WO2016125774A1 - モータ制御装置及びそれを搭載した電動パワーステアリング装置 - Google Patents

モータ制御装置及びそれを搭載した電動パワーステアリング装置 Download PDF

Info

Publication number
WO2016125774A1
WO2016125774A1 PCT/JP2016/053006 JP2016053006W WO2016125774A1 WO 2016125774 A1 WO2016125774 A1 WO 2016125774A1 JP 2016053006 W JP2016053006 W JP 2016053006W WO 2016125774 A1 WO2016125774 A1 WO 2016125774A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
duty
heat generation
fet
selection
Prior art date
Application number
PCT/JP2016/053006
Other languages
English (en)
French (fr)
Inventor
孝義 菅原
亮 皆木
澤田 英樹
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/536,396 priority Critical patent/US9866155B2/en
Priority to JP2016573369A priority patent/JP6195027B2/ja
Priority to CN201680008234.8A priority patent/CN107360735B/zh
Priority to EP16746605.1A priority patent/EP3255781B1/en
Publication of WO2016125774A1 publication Critical patent/WO2016125774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0469End-of-stroke control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0496Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures by using a temperature sensor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the present invention calculates each phase Duty for PWM control based on a current command value, and controls the motor via an inverter composed of upper and lower stage FET bridges by each phase Duty and an electric motor equipped with the motor control device
  • the present invention relates to a power steering device, and more particularly to a motor control device in which heat generation is dispersed so that heat generation is not concentrated on a specific FET, and an electric power steering device equipped with the motor control device.
  • An electric power steering device which is equipped with a motor control device and applies a steering assist force (assist force) to the steering mechanism of the vehicle by the rotational force of the motor, transmits the driving force of the motor to a gear or belt via a reduction gear. With this transmission mechanism, a steering assist force is applied to the steering shaft or the rack shaft.
  • EPS electric power steering device
  • Such a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
  • the adjustment of the motor applied voltage is performed by duty control of PWM control. It is done by adjusting.
  • a general configuration of an electric power steering device is described with reference to FIG. 1.
  • a column shaft (steering shaft, handle shaft) 2 of a handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5,
  • the tie rods 6a and 6b are connected to the steered wheels 8L and 8R via the hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3.
  • a control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from a battery 13 as a power source, and also receives an ignition key signal through the ignition key 11.
  • the control unit 30 calculates the current command value of the assist (steering assist) command based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, and the calculated current command value
  • the current supplied to the motor 20 is controlled by the voltage control value Vref that has been compensated for.
  • the steering angle sensor 14 is not essential and may not be provided, and may be obtained from a rotation sensor connected to the motor 20.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a CPU (including an MPU, MCU, etc.). General functions executed by a program inside the CPU are shown in FIG. The configuration is as shown.
  • the function and operation of the control unit 30 will be described with reference to FIG. 2.
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vel from the vehicle speed sensor 12 are input to the torque control unit 31, and the torque control unit 31 receives the steering torque Th.
  • current command value Iref1 is calculated using an assist map etc. based on vehicle speed Vel.
  • the calculated current command value Iref1 is added by the adding unit 32A and the compensation signal CM from the compensating unit 34 for improving the characteristics, and the added current command value Iref2 is limited to the maximum value by the current limiting unit 33.
  • the current command value Irefm whose maximum value is limited is input to the subtraction unit 32B and subtracted from the motor current detection value Im.
  • the duty is calculated by inputting to the unit 36, and the motor 20 is PWM-driven via the inverter 37 with the PWM signal from which the duty is calculated.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
  • the compensation unit 34 adds the detected or estimated self-aligning torque (SAT) to the inertia compensation value 342 by the addition unit 344, and further adds the convergence control value 341 to the addition result by the addition unit 345, and the addition The result is input to the adder 32A as a compensation signal CM to improve the characteristics.
  • SAT detected or estimated self-aligning torque
  • the inverter 37 is constituted by a three-phase bridge of FETs (upper stage FET1 to FET3, lower stage FET4 to FET6), and the motor 20 is driven when each FET is turned ON / OFF by Duty D1 to D6.
  • Duty D1 to D3 control ON / OFF of the upper FETs 1 to 3, respectively, and Duty D4 to D6 control ON / OFF of the lower FETs 4 to 6, respectively.
  • a motor release switch 23 is interposed between the inverter 37 and the motor 20 to cut off the supply of current when the assist control is stopped.
  • the motor opening switch 23 is composed of an FET with a parasitic diode inserted in each phase.
  • Patent Document 1 discloses that the temperature of the drive element rises to the motor down temperature while suppressing the generation of noise peculiar to the PWM control method.
  • a power steering device that can be prevented has been proposed.
  • the drive control of the motor is achieved by PWM control of the drive circuit by the electronic control unit, and the electronic control unit outputs the PWM signal supplied to the drive circuit according to the temperature of the power drive element detected by the drive element temperature sensor. Change the carrier frequency.
  • the PWM frequency when the driving element temperature is lower than the predetermined frequency switching temperature, the PWM frequency is set to a predetermined high frequency, and when the driving element temperature is equal to or higher than the predetermined frequency switching temperature, the PWM frequency is set to a predetermined low frequency. It is supposed to be.
  • Patent Document 2 introduces a driving current from two of the U to W phase terminals in order to reduce heat generation due to switching loss.
  • the target voltage value of the terminal from which the drive current is derived is set to the ground potential
  • the drive current is introduced from one of the U to W phase terminals
  • the target voltage value of the terminal that introduces the drive current is set to the voltage generated by the DC power supply.
  • the motor drive device of Patent Document 2 reduces the switching loss from the sine wave drive method of the DC brushless motor based on a simple sine wave approximate drive.
  • the heat generated by the switching loss is small compared to the loss due to the ON resistance of the switching element, and the specific switching element remains ON under a specific situation. For this reason, even if the switching elements that are turned on concentrate heat, and the heat generation of the entire six switching elements can be reduced, as a result, in order to protect the heat generating switching elements from thermal destruction, the motor torque command
  • the problem that the motor current corresponding to the value must be reduced occurs, and the situation where the effect can be obtained is very limited.
  • an object of the present invention is to operate all three-phase duties in a situation where the drive of the motor is stopped (including a situation close to the stop). Accordingly, an object of the present invention is to provide a motor control device in which heat generation of FETs (switching elements) is not concentrated on one FET but is distributed to a plurality of FETs, and an electric power steering device equipped with the motor control device.
  • FETs switching elements
  • the present invention relates to a motor control device that calculates each phase duty for PWM control based on a current command value, and controls the motor through an inverter composed of upper and lower stage FET bridges by each phase duty.
  • the purpose is to calculate a current detector for detecting each phase current of the motor, each heat generation amount of the upper FET, an upper maximum heat generation phase specifying means for specifying the upper maximum heat generation phase, and each heat generation amount of the lower FET.
  • a lower maximum exothermic phase specifying means for specifying the lower maximum exothermic phase, an upper selection means for selecting an upper selection duty and an upper selected phase current based on the upper maximum exothermic phase, and a lower maximum exothermic phase.
  • the duty operation amount is calculated. Dut This is achieved by including a y operation amount calculation unit and a duty operation unit that operates each phase duty based on the duty operation amount.
  • the object of the present invention is to provide an upper-stage FET heat generation amount calculation unit, wherein the upper-stage maximum heat generation phase specifying unit calculates each heat generation amount of the upper FET based on each phase Duty and each phase current;
