WO2018036495A1 - 基于qPCR分型技术的运动基因检测评估方法及系统 - Google Patents

基于qPCR分型技术的运动基因检测评估方法及系统 Download PDF

Info

Publication number
WO2018036495A1
WO2018036495A1 PCT/CN2017/098569 CN2017098569W WO2018036495A1 WO 2018036495 A1 WO2018036495 A1 WO 2018036495A1 CN 2017098569 W CN2017098569 W CN 2017098569W WO 2018036495 A1 WO2018036495 A1 WO 2018036495A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
genotype
risk
exercise
endurance
Prior art date
Application number
PCT/CN2017/098569
Other languages
English (en)
French (fr)
Inventor
吴少鸿
姜萍萍
任飞
李欣
詹延延
Original Assignee
厦门美因生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门美因生物科技有限公司 filed Critical 厦门美因生物科技有限公司
Publication of WO2018036495A1 publication Critical patent/WO2018036495A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the invention relates to the field of biological detection, in particular to a genetic detection and evaluation system, in particular to a method and system for evaluating a motion gene detection based on qPCR typing technology.
  • the motor gene is a related gene that determines the ability of human exercise. 70% of the motor ability is affected by genetic factors. Genetic engineering is applied to the selection of athletes. It can reveal the reason why athletes are excellent at the molecular level. This technology will fundamentally A revolution that led to the theory and method of motion selection. At present, the use of genetic theory and methods for sports selection has made initial progress.
  • DS direct sequencing
  • LDR ligase detection reaction
  • RFLP restriction fragment length polymorphism
  • DPLC denaturing high performance liquid chromotography
  • quantitative PCR in which direct sequencing using a DNA analyzer is a gold standard, but the above methods have problems such as high cost, low accuracy, cumbersome operation, and poor repeatability.
  • qPCR Real-time Quantitative PCR Detection System
  • qPCR system is a three-generation PCR detection technology, qPCR has high detection sensitivity, wide detection linear range , with outstanding detection accuracy and repeatability, it is recognized as the most advanced nucleic acid molecular diagnostic technology used in clinical practice in the world today. Therefore, this technology can be used for motion gene detection efficiently and accurately.
  • the subject's motor gene polymorphism site is detected by fluorescent PCR, the genotype is scored; according to the genetic test results and scores Statistical analysis, the individualized evaluation results are obtained; the evaluation results are summarized to establish a database of sports talent genes.
  • the motor gene comprises the following aspects:
  • Endurance quality includes 13 polymorphic loci
  • explosive power quality includes 11 polymorphic loci
  • sports enthusiasm includes 6 polymorphic loci
  • sports fatigue recovery includes 6 polymorphic loci
  • soft tissue injury The risk includes 5 polymorphic loci
  • the obesity risk includes 11 polymorphic loci
  • the carbohydrate sensitivity includes 6 polymorphic loci
  • the lipid sensitivity includes 7 polymorphic loci.
  • the contribution value of each polymorphic site is: the ability to evaluate the polymorphic site according to the genotype favorable purity and the assignment value of 2 points, the favorable heterozygous assignment value of 1 point, the no-effect assignment value of 0 points; the risk assessment polymorphism The sexual site was 2 points according to the genotype risk pure and assigned value, the risk heterozygorous assignment was 1 point, and the no effect was assigned 0 point;
  • ADRB2 gene Rs1042713, AA-AG-GG genotype were 2-1-0 points; AQP1 gene rs1049305, CC-CG-GG genotype was divided into 2-1-0 points; AMPD1 gene rs17602729, CC-CT-TT genotype 2-1-0 points; COL5A1 gene rs12722, TT-CT-CC genotype 2-1-0 points; GABPB1 gene rs12594956, TT-GT-GG genotype 2-1-0 points; GABPB1 The gene rs7181866, CC-CT-TT genotype was 2-1-0, HFE gene rs1799945, GG-CG-CC genotype was 2-1-0, KCNJ11 gene rs5219, CC-CT-TT genotype The scores were 2-1-0; the PPARA gene rs4253778 and the GG-CG-CC genotype were 2-1-0, respectively; the PPARD gene rs2016520 and the CC-CT-TT
  • AGT gene rs699 locus CC-CT-TT genotype 2-1-0 score
  • AMPD1 gene rs17602729 CC-CT-TT gene
  • the types were 2-1-0; CKM gene rs8111989, GG-AG-AA genotype was 2-1-0; HIF1A gene rs11549465, TT-CT-CC genotype was 2-1-0; IL6 gene rs1800795, GG-CG-CC genotype was 2-1-0; NOS3 gene rs2070744, TT-CT-CC genotype was 2-1-0; PPARA gene rs4253778, CC-CG-GG gene
  • the types were 2-1-0, PPARG gene rs1801282, GG-CG-CC genotype were 2-1-0, ACE gene rs4646994, DD-DI-II genotype were 2-1-0, respectively; ACTN3 gene rs1815739, CC-CT-TT genotype were 2-1-0 points; M
  • lipid sensitivity Seven sites were evaluated for lipid sensitivity. The different genotypes and their assignments were: APOC1 gene rs4420638, GG-AG-AA genotype 2-1-0, APOB gene rs693, TT-CT-CC genotype
  • the LDLR gene rs6511720 and GG-GT-TT genotypes were 2-1-0, respectively; the CETP gene rs5882 and the AA-AG-GG genotype were 2-1-0, respectively; CETP The gene rs708272 and AA-AG-GG genotype were 2-1-0 respectively; LPL gene rs328 and CC-CG-GG genotype were 2-1-0 respectively; APOA5 gene rs662799, CC-CT-TT genotype They are 2-1-0 points respectively.
  • the evaluation results include exercise potential and deficiencies, wherein the exercise potential is scored according to the endurance quality and the explosive strength.
  • Another object of the present invention is to provide a motion gene detection and evaluation method and system based on qPCR typing technology, characterized in that the motion gene detection and evaluation system comprises:
  • the sports talent gene pool based on the comprehensive summary of personal information, genetic test results, exercise capacity or risk results, provides the corresponding individualized exercise or weight management program for the examinee, and establishes a database of sports talent genes.
  • the gene contribution score is normalized to a maximum of 100 points.
  • each SNP site has a score based on the detected genotype, and we define the score as S.
  • the subject's ability or risk in the project is graded, and the ability or risk level corresponds to the mark A-B-C-D-E, which represents five levels of high-slightly high-normal-slightly low-low.
  • the comprehensive assessment of athletic ability includes both athletic potential and insufficient exercise.
  • the exercise potential is scored according to the endurance quality and the explosive strength.
  • level I When both are grade B or above, the subject is considered to have a high comprehensive exercise ability, defined as level I; when both are grade C, the subject is considered to be inspected.
  • the general athletic ability is generally defined as Level II; when both are D and below, the subject is considered to have a lower overall athletic ability, defined as Level III; the exercise potential assessment is based on the endurance quality and the explosive strength level.
  • the endurance level is higher than the explosive power level
  • the subject is an endurance dominant type
  • the explosive power level when the explosive power level is higher than the endurance level, the subject is an explosive strength dominant type
  • the explosive power level is equal to the endurance level
  • the subject is both endurance and explosive force.
  • Endurance and explosive force have both type I. It is recommended to optimize the endurance and explosive force combined type project, secondary endurance type project or explosive force type project; endurance and explosive force have both type II and type III, it is recommended to select endurance and explosive force.
  • Type-oriented project endurance advantage type I, recommended for endurance-type projects, secondary endurance and explosive force combined type project or explosive force type project; endurance advantage type II and type III, preferred endurance type project; explosive strength advantage type I, It is recommended to optimize the explosive power type project, the secondary strength endurance and explosive force combined type project or the endurance strength type project; the explosive strength advantage type II and type III, it is recommended to select the explosive power type project.
  • the above technical solution can comprehensively evaluate the exercise ability and related risks of the subject, the basis of the evaluation is accurate, the evaluation efficiency is high, and the evaluation result is stable and accurate. According to the results of genetic testing, it can show the high potential value of a specific subject's genotype in a certain exercise. low. Combine genetic testing reports, combined with individual circumstances and needs, to make scientific, systematic and targeted planning for individual sports, and maximize the potential of genetic growth.
  • the existing selection means can be used to select athletes; during the training, individualized training guidance and management can be performed for the athletes.
  • the invention overcomes the one-size-fits-all method of the traditional method and has advantages in athlete selection and training, as well as individual fitness effects.
  • FIG. 1 is a schematic diagram of a motor gene detection and evaluation system of the present invention
  • FIG. 2 is a schematic diagram showing the content of a motion detection report according to a specific embodiment.
  • the motion gene detection and evaluation method and system based on the qPCR typing technique of the present embodiment includes the following components:
  • personal information database includes personal information such as personal name, gender, age, height, weight, BMI and sample number;
  • Sports gene detection results database based on qPCR typing technology to detect genes, including endurance quality, explosive strength, soft tissue injury risk, exercise fatigue recovery, sports enthusiasm, obesity risk, carbohydrate and lipid sensitivity
  • the 52 polymorphic loci of 44 related genes were obtained, and the genotype of each subject was obtained. The specific loci are shown in the following table:
  • Endurance refers to the ability of the body to maintain a specific strength load or motion quality for a certain period of time. It is extremely important for long-distance sports projects and projects that require endurance. The research on the relationship between outstanding endurance quality and gene polymorphism is the earliest, and the research is the most extensive and in-depth.
  • the genes associated with outstanding endurance qualities include the peroxisome proliferator-activated receptor genes PPARA and PPARD, the adrenergic receptor gene ADRB2, the collagen-encoding gene COL5A1, ACE, mtDNA, and the like.
  • Adrenaline receptors are G-protein coupled receptors that bind to adrenaline and norepinephrine.
  • catecholamine-activated lipolysis is related to the affinity and number of adrenergic alpha 2 receptors.
  • Explosive power quality refers to the force that moves the device (or the body itself) as far as possible in the shortest possible time. Explosive power quality is one of the two important aspects of outstanding athletic ability. It is especially important for short-distance speed projects and projects that require explosive power. The association between burst strength and gene polymorphism was carried out lately. It has been found that ACTN3, ACE, IL6, HIF1A and NOS3 genes are all related to explosive force characteristics. For example, the ACTN3 gene encodes alpha-actinin 3, which is expressed only in fast muscle fibers, which produce the contraction required for explosiveness. A number of studies have shown that the R577X polymorphism can affect the distribution of fast and slow muscle fibers.
  • the fast muscle fiber has normal contraction function and strong bursting power. It is also sensitive to strength training. In athletes who need instantaneous explosive power such as sprinting and weightlifting, the normal gene carries up to 92%. . If the genotype is RX, there is normal ACTN3 expression in the fast muscle fibers, and the function will not be affected. If the genotype is XX, the contraction of fast muscle fibers will be affected, the level of strength obviously decased.
  • Soft tissue injury refers to a large type of trauma syndrome caused by direct or indirect violence or long-term chronic strain of soft tissue or skeletal muscle. Micro-circulatory disorders and aseptic inflammation occur after tissue injury, resulting in local swelling and pain.
  • the matrix metalloproteinase 3 encoded by the MMP3 gene the main function of the enzyme is to degrade the extracellular matrix and the basement membrane, and the substrate to be degraded includes various collagens (nodular tissues such as tendons), gelatin, laminin, Extracellular matrix components such as fibronectin and proteoglycan can participate in the damage and repair of various soft tissues.
  • adenosine monophosphate deaminase 1 (AMPD1) is expressed in all tissues, but mainly expressed in muscle tissue.
  • AMPD1 adenosine monophosphate
  • IMP inosinic acid
  • ammonia ammonia.
