイム補償部400の詳細構成は図13であり、以下では図13を参照して説明する。
 q軸操舵補助指令値iqrefは、電流制御遅れモデル401に入力される。dq軸の電流指令値id *及びiq *が実電流に反映されるまでに、ECUのノイズフィルタ等により遅れが生じる。このため、直接電流指令値iq *から符号を判定しようとすると、タイミングずれが生じる場合がある。この問題を解決するため、電流制御全体の遅れを1次のフィルタモデルとして近似し、位相差を改善する。電流制御遅れモデル401は、Tをフィルタ時定数として、前記数6の1次フィルタとしている。電流制御遅れモデル401は、2次以上のフィルタをモデルとした構成でもよい。
 電流制御遅れモデル401から出力される電流指令値Icmは、電流指令値感応ゲイン部450及び補償符号推定部402に入力される。低電流領域においてデッドタイム補償量が過補償になる場合があり、電流指令値感応ゲイン部450は、電流指令値Icm(操舵補助指令値iqref)の大きさにより補償量を下げるゲインを算出する機能を持つ。また、電流指令値Icm(操舵補助指令値iqref)からのノイズなどで、補償量を下げるゲインが振動しないように加重平均フィルタを使用し、ノイズの低減処理を行っている。
 電流指令値感応ゲイン部450は図14に示すような構成であり、電流指令値Icmは絶対値部451で絶対値となる。絶対値は入力制限部452で最大値を制限され、最大値を制限された絶対値の電流指令値がスケール変換部453を経て加重平均フィルタ454に入力される。加重平均フィルタ454でノイズを低減された電流指令値Iamは減算部455に加算入力され、減算部455で所定のオフセットOSを減算する。オフセットOSを減算する理由は、微小電流指令値によるチャタリング防止のためであり、オフセットOS以下の入力値を最小のゲインに固定する。オフセットOSは一定値である。減算部455でオフセットOSを減算された電流指令値Iasはゲイン部456に入力され、図15に示すようなゲイン特性に従って電流指令値感応ゲインGcを出力する。
 電流指令値感応ゲイン部450から出力される電流指令値感応ゲインGcは、入力される電流指令値Icmに対して例えば図16に示すような特性である。即ち、所定電流Icm1まで一定ゲインGcc1であり、所定電流Icm1から所定電流Icm2(>Icm1)まで線形(若しくは非線形)に増加し、所定電流Icm2以上で一定ゲインGcc2を保持する特性である。なお、所定電流Icm1は0であっても良い。
 補償符号推定部402は入力される電流指令値Icmに対して、図17(A)及び(B)に示すヒステリシス特性で正(+1)又は負(-1)の補償符号SNを出力する。電流指令値Icmがゼロクロスするポイントを基準として補償符号SNを推定するが、チャタリング抑制のためにヒステリシス特性となっている。推定された補償符号SNは乗算部203に入力される。なお、ヒステリシス特性の正負閾値は適宜変更可能である。
 電流指令値感応ゲイン部450からの電流指令値感応ゲインGcは乗算部203に入力され、乗算部403は補償符号SNを乗算した電流指令値感応ゲインGcs(=Gc×SN)を出力する。電流指令値感応ゲインGcsは、乗算部404d及び404qに入力される。
 最適なデッドタイム補償量はインバータ印加電圧VRに応じて変化するので、インバータ印加電圧VRに応じたデッドタイム補償量を演算し、可変するようにしている。インバータ印加電圧VRを入力して電圧感応ゲインGvを出力するインバータ印加電圧感応ゲイン部420は図18に示す構成であり、インバータ印加電圧VRは入力制限部421で正負最大値を制限され、最大値を制限されたインバータ印加電圧VRはインバータ印加電圧/デッドタイム補償ゲイン変換テーブル422に入力される。インバータ印加電圧/デッドタイム補償ゲイン変換テーブル422の特性は、例えば図19のようになっている。変曲点のインバータ印加電圧9.0V及び15.0Vと、電圧感応ゲイン“0.7”及び“1.2”は一例であり、適宜変更可能である。電圧感応ゲインGvは乗算部431U,431V,431Wに入力される。
 モータ回転数ωによりデッドタイム補償タイミングを早めたり、遅くしたい場合、モータ回転数ωに応じて調整角度を算出する機能のために位相調整部410を有している。位相調整部410は、進角制御の場合は図20に示すような特性であり、算出された位相調整角Δθは加算部421に入力され、検出されたモータ回転角θと加算される。加算部421の加算結果であるモータ回転角θ(=θ+Δθ)は、角度-デッドタイム補償値関数部430U,430V,430Wに入力されると共に、3相交流/dq軸変換部440に入力される。
 角度-デッドタイム補償値関数部430U,430V,430Wは図21に詳細を示すように、位相調整されたモータ回転角θに対して、電気角0~359[deg]の範囲で120[deg]ずつ位相のずれた矩形波の3相デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム補償値角度関数部430U,430V,430Wは、3相で必要とされるデッドタイム補償値を角度による関数とし、ECUの実時間上で計算し、デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム基準補償値の角度関数は、ECUのデッドタイムの特性により異なる。
 デッドタイム基準補償値Udt,Vdt,Wdtはそれぞれ乗算部431U,431V,431Wに入力され、電圧感応ゲインGvと乗算される。電圧感応ゲインGvを乗算された3相の補償値Udtc(=Gv・Udt),Vdtc(=Gv・Vdt),Wdtc(=Gv・Wdt)は3相交流/dq軸変換部440に入力される。3相交流/dq軸変換部440は、モータ回転角θに同期して、3相の補償値Udtc,Vdtc,Wdtcを2相のdq軸の補償値vda *及びvqa *に変換する。補償値vda *及びvqq *はそれぞれ乗算部404d及び404qに入力され、電流指令値感応ゲインGcsと乗算される。乗算部404d及び404qにおける乗算結果がdq軸の補償値CdB及びCqBであり、補償値CdB及びCqBは補償値切換部500に入力される。
 デッドタイム補償部(A)200からのdq軸の補償値CdA及びCqAは、それぞれ補償値切換部500内の乗算部531及び533に入力され、デッドタイム補償部(B)400からのdq軸の補償値CdB及びCqB、は、それぞれ補償値切換部500内の乗算部532及び534に入力される。
 補償値切換部500内の補償値切換判定部510は、操舵補助指令値iqrefの入力に対して不感帯を有し、所定閾値以上になったときに切換判定フラグSFを出力(例えば「H」)すると共に、ヒステリシス特性を有している。切換判定フラグSFはミキシング比率演算部520に入力され、ミキシング比率演算部520は補償部(A)200の比率RtA(%)と補償部(B)400の比率RtB(%)を演算する。
 ミキシング比率演算部520は例えば図22に示す構成であり、切換判定フラグSFによって接点a及びbを切り換えられるスイッチ523を備え、接点aにはカウントアップ値521が入力され、接点bにはカウントダウン値522が入力されている。例えば、切換判定フラグSFが入力されていないとき接点aに接続されてカウントアップ値521がスイッチ523から出力され、切換判定フラグSFが入力されると接点bに切り換えられて、カウントダウン値522がスイッチ523から出力される。スイッチ523の出力は加算部524に入力され、加算値はカウント値制限部(0~100%)525で最大値を制限され、比率RtB(%)として出力されると共に、減算部527に減算入力され、保持ユニット(Z-1)526を経て加算部524に入力される。比率RtBは減算部527に入力され、固定の100%から減算した値を比率RtA(%)として出力する。その結果、比率RtAは100%から0%に線形に変化し、比率RtBは0%から100%に線形に変化し、図23の実線に示すような特性の比率RtA及びRtBを得ることができる。なお、比率RtA及びRtBの間には、常に下記数10の関係がある。
(数10)
 RtA(%)+RtB(%)=100%
 