  • the upper maximum heat generation phase specifying unit that specifies the upper maximum heat generation phase based on each upper heat generation amount calculated by the FET heat generation amount calculation unit, or the lower maximum heat generation phase specifying means, Based on each phase Duty and each phase current, a lower FET heat generation amount calculation unit for calculating each heat generation amount of the lower FET, and the lower maximum value based on each lower stage heat generation amount calculated by the lower FET heat generation amount calculation unit
  • It is configured to include a lower maximum heat generation phase specifying unit for specifying a heat generation phase, or to calculate each heat generation amount of the upper FET and each heat generation amount of the lower FET by calculation or by referring to a map.
  • the heat generation amount of the upper FET and the heat generation amount of the lower FET are limited by a predetermined lower limit value after the square value of each phase current is subjected to LPF processing, and the limited amount By multiplying each phase Duty to output, or when the predetermined lower limit is a tuning value, or the upper stage selection means, based on the upper maximum heat generation phase, A first duty selection unit that selects the upper stage selection duty from each phase duty; and a first phase current selection unit that selects the upper stage selection phase current from each phase current based on the upper stage maximum heat generation phase; Or the second stage selecting means selects the lower stage selected duty from the respective phases based on the lower maximum heat generating phase, and the lower maximum heat generating phase.
  • a second phase current selection unit that selects the lower stage selection phase current from the phase current, or the duty manipulated variable calculation unit ⁇ (the lower stage selection phase current ⁇ the lower stage selection phase current ⁇
  • the lower selection duty) ⁇ (the upper selection phase current ⁇ the upper selection phase current ⁇ the upper selection duty) ⁇ ⁇ ⁇ (the upper selection phase current ⁇ the upper selection phase current) + (the lower selection phase current ⁇ the lower stage) Selectable phase current) ⁇ ⁇ 100 (%) by calculating the duty operation amount, or the duty operation unit adds to each phase duty for the upper stage and subtracts from each phase duty for the lower stage This is achieved more effectively.
  • the present invention can be applied to all switching elements that drive the motor by turning on and off according to the duty of each phase, but all of them are simply referred to as “FET”.
  • the heat generation of the FET is not concentrated on one FET, but distributed to a plurality of FETs.
  • the amount of heat generated by each FET is calculated from the flowing current value and the duty to determine the duty manipulated variable, and each phase duty is manipulated based on the duty manipulated variable.
  • an electric power steering device having a highly reliable ECU By mounting the motor control device on an electric power steering device, an electric power steering device having a highly reliable ECU can be provided.
  • each FET The heat generation of each FET is obtained by the product of the ON resistance of the FET, the square of the flowing current, and Duty (ON time). If the ON resistances of all FETs are assumed to be constant and are not considered this time, for example, the following conditions are considered for the U to W3 phases. (1) U-phase motor current is 80 [A], U-phase upper stage FET ON time is 66%, U-phase lower stage FET ON time is 34% (2) When the V-phase motor current is -40 [A], the ON time of the V-phase upper FET is 42%, and the ON time of the V-phase lower FET is 58%.
  • the W-phase upper FET is 16% and the W-phase lower FET is 22%.
  • the U-phase upper FET generates the most heat compared to the other FETs, and the V-phase upper FET and the W-phase upper FET generate the least heat.
  • the duty of the upper FET of all three phases is uniformly reduced by 16%, and the duty operation of the lower FET of all three phases is uniformly increased by 16%. Since the inter-voltage maintains a constant voltage difference, the heat generation rate of the FET can be changed as follows while the current value flowing in each phase is also maintained.
  • FIG. 4 shows an example of the configuration of the present invention corresponding to FIG. Entered.
  • Each phase current Im (Iu, Iv, Iw) of the motor 20 detected by the motor current detector 38 is fed back to the subtraction unit 32B and input to the FET heat generation amount calculation unit 100.
  • the upper stage selection duty DH, the lower stage selection duty DL, the upper stage selection phase current CH, and the lower stage selection phase current CL calculated by the FET heat generation amount calculation unit 100 are input to the duty manipulated variable calculation unit 120.
  • the duty operation amount D 0 calculated by the duty operation amount calculation unit 120 is input to the duty operation unit 130.
  • the motor 20 is driven through the gate drive circuit 36B and the inverter 37 by the duty D11 to D16 after the operation output from the duty operation unit 130.
  • the configuration example of the FET heat generation amount calculation unit 100 is shown in FIGS. 5 and 6, and the U-phase upper stage DutyD1 is input to the U-phase upper stage FET heat generation amount calculation unit 101U and also to the Duty selection unit (upper stage) 110.
  • the V-phase upper stage DutyD2 is input to the V-phase upper stage FET heat generation amount calculation unit 101V and is also input to the duty selection unit (upper stage) 110.
  • the W-phase upper stage DutyD3 is input to the W-phase upper stage FET heat generation amount calculation unit 101W and is also input to the duty selection unit (upper stage) 110.
  • the U-phase lower stage Duty D4 is input to the U-phase lower stage FET heat generation amount calculation unit 102U and also input to the duty selection unit (lower stage) 111.
  • the V-phase lower stage Duty D5 is input to the V-phase lower stage FET heat generation amount calculation unit 102V and also input to the duty selection unit (lower stage) 111.
  • the W-phase lower stage Duty D6 is input to the W-phase lower stage FET heat generation amount calculation unit 102W and also input to the duty selection unit (lower stage) 111.
  • the U-phase current Iu detected by the motor current detector 38 is input to the U-phase upper-stage FET heat generation amount calculation unit 101U and the U-phase lower-stage FET heat generation amount calculation unit 102U, and the selection U-phase subjected to the processing described later.
  • the current Iu ′ is input to the phase current selection unit (upper stage) 112 and the phase current selection unit (lower stage) 113.
  • the V-phase current Iv is input to the V-phase upper stage FET heat generation amount calculation unit 101V and the V-phase lower stage FET heat generation amount calculation unit 102V, and the selection V-phase current Iv ′ subjected to processing described later is the phase current selection unit (upper stage). 112 and the phase current selection unit (lower stage) 113.
  • the W-phase current Iw is input to the W-phase upper-stage FET heat generation amount calculation unit 101W and the W-phase lower-stage FET heat generation amount calculation unit 102W, and the selection W-phase current Iw ′ subjected to processing described later is the phase current selection unit (upper stage). 112 and the phase current selection unit (lower stage) 113.
  • the heat generation amount HT3 of the W-phase upper FET calculated by the calculation unit 101W is input to the upper-stage maximum heat generation phase specifying unit 103.
  • the U-phase upper FET heat generation amount calculation unit 101U outputs the calculated selection U-phase current Iu ′
  • the V-phase upper stage FET heat generation amount calculation unit 101V outputs the calculated selection V-phase current Iv ′.
  • the calculated W phase current Iw ′ for selection is output from the W phase upper stage FET heat generation amount calculation unit 101W.
  • the U-phase lower-stage FET heat generation amount calculation unit 102U calculates the U-phase lower-stage FET heat generation amount HT4
  • the V-phase lower-stage FET heat generation amount calculation unit 102V calculates the V-phase lower-stage FET heat generation amount HT5, the W-phase lower-stage FET.
  • the heat generation amount HT6 of the W-phase lower FET calculated by the heat generation amount calculation unit 102W is input to the lower-stage maximum heat generation phase specifying unit 104.
  • the U-phase upper-stage FET heat generation amount calculation unit 101U, the V-phase upper-stage FET heat generation amount calculation unit 101V, the W-phase upper-stage FET heat generation amount calculation unit 101W, and the upper-stage maximum heat-generation phase specifying unit 103 constitute upper-stage maximum heat-generation phase specifying means.
  • the lower-stage maximum heat generation amount specifying unit 102U, the V-phase lower-stage FET heat generation amount calculation unit 102V, the W-phase lower-stage FET heat generation amount calculation unit 102W, and the lower-stage maximum heat-generation phase specifying unit 104 constitute a lower-stage maximum heat-generation phase specifying unit.