  • the AMPD1 gene is more susceptible to mutation, and the lack of AMPD1 gene leads to a metabolic muscle disease, such as exercise-induced fatigue, cramps, myalgia, etc., which is related to the level of blood ammonia caused by sputum metabolism disorder. Activation of AMPD1 and adenosine energy conversion protect the body from stress.
  • BDNF brain-derived neurotrophic factor
  • brain-derived neurotrophic factor is a neurotrophic protein.
  • Brain-derived neurotrophic factor and its receptor are widely expressed in the nervous system. It plays an important role in the formation, development and regeneration of the blood vessels in the hippocampus, spinal cord and skeletal muscles of the brain. Studies have shown that the SNP locus on the BDNF gene is related to the individual's different emotions and cognitive perception.
  • FTO is a transcriptional coactivator of the C/EBP family, which enhances the binding of C/EBP to promoter sequences and plays a role in adipocyte differentiation and fat accumulation.
  • members of the C/EBP family are associated with adipocyte differentiation, and C/EBP differentiates preadipocytes into adipocytes and accelerates fat accumulation.
  • Carbohydrates are the main source of energy needed to sustain life.
  • Carbohydrate sensitivity refers to the long-term evolution of humans adapting to a high protein-low carbohydrate diet. When a large amount of carbohydrates are ingested, it is easy to form obesity. This is mainly due to the lack of proper protein in the food and the lack of satiety. Abdominal sensation, so this group of people is also prone to metabolic problems, such as the development of type 2 diabetes.
  • the TCF7L2 gene is a transcription factor 7 analog 2
  • TCF7L2 is ubiquitous in human tissues, including mature islet ⁇ cells, but is rarely expressed in skeletal muscle.
  • TCFTL2 may play an important role in the early differentiation of islet ⁇ cells, affecting the normal secretion of insulin and blood glucose regulation.
  • many SNPs studies on the TCF7L2 gene in various populations have confirmed that rs12255372 and rs7903146 are most relevant to type 2 diabetes.
  • Lipid sensitivity refers to adapting to a high-carbohydrate-low-fat diet structure in the long-term evolution.
  • LPL Lipoprotein lipase
  • the main physiological function of LPL is to hydrolyze triglyceride glycerol in the blood-rich triglyceride (TG) lipoprotein.
  • TG blood-rich triglyceride
  • the produced glycerol and fatty acid can be used for oxidative decomposition and energy supply. It plays a key role in the catabolism of chylomicron (CM) and very low density lipoprotein (VLDL).
  • ADRB2 gene rs1042713 AQP1 gene rs1049305, AMPD1 gene rs17602729, COL5A1 gene rs12722, GABPB1 gene rs12594956, GABPB1 gene rs7181866, HFE gene rs1799945, KCNJ11 gene rs5219, PPARA gene Rs4253778, PPARD gene rs2016520, UCP3 gene rs1800849, ACE gene rs4646994, PPARGC1A gene rs8192678.
  • AGT gene rs699 locus AMPD1 gene rs17602729, CKM gene rs8111989, HIF1A gene rs11549465, IL6 gene rs1800795, NOS3 gene rs2070744, PPARA gene rs4253778, PPARG gene rs1801282 ACE gene rs4646994, ACTN3 gene rs1815739, MTHFR gene rs1801131.
  • Obesity risk assessment 11 sites are: MC4R gene rs17782313, LEPR gene rs8179183, FABP2 gene rs1799883, FTO gene rs1421085, PPARG gene rs1801282, INSIG2 gene rs7566605, GNB3 gene rs5443, ADRB2 gene rs1042713, ADRB2 gene Rs1042714, ADRB3 gene rs4994, UCP1 gene rs1800592.
  • TCF7L2 gene Rs7903146 6 sites for carbohydrate sensitivity assessment, the different genotypes are: TCF7L2 gene Rs7903146, TCF7L2 gene rs12255372, FTO gene rs9939609, PPARG gene rs1801282, KCNJ11 gene rs5219, IGF2BP2 gene rs4402960.
  • lipid sensitivity Seven sites were evaluated for lipid sensitivity. The different genotypes were: APOC1 gene rs4420638, APOB gene rs693, LDLR gene rs6511720, CETP gene rs5882, CETP gene rs708272, LPL gene rs328, APOA5 gene rs662799.
  • the athletic ability or risk database, exercise capacity or risk database is used to evaluate the detected gene loci.
  • Each locus has a score of 2 points according to the genotype favorable purity and 1 point of favorable heterozygosity assignment, no effect. Assign 0 points. Different genotypes and their assignments are:
  • ADRB2 gene rs1042713 AA-AG-GG genotype 2-1-0 points
  • AQP1 gene rs1049305 CC-CG-GG genotype divided into 2-1-0 points
  • AMPD1 gene rs17602729 CC-CT-TT genotype 2-1-0 points
  • COL5A1 gene rs12722 TT-CT-CC genotype 2-1-0 points
  • GABPB1 gene rs12594956, TT-GT-GG The genotypes were 2-1-0, the GABPB1 gene rs7181866, the CC-CT-TT genotype was 2-1-0, the HFE gene rs1799945, and the GG-CG-CC genotype were 2-1-0.
  • KCNJ11 gene rs5219, CC-CT-TT genotype was 2-1-0; PPARA gene rs4253778, GG-CG-CC genotype was 2-1-0; PPARD gene rs2016520, CC-CT-TT The genotypes were 2-1-0, the UCP3 gene rs1800849, the TT-CT-CC genotype were 2-1-0, the ACE gene rs4646994, and the II-DI-DD genotype were 2-1-0.
  • the PPARGC1A gene rs8192678 and the GG-AG-AA genotype were 2-1-0.
  • the genotypes were 2-1-0
  • the MCT1 gene rs1049434 and TT-AT-AA genotypes were 2-1-0.
  • TCF7L2 gene rs7903146 Carbohydrate sensitivity assessment 6 sites: TCF7L2 gene rs7903146, TT-CT-CC genotype 2-1-0 points; TCF7L2 gene rs12255372, TT-GT-GG genotype 2-1-0 FTO gene rs9939609, AA-AT-TT genotype were 2-1-0 points; PPARG gene rs1801282, GG-CG-CC genotype were 0-1-2 points; KCNJ11 gene rs5219, TT-CT- The CC genotype was 2-1-0, the IGF2BP2 gene was rs4402960, and the AA-AC-CC genotype was 2-1-0.
  • Lipid sensitivity assessment 7 sites Lipid sensitivity assessment 7 sites: APOC1 gene rs4420638, GG-AG-AA genotype 2-1-0; APOB gene rs693, TT-CT-CC genotype 2-1-0 LDLR gene rs6511720, GG-GT-TT genotype 2-1-0 points; CETP gene rs5882, AA-AG-GG genotype 2-1-0 points; CETP gene rs708272, AA-AG- The GG genotypes were 2-1-0, the LPL gene rs328 and the CC-CG-GG genotype were 2-1-0, respectively; the APOA5 gene rs662799 and the CC-CT-TT genotype were 2-1-0. Minute.
  • each SNP site has a score based on the genotype detected, and the score is defined as S. 8 test items, each with n sites, then each item has a score of P:
  • the score of the project is normalized according to the percentile system, and the score after processing is P 100 :
  • the athletic ability or risk database is based on the genomic data of the East Asian population of thousands of human genomes, and the East Asian population includes five sub-groups, namely the Chinese Han nationality, the southern Chinese Han nationality, China. Xishuangbanna Dai, Japanese Tokyo Japanese and Vietnamese Ho Chi Minh City Jing. The highest score P max and the lowest score P min (percentage) of the population under different characteristics were calculated, and the score interval was divided into 5 equal parts, and the 4 equal points from small to large were P 1 , P 2 , P 3 and P 4 , respectively . We classify the subject's ability or risk in the project.
  • the ability or risk level corresponds to the identification ABCDE, level A is P 100 ⁇ P 4 ; level B is P 3 ⁇ P 100 ⁇ P 4 ; C level is P 2 ⁇ P 100 ⁇ P 3 ; D level is P 1 ⁇ P 100 ⁇ P 2 ; E level is P 100 ⁇ P 1 ; respectively represents five levels of high-slightly high-normal-slightly low-low.
  • the ability or risk level of the subject on different projects, as well as the percentage of the population, can be obtained.
  • the results of different projects can be used to derive the comprehensive ability, superior direction and self of the subject. insufficient.
  • the comprehensive assessment of athletic ability includes both potential and shortcomings of exercise.
  • the sports potential is scored according to the endurance quality and the explosive strength.
  • one of the two qualities is B or above, the subject is considered to have a high comprehensive athletic ability, defined as level I;
  • Grade C and the other is Grade D or Grade E, the subject is considered to have a general athletic ability, defined as Level II; when both are Grade D and below, the The comprehensive ability of the examiner is low, defined as level III; the evaluation of the type of exercise potential is based on the comprehensive evaluation of endurance quality and explosive strength.
  • the level of endurance quality is higher than the level of explosive strength, the subject is endurance dominant.
  • endurance advantage type I endurance advantage type II
  • endurance advantage type III when the explosive strength level is higher than the endurance level, the subject is explosive strength advantage; when the explosive strength level and endurance
  • endurance and explosive power when the explosive strength level and endurance
  • type I endurance and explosive power
  • type II Both the force and power of the outbreak type grade III.
  • the potential and deficiency of discovery are based on the scores of the subjects in different projects, the higher the ability (Grade A, B) or the lower the risk (Grade D, E), the lower the ability (D, E) or The higher risk is (A, B).
  • Endurance and explosive force have both type I. It is recommended to optimize the endurance and explosive force combined type project, secondary endurance type project or explosive force type project; endurance and explosive force have both type II and type III, it is recommended to select endurance and explosive force.
  • Advantages Types II and III are recommended for explosive power projects. Develop potential, improve deficiencies, and reduce risk training programs based on potential and under-resourced projects.
  • Endurance projects include swimming, long-distance running, marathon, cycling, triathlon, walking, all-around, cross-country skiing, Nordic, etc.
  • explosive power projects include sprint, high jump, long jump, javelin, weightlifting, speed skating, short track speed skating Etc.
  • Endurance and explosive power combined projects include football, basketball, volleyball, badminton, tennis and other ball games, sailing, kayaking, long-distance swimming, weightlifting, wrestling, etc.
  • the advantages and disadvantages of the evaluation system are reversely evaluated, and after the athlete's gene and exercise level are stored in the sports talent database, the evaluation is performed.
  • the model is regularly optimized and upgraded.
  • Example 1 The subject Li, the sample was taken as a buccal swab, and the genotypes involved in Example 1 were sequenced by real-time PCR.
  • the specific sequencing results are as follows:
  • the test results of Lee's endurance quality were: 46.2 points (the average score of this group was 45.0), and the ability level: C, C-level people accounted for 33.7% of the total population.
  • the genotype test results of endurance quality are as follows:
  • KCNJ11 CT ⁇ Good for endurance quality enhanced potassium absorption capacity PPARA GG ⁇ Good for endurance quality, enhanced oxidation of fatty acids PPARD 2 CT ⁇ Good for endurance quality, enhance muscle glucose absorption capacity UCP3 CT ⁇ Good for endurance quality, enhance aerobic energy metabolism ACE DD ⁇ Unhelpful to endurance quality, high ACE activity, low aerobic endurance PPARGC1A GG ⁇ Good for endurance quality, increased proportion of slow muscle fibers, enhanced endurance
  • angiotensin II is the most active, promoting skeletal muscle growth AMPD1 CC ⁇ Good for explosive power, increasing energy metabolism rate CKM AA ⁇ Unhelpful to the power of the explosion, the muscle energy supply is generally HIF1A CT ⁇ Good for explosive power, increased ratio of glycolysis muscles, enhanced glucose absorption capacity IL6 GG ⁇ Good for explosive power, high plasma il-6 activity, promotes muscle cell metabolism NOS3 TT ⁇ Good for explosive power, enhanced vascular function PPARA CG ⁇ Unhelpful to explosive power, enhanced fatty acid oxidation PPARG CC ⁇ Unhelpful to explosive power, skeletal muscle glucose absorption efficiency and muscle fiber cross-sectional area are generally ACE DD ⁇ Good for explosive power, increased ratio of fast muscle fibers, increased muscle strength and muscle volume ACTN3 CC ⁇ Good for explosive power, high ratio of fast muscle fibers, strong muscle contraction MTHFR AA ⁇ Not good for explosive power, little impact
  • Li comprehensive assessment results are as follows:
  • Sports that have strong explosive powers are short-term, intense-moving projects, including sprints, high jumps, long jumps, javelins, weightlifting, speed skating, and short track speed skating.
  • the customized sports training management plan customized for Lee includes the following points:
  • the invention can comprehensively evaluate the exercise ability and related risks of the subject, the basis of the evaluation is accurate, the evaluation efficiency is high, and the evaluation result is stable and accurate.
  • the existing selection methods can be used to select athletes; during the training, individualized training guidance and management can be performed for the athletes.
  • the present invention overcomes the traditional method of one-size-fits-all methods, in athlete selection and training, and individuals. The fitness effect is more advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于qPCR分型技术的运动基因检测评估方法,所述的基因评估系统对受检者的运动基因多态性位点进行荧光PCR检测,并给予不同的多态性位点不同的贡献度,根据基因检测结果及不同的贡献度的统计分析,得出个体化的评估结果,评估结果汇总建立运动人才基因数据库。该方法可以全面地对受检者的运动能力及相关风险进行评估,评估的基础精准、评估效率高且评估结果稳定准确。在招募运动员期间,可以辅助现有选材手段进行运动员进行甄选;在训练期间,可以对运动员做个体化训练指导和管理,克服了传统方法的一刀切的方法,在运动员选拔和训练,以及个体健身效果方面更具优势。