 図23の時点t~tがミキシングによる切換時間であるが、カウント値の大きさを変えることによって切換時間を可変できる。また、カウントアップ値521及びカウントダウン値522を増減することにより、切り換わりの速度を調整できる。
 なお、図23の破線で示すように、非線形で可変することも可能である。
 上述のようにして演算された比率RtAは乗算部531及び533に入力され、比率RtBは乗算部532及び534に入力される。乗算部531にはデッドタイム補償部(A)200からのd軸補償値CdAが入力され、乗算部533にはq軸補償値CqAが入力されている。また、乗算部532にはデッドタイム補償部(B)400からのd軸補償値CdBが入力され、乗算部534にはq軸補償値CqBが入力されている。その結果、乗算部531からRtA・CdAが出力されて加算部535に入力され、乗算部533からRtA・CdAが出力されて加算部536に入力される。同様に、乗算部532からRtB・CdBが出力されて加算部535に入力され、乗算部534からRtB・CdBが出力されて加算部536に入力される。よって、加算部535及び536から、下記数11に示すデッドタイム補償値vd *及びvq *が出力され、dq軸制御系の加算部121d及び121qに入力されてデッドタイム補償が実施される。
(数11)
vd *=RtA・CdA+RtB・CdB
vq *=RtA・CdA+RtB・CdB
 