  • the duty selection unit (upper stage) 110 and the phase current selection unit (upper stage) 112 constitute an upper stage selection unit, and the duty selection unit (lower stage) 111 and the phase current selection unit (lower stage) 113 constitute a lower stage selection unit. is doing.
  • the calorific value of each FET is calculated by the following formula 1.
  • the heat generation amount of each FET may be calculated by calculation or may be calculated with reference to a map. Further, the heat generation amount can be calculated more accurately by considering the ON resistance of the FET.
  • FET heating value phase current x phase current x duty
  • the FET heat generation amount calculation units (101U to 101W, 102U to 102W) calculate the heat generation amount by multiplying the phase current squared by each phase Duty as shown in Equation (1).
  • the actual FET temperature does not always match the calculation result.
  • a low-pass filter (LPF) and a lower limit limiter are applied immediately after the square value calculation.
  • the U phase upper stage FET heat generation amount calculation unit 101U will be described with reference to FIG.
  • the U-phase current Iu is squared by the square computing unit 101U-1, the squared value of the phase current is input to the LPF 101U-2, and the output from the LPF 101U-2 is a lower limit value limiter 101U-3 based on the tuning value.
  • the lower limit value is limited.
  • An amount whose lower limit value is limited by the lower limit value limiter 101U-3 is input to the square root portion 101U-5, and is multiplied by the U-phase upper stage DutyD1 by the multiplication unit 101U-4, and the multiplication result is the heat generation amount HT1 of the U-phase upper stage.
  • Is output as A value obtained by obtaining the square root in the square root portion 101U-5 is output as the selection U-phase current Iu '.
  • a lower limit value limiter 101U-3 is provided in the subsequent stage of the LPF 101U-2. This is because the phase current of the motor takes into consideration that a slight amount of current always flows due to the influence of the switching operation by PWM drive. Since this slight current is 0 when viewed as an average value, it cannot normally be obtained as a current detection value. However, in reality, a small amount of current instantaneously flows in each phase of the FET or motor, and this current causes heat generation. For this reason, it is possible to obtain a more accurate calorific value by setting a value corresponding to a slight calorific value as a lower limit value of the limiter process (101U-3) in advance as a tuning value.
  • the V-phase upper FET calorific value calculation unit 101V outputs a selection V-phase current Iv '
  • the W-phase upper FET calorific value calculation unit 101W outputs a selection V-phase current.
  • Iw ′ is output.
  • selection phase currents Iu ′ to Iw ′ are calculated by upper FET heat generation amount calculation units 101U to 101W, but selection phase currents Iu ′ to Iw ′ are calculated by lower FET heat generation amount calculation units 102U to 102W. May be calculated.
  • any one of the upper and lower stage FET heat generation amount calculation units for calculating the selection phase currents Iu ′ to Iw ′ includes a square root portion, and the other configurations are completely the same.
  • identification of the maximum exothermic phase is performed by selecting the phase of the maximum calorific value for each of the upper and lower stages.
  • the upper maximum exothermic phase HM specified by the upper maximum exothermic phase specifying unit 103 is input to the duty selection unit (upper) 110 and the phase current selection unit (upper) 112, and the lower maximum is specified by the lower maximum exothermic phase specifying unit 104.
  • the heat generation phase LM is input to the duty selection unit (lower stage) 111 and the phase current selection unit (lower stage) 113.
  • the selection of the duty is performed by selecting the duty of the FET phase having the maximum heat generation amount
  • the selection of the phase current is performed by selecting the phase current of the FET phase having the maximum heat generation amount
  • the upper selection DutyDH from the Duty selection unit (upper stage) 110 and the lower selection DutyDL from the Duty selection unit (lower stage) 111 are input to the duty operation amount calculation unit 120, and the upper selection phase current from the phase current selection unit (upper stage) 112.
  • the lower stage selected phase current CL from the CH and phase current selector (lower stage) 111 is input to the duty manipulated variable calculator 120.
  • the duty operation amount calculation unit 120 calculates the duty operation amount D 0 (%) according to the following formula 2.
  • D 0 (%) ⁇ (CL ⁇ CL ⁇ DL) ⁇ (CH ⁇ CH ⁇ DH) ⁇ ⁇ ⁇ (CH ⁇ CH) + (CL ⁇ CL) ⁇ ⁇ 100
  • the duty operation amount D 0 calculated by the duty operation amount calculation unit 120 according to the above equation 2 is input to the duty operation unit 130 as shown in FIG. 8, and the duty operation amount D 0 is added to the upper stage FET.
  • the duty manipulated variable D 0 is subtracted from the lower stage FET.
  • U phase upper stage DutyD1 ⁇ W phase upper stage DutyD3 are respectively input to the addition unit 131 ⁇ 133
  • U-phase lower DutyD4 ⁇ W-phase lower DutyD6 are respectively input to the subtraction unit 134 ⁇ 136
  • Duty operation amount D 0 is adding unit Addition is input to 131 to 133
  • subtraction is input to subtraction units 134 to 136.
  • duty D11 to D16 after operation are output from the adders 131 to 133 and the subtractors 134 to 136, respectively.
  • each phase upper stage Duty D1 to D3 calculated by the duty calculation unit 36A is input to the U phase upper stage FET heat generation amount calculation unit 101U to the W phase upper stage FET heat generation amount calculation unit 101W, and also to the duty selection unit (upper stage) 110. Input (step S1).
  • each phase lower stage Duty D4 to D6 is input to the U phase lower stage FET heat generation amount calculation unit 102U to W phase lower stage FET heat generation amount calculation unit 102W and also input to the duty selection unit (lower stage) 111 (step S1).
  • the phase currents Iu to Iw detected by the current detector 38 are input to the U-phase FET heat generation amount calculation units 101U and 102U to the W-phase FET heat generation amount calculation units 101W and 102W (step S2).
  • step S10 the heat generation amount of each FET and each phase current for selection are calculated by calculation or map reference formula (step S10), and the heat generation amounts HT1 to HT3 of each phase upper stage FET are input to the upper stage maximum heat generation phase specifying unit 103, and the maximum heat generation is performed.
  • the phase HM is specified (step S11), and the heat generation amounts HT4 to HT6 of each phase lower stage FET are input to the lower stage maximum heat generation phase specifying unit 104 to specify the maximum heat generation phase LM (step S12).
  • the upper stage selection duty DH is selected according to the upper stage maximum heat generation phase HM
  • the lower stage selection duty DL is selected according to the lower stage maximum heat generation phase LM (step S13).
  • the phase current selection unit (upper stage) 112 selects the upper stage selection phase current CH according to the upper stage maximum heat generation phase HM
  • the phase current selection section (lower stage) 113 selects the lower stage selection phase current CL according to the lower stage maximum heat generation phase LM.
  • the upper stage selection duty DH, the lower stage selection duty DL, the upper stage selection phase current CH, and the lower stage selection phase current CL are input to the duty manipulation amount calculation unit 120, and the duty manipulation amount calculation unit 120 calculates the duty manipulation amount D 0 based on Equation 2.
  • Step S20 Calculated Duty operating amount D 0 is input to the Duty operation unit 130, Duty operation is performed by the adder 131 to 13 and the subtraction unit 134-136 (step S21).
  • the duty operation amount D 0 is decreased in the 0 direction so that each duty falls within the range of 100 to 0%.
  • the duty operation amount D 0 is 10% and the maximum of the upper stage duty is 95%
  • the duty operation amount D 0 is reduced to 5%
  • the upper stage duty after the operation is limited to a maximum of 100%.
  • the duty operation amount D 0 is ⁇ 10% and the maximum of the lower stage duty is 95%
  • the duty operation amount D 0 is reduced to ⁇ 5%
  • the lower stage duty after the operation is limited to a maximum of 100%.
  • each phase current Iu ′ for selection calculated by the upper-stage FET heat generation amount calculation unit or the upper-stage FET heat generation amount calculation unit The selection is performed by inputting Iw ′ to the upper / lower phase current selection unit, but in principle, each phase current Iu to Iw detected by the motor current detector may be used. Further, the control (operation) of the present invention may always operate. The start and end timings are not necessary, but if the motor current commutation interval is shorter than the heat generation time constant of the FET, the effect of the duty operation is lost. Further, the switching element constituting the inverter may be a semiconductor element other than the FET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