Description

基于qPCR分型技术的运动基因检测评估方法及系统 技术领域
本发明涉及生物检测领域,尤其涉及基因检测评估系统,具体的说是一种基于qPCR分型技术的运动基因检测评估方法及系统。
背景技术
随着科学研究的不断发展,人类基因组计划完成后,后基因组计划的全面展开,以基因工程为主导的生物技术在体育运动问题领域的应用得到广泛的关注。运动基因是决定人类运动能力的相关基因,运动能力70%受遗传因素影响基因遗传工程应用于运动员选材是大势所趋,它可以从分子水平揭示运动员之所以运动优秀的原因,本技术必将从根本上引起运动选材理论和方法的革命。目前运用遗传学的理论和方法进行运动选材已经有了初步进展。常用的基因检测方法有:直接测序(direct sequencing,DS)、连接酶检测反应(ligase detection reaction,LDR)、限制性片段长度多态性分析(restriction fragment length polymorphism,RFLP)、变性高效液相色谱分析(denaturing high performance liquid chromotography,DHPLC)、定量PCR,其中利用DNA分析仪直接测序是金标准,但是上述方法分别存在着成本高、准确率低、操作繁琐和重复性差等问题。实时荧光定量核酸扩增检测系统(Real-time Quantitative PCR Detecting System,qPCR),也叫实时定量基因扩增荧光检测系统,qPCR系统为三代的PCR检测技术,qPCR具有检测灵敏度高,检测线性范围宽,检测精度和重复性好等突出优势,因此被公认为当今世界用于临床的最先进核酸分子诊断技术。因此该技术可以高效、准确的用于运动基因检测。
目前的现有技术中,运动基因的检测多数是单位点效应研究,市场上的现有产品也仅是采用少数位点的组合,不同的试剂盒采用不同的基因组合, 结果比较片面,且对同一受测者的检测结果可能存在较大的差异。中国专利公开号CN 101851674 A、CN 104313147 A、CN 102864223 A及CN 104517023 A等此类文献均是对部分运动基因的组合检测,并且检测结果标准不一,不同的检测结果难以统一评判,通用性较差。因此一种能够对运动基因进行全面的检测并进行科学评估的评估系统是本领域的迫切需要解决的问题。
发明内容
为此,需要提供一种能够对全部运动基因的多态性位点进行检测的基于qPCR分型技术的运动基因检测评估方法及系统。
为实现上述目的,基于qPCR分型技术的运动基因检测评估方法及系统,对受检者的运动基因多态性位点进行荧光PCR检测,对基因型进行得分评估;根据基因检测结果及评分的统计分析,得出个体化的评估结果;评估结果汇总建立运动人才基因数据库。
优选的,运动基因包括如下方面:
耐力素质、爆发力量素质、运动热情、运动疲劳恢复、软组织损伤风险、肥胖风险、碳水化合物及脂质敏感性,共8个方面44个相关基因的52个多态性位点。其中,耐力素质包括13个多态性位点,爆发力量素质包括11个多态性位点,运动热情包括6个多态性位点,运动疲劳恢复包括6个多态性位点,软组织损伤风险包括5个多态性位点,肥胖风险包括11个多态性位点,碳水化合物敏感性包括6个多态性位点,脂质敏感性包括7个多态性位点。
进一步优选的,每个多态性位点的贡献值为:能力评估多态性位点按照基因型有利纯和赋值2分,有利杂合赋值1分,无影响赋值0分;风险评估多态性位点按照基因型风险纯和赋值2分,风险杂合赋值1分,无影响赋值0分;
具体的运动基因位点及贡献值为:
耐力素质评估13个位点,其不同基因型及其赋值为:ADRB2基因 rs1042713,AA-AG-GG基因型分别为2-1-0分;AQP1基因rs1049305,CC-CG-GG基因型分为为2-1-0分;AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;COL5A1基因rs12722,TT-CT-CC基因型分别为2-1-0分;GABPB1基因rs12594956,TT-GT-GG基因型分别为2-1-0分;GABPB1基因rs7181866,CC-CT-TT基因型分别为2-1-0分;HFE基因rs1799945,GG-CG-CC基因型分别为2-1-0分;KCNJ11基因rs5219,CC-CT-TT基因型分别为2-1-0分;PPARA基因rs4253778,GG-CG-CC基因型分别为2-1-0分;PPARD基因rs2016520,CC-CT-TT基因型分别为2-1-0分;UCP3基因rs1800849,TT-CT-CC基因型分别为2-1-0分;ACE基因rs4646994,II-DI-DD基因型分别为2-1-0分;PPARGC1A基因rs8192678,GG-AG-AA基因型分别为2-1-0分;
爆发力量素质评估11个位点,其不同基因型及其赋值为:AGT基因rs699位点,CC-CT-TT基因型分别为2-1-0分;AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;CKM基因rs8111989,GG-AG-AA基因型分别为2-1-0分;HIF1A基因rs11549465,TT-CT-CC基因型分别为2-1-0分;IL6基因rs1800795,GG-CG-CC基因型分别为2-1-0分;NOS3基因rs2070744,TT-CT-CC基因型分别为2-1-0分;PPARA基因rs4253778,CC-CG-GG基因型分别为2-1-0分;PPARG基因rs1801282,GG-CG-CC基因型分别为2-1-0分;ACE基因rs4646994,DD-DI-II基因型分别为2-1-0分;ACTN3基因rs1815739,CC-CT-TT基因型分别为2-1-0分;MTHFR基因rs1801131,CC-AC-AA基因型分别为2-1-0分;
运动热情评估6个位点,其不同基因型及其赋值为:CREB1基因rs2253206,GG-AG-AA基因型分别为2-1-0分;C18orf2基因rs8097348,GG-AG-AA基因型分别为2-1-0分;AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;PATS2L基因rs12612420,AA-AG-GG基因型分别为2-1-0分;PAPSS2基因rs10887741,TT-CT-CC基因型分别为2-1-0分;BDNF基因 rs6265,AA-AG-GG基因型分别为2-1-0分;
运动疲劳恢复评估6个位点,其不同基因型及其赋值为:AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;IL6基因rs1800795,GG-CG-CC基因型分别为2-1-0分;HIF1A基因rs11549465,TT-CT-CC基因型分别为2-1-0分;NAT2基因rs1208,GG-AG-AA基因型分别为2-1-0分;PPARD基因rs2016520,CC-CT-TT基因型分别为2-1-0分;MCT1基因rs1049434,TT-AT-AA基因型分别为2-1-0分;
软组织损伤风险评估5个位点,其不同基因型及其赋值为:MMP3基因rs591058,GG-AG-AA基因型分别为2-1-0分;MMP3基因rs679620,GG-AG-AA基因型分别为2-1-0分;COL5A1基因rs12722,TT-CT-CC基因型分别为2-1-0分;COL1A1基因rs1800012,GG-GT-TT基因型分别为2-1-0分;GDF5基因rs143383,TT-CT-CC基因型分别为2-1-0分;
肥胖风险评估11个位点,其不同基因型及其赋值为:MC4R基因rs17782313,CC-CT-TT基因型分别为2-1-0分;LEPR基因rs8179183,CC-CG-GG基因型分别为2-1-0分;FABP2基因rs1799883,AA-AG-GG基因型分别为2-1-0分;FTO基因rs1421085,CC-CT-TT基因型分别为2-1-0分;PPARG基因rs1801282,GG-CG-CC基因型分别为2-1-0分;INSIG2基因rs7566605,CC-CG-GG基因型分别为2-1-0分;GNB3基因rs5443,TT-CT-CC基因型分别为2-1-0分;ADRB2基因rs1042713,AA-AG-GG基因型分别为0-1-2分;ADRB2基因rs1042714,GG-CG-CC基因型分别为2-1-0分;ADRB3基因rs4994,CC-CT-TT基因型分别为2-1-0分;UCP1基因rs1800592,CC-CT-TT基因型分别为2-1-0分;
碳水化合物敏感性评估6个位点,其不同基因型及其赋值为:TCF7L2基因rs7903146,TT-CT-CC基因型分别为2-1-0分;TCF7L2基因rs12255372,TT-GT-GG基因型分别为2-1-0分;FTO基因rs9939609,AA-AT-TT基因型分别为2-1-0分;PPARG基因rs1801282,CC-CG-GG基因型分别为2-1-0分; KCNJ11基因rs5219,TT-CT-CC基因型分别为2-1-0分;IGF2BP2基因rs4402960,AA-AC-CC基因型分别为2-1-0分;
脂质敏感性评估7个位点,其不同基因型及其赋值为:APOC1基因rs4420638,GG-AG-AA基因型分别为2-1-0分;APOB基因rs693,TT-CT-CC基因型分别为2-1-0分;LDLR基因rs6511720,GG-GT-TT基因型分别为2-1-0分;CETP基因rs5882,AA-AG-GG基因型分别为2-1-0分;CETP基因rs708272,AA-AG-GG基因型分别为2-1-0分;LPL基因rs328,CC-CG-GG基因型分别为2-1-0分;APOA5基因rs662799,CC-CT-TT基因型分别为2-1-0分。
优选的,评估结果包括运动潜力及不足,其中运动潜力根据耐力素质、爆发力量素质评分。
本发明的另一个发明目的是提供一种基于qPCR分型技术的运动基因检测评估方法及系统,其特征在于,运动基因检测评估系统包括:
-个人信息数据库,用于收集并分类处理个人信息;
-运动基因检测结果数据库,用于检测受测者的运动基因多态性位点,收集检测结果;
-运动能力或风险数据库,用于对基因检测结果进行贡献度分析,得到评估结果;
-运动人才基因库,根据个人信息、基因检测结果、运动能力或风险结果的综合汇总,为受检者出具相对应的个体化运动或体重管理方案,并建立运动人才基因数据库。