 比率RtA及びRtBが数10の関係(図23)を有しているので、図24(B)に示すように比率RtA及びRtBの変化に従ってデッドタイム補償値(vd *、vq *)を滑らかに切り換えることができる。図24(B)において、時点tまでは補償機能A(100%)でデッドタイム補償を実施し、時点tに補償機能Bへの切換が補償値切換判定部510でなされるが、本発明では直ぐに補償機能Bへの切換を実施しない。時点tから補償機能Aの比率を徐々に下げると共に、補償機能Bの比率を徐々に上げ、時点tにおいて補償機能Aの比率を0%に、補償機能Bの比率を100%にする。よって、時点t~tは補償機能A+Bの補償であり、時点t以降に補償機能B(100%)のデッドタイム補償を実施するので、滑らかな特性変化となっている。図24(B)はスイッチによって瞬時に切り換えた場合を示している。
 次に、空間ベクトル変調について説明する。空間ベクトル変調部300は図25に示すように、dq軸空間の2相電圧(vd **,vq **)を3相電圧(Vua,Vva,Vwa)に変換し、3相電圧(Vua,Vva,Vwa)に3次高調波を重畳する機能を有していれば良く、例えば本出願人による特開2017-70066、特願2015-239898等で提案している空間ベクトル変調の手法を用いても良い。
 即ち、空間ベクトル変調は、dq軸空間の電圧指令値vd **及びvq **、モータ回転角θ及びセクター番号n(#1~#6)に基づいて、以下に示すような座標変換を行い、ブリッジ構成のインバータのFET(上側アームQ1、Q3、Q5、下側アームQ2、Q4、Q6)のON/OFFを制御する、セクター#1~#6に対応したスイッチングパターンS1~S6をモータに供給することによって、モータの回転を制御する機能を有する。座標変換については、空間ベクトル変調において、電圧指令値v **及びv **は、数12に基づいて、α-β座標系における電圧ベクトルVα及びVβに座標変換が行われる。この座標変換に用いる座標軸及びモータ回転角θの関係については、図26に示す。
Figure JPOXMLDOC01-appb-M000006
 
 そして、d-q座標系における目標電圧ベクトルとα-β座標系における目標電圧ベクトルとの間には、数13のような関係が存在し、目標電圧ベクトルVの絶対値は保存される。
 