モータの駆動が停止している状況において、3相の全てのDuty を操作することで、FET(スイッチング素子)の発熱が1つのFETに集中せず、複数のFETに分散するようにするために、電流検出器と、上段FETの発熱量を算出し、上段最大発熱相を特定する上段最大発熱相特定手段と、下段FETの発熱量を算出し、下段最大発熱相を特定する下段最大発熱相特定手段と、上段最大発熱相に基づいて、上段選択Duty 及び上段選択相電流を選択する上段用選択手段と、下段最大発熱相に基づいて、下段選択Duty 及び下段選択相電流を選択する下段用選択手段と、Duty 操作量を算出するDuty 操作量算出部と、Duty 操作量に基づいて各相Duty を操作するDuty 操作部とを具備するモータ制御装置、及びそれを搭載した電動パワーステアリング装置を提供する。

Description

モータ制御装置及びそれを搭載した電動パワーステアリング装置
 本発明は、電流指令値に基づきPWM制御のための各相Dutyを演算し、前記各相Dutyにより、上下段FETブリッジで成るインバータを介してモータを制御するモータ制御装置及びそれを搭載した電動パワーステアリング装置に関し、特に特定のFETに発熱が集中しないように発熱を分散させるようにしたモータ制御装置及びそれを搭載した電動パワーステアリング装置に関する。
 モータ制御装置を搭載し、車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS)は、モータの駆動力を減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM制御のDutyの調整で行っている。
 電動パワーステアリング装置(EPS)の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、電源としてのバッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結された回転センサから得ることもできる。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VelはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(MPUやMCU等を含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Velはトルク制御部31に入力され、トルク制御部31は操舵トルクTh及び車速Velに基づいてアシストマップ等を用いて電流指令値Iref1を演算する。演算された電流指令値Iref1は加算部32Aで、特性を改善するための補償部34からの補償信号CMと加算され、加算された電流指令値Iref2が電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。
 減算部32Bでの減算結果I(=Irefm-Im)は電流制御部35でPI(比例積分)等の電流制御をされ、電流制御された電圧制御値Vrefが変調信号(キャリア)CFと共にPWM制御部36に入力されてDutyを演算され、Dutyを演算されたPWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。
 補償部34は、検出若しくは推定されたセルフアライニングトルク(SAT)を加算部344で慣性補償値342と加算し、その加算結果に更に加算部345で収れん性制御値341を加算し、その加算結果を補償信号CMとして加算部32Aに入力し、特性改善する。
 モータ20が3相ブラシレスモータの場合、PWM制御部36及びインバータ37の詳細は例えば図3に示すような構成となっており、PWM制御部36は、電圧制御値Vrefを所定式に従って3相分のPWM制御に使用するDutyD1~D6を演算するDuty演算部36Aと、DutyD1~D6で駆動素子としてのFETのゲートを駆動すると共に、デッドタイムの補償をしてON/OFFするゲート駆動部36Bとで構成されている。Duty演算部36Aには変調信号(キャリア)CFが入力されており、Duty演算部36Aは変調信号CFに同期してDutyD1~D6を演算する。インバータ37はFETの3相ブリッジで(上段FET1~FET3、下段FET4~FET6)構成されており、各FETがDutyD1~D6でON/OFFされることによって、モータ20が駆動される。
 本例では、DutyD1~D3がそれぞれ上段のFET1~FET3をON/OFF制御し、DutyD4~D6がそれぞれ下段のFET4~FET6をON/OFF制御するようになっている。
 なお、インバータ37とモータ20との間には、アシスト制御停止時等に電流の供給を遮断するためのモータ開放スイッチ23が介挿されている。モータ開放スイッチ23は、各相に介挿された寄生ダイオード付きのFETで構成されている。
 このような電動パワーステアリング装置において、モータのトルク指令とモータの電気角に応じた単純な2相/3相変換によるコミュテーション処理のみで制御する従来技術では、個々のFETの発熱を個別に管理することはできない。このため、ECU全体やECU各部位、モータ等の発熱量を個別に測定や推定を行っていたとしても、最終的にはモータのトルク指令値を制限することで、システム全体としての発熱を抑える保護処理を行うことしかできなかった。例えばハンドルの保舵状態においてシステム最大の電流を流していた場合、特定のFETに発熱が集中することになる。この状態が長時間継続した場合、発熱の集中したFETは他の部品よりも早期に使用温度範囲を逸脱し、故障してしまう。
 この故障を防ぐため、従来技術では、各部位の温度を個々に測定若しくは推定しながら監視し、全ての温度が使用温度範囲を逸脱しないように、モータのトルク指令値を制限するなどして保護していた。しかしながら、このような保護処理では、モータのトルク指令値を制限してしまうため、アシスト力の低下や明らかなアシスト不足、若しくはアシスト力を低下させつつも運転者に気づかれないよう厳密に制御しなければならないといった問題があった。
 このような問題を解決するものとして、特開2004-161118号公報(特許文献1)では、PWM制御方式に特有の騒音の発生を抑えつつ、駆動素子の温度がモータダウン温度まで上昇することを防止できるパワーステアリング装置が提案されている。モータの駆動制御は、電子制御ユニットが駆動回路をPWM制御することにより達成され、電子制御ユニットは、駆動素子温度センサによって検出されるパワー駆動素子の温度に応じて、駆動回路に与えるPWM信号のキャリア周波数を変更する。即ち、駆動素子温度が所定の周波数切換温度未満であるときには、PWM周波数を予め定める高周波数に設定し、駆動素子温度が所定の周波数切換温度以上であるときには、PWM周波数を予め定める低周波数に設定するようになっている。
 また、特開2004-88888号公報(特許文献2)のモータ駆動装置は、スイッチング損失による発熱を低減するため、U~W相端子のうちの2つの端子から駆動電流を導入し、他の1つの端子から駆動電流を導出させるべき時には、その駆動電流を導出させる端子の目標電圧値がアースの電位に設定し、U~W相端子のうちの1つの端子から駆動電流を導入し、他の2つの端子から駆動電流を導出させるべき時には、その駆動電流を導入させる端子の目標電圧値が直流電源の発生電圧に設定している。
特開2004-161118号公報 特開2004-88888号公報
 しかしながら、特許文献1のパワーステアリング装置では、FET周辺等の監視温度があるスレッショルドを超えた場合、PWMのキャリア周波数をより低い方向へ制御するため、スイッチングノイズが可聴周波数帯域内に入り込むことで音圧が大きく聞こえてしまう問題や、モータへ流れる電流のスイッチングノイズ成分の振幅が大きくなることによるノイズ音圧の上昇や、過電流の発生や磁気飽和によるモータトルクの低下等の問題が起こる。ステアリング操舵のアシストを継続させるための手段として使用されている。
 特許文献2のモータ駆動装置は、DCブラシレスモータの正弦波駆動方式から、簡便な正弦波近似駆動による考えによりスイッチング損失を低減させている。しかしながら、そもそもスイッチング損失による発熱は、スイッチング素子のON抵抗による損失に比べれば小さく、更に特定の状況下では特定のスイッチング素子をONしたままとする。このため、ONしたままのスイッチング素子は発熱が集中し、スイッチング素子6個全体での発熱は軽減できたとしても、結果として発熱の集中したスイッチング素子を熱破壊から守るために、モータのトルク指令値に相当するモータ電流を下げなければならない等の問題が発生し、その効果が得られる状況は非常に限定的となってしまう。
 また、従来のモータ制御では、保舵中や極低速操舵などモータ電流が変化しないか若しくはゆっくり変化するような状況では、モータ駆動回路の特定の素子(例えばスイッチング用FET等)に発熱が集中してしまう問題がある。この問題は、ブラシレスDCモータを駆動する回路(PWM等の駆動方式は問わない)において顕著となる問題である。誘導モータ等の回転磁界を常に必要とする場合の駆動回路においても、磁界の回転速度が小さい場合には問題となることがある。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、モータの駆動が停止している状況(停止に近い状況も含めて)において、3相の全てのDutyを操作することで、FET(スイッチング素子)の発熱が1つのFETに集中せず、複数のFETに分散するモータ制御装置及びそれを搭載した電動パワーステアリング装置を提供することにある。
 本発明は、電流指令値に基づきPWM制御のための各相Dutyを演算し、前記各相Dutyにより、上下段FETブリッジで成るインバータを介してモータを制御するモータ制御装置に関し、本発明の上記目的は、前記モータの各相電流を検出する電流検出器と、上段FETの各発熱量を算出し、上段最大発熱相を特定する上段最大発熱相特定手段と、下段FETの各発熱量を算出し、下段最大発熱相を特定する下段最大発熱相特定手段と、前記上段最大発熱相に基づいて、上段選択Duty及び上段選択相電流を選択する上段用選択手段と、前記下段最大発熱相に基づいて、下段選択Duty及び下段選択相電流を選択する下段用選択手段と、前記上段選択Duty及び上段選択相電流と、前記下段選択Duty及び下段選択相電流とに基づいて、Duty操作量を算出するDuty操作量算出部と、前記Duty操作量に基づいて前記各相Dutyを操作するDuty操作部とを具備することにより達成される。
 また、本発明の上記目的は、前記上段最大発熱相特定手段が、前記各相Duty及び前記各相電流に基づいて、上段FETの各発熱量を算出する上段FET発熱量算出部と、前記上段FET発熱量算出部で算出された各上段発熱量に基づいて前記上段最大発熱相を特定する上段最大発熱相特定部とで構成されていることにより、或いは前記下段最大発熱相特定手段が、前記各相Duty及び前記各相電流に基づいて、下段FETの各発熱量を算出する下段FET発熱量算出部と、前記下段FET発熱量算出部で算出された各下段発熱量に基づいて前記下段最大発熱相を特定する下段最大発熱相特定部とで構成されていることにより、或いは前記上段FETの各発熱量及び前記下段FETの各発熱量を演算により、若しくはマップの参照で算出するようになっていることにより、或いは前記上段FETの各発熱量及び前記下段FETの各発熱量を、前記各相電流の2乗値をLPF処理した後に所定の下限値で制限し、前記制限された量に前記各相Dutyを乗算して出力するようになっていることにより、或いは前記所定の下限値がチューニング値であることにより、或いは前記上段用選択手段が、前記上段最大発熱相に基づいて、前記各相Dutyから前記上段選択Dutyを選択する第1のDuty選択部と、前記上段最大発熱相に基づいて、前記各相電流から前記上段選択相電流を選択する第1の相電流選択部とで構成されていることにより、或いは前記下段用選択手段が、前記下段最大発熱相に基づいて、前記各相Dutyから前記下段選択Dutyを選択する第2のDuty選択部と、前記下段最大発熱相に基づいて、前記各相電流から前記下段選択相電流を選択する第2の相電流選択部とで構成されていることにより、或いは前記Duty操作量算出部が、{(前記下段選択相電流×前記下段選択相電流×前記下段選択Duty)-(前記上段選択相電流×前記上段選択相電流×前記上段選択Duty)}÷{(前記上段選択相電流×前記上段選択相電流)+(前記下段選択相電流×前記下段選択相電流)}×100(%)により前記Duty操作量を算出することにより、或いは前記Duty操作部が、上段用前記各相Dutyに対して加算し、下段用前記各相Dutyに対して減算するようになっていることにより、より効果的に達成される。
 なお、本発明は、各相DutyによってON/OFFしてモータを駆動するスイッチング素子の全てに適用可能であるが、これら全てを代表して単に「FET」としている。
 本発明のモータ制御装置によれば、モータを駆動する相全てのDutyを操作することで、FETの発熱が1つのFETに集中せず、複数のFETに分散するようにするため、各FETに流れている電流値及びDutyから、個々のFETの発熱量を算出してDuty操作量を求め、Duty操作量に基づいて各相Dutyを操作している。その結果、1つのFETに発熱が集中せず、熱分布の均衡を図り、発熱部位の分散と、過熱保護によるアシスト力の低下等を生じ難くすることができる。
 上記モータ制御装置を電動パワーステアリング装置に搭載することにより、信頼性高いECUを具備した電動パワーステアリング装置を提供することができる。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 PWM制御部及びインバータの構成例を示す結線図である。 本発明の構成例を示す結線図である。 FET発熱量算出部の一部構成例(最大発熱相)を示すブロック図である。 FET発熱量算出部の一部構成例(選択部)を示すブロック図である。 FET発熱量算出部の一部構成例(U相上段FET発熱量算出部)を示すブロック図である。 Duty操作部の構成例を示すブロック図である。 本発明の動作例を示すフローチャートである。
 モータ制御装置を搭載した電動パワーステアリング装置について、保舵等(ラックエンド端や縁石ヒット、運転者が非常にゆっくり操舵している時(保舵に近いが、保舵ではない状況))の、モータが最大トルク若しくは最大トルクに近いトルクを発生している状況で、かつモータが停止しているか若しくは停止に近い状態において、3相ブラシレスモータの駆動時に、特定のFETに長時間に亘って最大電流若しくは最大電流に近い電流が流れ続けることで、その特定のFETのみに発熱が集中してしまう問題がある。そこで本発明では上記課題を改善すべく、3相の全てのDutyをDuty操作量で操作することで、FETの発熱が1つのFETに集中せず、複数のFETに分散するようにしている。
 各FETに流れている電流値とDutyとから、個々のFETの発熱量を算出し、1つのFETに発熱が集中しないようDutyを操作することで、熱分布の均衡を図り、発熱部位の分散と、過熱保護によるアシスト力の低下等を生じ難くしている。具体的には、各FETの発熱量から最も発熱しているFETを特定し、そのFETの発熱を低下させるためのDutyを算出し、モータの端子間電圧を保ったまま上記Dutyを考慮した操作を行うことで、従来の保護技術よりも違和感や背反を伴わずに、発熱の集中を抑えることを可能にしている。
 個々のFETの発熱は、FETのON抵抗と、流れる電流の2乗と、Duty(ON時間)との積で求められる。仮に全てのFETのON抵抗は一定とし、今回は考慮しないとした場合、例えばU~W3相について下記条件を考える。
(1)U相のモータ電流が80[A]で、U相上段FETのON時間が66%、U相下段のFETのON時間が34%
(2)V相のモータ電流が-40[A]で、V相上段FETのON時間が42%、V相下段のFETのON時間が58%
(3)W相のモータ電流が-40[A]で、W相上段FETのON時間が42%、W相下段のFETのON時間が58%
 