优选的,基因贡献度得分进行归一化处理,满分为100分,对于一个受检者,每个SNP位点根据检测得到的基因型,都有一个分值,我们定义这个分值为S,共8个项目,每一项我们假设有n个位点,那么每个项目的得分为P:
Figure PCTCN2017098569-appb-000001
我们按照百分制对项目的得分进行归一化处理,处理后的得分为P100
P100=(P*100)/2n       (2)
我们根据得分将受检者在该项目的能力或风险进行分级,能力或风险级别分别对应标识A-B-C-D-E,分别代表高-略高-正常-略低-低五个等级。
优选的,运动能力综合评估包括运动潜力与运动不足两方面。运动潜力根据耐力素质与爆发力量素质评分,当两者均为B级及以上时,认为该受检者综合运动能力高,定义为Ⅰ级别;当两者均为C级时,认为该受检者综合运动能力一般,定义为Ⅱ级别;当两者均为D级及以下时,认为该受检者综合运动能力较低,定义为Ⅲ级别;运动潜力评估根据耐力素质与爆发力量素质评分,当耐力级别高于爆发力量级别时,该受检者为耐力优势型;当爆发力量级别高于耐力级别时,该受检者为爆发力量优势型;当爆发力量级别等同于耐力级别时,该受检者为耐力与爆发力量兼具型。
发现潜力与不足根据受检者在不同项目中的得分与人群平均分相比较,得出受检者的能力与风险级别,能力较高(A级,B级)或风险较低(D级,E级)为潜力,能力较低(D级,E级)或风险较高为(A级,B级)不足。
根据运动能力综合评估,制定运动类型选择方案。耐力与爆发力量兼具Ⅰ型,建议优选耐力与爆发力量兼有型项目,次选耐力型项目或爆发力量型项目;耐力与爆发力量兼具Ⅱ型与Ⅲ型,建议选择耐力与爆发力量兼有型项目;耐力优势Ⅰ型,建议优选耐力型项目,次选耐力与爆发力量兼有型项目或爆发力量型项目;耐力优势Ⅱ型与Ⅲ型,优选耐力型项目;爆发力量优势Ⅰ型,建议优选爆发力量型项目,次选耐力与爆发力量兼有型项目或耐力量型项目;爆发力量优势Ⅱ型与Ⅲ型,建议选择爆发力量型项目。根据潜力与不足项目,制定发挥潜力,改善不足,降低风险培训方案。
区别于现有技术,上述技术方案可以全面地对受检者的运动能力及相关风险进行评估,评估的基础精准、评估效率高且评估结果稳定准确。根据基因检测结果,可显示出具体受检者基因型在某种运动上所具备的潜能值的高 低。结合基因检测报告,结合个人具体情况与需求,对个人运动做出科学、系统、有针对性的规划,最大程度地发挥基因蕴藏的运动潜力。在招募运动员期间,可以辅助现有选材手段进行运动员进行甄选;在训练期间,可以对运动员做个体化训练指导和管理。本发明克服了传统方法的一刀切的方法,在运动员选拔和训练,以及个体健身效果方面更具优势。
附图说明
图1为本发明的运动基因检测评估系统的示意图;
图2为具体实施方式所述的运动检测报告的内容示意图。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
实施例1:
请参阅图1~2,作为本发明的一种优选的实施方式,本实施例的基于qPCR分型技术的运动基因检测评估方法及系统包括如下组成部分:
a.个人信息数据库,个人信息数据库中包括个人姓名、性别、年龄、身高、体重、BMI及样本编号等个人信息;
b.运动基因检测结果数据库:基于qPCR分型技术检测基因,包括耐力素质、爆发力量素质、软组织损伤风险、运动疲劳恢复、运动热情、肥胖风险、碳水化合物及脂质敏感性8个素质方面的44个相关基因的52个多态性位点,得到每个受检者的基因型,具体的位点如下表所示:
序号 项目 位点数
1 耐力素质 11
2 爆发力量素质 13
3 软组织损伤风险 5
4 运动疲劳恢复 6
5 运动热情 6
6 肥胖风险 11
7 碳水化合物敏感性 6
8 脂质敏感性 7
耐力素质:耐力是指机体在一定时间内保持特定强度负荷或动作质量的能力,对于长距离运动项目、对耐力有要求的项目来说极为重要。杰出耐力素质与基因多态性关联的研究开展的最早,而且研究也最为广泛和深入。与杰出耐力素质相关联的基因主要有过氧化物酶体增殖物激活受体基因PPARA和PPARD、肾上腺素受体基因ADRB2、胶原蛋白编码基因COL5A1、ACE、mtDNA等。例如肾上腺素受体(Adrenaline receptors,ADR)可与肾上腺素和去甲肾上腺素结合的G蛋白偶联受体。儿茶酚胺激活脂肪水解的差异与肾上腺素α2受体的亲和性和数目有关。研究发现马拉松运动员对脂肪的利用率就明显高于常人和其他运动员,脂肪水解供能优势耐力运动的重要能量代谢途径。
爆发力量素质是指在最短时间内使器械(或人体本身)移动到尽量远的距离的力。爆发力量素质是杰出运动能力的两个重要方面之一,对于短距离速度项目、对爆发力有要求的项目来说尤为重要。爆发力量素质与基因多态性的关联研究开展较晚,目前已发现ACTN3、ACE、IL6、HIF1A和NOS3基因等都与爆发力力量特征有关。例如ACTN3基因编码α-辅肌动蛋白3,仅表达于快肌纤维中,而快肌纤维能产生爆发力所需要的收缩。多项研究表明R577X多态性可影响快慢肌纤维的分布比例。如果一个人基因型为RR型,快肌纤维的收缩功能正常,爆发力量强,也表现为对力量训练敏感,在短跑、举重这样需要瞬时爆发力项目的运动员中,这个正常基因的携带比例高达92%。如果基因型为RX型,快肌纤维里面还有正常的ACTN3表达,功能也不会受影响。如果基因型为XX型,快肌纤维的收缩就会受影响,力量水平 明显降低。
软组织损伤,是指软组织或骨骼肌肉受到直接或间接暴力,或长期慢性劳损引起的一大类创伤综合征。组织受创后出现微循环障碍、无菌性炎症,致使局部肿胀疼痛。例如MMP3基因编码的基质金属蛋白酶3,该酶最主要的功能就是降解细胞外基质和基膜,其降解的底物包括多种胶原蛋白(肌腱等结蹄组织)、明胶、层黏连蛋白、纤维连接蛋白、蛋白多糖等细胞外基质成分,可参与多种软组织的损伤和修复。
运动疲劳恢复:运动时以能量消耗过程为主,恢复过程跟不上消耗过程,使ATP储存下降,肌糖原和肝糖原也大量消耗,甚至会造成血糖水平下降,可引起机体中枢性疲劳,代谢产物的堆积主要是指乳酸水平和氨含量的增加也是疲劳的主要原因,乳酸消除的速度与其产生的数量和恢复方式有关,工作时形成的乳酸愈少消除的愈快。例如腺苷一磷酸脱氨酶1(AMPD1)在所有的组织中都表达,但主要在肌肉组织中表达,它的作用是催化腺苷一磷酸(AMP)水解脱氨生成肌苷酸(IMP)和氨。AMPD1基因较易发生突变,AMPD1基因的缺乏会导致一种代谢性肌肉疾病,如运动诱发的疲劳、抽筋、肌痛等,与嘌呤代谢紊乱引起的血氨的水平有关。AMPD1的活化和腺苷能量转化可保护机体免受应激的损害。
运动热情:在体育运动中,运动员的运动成绩高低与诸多因素有关,不可否认心理因素在训练、竞技、疼痛的忍受和动机等多方面都有非常重要的影响。虽然遗传因素决定心理响应还了解不多,但是目前已发现多个基因与运动员的运动热情有关。例如BDNF基因,即脑源性神经营养因子(brain-derived neurotrophic factor,BDNF),它是一种具有神经营养作用的蛋白质。脑源性神经营养因子及其受体在神经系统广泛表达。它对脑内海马区、脊髓和骨骼肌的神经意思血管的生成、发展和再生都有重要作用。有研究表明,BDNF基因上的SNP位点与个体不同的情绪以及训练的认知有关。
肥胖风险:科学研究表明,肥胖与基因存在千丝万缕的联系,基于个体 间的差异,遗传因素对肥胖的影响为20%-70%。那么,这些“肥胖基因”是否就决定了一个人体型的胖瘦呢?答案显然是否定的!基因遗传只是导致肥胖的重要因素之一。任何肥胖的出现,都是基因和环境共同作用的结果,不良的饮食习惯(吃的太快、不吃早餐、经常大餐等)、生活习惯(熬夜、睡眠不足、烟酒过度等)以及缺少运动(久坐不动)都会导致肥胖的风险的增加。例如FTO基因:被称为肥胖基因,最早发现于2007年,是与肥胖相关性最强的基因之一。FTO是C/EBP家族的转录辅活化因子(transcriptional coactivator),能增强C/EBP与启动子序列的结合,在脂肪细胞分化和脂肪积累中发挥作用。研究表明C/EBP家族成员与脂肪细胞分化相关,C/EBP使前脂肪细胞向脂肪细胞分化,加速脂肪积累。
碳水化合物是维持生命活动所需能量的主要来源。碳水化合物敏感性,是指人在长期的进化中适应高蛋白-低碳水化合物的饮食结构,当摄入大量的碳水化合物后就容易形成肥胖,这主要是由于食物中缺少适量的蛋白而缺乏饱腹感,因而该类人群也易产生代谢问题,譬如发展为2型糖尿病。例如TCF7L2基因是转录因子7类似物2,TCF7L2普遍存在于人体组织,包括成熟胰岛β细胞中,但是很少在骨骼肌中表达。TCFTL2可能在早期胰岛β细胞分化过程中有重要作用,影响胰岛素的正常分泌和血糖调节。目前,有许多针对各地人群TCF7L2基因的SNPs研究都证实rs12255372和rs7903146与2型糖尿病最为相关。
脂质敏感性,是指在长期的进化中适应高碳水化合物-低脂肪的饮食结构,当摄入大量的脂肪后就易形成肥胖,由于食物中缺少适量的碳水化合物而缺乏饱腹感。因此该类人群也易产生代谢问题,譬如发展为心脑血管疾病。脂蛋白脂肪酶(lipoprotein lipase LPL)。LPL的主要生理功能是水解血液中富含甘油三酯(triglyceride,TG)脂蛋白中的三脂酰甘油,生成的甘油、脂肪酸可供组织氧化分解并提供能量。它在乳糜微粒(chylomicron,CM)和极低密度脂蛋白(very low density lipoprotein,VLDL)的分解代谢中具有关键性作用。
上述方面的具体基因位点为:
1)耐力素质评估13个位点,其不同基因型为:ADRB2基因rs1042713、AQP1基因rs1049305、AMPD1基因rs17602729、COL5A1基因rs12722、GABPB1基因rs12594956、GABPB1基因rs7181866、HFE基因rs1799945、KCNJ11基因rs5219、PPARA基因rs4253778、PPARD基因rs2016520、UCP3基因rs1800849、ACE基因rs4646994、PPARGC1A基因rs8192678。
2)爆发力量素质评估11个位点,其不同基因型为:AGT基因rs699位点、AMPD1基因rs17602729、CKM基因rs8111989、HIF1A基因rs11549465、IL6基因rs1800795、NOS3基因rs2070744、PPARA基因rs4253778、PPARG基因rs1801282、ACE基因rs4646994、ACTN3基因rs1815739、MTHFR基因rs1801131。