 空間ベクトル制御におけるスイッチングパターンでは、インバータの出力電圧をFET(Q1~Q6)のスイッチングパターンS1~S6に応じて、図27の空間ベクトル図に示す8種類の離散的な基準電圧ベクトルV0~V7(π/3[rad]ずつ位相の異なる非零電圧ベクトルV1~V6と零電圧ベクトルV0,V7)で定義する。そして、それら基準出力電圧ベクトルV0~V7の選択とその発生時間を制御するようにしている。また、隣接する基準出力電圧ベクトルによって挟まれた6つの領域を用いて、空間ベクトルを6つのセクター#1~#6に分割することができ、目標電圧ベクトルVは、セクター#1~#6のいずれか1つに属し、セクター番号を割り当てることができる。Vα及びVβの合成ベクトルである目標電圧ベクトルVが、α-β空間において正6角形に区切られた図27に示されたようなセクター内のいずれに存在するかは、目標電圧ベクトルVのα-β座標系における回転角γに基づいて求めることができる。また、回転角γはモータの回転角θとd-q座標系における電圧指令値vd **及びvq **の関係から得られる位相δの和として、γ=θ+δで決定される。
 図28は、空間ベクトル制御におけるインバータのスイッチングパターンS1、S3,S5によるディジタル制御で、インバータから目標電圧ベクトルVを出力させるために、FETに対するON/OFF信号S1~S6(スイッチングパターン)におけるスイッチングパルス幅とそのタイミングを決定する基本的なタイミングチャートを示す。空間ベクトル変調は、規定されたサンプリング期間Ts毎に演算などをサンプリング期間Ts内で行い、その演算結果を次のサンプリング期間Tsにて、スイッチングパターンS1~S6における各スイッチングパルス幅とそのタイミングに変換して出力する。
 空間ベクトル変調は、目標電圧ベクトルVに基づいて求められたセクター番号に応じたスイッチングパターンS1~S6を生成する。図28には、セクター番号#1(n=1)の場合における、インバータのFETのスイッチングパターンS1~S6の一例が示されている。信号S1、S3及びS5は、上側アームに対応するFETQ1、Q3、Q5のゲート信号を示している。横軸は時間を示しており、Tsはスイッチング周期に対応し、8期間に分割され、T0/4、T1/2、T2/2、T0/4、T0/4、T2/2、T1/2及びT0/4で構成される期間である。また、期間T1及びT2は、それぞれセクター番号n及び回転角γに依存する時間である。
 空間ベクトル変調がない場合、本発明のデッドタイム補償をdq軸上に適用し、デッドタイム補償値のみdq軸/3相変換したデッドタイム補償値波形(U相波形)は、図29の破線のような3次成分が除去された波形となってしまう。V相及びW相についても同様である。dq軸/3相変換の代わりに空間ベクトル変調を適用することにより、3相信号に3次高調波を重畳させることが可能となり、3相変換によって欠損してしまう3次成分を補うことができ、図29の実線のような理想的なデッドタイム補償波形を生成することが可能となる。
 図30は本発明の効果を示すステアリング実験装置による実験結果であり、ステアリングを低速から中速に切増しをしている操舵状態において、補償機能Aから補償機能Bにミキシングによって徐々に切り換えられたときのd軸電流及びq軸電流と、q軸デッドタイム補償値及びq軸デッドタイム補償値の波形を示している。時点t10までが補償機能Aによるデッドタイム補償であり、時点t10から時点t11までがミキシング状態であり、時点t11以降が補償機能Bによるデッドタイム補償の動作波形である。図30に示すように本発明のデッドタイム補償を適応し、デッドタイム補償値がAからBに徐々に切り換わることにより、d軸電流が流れる始めるときなど、電流制御特性が変化してもデッドタイムの影響によるdq軸電流の波形歪みが無いことが確認できる。また、操舵時において、切換時のトルクリップルもない。
 図31及び図32は、それぞれデッドタイム補償部(A)200の他の例を図6に対応させて示している。
 図31の例は、3相損失電圧PLAの算出をdq軸損失電圧PLAdqとして求めている。そのため、3相交流/dq軸変換部260Bにおいて、3相のモータ端子電圧Vu,Vv,Vw及びモータ回転角θからdq軸検出電圧Vを求めて減算部202に減算入力している。また、3相のDuty指令値Dutyu,Dutyv,Dutywは前記数4に従って3相指令電圧Vinを演算され、演算された3相指令電圧Vinが3相交流/dq軸変換部260Aにおいて、モータ回転角θに同期して2相の指令電圧Vindqに変換され、電圧検出モデル230を経て減算部202に加算入力される。本例では補償量制限部250からdq軸の補償値CdA及びCqAが出力される。
 図32の例は、モータ110の端子電圧Vu,Vv,Vwは、それぞれノイズ除去用のLPF163U,163V,163Wを経て3相交流/dq軸変換部260Bに入力され、3相交流/dq軸変換部210においてモータ回転角θに同期してdq軸検出電圧Vm(Vd,Vq)に変換される。dq軸検出電圧Vm(Vd,Vq)は、減算部202に減算入力される。また、電圧比率補正演算部270にはd軸電圧指令値vd及びq軸電圧指令値vqが入力されており、電圧比率補正演算部270は、PWM周期をPWM_Time、DTをデッドタイムとして、下記数14を用いてdq軸補正指令電圧Vcomp(Vcomp_d,Vcomp_q)を演算する。dq軸補正指令電圧Vcomp(Vcomp_d,Vcomp_q)は電圧検出遅れモデル230に入力される。
Figure JPOXMLDOC01-appb-M000008
 