 上記条件の場合、各FETの発熱割合は以下のようになる。
(a)U相上段FET:80×80×0.66=4224[W]
(b)U相下段FET:80×80×0.34=2176[W]
(c)V相上段FET:40×40×0.42=672[W]
(d)V相下段FET:40×40×0.58=928[W]
(e)W相上段FET:40×40×0.42=672[W]
(f)W相下段FET:40×40×0.58=928[W]
 
 ここで、最大値4224[W]で正規化すると、それぞれの割合は、U相上段FETが100%、U相下段FETが52%、V相上段FETが16%、V相下段FETが22%、W相上段FETが16%、W相下段FETが22%となり、U相上段FETが他のFETに比べ最も多く発熱し、V相上段FET及びW相上段のFETの発熱が最も少なくなる。このFET毎の発熱不均衡を減らすため、3相全ての上段FETのDutyを一律16%減らし、3相全ての下段FETのDutyを一律16%増やすDuty操作を行うと、モータから見たモータ端子間電圧は一定の電圧差を保ったままなので、各相に流れる電流値も保たれたまま、FETの発熱割合を下記のように変更することができる。
(a-1)U相上段FET:80×80×0.50=3200[W]
(b-1)U相下段FET:80×80×0.50=3200[W]
(c-1)V相上段FET:40×40×0.26=416[W]
(d-1)V相下段FET:40×40×0.74=1184[W]
(e-1)W相上段FET:40×40×0.26=416[W]
(f-1)W相下段FET:40×40×0.74=1184[W]
 