3)软组织损伤风险评估5个位点,其不同基因型为:MMP3基因rs591058、MMP3基因rs679620、COL5A1基因rs12722、COL1A1基因rs1800012、GDF5基因rs143383。
4)运动疲劳恢复评估6个位点,其不同基因型为:AMPD1基因rs17602729、IL6基因rs1800795、HIF1A基因rs11549465、NAT2基因rs1208、PPARD基因rs2016520、MCT1基因rs1049434。
5)运动热情评估6个位点,其不同基因型为:CREB1基因rs2253206、C18orf2基因rs8097348、AMPD1基因rs17602729、PATS2L基因rs12612420、PAPSS2基因rs10887741、BDNF基因rs6265。
6)肥胖风险评估11个位点,其不同基因型为:MC4R基因rs17782313、LEPR基因rs8179183、FABP2基因rs1799883、FTO基因rs1421085、PPARG基因rs1801282、INSIG2基因rs7566605、GNB3基因rs5443、ADRB2基因rs1042713、ADRB2基因rs1042714、ADRB3基因rs4994、UCP1基因rs1800592。
7)碳水化合物敏感性评估6个位点,其不同基因型为:TCF7L2基因 rs7903146、TCF7L2基因rs12255372、FTO基因rs9939609、PPARG基因rs1801282、KCNJ11基因rs5219、IGF2BP2基因rs4402960。
8)脂质敏感性评估7个位点,其不同基因型为:APOC1基因rs4420638、APOB基因rs693、LDLR基因rs6511720、CETP基因rs5882、CETP基因rs708272、LPL基因rs328、APOA5基因rs662799。
c.运动能力或风险数据库,运动能力或风险数据库用于对检测出的基因位点进行评估,每个位点的按照基因型有利纯和的赋值2分,有利杂合赋值1分,无影响赋值0分。不同的基因型及其赋值分别为:
1)耐力素质评估13个位点:ADRB2基因rs1042713,AA-AG-GG基因型分别为2-1-0分;AQP1基因rs1049305,CC-CG-GG基因型分为为2-1-0分;AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;COL5A1基因rs12722,TT-CT-CC基因型分别为2-1-0分;GABPB1基因rs12594956,TT-GT-GG基因型分别为2-1-0分;GABPB1基因rs7181866,CC-CT-TT基因型分别为2-1-0分;HFE基因rs1799945,GG-CG-CC基因型分别为2-1-0分;KCNJ11基因rs5219,CC-CT-TT基因型分别为2-1-0分;PPARA基因rs4253778,GG-CG-CC基因型分别为2-1-0分;PPARD基因rs2016520,CC-CT-TT基因型分别为2-1-0分;UCP3基因rs1800849,TT-CT-CC基因型分别为2-1-0分;ACE基因rs4646994,II-DI-DD基因型分别为2-1-0分;PPARGC1A基因rs8192678,GG-AG-AA基因型分别为2-1-0分。
2)爆发力量素质评估11个位点:AGT基因rs699位点,CC-CT-TT基因型分别为2-1-0分;AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;CKM基因rs8111989,GG-AG-AA基因型分别为2-1-0分;HIF1A基因rs11549465,TT-CT-CC基因型分别为2-1-0分;IL6基因rs1800795,GG-CG-CC基因型分别为2-1-0分;NOS3基因rs2070744,TT-CT-CC基因型分别为2-1-0分;PPARA基因rs4253778,GG-CG-CC基因型分别为0-1-2分;PPARG基因rs1801282,GG-CG-CC基因型分别为2-1-0分;ACE基因rs4646994, II-DI-DD基因型分别为0-1-2分;ACTN3基因rs1815739,CC-CT-TT基因型分别为2-1-0分;MTHFR基因rs1801131,CC-AC-AA基因型分别为2-1-0分。
3)软组织损伤风险评估5个位点:MMP3基因rs591058,GG-AG-AA基因型分别为2-1-0分;MMP3基因rs679620,GG-AG-AA基因型分别为2-1-0分;COL5A1基因rs12722,TT-CT-CC基因型分别为2-1-0分;COL1A1基因rs1800012,GG-GT-TT基因型分别为2-1-0分;GDF5基因rs143383,TT-CT-CC基因型分别为2-1-0分。
4)运动疲劳恢复评估6个位点:AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;IL6基因rs1800795,GG-CG-CC基因型分别为2-1-0分;HIF1A基因rs11549465,TT-CT-CC基因型分别为2-1-0分;NAT2基因rs1208,GG-AG-AA基因型分别为2-1-0分;PPARD基因rs2016520,CC-CT-TT基因型分别为2-1-0分;MCT1基因rs1049434,TT-AT-AA基因型分别为2-1-0分。
5)运动热情评估6个位点:CREB1基因rs2253206,GG-AG-AA基因型分别为2-1-0分;C18orf2基因rs8097348,GG-AG-AA基因型分别为2-1-0分;AMPD1基因rs17602729,CC-CT-TT基因型分别为2-1-0分;PATS2L基因rs12612420,AA-AG-GG基因型分别为2-1-0分;PAPSS2基因rs10887741,TT-CT-CC基因型分别为2-1-0分;BDNF基因rs6265,AA-AG-GG基因型分别为2-1-0分。
6)肥胖风险评估11个位点:MC4R基因rs17782313,CC-CT-TT基因型分别为2-1-0分;LEPR基因rs8179183,CC-CG-GG基因型分别为2-1-0分;FABP2基因rs1799883,AA-AG-GG基因型分别为2-1-0分;FTO基因rs1421085,CC-CT-TT基因型分别为2-1-0分;PPARG基因rs1801282,GG-CG-CC基因型分别为2-1-0分;INSIG2基因rs7566605,CC-CG-GG基因型分别为2-1-0分;GNB3基因rs5443,TT-CT-CC基因型分别为2-1-0分;ADRB2基因rs1042713,AA-AG-GG基因型分别为0-1-2分;ADRB2基因 rs1042714,GG-CG-CC基因型分别为2-1-0分;ADRB3基因rs4994,CC-CT-TT基因型分别为2-1-0分;UCP1基因rs1800592,CC-CT-TT基因型分别为2-1-0分。
7)碳水化合物敏感性评估6个位点:TCF7L2基因rs7903146,TT-CT-CC基因型分别为2-1-0分;TCF7L2基因rs12255372,TT-GT-GG基因型分别为2-1-0分;FTO基因rs9939609,AA-AT-TT基因型分别为2-1-0分;PPARG基因rs1801282,GG-CG-CC基因型分别为0-1-2分;KCNJ11基因rs5219,TT-CT-CC基因型分别为2-1-0分;IGF2BP2基因rs4402960,AA-AC-CC基因型分别为2-1-0分。
8)脂质敏感性评估7个位点:APOC1基因rs4420638,GG-AG-AA基因型分别为2-1-0分;APOB基因rs693,TT-CT-CC基因型分别为2-1-0分;LDLR基因rs6511720,GG-GT-TT基因型分别为2-1-0分;CETP基因rs5882,AA-AG-GG基因型分别为2-1-0分;CETP基因rs708272,AA-AG-GG基因型分别为2-1-0分;LPL基因rs328,CC-CG-GG基因型分别为2-1-0分;APOA5基因rs662799,CC-CT-TT基因型分别为2-1-0分。
对于一个受检者,每个SNP位点根据检测得到的基因型,都有一个分值,定义这个分值为S。8个检测项目,每一项假设有n个位点,那么每个项目的得分为P:
Figure PCTCN2017098569-appb-000002
按照百分制对项目的得分进行归一化处理,处理后的得分为P100
P100=(P*100)/2n     (2)
作为本实施例的一种优选的实施方式,运动能力或风险数据库以千人基因组东亚人群的基因组数据为依据,东亚人群包括5个细分亚群,分别是中国北京汉族,中国南方汉族,中国西双版纳傣族,日本东京日本人和越南胡志明市京族。计算不同特征下的人群最高得分Pmax和最低得分Pmin(百分制),将得分区间进行5等分,其4个等分点从小到大分别为P1、P2、P3和P4。我 们将受检者在该项目的能力或风险进行分级,能力或风险级别分别对应标识A-B-C-D-E,A级别为P100≥P4;B级别为P3≤P100<P4;C级别为P2≤P100<P3;D级别为P1≤P100<P2;E级别为P100<P1;分别代表高-略高-正常-略低-低五个等级。
可根据单个受检者的能力或风险得分,得到该受检者在不同项目上的能力或风险级别,以及人群百分比,综合不同项目的结果可以得出受检者的综合能力、优势方向及自身不足。
运动能力综合评估包括运动潜力与不足两方面。运动潜力根据耐力素质与爆发力量素质评分,当两项素质中只要有其中一项为B级及以上时,认为该受检者综合运动能力高,定义为Ⅰ级别;当两项素质中均为C级或其中一项为C级而另一项素质是D、E级时,认为该受检者综合运动能力一般,定义为Ⅱ级别;当两者均为D级及以下时,认为该受检者综合运动能力较低,定义为Ⅲ级别;运动潜力类型评估根据耐力素质与爆发力量素质进行综合评分,当耐力素质级别高于爆发力量素质级别时,该受检者为耐力优势型,具体可分为耐力优势型Ⅰ级、耐力优势型Ⅱ级、耐力优势型Ⅲ级;当爆发力量素质级别高于耐力素质级别时,该受检者为爆发力量优势型;当爆发力量素质级别与耐力素质级别为同一级时,该受检者为耐力与爆发力量兼具型,具体可分为耐力与爆发力量兼具型Ⅰ级、耐力与爆发力量兼具型Ⅱ级、耐力与爆发力量兼具型Ⅲ级。
发现潜力与不足根据受检者在不同项目的得分级别,能力较高(A级,B级)或风险较低(D级,E级)为潜力,能力较低(D级,E级)或风险较高为(A级,B级)不足。