 電圧検出遅れモデル230からのdq軸補正指令電圧Vincが減算部202に加算入力される。本例においても、補償量制限部250からdq軸の補償値CdA及びCqAが出力される。
 図33は、デッドタイム補償部(B)400の他の例を図12に対応させて示しており、本実施形態では直接dq軸の補償値CdB及びCqBを基準テーブル440d及び440qで算出している。dq軸角度-デッドタイム補償値基準テーブル440d及び440qはオフライン上で、3相で必要とされる角度の関数であるデッドタイム補償値を計算し、dq軸上の補償値に変換する。角度-デッドタイム補償値基準テーブル440d及び440qからのデッドタイム基準補償値を示す出力電圧vda及びvqaはそれぞれ乗算部405d及び405qに入力され、電圧感応ゲインGvと乗算される。電圧感応ゲインGvを乗算されたdq軸の補償値vda *及びvqa *はそれぞれ乗算部404d及び404qに入力され、電流指令値感応ゲインGcsと乗算される。乗算部404d及び404qにおける乗算結果がdq軸補償値CdB及びCqBである。
1         ハンドル
2         コラム軸(ステアリングシャフト、ハンドル軸)
20、100    モータ
30        コントロールユニット(ECU)
31        操舵補助指令値演算部
35、120d、120q   PI制御部
36、160    PWM制御部
37,161    インバータ
110       角度検出部
130、260、440    3相交流/dq軸変換部
140       d-q非干渉制御部
160A      Duty指令値演算部
160B      PWM制御回路
200       デッドタイム補償部(A)
210       中点電圧推定部
220、220A  3相指令電圧演算部
230       電圧検出遅れモデル
240       ゲイン部
250       補償量制限部
270       電圧比率補正演算部
300       空間ベクトル変調部
301       2相/3相変換部
302       3次高調波重畳部
400       デッドタイム補償部(B)
401       電流制御遅れモデル
402       補償符号推定部
410       位相調整部
420       インバータ印加電圧感応ゲイン部
421       相電流補償符号推定部
450       電流指令値感応ゲイン部
500       補償値切換部
510       補償値切換判定部
520       ミキシング比率演算部
530       ミキシング部

Claims (10)

  1. 少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相Duty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    前記インバータのデッドタイム補償を行う性能が異なる複数のデッドタイム補償機能を有し、前記複数のデッドタイム補償機能の1つから他のデッドタイム補償機能に、ミキシングしながら徐々に切り換えて前記デッドタイム補償を実施することを特徴とする電動パワーステアリング装置。
  2. 前記複数のデッドタイム補償機能が2つであり、低速操舵状態において効果のある、モータ端子電圧に基づく前記インバータのデッドタイム補償機能Aと、低速・中速操舵状態において効果のある、モータ回転角の関数に基づく前記インバータのデッドタイム補償機能Bとである請求項1に記載の電動パワーステアリング装置。
  3. 前記q軸の操舵補助指令値に基づいて、前記ミキシングの比率を線形若しくは非線形に変えるようになっている請求項1又は2に記載の電動パワーステアリング装置。
  4. 少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相Duty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    前記3相ブラシレスモータの3相端子電圧に基づく前記インバータの前記dq軸に関する第1のdq軸補償値を演算するデッドタイム補償部Aと、
    前記3相ブラシレスモータのモータ回転角に基づく前記インバータの前記dq軸に関する第2のdq軸補償値を演算するデッドタイム補償部Bと、
    前記q軸の前記操舵補助指令値に基づいて前記第1のdq軸補償値と前記第2のdq軸補償値とをミキシングしながら徐々に相互に切り換え、dq軸デッドタイム補償値を演算して出力する補償値切換部と、
    を具備し、前記dq軸デッドタイム補償値により前記dq軸電流指令値を補正して前記インバータのデッドタイム補償を実施することを特徴とする電動パワーステアリング装置。
  5. 前記補償値切換部が、
    前記q軸の前記操舵補助指令値に基づいて補償値切換の判定を行う補償値切換判定部と、
    前記補償値切換判定部からの補償値切換判定フラグによって、前記第1のdq軸補償値のミキシング比率RtA(%)及び前記第2のdq軸補償値のミキシング比率RtB(%)を演算するミキシング比率演算部と、
    前記第1のdq軸補償値及び前記第2のdq軸補償値を入力し、前記ミキシング比率RtA(%)及びRtB(%)に基づいて前記dq軸デッドタイム補償値を演算するミキシング部と、
    で構成されている請求項4に記載の電動パワーステアリング装置。
  6. 前記ミキシング比率演算部が、
    カウントアップ値及びカウントダウン値を入力し、前記補償値切換判定フラグによって切り換えられるスイッチと、
    前記スイッチからの前記カウントアップ値又は前記カウントダウン値を、加算部を経て制限すると共に、前記ミキシング比率RtB(%)を出力するカウント値制限部と、
    前記ミキシング比率RtB(%)を保持して前記加算部に加算する保持ユニットと、
    100%の数値から前記ミキシング比率RtB(%)を減算して前記ミキシング比率RtA(%)を出力する減算部と、
    で構成されている請求項5に記載の電動パワーステアリング装置。
  7. 前記カウントアップ値及び前記カウントダウン値が可変である請求項6に記載の電動パワーステアリング装置。
  8. 前記ミキシング部が、
    前記第1のdq軸補償値に前記ミキシング比率RtA(%)を乗算する第1の乗算部と、前記第2のdq軸補償値に前記ミキシング比率RtB(%)を乗算する第2の乗算部と、前記第1の乗算部及び前記第2の乗算部の各乗算結果を加算して前記dq軸デッドタイム補償値を出力する加算部と、
    で構成されている請求項5乃至7のいずれかに記載の電動パワーステアリング装置。
  9. 前記ミキシング比率RtA(%)及び前記ミキシング比率RtB(%)が非線形に変改すると共に、RtA(%)+RtB(%)=100%の関係になっている請求項5乃至8のいずれかに記載の電動パワーステアリング装置。
  10. 前記補正が、前記dq軸デッドタイム補償値と前記dq軸電流指令値の加算である請求項4乃至9のいずれかに記載の電動パワーステアリング装置。
PCT/JP2017/029444 2016-08-24 2017-08-16 電動パワーステアリング装置 WO2018037980A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780050730.4A CN109792223B (zh) 2016-08-24 2017-08-16 电动助力转向装置
JP2018535622A JP6521185B2 (ja) 2016-08-24 2017-08-16 電動パワーステアリング装置
EP17843463.5A EP3477848B1 (en) 2016-08-24 2017-08-16 Electric power steering device
US16/320,664 US10427710B2 (en) 2016-08-24 2017-08-16 Electric power steering apparatus
BR112019001636-8A BR112019001636B1 (pt) 2016-08-24 2017-08-16 Aparelho de direção de energia elétrica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163714 2016-08-24
JP2016-163714 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037980A1 true WO2018037980A1 (ja) 2018-03-01

Family

ID=61246038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029444 WO2018037980A1 (ja) 2016-08-24 2017-08-16 電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US10427710B2 (ja)
EP (1) EP3477848B1 (ja)
JP (1) JP6521185B2 (ja)
CN (1) CN109792223B (ja)
BR (1) BR112019001636B1 (ja)
WO (1) WO2018037980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115805991A (zh) * 2022-11-29 2023-03-17 中国第一汽车股份有限公司 一种车辆跑偏补偿控制方法、装置、终端及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109641613B (zh) * 2016-08-26 2021-11-02 蒂森克虏伯普利斯坦股份公司 用于机动车辆的转向机构的电动机的mosfet死区时间优化
JP6737222B2 (ja) * 2017-04-14 2020-08-05 株式会社デンソー ステアリング制御装置
CN111713005B (zh) * 2018-02-20 2023-10-13 日本电产株式会社 马达控制系统和助力转向系统
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs
CN113824365B (zh) * 2021-09-25 2024-04-05 中车永济电机有限公司 一种基于电流预测的适用于异步电机控制的死区补偿方法
CN116142291A (zh) * 2022-11-25 2023-05-23 联创汽车电子有限公司 转向路感电机系统执行单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212612A (ja) * 2013-04-18 2014-11-13 トヨタ自動車株式会社 外部給電システム
JP2016055825A (ja) * 2014-09-11 2016-04-21 日立オートモティブシステムズ株式会社 電動機の制御装置及び制御方法
WO2016125774A1 (ja) * 2015-02-03 2016-08-11 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661792A1 (en) 2003-09-02 2006-05-31 NSK Ltd. Device for controlling electric-motor power steering device
JP4984472B2 (ja) * 2005-09-30 2012-07-25 日本精工株式会社 電動パワーステアリング装置の制御装置
US7659679B2 (en) * 2007-01-12 2010-02-09 Gm Global Technology Operations, Inc. System and method for adjusting a dead-time interval in a motor control circuit
JP2011188633A (ja) * 2010-03-09 2011-09-22 Denso Corp モータ制御方法、モータ制御装置、および、これを用いた電動パワーステアリング装置
JP2011193637A (ja) * 2010-03-15 2011-09-29 Omron Automotive Electronics Co Ltd モータ駆動装置
JP5327277B2 (ja) * 2011-06-08 2013-10-30 日本精工株式会社 電動パワーステアリング装置の制御装置
JP5660085B2 (ja) * 2012-08-06 2015-01-28 株式会社デンソー 回転機の制御装置
JP5633551B2 (ja) * 2012-11-05 2014-12-03 株式会社安川電機 交流電動機の制御装置
JP5920300B2 (ja) * 2013-09-18 2016-05-18 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
JP6362349B2 (ja) * 2014-02-19 2018-07-25 日立オートモティブシステムズ株式会社 電動モータの駆動制御装置
JP6361178B2 (ja) 2014-03-07 2018-07-25 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP6455295B2 (ja) * 2015-04-22 2019-01-23 株式会社デンソー 3相回転機の制御装置
EP3291437B1 (en) * 2015-04-27 2023-01-11 Mitsubishi Electric Corporation Ac rotating machine control device and electric power steering device
BR112018076801B1 (pt) * 2016-07-20 2023-03-21 Nsk Ltd Aparelho de direção de energia elétrica

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212612A (ja) * 2013-04-18 2014-11-13 トヨタ自動車株式会社 外部給電システム
JP2016055825A (ja) * 2014-09-11 2016-04-21 日立オートモティブシステムズ株式会社 電動機の制御装置及び制御方法
WO2016125774A1 (ja) * 2015-02-03 2016-08-11 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477848A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115805991A (zh) * 2022-11-29 2023-03-17 中国第一汽车股份有限公司 一种车辆跑偏补偿控制方法、装置、终端及存储介质

Also Published As

Publication number Publication date
EP3477848A4 (en) 2019-07-31
JP6521185B2 (ja) 2019-05-29
BR112019001636B1 (pt) 2023-04-25
US20190168801A1 (en) 2019-06-06
EP3477848A1 (en) 2019-05-01
JPWO2018037980A1 (ja) 2019-06-20
EP3477848B1 (en) 2020-07-01
CN109792223B (zh) 2020-03-27
CN109792223A (zh) 2019-05-21
BR112019001636A2 (pt) 2019-05-07
US10427710B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6468388B2 (ja) 電動パワーステアリング装置
JP6590089B2 (ja) 電動パワーステアリング装置
WO2018037980A1 (ja) 電動パワーステアリング装置
JP6597824B2 (ja) 電動パワーステアリング装置
WO2019151200A1 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
WO2018016356A1 (ja) 電動パワーステアリング装置
JP6512372B2 (ja) 電動パワーステアリング装置
JP6652204B2 (ja) 電動パワーステアリング装置
WO2018230542A1 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
WO2019150945A1 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535622

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017843463

Country of ref document: EP

Effective date: 20190128

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001636

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019001636

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190128