 以上より、本発明では、各相Dutyと各相電流に基づいて個々のFETの発熱量を算出し、特定のFETに集中している発熱を複数(2個以上)のFETに等しく分散するためのDuty操作量を求める。求まったDuty操作量を用いて、3相の端子間電圧を保持したまま全てのFETのDutyを操作し、アシスト力は変化させないままFETの発熱の分散を行う。
 以下に、本発明の実施の形態を図面を参照して説明する。
 図4は本発明の構成例を図2に対応させて示しており、Duty演算部36Aで求められた各相DutyD1~D6はDuty操作部130に入力されると共に、FET発熱量算出部100に入力される。モータ電流検出器38で検出されたモータ20の各相電流Im(Iu,Iv,Iw)は、減算部32Bにフィードバックされると共に、FET発熱量算出部100に入力される。FET発熱量算出部100で算出された上段選択DutyDH、下段選択DutyDL、上段選択相電流CH、下段選択相電流CLはDuty操作量算出部120に入力される。Duty操作量算出部120で算出されたDuty操作量Dは、Duty操作部130に入力される。Duty操作部130から出力される操作後のDutyD11~D16によって、ゲート駆動回路36B及びインバータ37を介してモータ20を駆動する。
 FET発熱量算出部100の構成例は図5及び図6であり、U相上段DutyD1はU相上段FET発熱量算出部101Uに入力されると共に、Duty選択部(上段)110に入力される。V相上段DutyD2はV相上段FET発熱量算出部101Vに入力されると共に、Duty選択部(上段)110に入力される。W相上段DutyD3はW相上段FET発熱量算出部101Wに入力されると共に、Duty選択部(上段)110に入力される。U相下段DutyD4はU相下段FET発熱量算出部102Uに入力されると共に、Duty選択部(下段)111に入力される。V相下段DutyD5はV相下段FET発熱量算出部102Vに入力されると共に、Duty選択部(下段)111に入力される。W相下段DutyD6はW相下段FET発熱量算出部102Wに入力されると共に、Duty選択部(下段)111に入力される。
 また、モータ電流検出器38で検出されたU相電流IuはU相上段FET発熱量算出部101U及びU相下段FET発熱量算出部102Uに入力され、後述する処理を施された選択用U相電流Iu’は相電流選択部(上段)112及び相電流選択部(下段)113に入力される。V相電流IvはV相上段FET発熱量算出部101V及びV相下段FET発熱量算出部102Vに入力され、後述する処理を施された選択用V相電流Iv’は相電流選択部(上段)112及び相電流選択部(下段)113に入力される。W相電流IwはW相上段FET発熱量算出部101W及びW相下段FET発熱量算出部102Wに入力され、後述する処理を施された選択用W相電流Iw’は相電流選択部(上段)112及び相電流選択部(下段)113に入力される。
 U相上段FET発熱量算出部101Uで算出されたU相上段FETの発熱量HT1、V相上段FET発熱量算出部101Vで算出されたV相上段FETの発熱量HT2、W相上段FET発熱量算出部101Wで算出されたW相上段FETの発熱量HT3は上段最大発熱相特定部103に入力される。U相上段FET発熱量算出部101Uからは算出された選択用U相電流Iu’が出力され、V相上段FET発熱量算出部101Vからは算出された選択用V相電流Iv’が出力され、W相上段FET発熱量算出部101Wからは算出された選択用W相電流Iw’が出力される。
 また、U相下段FET発熱量算出部102Uで算出されたU相下段FETの発熱量HT4、V相下段FET発熱量算出部102Vで算出されたV相下段FETの発熱量HT5、W相下段FET発熱量算出部102Wで算出されたW相下段FETの発熱量HT6は下段最大発熱相特定部104に入力される。
 U相上段FET発熱量算出部101U、V相上段FET発熱量算出部101V、W相上段FET発熱量算出部101W及び上段最大発熱相特定部103で上段最大発熱相特定手段を構成し、U相下段FET発熱量算出部102U、V相下段FET発熱量算出部102V、W相下段FET発熱量算出部102W及び下段最大発熱相特定部104で下段最大発熱相特定手段を構成している。また、Duty選択部(上段)110及び相電流選択部(上段)112で上段用選択手段を構成し、Duty選択部(下段)111及び相電流選択部(下段)113で下段用選択手段を構成している。
 なお、各FETの発熱量の算出は、下記数1で実施される。各FETの発熱量は演算で算出しても、マップを参照して算出しても良い。また、FETのON抵抗を考慮することにより、より正確に発熱量を算出することができる。
(数1)
FET発熱量=相電流×相電流×Duty
 
 FET発熱量算出部(101U~101W,102U~102W)では、数1に示すように相電流を2乗したものと各相Dutyを乗算して発熱量を算出している。しかし、FET素子の持つ熱容量等の影響により、発熱には時定数が存在するため、実際のFET温度と計算の結果は必ずしも一致するとは限らない。特に、モータの相電流が著しく変化する状況においては、上記温度の不一致が発生し易くなる。そこで、本発明では図7に示すように、2乗値演算の直後にローパスフィルタ(LPF)及び下限値リミッタを適用する。
 FET発熱量算出部(101U~101W,102U~102W)はほぼ同一構成であるので、ここではU相上段FET発熱量算出部101Uを図7に示して説明する。U相電流Iuは2乗演算部101U-1で2乗演算され、相電流の2乗演算値はLPF101U-2に入力され、LPF101U-2からの出力は、チューニング値による下限値リミッタ101U-3で下限値を制限される。下限値リミッタ101U-3で下限値を制限された量が平方根部101U-5に入力されると共に、乗算部101U-4でU相上段DutyD1と乗算され、乗算結果がU相上段の発熱量HT1として出力される。平方根部101U-5で平方根を求めた値が、選択用U相電流Iu’として出力される。
 LPF101U-2を設けることで、U相電流Iuが著しく変化することへの感度が低下し、発熱量の演算結果が実際のFETの発熱と大きく乖離することを防止することができる。更に、LPF101U-2の後段に下限値リミッタ101U-3を設けている。これは、モータの相電流はPWM駆動によるスイッチング動作の影響により、常に僅かな量の電流が流れ続けていることを考慮するためである。この僅かな電流は平均値として見ると0になるため、通常、電流検出値としては得ることができない。しかし、実際にはFETやモータの各相には、瞬間的に僅かな量の電流が流れており、この電流が発熱の原因となっている。このため、僅かな電流に相当する発熱量となる値を、事前にチューニング値としてリミッタ処理(101U-3)の下限値とすることで、より正確な発熱量を求めることが可能となる。
 他の発熱量算出部についても同様であり、V相上段FET発熱量算出部101Vからは選択用V相電流Iv’が出力され、W相上段FET発熱量算出部101Wからは選択用V相電流Iw’が出力される。本例では上段FET発熱量算出部101U~101Wで選択用各相電流Iu’~Iw’を算出しているが、下段FET発熱量算出部102U~102Wで選択用各相電流Iu’~Iw’を算出するようにしても良い。このように選択用各相電流Iu’~Iw’を算出する上下段FET発熱量算出部のいずれかが平方根部を備えており、他の構成は全く同じである。
 また、最大発熱相の特定は、上下段についてそれぞれ最大発熱量の相を選択することによって実施される。
 上段最大発熱相特定部103で特定された上段最大発熱相HMはDuty選択部(上段)110及び相電流選択部(上段)112に入力され、下段最大発熱相特定部104で特定された下段最大発熱相LMはDuty選択部(下段)111及び相電流選択部(下段)113に入力される。
 なお、Dutyの選択は、最大発熱量のFET相のDutyを選択することによって実施され、相電流の選択は、最大発熱量のFET相の相電流を選択することによって実施される。
 Duty選択部(上段)110からの上段選択DutyDH及びDuty選択部(下段)111からの下段選択DutyDLはDuty操作量算出部120に入力され、相電流選択部(上段)112からの上段選択相電流CH及び相電流選択部(下段)111からの下段選択相電流CLはDuty操作量算出部120に入力される。Duty操作量算出部120は、下記数2に従ってDuty操作量D(%)を算出する。
(数2)
(%)={(CL×CL×DL)-(CH×CH×DH)}÷{(CH×CH)+(CL×CL)}×100
 