根据运动能力综合评估,制定运动类型选择方案。耐力与爆发力量兼具Ⅰ型,建议优选耐力与爆发力量兼有型项目,次选耐力型项目或爆发力量型项目;耐力与爆发力量兼具Ⅱ型与Ⅲ型,建议选择耐力与爆发力量兼有型项目;耐力优势Ⅰ型,建议优选耐力型项目,次选耐力与爆发力量兼有型项目 或爆发力量型项目;耐力优势Ⅱ型与Ⅲ型,优选耐力型项目;爆发力量优势Ⅰ型,建议优选爆发力量型项目,次选耐力与爆发力量兼有型项目或耐力量型项目;爆发力量优势Ⅱ型与Ⅲ型,建议选择爆发力量型项目。根据潜力与不足项目,制定发挥潜力,改善不足,降低风险培训方案。
耐力型项目包括游泳、长跑、马拉松、自行车、铁人三项、竞走、全能、越野滑雪、北欧两项等;爆发力量型项目包括短跑、跳高、跳远、标枪、举重、速度滑冰、短道速滑等;耐力与爆发力量兼有型项目包括足球、篮球、排球、羽毛球、网球等球类运动,帆船、皮划艇、中长距离游泳、举重、摔跤等。
d.根据个人信息、基因检测结果、运动能力或风险结果的综合汇总,为受检者出具相对应的个体化运动或体重管理方案,并建立运动人才基因数据库。
作为本实施例的另一个优选的实施方式,根据检测国家或国际优秀运动员的基因,反向评价本评估系统的优势与不足,在讲运动员的基因和运动水平储存到运动人才数据库后,对评估模型进行定期优化升级。
实施例2:
受检者李某,采集样本为口腔拭子,通过荧光定量PCR对实施例1中涉及的基因型进行测序。具体测序结果如下:
(1)耐力素质
李某的耐力素质检测结果为:46.2分(该项人群平均得分为45.0),能力级别:C,C级人群占总人群的33.7%。耐力素质方面基因型检测结果如下表:
基因名 基因型 位点效应 基因型描述
ADRB2 AG 对耐力素质有益,峰值摄氧量提高
AQP1 CG 对耐力素质有益,增强水重吸收能力
AMPD1 CC ↑↑ 对耐力素质有益,增强能量代谢速率
COL5A1 CC 对耐力素质无益,肌肉灵活性一般
GABPB1 GT 对耐力素质有益,线粒体生物合成功能增强
GABPB1 TT 对耐力素质无益,线粒体生物合成功能一般
HFE CC 对耐力素质无益,血铁浓度和转铁蛋白饱和度一般
KCNJ11 CT 对耐力素质有益,细胞钾吸收能力增强
PPARA GG ↑↑ 对耐力素质有益,脂肪酸氧化供能增强
PPARD CT 对耐力素质有益,增强肌肉葡萄糖吸收能力
UCP3 CT 对耐力素质有益,增强有氧能量代谢能力
ACE DD 对耐力素质无益,ACE活性高,有氧耐力较低
PPARGC1A GG ↑↑ 对耐力素质有益,慢肌纤维比例提高,耐力增强
(2)爆发力量素质
李某的爆发力检测结果为:63.6分(该项人群平均得分为44.8),能力级别:A,C级人群占总人群的1.2%。爆发力方面基因型检测结果如下表:
基因名 基因型 位点效应 基因型描述
AGT CC ↑↑ 对爆发力量有益,血管紧张素II活性最高,促进骨骼肌生长
AMPD1 CC ↑↑ 对爆发力量有益,增强能量代谢速率
CKM AA 对爆发力量无益,肌肉能量供给一般
HIF1A CT 对爆发力量有益,糖酵解型肌比例提高,葡萄糖吸收能力增强
IL6 GG ↑↑ 对爆发力量有益,血浆il-6活性高,促进肌肉细胞代谢
NOS3 TT ↑↑ 对爆发力量有益,血管功能增强
PPARA CG 对爆发力量无益,脂肪酸氧化供能增强
PPARG CC 对爆发力量无益,骨骼肌葡萄糖吸收效率和肌纤维横截面积一般
ACE DD ↑↑ 对爆发力量有益,快肌纤维比例提高,肌肉力量和肌肉体积增大
ACTN3 CC ↑↑ 对爆发力量有益,快肌纤维比例高,肌肉收缩能力强
MTHFR AA 对爆发力量无益,对肌肉增长影响小
(3)软组织损伤风险
李某的软组织损伤风险检测结果为:70.0分(该项人群平均得分为65.3),能力级别:B,B级人群占总人群的43.1%。软组织损伤风险方面基因型检测结果如下表:
基因名 基因型 位点效应 基因型描述
MMP3 GG ↑↑ 软组织损伤风险高
MMP3 AG 软组织损伤风险较高
COL5A1 CC 软组织损伤风险较低
COL1A1 GG ↑↑ 软组织损伤风险较高
GDF5 TT ↑↑ 软组织损伤风险高
(4)运动疲劳恢复
李某的运动疲劳恢复检测结果为:58.3分(该项人群平均得分为44.7),能力级别:B,B级人群占总人群的11.3%。运动疲劳恢复方面基因型检测结 果如下表:
基因名 基因型 位点效应 基因型描述
AMPD1 CC ↑↑ 对运动疲劳恢复有益,增强能量代谢速率
IL6 GG ↑↑ 对运动疲劳恢复有益,增强肌肉损伤恢复能力
HIF1A CT 对运动疲劳恢复有益,增强葡萄糖代谢能力
NAT2 AG 对运动疲劳恢复有益,有害物质代谢能力较强
PPARD CT 对运动疲劳恢复有益,增强骨骼肌吸收葡萄糖能力
MCT1 TT 对运动疲劳恢复无益,乳酸转运能力下降
(5)运动热情
李某的运动热情检测结果为:66.7分(该项人群平均得分为48.7),能力级别:B,B级人群占总人群的30.8%。运动热情方面基因型检测结果如下表:
基因名 基因型 位点效应 基因型描述
CREB1 AG 对运动热情有益,运动动机积极,更加乐于锻炼
C18orf2 GG ↑↑ 对运动热情有益,运动动机积极,更加乐于锻炼
AMPD1 CC ↑↑ 对运动热情有益,运动动机积极,更加乐于锻炼
PATS2L GG 对运动热情无益,运动积极性一般
PAPSS2 TT ↑↑ 对运动热情有益,运动动机积极,更加乐于锻炼
BDNF AG 对运动热情有益,运动动机积极,更加乐于锻炼
(6)肥胖风险
李某的肥胖风险检测结果为:22.7分(该项人群平均得分为23.0),能力级别:D,D级人群占总人群的52.4%。运动热情方面基因型检测结果如下表:
基因名 基因型 位点效应 基因型描述
MC4R TT 肥胖风险低
LEPR GG 肥胖风险低
FABP2 GG 肥胖风险低
FTO TT 肥胖风险低
PPARG CC 肥胖风险低
INSIG2 GG 肥胖风险低
GNB3 TT ↑↑ 肥胖风险高
ADRB2 AG 肥胖风险中等
ADRB2 CC 肥胖风险低
ADRB3 TT 肥胖风险低
UCP1 CC ↑↑ 肥胖风险高
(7)碳水化合物敏感性
李某的肥胖风险检测结果为:25.0分(该项人群平均得分为29.4),能力 级别:D,D级人群占总人群的55.4%。运动热情方面基因型检测结果如下表:
基因名 基因型 位点效应 基因型描述
TCF7L2 CC 碳水化合物敏感性低
TCF7L2 GG 碳水化合物敏感性低
FTO TT 碳水化合物敏感性低
PPARG CC ↑↑ 碳水化合物敏感性高
KCNJ11 CT 碳水化合物敏感性中等
IGF2BP2 CC 碳水化合物敏感性低
(8)脂质敏感性
李某的肥胖风险检测结果为:64.3分(该项人群平均得分为50.0),能力级别:B,B级人群占总人群的35.9%。运动热情方面基因型检测结果如下表:
基因名 基因型 位点效应 基因型描述
APOC1 AA 脂质敏感性低
APOB CT 脂质敏感性中等
LDLR GG ↑↑ 脂质敏感性高
CETP AG 脂质敏感性中等
CETP AG 脂质敏感性中等
LPL CC ↑↑ 脂质敏感性高
APOA5 CC ↑↑ 脂质敏感性高
综合上述8个方面的基因检测结果,李某的综合评估结果如下表:
项目名称 评估分值 人群占比 天赋/风险程度
运动热情 66.7 8.9% □低/□略低/□正常/■略高/□高
爆发力量 63.6 1.0% □低/□略低/□正常/□略高/■高
耐力素质 46.2 19.6% □低/□略低/■正常/□略高/□高
软组织损伤 70.0 20.0% □低/□略低/□正常/■略高/□高
运动疲劳恢复 58.3 11.3% □低/□略低/□正常/■略高/□高
肥胖风险 22.7 21.2% □低/■略低/□正常/□略高/□高
碳水化合物敏感性 25.0 37.9% □低/■略低/□正常/□略高/□高
脂质敏感性 64.3 15.3% □低/□略低/□正常/■略高/□高
由上表可以看出,李某的耐力素质得分46.2,在人群中的百分比为19.6%,评估等级为C,高于人群平均水平1.2%,您所处的耐力素质C等级在人群中的百分比为33.7%,因此您的耐力素质在人群中无优势。而您的爆发力量素质得分63.6,在人群中的百分比为1.0%,评估等级为A,高出人群平均水平18.8%,您所处的爆发力量素质A等级在人群中的百分比仅为1.2%,因此他的爆发力量素质在人群中具有明显优势。综上,李某属于爆发力量优势型Ⅰ型个体,选择需要强爆发力量的运动项目具有明显的先天优势。
爆发力量较强的运动项目为时间短、动作剧烈的项目,包括短跑、跳高、跳远、标枪、举重、速度滑冰、短道速滑等。
根据上述检测评估方法得出的结论,对李某定制的个性化运动训练管理方案包括以下几点:
1.爆发力强,耐力一般,属于爆发力量优势型。选取偏爆发力运动类型,更易发挥运动能力优势;
2.运动热情较高,需要继续保持您的运动热情与参与度;
3.运动疲劳恢复较强,可以适当加大运动训练的强度和频次;
4.软组织损伤风险较高,需要注意膝关节,跟腱等软组织的运动保护,规避损伤风险;
5.肥胖风险低,对碳水化合物类食物的敏感程度低,但对脂质类食物的敏感程度高,因此摄入过多的脂肪类食物会导致肥胖的风险升高,需要严格控制膳食中脂肪类食物摄入比例,可适当增加优质蛋白和碳水化合物类食物的摄入来进行体重控制。
在本实施例中给出的结论及建议仅为本人需要的结论及建议,任何根据检测本实施例中的基因型后统计分析出的结论及能够提供的相应建议均应认为是本实施例中涉及的内容,不应以此作为对本申请的限制。任何基于本申请中的检测评估方法及系统所得出的结论及建议均应认为落在本申请的保护范围之内。
本发明可以全面地对受检者的运动能力及相关风险进行评估,评估的基础精准、评估效率高且评估结果稳定准确。在招募运动员期间,可以辅助现有选材手段进行运动员进行甄选;在训练期间,可以对运动员做个体化训练指导和管理,本发明克服了传统方法的一刀切的方法,在运动员选拔和训练,以及个体健身效果方面更具优势。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括……”或“包含……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的要素。此外,在本文中,“大于”、“小于”、“超过”等理解为不包括本数;“以上”、“以下”、“以内”等理解为包括本数。
尽管已经对上述各实施例进行了描述,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改,所以以上所述仅为本发明的实施例,并非因此限制本发明的专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围之内。

Claims (10)

  1. 一种基于qPCR分型技术的运动基因检测评估方法,其特征在于:所述的基因评估系统对受检者的运动基因多态性位点进行荧光PCR检测,并对基因型进行得分评估;根据基因检测结果及评分的统计分析,得出个体化的评估结果;评估结果汇总建立运动人才基因数据库。
  2. 根据权利要求1所述的基于qPCR分型技术的运动基因检测评估方法,其特征在于,运动基因包括如下方面:
    耐力素质、爆发力量素质、软组织损伤风险、运动疲劳恢复、运动热情、肥胖风险、碳水化合物及脂质敏感性。
  3. 根据权利要求2所述的基于qPCR分型技术的运动基因检测评估方法,其特征在于:耐力素质包括13个多态性位点,爆发力量素质包括11个多态性位点,软组织损伤风险包括5个多态性位点,运动疲劳恢复包括6个多态性位点,运动热情包括6个多态性位点,肥胖风险包括11个多态性位点,碳水化合物敏感性包括6个多态性位点,脂质敏感性包括7个多态性位点。
  4. 根据权利要求2所述的基于qPCR分型技术的运动基因检测评估方法,其特征在于,
    耐力素质评估13个位点:ADRB2基因rs1042713、AQP1基因rs1049305、AMPD1基因rs17602729、COL5A1基因rs12722、GABPB1基因rs12594956、GABPB1基因rs7181866、HFE基因rs1799945、KCNJ11基因rs5219、PPARA基因rs4253778、PPARD基因rs2016520、UCP3基因rs1800849、ACE基因rs4646994、PPARGC1A基因rs8192678;
    爆发力量素质评估11个位点:AGT基因rs699、AMPD1基因rs17602729、CKM基因rs8111989、HIF1A基因rs11549465、IL6基因rs1800795、NOS3基因rs2070744、PPARA基因rs4253778、PPARG基因rs1801282、ACE基因rs4646994、ACTN3基因rs1815739、MTHFR基因rs1801131;
    软组织损伤风险评估5个位点:MMP3基因rs591058、MMP3基因rs679620、COL5A1基因rs12722、COL1A1基因rs1800012、GDF5基因rs143383;
    运动疲劳恢复评估6个位点:AMPD1基因rs17602729、IL6基因rs1800795、HIF1A基因rs11549465、NAT2基因rs1208、PPARD基因rs2016520、MCT1基因rs1049434;
    运动热情评估6个位点:CREB1基因rs2253206、C18orf2基因rs8097348、AMPD1基因rs17602729、PATS2L基因rs12612420、PAPSS2基因rs10887741、BDNF基因rs6265;
    肥胖风险评估11个位点:MC4R基因rs17782313、LEPR基因rs8179183、FABP2基因rs1799883、FTO基因rs1421085、PPARG基因rs1801282、INSIG2基因rs7566605、GNB3基因rs5443、ADRB2基因rs1042713、ADRB2基因rs1042714、ADRB3基因rs4994、UCP1基因rs1800592;
    碳水化合物敏感性评估6个位点:TCF7L2基因rs7903146、TCF7L2基因rs12255372、FTO基因rs9939609、PPARG基因rs1801282、KCNJ11基因rs5219、IGF2BP2基因rs4402960;
    脂质敏感性评估7个位点:APOC1基因rs4420638、APOB基因rs693、LDLR基因rs6511720、CETP基因rs5882、CETP基因rs708272、LPL基因rs328、APOA5基因rs662799。
  5. 根据权利要求1所述的基于qPCR分型技术的运动基因检测评估方法,其特征在于,每个多态性位点的贡献值为:能力评估多态性位点按照基因型有利纯和赋值2分,有利杂合赋值1分,无影响赋值0分;风险评估多态性位点按照基因型风险纯和赋值2分,风险杂合赋值1分,无影响赋值0分
  6. 根据权利要求1所述的基于qPCR分型技术的运动基因检测评估 方法,其特征在于:评估结果包括运动潜力及不足,其中运动潜力根据耐力素质、爆发力量素质评分;不足根据受检者在不同项目的得分级别,能力A级~B级或风险D级~E级为潜力,能力D级~E级或风险A~B级为不足。
  7. 根据权利要求1所述的基于qPCR分型技术的运动基因检测评估系统,其特征在于,运动基因检测评估系统包括:
    -个人信息数据库,用于收集并分类处理个人信息;
    -运动基因检测结果数据库,用于检测受测者的运动基因多态性位点,收集检测结果;
    -运动能力或风险数据库,用于对基因检测结果进行贡献度分析,得到评估结果;
    -运动人才基因库,根据个人信息、基因检测结果、运动能力或风险结果的综合汇总,为受检者出具相对应的个体化运动或体重管理方案,并建立运动人才基因数据库。
  8. 根据权利要求7所述的基于qPCR分型技术的运动基因检测评估系统,其特征在于,基因贡献度得分进行归一化处理,满分为100分。
  9. 根据权利要求7所述的基于qPCR分型技术的运动基因检测评估系统,其特征在于,每一项基因贡献度得分分为五档,,能力或风险级别分别对应标识A-B-C-D-E,分别代表高-略高-正常-略低-低五个等级。
  10. 根据权利要求7所述的基于qPCR分型技术的运动基因检测评估系统,其特征在于,当耐力级别高于爆发力/力量级别时,受检者为耐力优势型;当爆发力/力量级别高于耐力级别时,受检者为爆发力量优势型;当爆发力/力量级别等同于耐力级别时,受检者为耐力与爆发力量兼具型。
PCT/CN2017/098569 2016-08-24 2017-08-23 基于qPCR分型技术的运动基因检测评估方法及系统 WO2018036495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610711918.6A CN106086222A (zh) 2016-08-24 2016-08-24 基于qPCR分型技术的运动基因检测评估方法及系统
CN201610711918.6 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018036495A1 true WO2018036495A1 (zh) 2018-03-01

Family

ID=57224760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098569 WO2018036495A1 (zh) 2016-08-24 2017-08-23 基于qPCR分型技术的运动基因检测评估方法及系统

Country Status (2)

Country Link
CN (1) CN106086222A (zh)
WO (1) WO2018036495A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330194A (zh) * 2017-01-20 2018-07-27 上海弥健生物科技有限公司 一种确定体型的方法及其试剂盒
WO2020212936A1 (en) * 2019-04-19 2020-10-22 Sbarro Health Research Organization Inc. A method to predict the predisposition to an exercise performance trait in a human individual
WO2020251475A1 (en) * 2019-06-14 2020-12-17 Low Hui Qi System and method for conducting trait assessment
CN114525347A (zh) * 2022-03-03 2022-05-24 北京体育大学 一种基于cetp基因的运动员的筛选方法
ES2957061A1 (es) * 2022-05-31 2024-01-10 Fundacion Univ Francisco De Vitoria Marcadores de rendimiento muscular
ES2958596A1 (es) * 2022-07-15 2024-02-12 Fundacion Univ Francisco De Vitoria Marcadores de eficiencia metabolica

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086222A (zh) * 2016-08-24 2016-11-09 厦门美因生物科技有限公司 基于qPCR分型技术的运动基因检测评估方法及系统
CN106868126B (zh) * 2017-02-20 2020-06-19 深圳美因医学检验实验室 荧光定量pcr检测试剂盒及检测方法
CN109086563A (zh) * 2017-06-14 2018-12-25 达易特基因科技股份有限公司 应用基因检测的适性教育分析方法
CN107391908A (zh) * 2017-06-28 2017-11-24 天方创新(北京)信息技术有限公司 运动风险评估方法及装置
CN107893120B (zh) * 2017-11-28 2021-05-04 保定佑安生物科技有限公司 检测运动基因snp的引物组及其应用和产品以及检测运动基因snp的检测方法及应用
CN107723370A (zh) * 2017-11-30 2018-02-23 深圳美因医学检验实验室 一种用于鼻咽癌基因筛查的荧光定量pcr检测系统及其应用
TWI643630B (zh) * 2018-01-10 2018-12-11 寰宇生物科技股份有限公司 Use of bitter gourd seed oil for preparing antibody fat forming preparation
CN108220407A (zh) * 2018-03-29 2018-06-29 深圳鼎新融合科技有限公司 检测人类gdf5、col5a1、sod2、crp基因多态性的引物对、探针及试剂盒
CN108893542A (zh) * 2018-06-12 2018-11-27 广州中安基因科技有限公司 一种运动潜质与保护基因检测试剂盒
CN108676850A (zh) * 2018-06-12 2018-10-19 广州中安基因科技有限公司 一种运动代谢基因检测试剂盒
CN108841966A (zh) * 2018-06-12 2018-11-20 广州中安基因科技有限公司 一种瘦身基因检测试剂盒
CN108998542A (zh) * 2018-08-30 2018-12-14 上海佰臻生物科技有限公司 一种食欲能力基因评估方法
CN109468388A (zh) * 2018-12-25 2019-03-15 北京北基医学检验实验室有限公司 一种扩增与运动能力相关基因的引物组及检测试剂盒
CN110358844A (zh) * 2019-08-13 2019-10-22 沈阳哥瑞科技有限公司 基于核酸质谱分型技术的运动遗传标记位点检测方法及其产品
CN112941191A (zh) * 2019-12-11 2021-06-11 宁波海尔施基因科技有限公司 一种用于检测运动模式的多重基因试剂盒及其使用方法
CN112635053A (zh) * 2021-03-09 2021-04-09 北京冠新医卫软件科技有限公司 基于大数据的居民健康预警方法、装置、设备和系统
CN114836476A (zh) * 2022-05-12 2022-08-02 上海交通大学医学院附属瑞金医院 一种FTO rs1421085 T>C点突变小鼠模型及其应用
CN115521986A (zh) * 2022-09-19 2022-12-27 大连理工大学 基于生物多组学知识的人体体能评价方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101134981A (zh) * 2006-09-01 2008-03-05 上海体育科学研究所 有氧运动能力相关的基因多态性及检测芯片和试剂盒
CN101805790A (zh) * 2010-01-26 2010-08-18 中国人民解放军总医院 一种同时检测24个运动相关基因上32个snp位点多态性的方法
WO2010146214A2 (es) * 2009-06-17 2010-12-23 Progenika Biopharma, S.A. Método para la evaluación del comportamiento atlético de un sujeto
CN102864223A (zh) * 2012-08-30 2013-01-09 山东百福基因科技有限公司 高特异性多个运动机能相关基因检测试剂盒及检测方法
CN103160585A (zh) * 2013-04-01 2013-06-19 哈尔滨体育学院 一种优秀越野滑雪运动员体能相关基因的筛选方法
CN103160592A (zh) * 2013-04-03 2013-06-19 哈尔滨体育学院 一种预测优秀冰雪运动员耐力潜能的分子生物学方法
CN103525906A (zh) * 2013-08-07 2014-01-22 广州市体育科学研究所 速度或爆发力相关基因-actn3多态性速测试剂盒及检测方法
CN104109707A (zh) * 2013-04-22 2014-10-22 泰州医药城博奥邦科生物科技有限公司 一种人生理特征基因芯片
CN105603054A (zh) * 2014-11-17 2016-05-25 武汉白原科技有限公司 人体爆发力水平检测试剂盒和方法
CN105648048A (zh) * 2014-11-17 2016-06-08 武汉白原科技有限公司 人体耐力水平的检测试剂盒和方法
CN105671137A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 运动心率反应的检测试剂盒和计算方法
CN105671135A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 健身运动后体质恢复状况的检测试剂盒
CN105671131A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 评估人体vo2 max(最大耗氧量)的检测试剂盒和方法
CN105671136A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 评估人体最大心跳、目标心跳的检测试剂盒和计算方法
CN106086222A (zh) * 2016-08-24 2016-11-09 厦门美因生物科技有限公司 基于qPCR分型技术的运动基因检测评估方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX348025B (es) * 2010-11-01 2017-05-24 Genentech Inc * Prediccion del paso a degeneracion macular avanzada relacionada con la edad utilizando una puntuacion poligenica.
EP4156194A1 (en) * 2014-01-14 2023-03-29 Fabric Genomics, Inc. Methods and systems for genome analysis

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101134981A (zh) * 2006-09-01 2008-03-05 上海体育科学研究所 有氧运动能力相关的基因多态性及检测芯片和试剂盒
WO2010146214A2 (es) * 2009-06-17 2010-12-23 Progenika Biopharma, S.A. Método para la evaluación del comportamiento atlético de un sujeto
CN101805790A (zh) * 2010-01-26 2010-08-18 中国人民解放军总医院 一种同时检测24个运动相关基因上32个snp位点多态性的方法
CN102864223A (zh) * 2012-08-30 2013-01-09 山东百福基因科技有限公司 高特异性多个运动机能相关基因检测试剂盒及检测方法
CN103160585A (zh) * 2013-04-01 2013-06-19 哈尔滨体育学院 一种优秀越野滑雪运动员体能相关基因的筛选方法
CN103160592A (zh) * 2013-04-03 2013-06-19 哈尔滨体育学院 一种预测优秀冰雪运动员耐力潜能的分子生物学方法
CN104109707A (zh) * 2013-04-22 2014-10-22 泰州医药城博奥邦科生物科技有限公司 一种人生理特征基因芯片
CN103525906A (zh) * 2013-08-07 2014-01-22 广州市体育科学研究所 速度或爆发力相关基因-actn3多态性速测试剂盒及检测方法
CN105603054A (zh) * 2014-11-17 2016-05-25 武汉白原科技有限公司 人体爆发力水平检测试剂盒和方法
CN105648048A (zh) * 2014-11-17 2016-06-08 武汉白原科技有限公司 人体耐力水平的检测试剂盒和方法
CN105671137A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 运动心率反应的检测试剂盒和计算方法
CN105671135A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 健身运动后体质恢复状况的检测试剂盒
CN105671131A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 评估人体vo2 max(最大耗氧量)的检测试剂盒和方法
CN105671136A (zh) * 2014-11-17 2016-06-15 武汉白原科技有限公司 评估人体最大心跳、目标心跳的检测试剂盒和计算方法
CN106086222A (zh) * 2016-08-24 2016-11-09 厦门美因生物科技有限公司 基于qPCR分型技术的运动基因检测评估方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI LIQING ET AL.: "Association of single nucleotide polymorphisms of ACTN3 with sport ability and some chemical biochemistry results", CHINESE JOURNAL OF LABORATORY DIAGNOSIS, vol. 13, no. 2, 28 February 2009 (2009-02-28), pages 191 - 193 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330194A (zh) * 2017-01-20 2018-07-27 上海弥健生物科技有限公司 一种确定体型的方法及其试剂盒
WO2020212936A1 (en) * 2019-04-19 2020-10-22 Sbarro Health Research Organization Inc. A method to predict the predisposition to an exercise performance trait in a human individual
WO2020251475A1 (en) * 2019-06-14 2020-12-17 Low Hui Qi System and method for conducting trait assessment
CN114525347A (zh) * 2022-03-03 2022-05-24 北京体育大学 一种基于cetp基因的运动员的筛选方法
ES2957061A1 (es) * 2022-05-31 2024-01-10 Fundacion Univ Francisco De Vitoria Marcadores de rendimiento muscular
ES2958596A1 (es) * 2022-07-15 2024-02-12 Fundacion Univ Francisco De Vitoria Marcadores de eficiencia metabolica

Also Published As

Publication number Publication date
CN106086222A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018036495A1 (zh) 基于qPCR分型技术的运动基因检测评估方法及系统
Egorova et al. The polygenic profile of Russian football players
Muniesa et al. World-class performance in lightweight rowing: is it genetically influenced? A comparison with cyclists, runners and non-athletes
Ramos et al. Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise
Ahmetov et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes
Zarebska et al. Association of rs699 (M235T) polymorphism in the AGT gene with power but not endurance athlete status
Cieszczyk et al. Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athletes
US20130130918A1 (en) Exercise genotyping
Rauramaa et al. Physical exercise and blood pressure with reference to the angiotensinogen M235T polymorphism
He et al. NRF2 genotype improves endurance capacity in response to training
Vancini et al. Genetic aspects of athletic performance: the African runners phenomenon
McAuley et al. Genetic association research in football: A systematic review
Morais Junior et al. Acute strength training promotes responses in whole blood circulating levels of miR-146a among older adults with type 2 diabetes mellitus
Proia et al. PPARα gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players
Massidda et al. Association between the ACE I/D polymorphism and muscle injuries in Italian and Japanese elite football players
Durmic et al. Polymorphisms in ACE and ACTN3 genes and blood pressure response to acute exercise in elite male athletes from Serbia
Pasqua et al. Influence of ACTN3 R577X polymorphism on ventilatory thresholds related to endurance performance
Yang et al. Prediction and identification of power performance using polygenic models of three single-nucleotide polymorphisms in Chinese elite athletes
Krammer et al. MiRNA-based “fitness score” to assess the individual response to diet, metabolism, and exercise
Ozveren et al. Talent selection and genetics in sport
Lucia et al. The 577X allele of the ACTN3 gene is associated with improved exercise capacity in women with McArdle’s disease
Ben-Zaken et al. Genetic profiles and prediction of the success of young athletes’ transition from middle-to long-distance runs: an exploratory study
Hall et al. The PPARGC1A Gly482Ser polymorphism is associated with elite long-distance running performance
Yoo et al. Genetic polymorphisms to predict gains in maximal O 2 uptake and knee peak torque after a high intensity training program in humans
Wessner et al. Genetic polymorphisms in alpha-actinin 3 and adrenoceptor beta genes in Austrian elite athletes and healthy controls.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842917

Country of ref document: EP

Kind code of ref document: A1