 上記数2に従って、Duty操作量算出部120で算出されたDuty操作量Dは、図8に示すようなDuty操作部130に入力され、上段FETに対してはDuty操作量Dを加算し、下段FETに対してはDuty操作量Dを減算する。即ち、U相上段DutyD1~W相上段DutyD3はそれぞれ加算部131~133に入力され、U相下段DutyD4~W相下段DutyD6はそれぞれ減算部134~136に入力され、Duty操作量Dは加算部131~133に加算入力され、減算部134~136に減算入力される。そして、加算部131~133及び減算部134~136からそれぞれ操作後のDutyD11~D16が出力される。
 このような構成において、その動作例を図9のフローチャートを参照して説明する。
 先ず、Duty演算部36Aで演算された各相上段DutyD1~D3がU相上段FET発熱量算出部101U~W相上段FET発熱量算出部101Wに入力されると共に、Duty選択部(上段)110に入力される(ステップS1)。同様に、各相下段DutyD4~D6がU相下段FET発熱量算出部102U~W相下段FET発熱量算出部102Wに入力されると共に、Duty選択部(下段)111に入力される(ステップS1)。また、電流検出器38で検出された各相電流Iu~Iwは、U相FET発熱量算出部101U,102U~W相FET発熱量算出部101W,102Wに入力される(ステップS2)。
 U相下段FET発熱量算出部102U~W相下段FET発熱量算出部102W及びU相下段FET発熱量算出部102U~W相下段FET発熱量算出部102Wにおいて、上記数1或いは図7の構成に従って、演算若しくはマップ参照式によって各FETの発熱量及び選択用各相電流が算出され(ステップS10)、各相上段FETの発熱量HT1~HT3は上段最大発熱相特定部103に入力されて最大発熱相HMが特定され(ステップS11)、各相下段FETの発熱量HT4~HT6は下段最大発熱相特定部104に入力されて最大発熱相LMが特定される(ステップS12)。
 次に、Duty選択部(上段)110では、上段最大発熱相HMに従って上段選択DutyDHが選択され、Duty選択部(下段)111では、下段最大発熱相LMに従って下段選択DutyDLが選択される(ステップS13)。また、相電流選択部(上段)112では、上段最大発熱相HMに従って上段選択相電流CHが選択され、相電流選択部(下段)113では、下段最大発熱相LMに従って下段選択相電流CLが選択される(ステップS14)。
 上段選択DutyDH、下段選択DutyDL、上段選択相電流CH、下段選択相電流CLはDuty操作量算出部120に入力され、Duty操作量算出部120は数2に基づいてDuty操作量Dを算出する(ステップS20)。算出されたDuty操作量DはDuty操作部130に入力され、加算部131~13及び減算部134~136によるDuty操作が実施される(ステップS21)。Duty操作は、下記数3となる
(数3)
D11=D1+D
D12=D2+D
D13=D3+D
D14=D4-D
D15=D5-D
D16=D6-D
 
数3のように操作された操作後のDutyD11~D16がDuty操作部130から出力され(ステップ22)、これによってモータ20が駆動制御される。
 上記操作により、操作後の各Dutyが100%を超える場合や0%を下回る場合は、各Dutyが100~0%の範囲に収まるように、Duty操作量Dを0方向へ減らす。例えばDuty操作量Dが10%、上段Dutyの最大が95%である場合、Duty操作量Dを5%まで減らし、操作後の上段Dutyを最大100%までに制限する。また、Duty操作量Dが-10%、下段Dutyの最大が95%である場合、Duty操作量Dを-5%まで減らし、操作後の下段Dutyを最大100%までに制限する。
 なお、上述では、上段FET発熱量算出部若しくは上段FET発熱量算出部で算出した選択用各相電流Iu’~
Iw’を上下相電流選択部に入力して選択を実施しているが、原理的にはモータ電流検出器で検出された各相電流Iu~ Iwを用いても良い。また、本発明の制御(操作)は常時動作しても良い。開始及び終了のタイミングは不要であるが、モータ電流の転流間隔がFETの発熱時定数より短い間隔であれば、Duty操作による効果はなくなる。また、インバータを構成するスイッチング素子はFET以外の半導体素子であっても良い。
1       ハンドル
2       コラム軸(ステアリングシャフト、ハンドル軸)
10      トルクセンサ
12      車速センサ
13      バッテリ
20      モータ
30      コントロールユニット(ECU)
31      トルク制御部
35      電流制御部
36      PWM制御部
36A     Duty演算部
36B     ゲート駆動部
37      インバータ
38      モータ電流検出器
100     FET発熱量算出部
103     上段最大発熱相特定部
104     下段最大発熱相特定部
110     Duty選択部(上段)
111     Duty選択部(下段)
112     相電流選択部(上段)
113     相電流選択部(下段)
120     Duty操作量算出部
130     Duty操作部

Claims (11)

  1. 電流指令値に基づきPWM制御のための各相Dutyを演算し、前記各相Dutyにより、上下段FETブリッジで成るインバータを介してモータを制御するモータ制御装置において、
    前記モータの各相電流を検出する電流検出器と、
    上段FETの各発熱量を算出し、上段最大発熱相を特定する上段最大発熱相特定手段と、
    下段FETの各発熱量を算出し、下段最大発熱相を特定する下段最大発熱相特定手段と、
    前記上段最大発熱相に基づいて、上段選択Duty及び上段選択相電流を選択する上段用選択手段と、
    前記下段最大発熱相に基づいて、下段選択Duty及び下段選択相電流を選択する下段用選択手段と、
    前記上段選択Duty及び上段選択相電流と、前記下段選択Duty及び下段選択相電流とに基づいて、Duty操作量を算出するDuty操作量算出部と、
    前記Duty操作量に基づいて前記各相Dutyを操作するDuty操作部と、
    を具備したことを特徴とするモータ制御装置。
  2. 前記上段最大発熱相特定手段が、
    前記各相Duty及び前記各相電流に基づいて、上段FETの各発熱量を算出する上段FET発熱量算出部と、
    前記上段FET発熱量算出部で算出された各上段発熱量に基づいて前記上段最大発熱相を特定する上段最大発熱相特定部と、
    で構成されている請求項1に記載のモータ制御装置。
  3. 前記下段最大発熱相特定手段が、
    前記各相Duty及び前記各相電流に基づいて、下段FETの各発熱量を算出する下段FET発熱量算出部と、
    前記下段FET発熱量算出部で算出された各下段発熱量に基づいて前記下段最大発熱相を特定する下段最大発熱相特定部と、
    で構成されている請求項1又は2に記載のモータ制御装置。
  4. 前記上段FETの各発熱量及び前記下段FETの各発熱量を演算により、若しくはマップの参照で算出するようになっている請求項1乃至3のいずれかに記載のモータ制御装置。
  5. 前記上段FETの各発熱量及び前記下段FETの各発熱量を、前記各相電流の2乗値をLPF処理した後に所定の下限値で制限し、前記制限された量に前記各相Dutyを乗算して出力するようになっている請求項1乃至3のいずれかに記載のモータ制御装置。
  6. 前記所定の下限値がチューニング値である請求項5に記載のモータ制御装置。
  7. 前記上段用選択手段が、
    前記上段最大発熱相に基づいて、前記各相Dutyから前記上段選択Dutyを選択する第1のDuty選択部と、
    前記上段最大発熱相に基づいて、前記各相電流から前記上段選択相電流を選択する第1の相電流選択部と、
    で構成されている請求項1乃至6のいずれかに記載のモータ制御装置。
  8. 前記下段用選択手段が、
    前記下段最大発熱相に基づいて、前記各相Dutyから前記下段選択Dutyを選択する第2のDuty選択部と、
    前記下段最大発熱相に基づいて、前記各相電流から前記下段選択相電流を選択する第2の相電流選択部と、
    で構成されている請求項1乃至7のいずれかに記載のモータ制御装置。
  9. 前記Duty操作量算出部が、
    {(前記下段選択相電流×前記下段選択相電流×前記下段選択Duty)-(前記上段選択相電流×前記上段選択相電流×前記上段選択Duty)}÷{(前記上段選択相電流×前記上段選択相電流)+(前記下段選択相電流×前記下段選択相電流)}×100(%)により前記Duty操作量を算出する請求項1乃至8のいずれかに記載のモータ制御装置。
  10. 前記Duty操作部が、
    上段用前記各相Dutyに対して加算し、下段用前記各相Dutyに対して減算するようになっている請求項1乃至9のいずれかに記載のモータ制御装置。
  11. 請求項1乃至10のいずれかに記載のモータ制御装置を搭載し、車両の操舵系をアシスト制御するようになっている電動パワーステアリング装置。
     
PCT/JP2016/053006 2015-02-03 2016-02-02 モータ制御装置及びそれを搭載した電動パワーステアリング装置 WO2016125774A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/536,396 US9866155B2 (en) 2015-02-03 2016-02-02 Motor control unit and electric power steering apparatus equipped with the same
JP2016573369A JP6195027B2 (ja) 2015-02-03 2016-02-02 モータ制御装置及びそれを搭載した電動パワーステアリング装置
CN201680008234.8A CN107360735B (zh) 2015-02-03 2016-02-02 电动机控制装置以及搭载了该电动机控制装置的电动助力转向装置
EP16746605.1A EP3255781B1 (en) 2015-02-03 2016-02-02 Motor control device and electric power steering device equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-019008 2015-02-03
JP2015019008 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016125774A1 true WO2016125774A1 (ja) 2016-08-11

Family

ID=56564116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053006 WO2016125774A1 (ja) 2015-02-03 2016-02-02 モータ制御装置及びそれを搭載した電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US9866155B2 (ja)
EP (1) EP3255781B1 (ja)
JP (1) JP6195027B2 (ja)
CN (1) CN107360735B (ja)
WO (1) WO2016125774A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037980A1 (ja) * 2016-08-24 2018-03-01 日本精工株式会社 電動パワーステアリング装置
WO2019037918A1 (de) * 2017-08-22 2019-02-28 Robert Bosch Gmbh Übertemperatur-management
WO2019202675A1 (ja) 2018-04-18 2019-10-24 三菱電機株式会社 電力変換装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891748B (zh) * 2015-12-18 2019-02-26 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
JP6230665B1 (ja) * 2016-06-27 2017-11-15 三菱電機株式会社 直流電源装置
CN111865145A (zh) * 2019-04-26 2020-10-30 南京德朔实业有限公司 电动工具及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161118A (ja) * 2002-11-12 2004-06-10 Koyo Seiko Co Ltd パワーステアリング装置
CN102611348A (zh) * 2012-03-21 2012-07-25 福州大学 解决单相全桥逆变电路桥臂开关发热不均的pwm输出法
JP2014147170A (ja) * 2013-01-28 2014-08-14 Shimadzu Corp 真空ポンプ用モータ駆動装置および真空ポンプ
JP2014155371A (ja) * 2013-02-12 2014-08-25 Toyota Motor Corp 電気自動車

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430773B2 (ja) * 1996-02-21 2003-07-28 株式会社明電舎 インバータ装置におけるスイッチング素子の過熱保護方法
JP2003153584A (ja) * 2001-11-12 2003-05-23 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004088888A (ja) 2002-08-26 2004-03-18 Koyo Seiko Co Ltd モータ駆動装置
JP4899611B2 (ja) * 2006-04-24 2012-03-21 株式会社ジェイテクト 電動パワーステアリング装置
US8381869B2 (en) * 2009-03-25 2013-02-26 Toyota Jidosha Kabushiki Kaisha Electric power steering device
JP5402336B2 (ja) * 2009-07-10 2014-01-29 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
US9624974B2 (en) 2013-01-28 2017-04-18 Shimadzu Corporation Magnetic bearing device and vacuum pump
JP6165470B2 (ja) * 2013-03-04 2017-07-19 株式会社東芝 モータ制御装置,ヒートポンプシステム及び空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161118A (ja) * 2002-11-12 2004-06-10 Koyo Seiko Co Ltd パワーステアリング装置
CN102611348A (zh) * 2012-03-21 2012-07-25 福州大学 解决单相全桥逆变电路桥臂开关发热不均的pwm输出法
JP2014147170A (ja) * 2013-01-28 2014-08-14 Shimadzu Corp 真空ポンプ用モータ駆動装置および真空ポンプ
JP2014155371A (ja) * 2013-02-12 2014-08-25 Toyota Motor Corp 電気自動車

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037980A1 (ja) * 2016-08-24 2018-03-01 日本精工株式会社 電動パワーステアリング装置
CN109792223A (zh) * 2016-08-24 2019-05-21 日本精工株式会社 电动助力转向装置
JPWO2018037980A1 (ja) * 2016-08-24 2019-06-20 日本精工株式会社 電動パワーステアリング装置
US10427710B2 (en) 2016-08-24 2019-10-01 Nsk Ltd. Electric power steering apparatus
CN109792223B (zh) * 2016-08-24 2020-03-27 日本精工株式会社 电动助力转向装置
WO2019037918A1 (de) * 2017-08-22 2019-02-28 Robert Bosch Gmbh Übertemperatur-management
WO2019202675A1 (ja) 2018-04-18 2019-10-24 三菱電機株式会社 電力変換装置
JPWO2019202675A1 (ja) * 2018-04-18 2020-08-27 三菱電機株式会社 電力変換装置
US11784585B2 (en) 2018-04-18 2023-10-10 Mitsubishi Electric Corporation Power converter

Also Published As

Publication number Publication date
US9866155B2 (en) 2018-01-09
US20170331398A1 (en) 2017-11-16
JPWO2016125774A1 (ja) 2017-09-14
EP3255781B1 (en) 2019-03-27
CN107360735A (zh) 2017-11-17
EP3255781A1 (en) 2017-12-13
EP3255781A4 (en) 2018-07-18
CN107360735B (zh) 2019-02-15
JP6195027B2 (ja) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6195027B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
US10532765B2 (en) Control apparatus for three-phase rotary machine, and electric power steering apparatus
US7091684B2 (en) Electric power steering apparatus
US10243497B2 (en) Motor control apparatus and electronic power steering system
US10259491B2 (en) Motor control apparatus and electric power steering apparatus provided the same
US10286949B2 (en) Electric power steering apparatus
JP6260502B2 (ja) モータ制御装置
US10333440B2 (en) Motor control apparatus and electric power steering system
US9461575B2 (en) Rotary electric machine control apparatus
US9660565B2 (en) Controller for controlling a motor
JP5896095B1 (ja) 電動パワーステアリング装置
US9954470B2 (en) Apparatus for controlling rotating electric machine and electrically-powered steering apparatus using the same
JP2009001055A (ja) 電動パワーステアリング装置及び異常検出方法
JP2013017363A (ja) モータ制御装置
JPH07227086A (ja) インバータの故障検出方式
WO2015182287A1 (ja) 電動パワーステアリング装置
JP2002238299A (ja) インバータの故障検出方式
JP6464859B2 (ja) モータ制御装置並びにそれを搭載した電動パワーステアリング装置及び車両
JP5927858B2 (ja) モータ制御装置及び車両の電動パワーステアリング装置
US10000233B2 (en) Method of controlling an inverter during MOSFET shorts
JP6065998B2 (ja) 電動パワーステアリング装置
JP6464858B2 (ja) モータ制御装置並びにそれを搭載した電動パワーステアリング装置及び車両
US11271494B2 (en) Power converter and electric power steering system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746605

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15536396

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016573369

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016746605

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE