WO2018036308A1 - 一种扫描装置、图像形成设备和扫描方法 - Google Patents

一种扫描装置、图像形成设备和扫描方法 Download PDF

Info

Publication number
WO2018036308A1
WO2018036308A1 PCT/CN2017/093524 CN2017093524W WO2018036308A1 WO 2018036308 A1 WO2018036308 A1 WO 2018036308A1 CN 2017093524 W CN2017093524 W CN 2017093524W WO 2018036308 A1 WO2018036308 A1 WO 2018036308A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
sensor
channel
selector
scanned
Prior art date
Application number
PCT/CN2017/093524
Other languages
English (en)
French (fr)
Inventor
杨江华
张军
Original Assignee
珠海赛纳打印科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳打印科技股份有限公司 filed Critical 珠海赛纳打印科技股份有限公司
Priority to RU2019103342A priority Critical patent/RU2735942C2/ru
Priority to EP17842731.6A priority patent/EP3490236A4/en
Publication of WO2018036308A1 publication Critical patent/WO2018036308A1/zh
Priority to US16/276,989 priority patent/US10477060B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00795Reading arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/203Simultaneous scanning of two or more separate pictures, e.g. two sides of the same sheet
    • H04N1/2032Simultaneous scanning of two or more separate pictures, e.g. two sides of the same sheet of two pictures corresponding to two sides of a single medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00976Arrangements for regulating environment, e.g. removing static electricity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/02418Details of scanning heads ; Means for illuminating the original for picture information pick up and reproduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/203Simultaneous scanning of two or more separate pictures, e.g. two sides of the same sheet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/23Reproducing arrangements
    • H04N1/2307Circuits or arrangements for the control thereof, e.g. using a programmed control device, according to a measured quantity
    • H04N1/233Circuits or arrangements for the control thereof, e.g. using a programmed control device, according to a measured quantity according to characteristics of the data to be reproduced, e.g. number of lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits

Definitions

  • the present application relates to the field of image processing technologies, and in particular, to a scanning device, an image forming apparatus, and a scanning method.
  • FIG. 1 is a schematic structural diagram of a scanning device used for double-sided scanning in the prior art.
  • a scanning device of the prior art needs to separately configure a corresponding set of hardware modules for each side of the file to be scanned, and each set of hardware modules includes a sensor and a conversion. , image processing unit, boundary processing unit, frame memory, selector, interface. Therefore, in the prior art, the hardware cost is relatively high when implementing double-sided scanning.
  • the present application provides a scanning device, an image forming apparatus, and a scanning method for solving the problem of high hardware cost of the scanning device for realizing double-sided scanning in the prior art.
  • the present application provides a scanning device including a first sensor, a second sensor, a first channel corresponding to the first sensor, a second channel corresponding to the second sensor, and a selector;
  • the first sensor is configured to collect first image data of a file to be scanned
  • the second sensor is configured to collect second image data of the file to be scanned
  • the selector is configured to acquire image data in turn from the first channel and the second channel by using a pixel-by-pixel acquisition manner to obtain one in each acquisition cycle. First image data from the first channel and second image data from the second channel.
  • scanning apparatus further includes a data remapping unit
  • the data remapping unit is configured to remap the image data acquired from the first sensor and the second sensor according to an acquisition order of the selector to obtain a first image data sequence and a first a second image data sequence; the first image data sequence includes first image data arranged in an order of acquisition of the selector, and the second image data sequence includes second image data arranged in an order of acquisition of the selector .
  • the scanning device further comprising a first converter disposed between the selector and the data remapping unit;
  • the first converter is configured to perform analog-to-digital conversion on image data acquired by the selector
  • the first converter is further configured to send the image data obtained by the analog-to-digital conversion to the data remapping unit according to the acquiring order of the selector.
  • the scanning device further includes a second converter disposed between the first sensor and the first channel, and disposed at the second sensor and the second a third converter between the two channels;
  • the second converter is configured to perform analog-to-digital conversion on the first image data collected by the first sensor
  • the third converter is configured to perform analog-to-digital conversion on the second image data collected by the second sensor.
  • the scanning device further includes a data filtering unit, configured to:
  • a first map of the end of the first image data sequence according to a first specified value Like data deletion, and deleting the second image data starting from the second image data sequence according to the second specified value.
  • the selection frequency when the selector selects the channel is greater than or equal to twice the output frequency of the first sensor; and/or,
  • the selection frequency when the selector selects the channel is greater than or equal to twice the output frequency of the second sensor.
  • the first image data is front image data of a file to be scanned
  • the second image data is reverse image data of the file to be scanned
  • the first image data and the second image data are front image data of a file to be scanned; or
  • the first image data and the second image data are reverse image data of a file to be scanned.
  • the scanning device provided by the present application collects images by scanning the files simultaneously by two sensors, and processes the images collected by the two sensors through a selector, thereby saving hardware cost and solving the problem in the prior art.
  • a double-scan scanning device has a problem of high hardware cost.
  • the selector adopts a pixel-by-pixel acquisition mode to obtain image data from the first channel and the second channel in turn, so that the scanning speed of the scanning device when performing double-sided scanning is approximately equal to that of single-sided scanning. Scanning speed improves scanning efficiency.
  • the present application further provides an image forming apparatus, characterized in that the apparatus comprises: the above scanning device and an imaging device;
  • the imaging device is configured to form an image on the imaging medium according to the image data processed by the scanning device.
  • the image forming apparatus treats scanned text by two sensors simultaneously
  • the image is collected, and the images collected by the two sensors are processed by one selector, which saves the hardware cost, and solves the problem of high hardware cost in the prior art scanning device for realizing double-sided scanning.
  • the selector adopts a pixel-by-pixel acquisition mode to obtain image data from the first channel and the second channel in turn, so that the scanning speed of the scanning device when performing double-sided scanning is approximately equal to that of single-sided scanning. Scanning speed improves scanning efficiency.
  • the application further provides a scanning method, the method comprising:
  • the first sensor collects first image data of the file to be scanned
  • the second sensor collects second image data of the file to be scanned
  • the selector acquires image data in turn from the first channel and the second channel by using a pixel-by-pixel acquisition manner to obtain a first image data from the first channel and a second channel from each of the acquisition periods. Second image data.
  • the data remapping unit remaps the acquired image data according to the acquiring order of the selector to obtain a first image data sequence and a second image data sequence; the first image data sequence includes according to the selection The first image data of the order is obtained, and the second image data sequence includes second image data arranged in the order of acquisition of the selector.
  • the method further include:
  • the first converter performs analog-to-digital conversion on the image data acquired from the first sensor and the second sensor, and sends image data obtained by analog-to-digital conversion according to an acquisition order of the selector
  • the data remapping unit performs analog-to-digital conversion on the image data acquired from the first sensor and the second sensor, and sends image data obtained by analog-to-digital conversion according to an acquisition order of the selector
  • the data remapping unit performs analog-to-digital conversion on the image data acquired from the first sensor and the second sensor, and sends image data obtained by analog-to-digital conversion according to an acquisition order of the selector
  • the data remapping unit performs analog-to-digital conversion on the image data acquired from the first sensor and the second sensor, and sends image data obtained by analog-to-digital conversion according to an acquisition order of the selector
  • the data remapping unit performs analog-to-digital conversion on the image data acquired from the first sensor and the second sensor, and sends image
  • the method uses a pixel-by-pixel acquisition manner to acquire image data from the first channel and the second channel in turn, the method Also includes:
  • the second converter performs analog-to-digital conversion on the first image data collected by the first sensor
  • the third converter performs analog-to-digital conversion on the second image data collected by the second sensor.
  • the data remapping unit remaps the acquired image data according to the acquiring order of the selector to obtain the first image data. After the sequence and the second image data sequence, the method further includes:
  • the data filtering unit determines the first time and the second time; and the data filtering unit deletes the first image data in the first image data sequence collected by the first sensor after the first time Deleting the second image data in the second image data sequence collected by the second sensor before the second time; or
  • the data filtering unit deletes the first image data of the end in the first image data sequence according to the first specified value, and the data filtering unit starts the first image data sequence according to the second specified numerical value. Second image data deletion.
  • the selection frequency when the selector selects the channel is greater than or equal to twice the output frequency of the first sensor; and/or,
  • the selection frequency when the selector selects the channel is greater than or equal to twice the output frequency of the second sensor.
  • the first image data is front image data of a file to be scanned
  • the second image data is reverse image data of the file to be scanned
  • the first image data and the second image data are front image data of a file to be scanned; or
  • the first image data and the second image data are reverse image data of a file to be scanned.
  • the scanning method provided by the present application collects images by simultaneously scanning the files by two sensors, and performs images acquired by the two sensors through one selector.
  • the processing saves the hardware cost and solves the problem of high hardware cost in the prior art scanning device for realizing double-sided scanning.
  • the selector adopts a pixel-by-pixel acquisition mode to obtain image data from the first channel and the second channel in turn, so that the scanning speed of the scanning device when performing double-sided scanning is approximately equal to that of single-sided scanning. Scanning speed improves scanning efficiency.
  • FIG. 1 is a view showing an example of the structure of a scanning device for double-sided scanning in the prior art
  • FIG. 2(a) is a first schematic structural view of a scanning device provided by the present application.
  • FIG. 2(b) is a second schematic structural view of a scanning device provided by the present application.
  • FIG. 3 is a schematic diagram of signal frequencies of a scanning device provided by the present application.
  • FIG. 4 is a schematic diagram of control signals in the present application.
  • FIG. 5 is a schematic diagram of a selector acquiring image data in the present application.
  • FIG. 6 is a schematic diagram of a process of processing image data in the present application.
  • FIG. 7 is a schematic diagram of a process of removing useless data in the present application.
  • FIG. 8 is a schematic diagram of storing a first image data sequence and a second image data sequence in the present application.
  • FIG. 9(a) is a first schematic structural diagram of an image forming apparatus provided by the present application.
  • FIG. 9(b) is a second schematic structural diagram of an image forming apparatus provided by the present application.
  • FIG. 10 is a third schematic structural view of a scanning device provided by the present application.
  • FIG. 11 is a schematic flow chart of a scanning method provided by the present application.
  • first, second, etc. may be used in this application to describe sensors or the like, these sensors and the like should not be limited to these terms. These terms are only used to distinguish sensors and the like from each other.
  • the first sensor may also be referred to as a second sensor without departing from the scope of the present application.
  • the second sensor may also be referred to as a first sensor.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • the present application provides a scanning device. Please refer to FIG. 2( a ), which is a schematic diagram of a first structure of the scanning device provided by the present application. Please refer to FIG. 2( b ), which is a scanning device provided by the present application. A schematic diagram of the second structure.
  • the scanning device includes a first sensor 201, a second sensor 202, a first channel 203 corresponding to the first sensor 201, and a second channel corresponding to the second sensor 202. 204 and selector 205;
  • a first sensor 201 configured to collect first image data of a file to be scanned
  • a second sensor 202 configured to collect second image data of the file to be scanned
  • a selector 205 configured to take image data from the first channel 203 and the second channel 204 in turn by using a pixel-by-pixel acquisition manner to obtain one from each acquisition cycle. First image data of the first channel 203 and a second image data from the second channel 204.
  • the file to be scanned may include, but is not limited to, at least one of a document, a document, an image, and a photo, which is not specifically limited in the present application.
  • the scanning device provided by the present application may include, but is not limited to, two channels of the first channel 203 and the second channel 204, and the selector 205 Two channels may be arbitrarily selected as the first channel 203 and the second channel 204 in at least two channels in the scanning device, and the first image data is acquired through the first channel 203, and the second image data is acquired through the second channel 204, This application does not specifically limit this.
  • the selector 205 adopts a Pixel by Pixel acquisition manner, or may also be referred to as a pixel and a pixel acquisition manner.
  • the image data is acquired in turn from the first channel 203 and the second channel 204, and a first image data is acquired through the first channel 203 and a second image is acquired through the second channel 204 in each acquisition cycle.
  • data may be a first image data pixel and the second image data may be a second image data pixel.
  • the selector 205 uses the pixel-by-pixel acquisition mode to acquire image data in turn from the first channel and the second channel, that is, the selector 205 can output two first image data pixels by using the first sensor 201.
  • the second image data is outputted by the second sensor 202, and the second sensor 202 is also used to output the interval between the two second image data pixel points to obtain the first sensor 201 output.
  • a first image data which can improve the efficiency of the selector to acquire pixel points of the image data.
  • the selection frequency when the selector 205 selects the channel is greater than or equal to twice the output frequency of the first sensor 201; and/or, select The selection frequency when the channel is selected by the 205 is greater than or equal to twice the output frequency of the second sensor 202.
  • the selection frequency when the selector 205 selects the channel is greater than or equal to twice the output frequency of the first sensor 201. Therefore, in the case where the data lengths processed by the first sensor 201, the second sensor 202, and the selector 205 are the same, the output frequency of the output data in the first sensor 201 and the second sensor 202 is f1; and the selection channel of the selector 205 The selection frequency of the time is greater than twice the output frequency when the first sensor 201 outputs data, that is, the selection frequency of the selector channel of the selector 205 is greater than 2 ⁇ f1.
  • the number of bits when the first sensor 201 outputs data is n1
  • the number of bits when the selector 205 acquires data is n2, in the image acquisition unit.
  • the selection frequency when the selector 205 selects the channel is greater than or equal to 2 ⁇ n2/n1 times the output frequency of the first sensor 201. That is, even if n1>n2, the selection frequency of the selector 205 is very fast, the data of the first sensor 201 and the data of the second sensor 202 can be simultaneously acquired, and the selector 205 can select the first sensor 201 and in one cycle.
  • the second sensor 202 has data in n2/n1 cycles.
  • the length of the data that the selector 205 can collect in each acquisition period is smaller than the data length output by the sensor, thereby ensuring that the selector 205 can acquire the image collected by the first sensor 201 continuously, continuously, and in a cross-flow.
  • Data and image data acquired by the second sensor 202 are smaller than the data length output by the sensor, thereby ensuring that the selector 205 can acquire the image collected by the first sensor 201 continuously, continuously, and in a cross-flow.
  • the scanning speed of the double-sided scanning of the file to be scanned is the same as the scanning speed of the single-sided scanning, which greatly saves the scanning time and improves the scanning efficiency.
  • FIG. 3 is a schematic diagram of signal frequency of the scanning device provided by the present application.
  • the VSMP Video sample timing pulse
  • the first sensor 201 acquires the first image data after receiving the clock control signal
  • the second sensor 202 collects the clock control signal after receiving the clock control signal.
  • Second image data the signal transmitted by the first sensor 201 is Sig1, the signal transmitted by the second sensor 202 is Sig2, and the pixels 2, 3, 4, 5, and 6 in the Sig1 signal line and the Sig2 signal line represent image data pixels.
  • DATA CLK is a selection signal when the selector 205 selects the first channel 203 or selects the second channel 204 to acquire image data; in FIG.
  • Image data signal specifically, 1-2, 1-3, 1-4, 1-5, 1-6, and 2-1, 2-2, 2-3, 2-4 in the data signal line, 1 and 2 in front of the short horizontal lines in 2-5 and 2-6 respectively indicate the channels selected when acquiring data, and 1, 2, 3, 4, 5, and 6 behind the short horizontal lines respectively indicate different images in each channel.
  • Data pixel point specifically, 1-2, 1-3, 1-4, 1-5, 1-6, and 2-1, 2-2, 2-3, 2-4 in the data signal line, 1 and 2 in front of the short horizontal lines in 2-5 and 2-6 respectively indicate the channels selected when acquiring data, and 1, 2, 3, 4, 5, and 6 behind the short horizontal lines respectively indicate different images in each channel.
  • Data pixel point specifically, 1-2, 1-3, 1-4, 1-5, 1-6, and 2-1, 2-2, 2-3, 2-4 in the data signal line, 1 and 2 in front of the short horizontal lines in 2-5 and 2-6 respectively indicate the channels selected when acquiring data, and 1, 2, 3, 4, 5, and 6 behind the short horizontal lines respectively indicate different images
  • the VSMP signal is relatively loose, that is, the output frequencies of the first sensor 201 and the second sensor 202 are relatively low, assuming f1; and the DATA CLK signal is dense, indicating that the selector 205 selects the first in a selection period.
  • the number of times the channel 203 or the second channel 204 is selected is relatively frequent, that is, the selection frequency of the selector 205 is high, assuming that the selection frequency of the selector 205 is f2.
  • the image data is taken from the first channel 203 and the second channel 204 in turn, and the selection frequency f2 of the DATA CLK signal may be the signal frequency f1 of the VSMP signal. 2 times or more, that is, the selection frequency f2 when the selector 205 selects a channel needs to be greater than or equal to 2f1.
  • the first sensor after receiving the control signal sent by the sensor control unit, acquires first image data of the color indicated by the control signal, and the second sensor sends the signal according to the received sensor control unit. After the control signal, the second image data of the color indicated by the control signal is acquired.
  • control signals received by the first sensor and the second sensor may include, but are not limited to, at least one of a clock control signal and a lighting control signal.
  • the first sensor may acquire the first image data at a specified time according to the received clock control signal, or acquire the first image data immediately after receiving the clock control signal
  • the second sensor may receive the second image according to the received
  • the clock control signal acquires the second image data at a specified time, or acquires the second image data immediately after receiving the clock control signal.
  • the first sensor may collect the first image data of the color indicated by the lighting control signal according to the received lighting control signal
  • the second sensor may collect the indication according to the received clock control signal.
  • the second image data of the color may be collected.
  • control signals sent by the sensor control unit to the first sensor and the second sensor may be the same and may be different, which is not specifically limited in the present application.
  • FIG. 4 is a schematic diagram of a control signal in the present application.
  • TR is a clock control signal sent by the sensor control unit to the first sensor 201 and the second sensor 202
  • Sig1 is a signal diagram of the first image data acquired by the selector 205 through the first channel 203
  • Sig2 is A signal diagram of the second image data acquired by the selector 205 through the second channel 204, wherein R represents a red image data signal when the red light is illuminated, and G represents a green image data signal when the green light is illuminated.
  • B indicates a blue image data signal when the blue light is turned on.
  • the first sensor and the second sensor after receiving the control signal, acquire graphic data of a color indicated by the control signal, and the image data acquired by the selector through the first channel and the second channel is greater than the lighting control signal. Issue a late cycle.
  • the R signal changes from the low level to the high level when the TR is Ta time, red.
  • the lamp is illuminated.
  • the first sensor collects the first image data of red according to the received clock control signal and the lighting control signal of the red lamp
  • the second sensor is based on the received clock control signal and the red lamp.
  • the lighting control signal is used to collect the second image data in red
  • the Sig1 signal is represented as R at the time Tb, that is, the selector acquires the first image data of red through the first channel at the time Tb
  • the Sig2 signal is represented at the time Tb.
  • R it means that the selector acquires the second image data of red through the second channel at the time Tb.
  • the G signal changes from a low level to a high level when TR is at the time Tb, indicating The green light is illuminated.
  • the first sensor collects green first image data according to the received clock control signal and the green light's lighting control signal
  • the second sensor receives the clock control signal and the green light according to the received signal.
  • the lighting control signal collects the green second image data; and the Sig1 signal is represented as G at the time Tc, that is, the selector acquires the green first image data through the first channel at the time Tc, and the Sig2 signal is at the time Tc.
  • G it means that the selector acquires the second image data of green through the second channel at time Tc.
  • the B signal is at the time when TR is Tc. Changing from a low level to a high level indicates that the blue light is illuminated.
  • the first sensor collects the first image data of blue according to the received clock control signal and the lighting control signal of the blue light
  • the second sensor collects the second image data of the blue according to the received clock control signal and the lighting control signal of the blue light
  • the Sig1 signal is represented as B at the time Td, that is, the selector passes the first channel at the time Td.
  • the first image data of blue is obtained, and at the same time, the Sig2 signal is represented as B at the time of Td, that is, the selector acquires the second image data of blue through the second channel at the time of Td.
  • the selector uses the pixel-by-pixel acquisition mode, and the image data acquired from the first channel and the second channel in turn is the intersection data of the first image data collected by the first sensor and the second image data collected by the second sensor. .
  • FIG. 5 is a schematic diagram of the image data acquired by the selector in the present application.
  • the image data pixel point may be represented by the “A-B-C” form, wherein the B channel is illuminated, the B channel, and the Cth image data pixel point.
  • A can be represented as R, G, and B, where R represents a red light, G represents a green light, and B represents a blue light.
  • R-1-1, R-1-2, and R-1-3 are the first image data pixel points collected by the first sensor, wherein R-1-2 indicates that the red light is on, The first channel, the second image data pixel.
  • B-2-1, B-2-2, and B-2-3 are the second image data pixel points collected by the second sensor, wherein B-2-3 indicates that the blue light is on, the second channel, and the second channel 3 in 3 represents the third image data pixel of the blue color acquired by the second sensor.
  • the selector uses the pixel-by-pixel acquisition method to acquire image data from the first channel and the second channel in turn, and obtains the first image data pixel point R-1- through the first channel.
  • a second image data pixel point R-2-1 is acquired through the second channel, and then image data is acquired from the first channel and the second channel in turn, and then the selector uses the pixel-by-pixel acquisition mode from the first channel.
  • the image data acquired by the second channel and the second channel are R-1-1, R-2-1, R-1-2, R-2-2, R-1-3, R-2-3, etc.
  • the data is cross data of the first image data collected by the first sensor and the second image data collected by the second sensor.
  • the selector uses the pixel-by-pixel acquisition method. Obtaining image data from the first channel and the second channel in turn, after acquiring the first image data pixel point G-1-1 through the first channel, acquiring a second image data pixel point G-2- through the second channel After that, the image data is acquired in turn from the first channel and the second channel. Further, the selector uses the pixel-by-pixel acquisition mode, and the image data acquired from the first channel and the second channel in turn is G-1-1, G-. 2-1, G-1-2, G-2-2, G-1-3, G-2-3... The image data is collected by the first image data collected by the first sensor and the second sensor Cross data of the second image data.
  • the selector uses the pixel-by-pixel acquisition method to acquire image data from the first channel and the second channel in turn, and obtains the first image data pixel point B through the first channel.
  • a second image data pixel point B-2-1 is acquired through the second channel, and then image data is acquired from the first channel and the second channel in turn, and then the selector uses the pixel-by-pixel acquisition method.
  • the image data acquired by one channel and the second channel in turn is B-1-1, B-2-1, B-1-2, B-2-2, B-1-3, B-2-3...
  • the image data is cross data of the first image data collected by the first sensor and the second image data collected by the second sensor.
  • the scanning device further includes a data remapping unit 206, and it should be noted that the data remapping unit 206 can be configured not only to belong to the scanning device. A portion of it may also be provided as part of a computer connected to the scanning device.
  • the data remapping unit 206 is configured to remap the acquired image data according to an acquisition order to obtain a first image data sequence and a second image data sequence.
  • the first image data sequence includes first image data arranged in the order of acquisition of the selector 205
  • the second image data sequence includes second image data arranged in the order of acquisition of the selector 205.
  • FIG. 6 is taken as an example. Please refer to FIG. 6, which is a schematic diagram of a process of processing image data in the present application.
  • the first image data pixel points collected by the first sensor are G-1-1, G-1-2, G-1-3; the second sensor collects The second image data pixel points are G-2-1, G-2-2, and G-2-3, and the selector uses the pixel-by-pixel acquisition method to obtain the image data obtained from the first channel and the second channel in turn.
  • the data remapping unit remapping the image data according to the order of acquisition of the selector to obtain a first image data sequence and a second image data sequence, wherein the first image data sequence includes first image data pixel points acquired in accordance with an acquisition order of the selector: G-1-1, G-1-2, G-1-3;
  • the second image data sequence includes second image data pixel points G-2-1, G-2-2, G-2-3 acquired in accordance with the acquisition order of the selector.
  • the data remapping unit remaps the acquired image data according to the acquisition order, which may include, but is not limited to, the following implementation manners:
  • the data re-mapping unit extracts the image data in the image data according to the acquired image interval, and extracts the image data pixel points whose sequence number is a single number, according to the order in which the selectors are acquired.
  • the first image data sequence is obtained, and the image data pixel numbers of the double number are extracted in the interval, and are arranged according to the order of acquisition of the selector to obtain a second image data sequence. It can be understood that the example is only used to explain how to obtain the image data in the order of acquisition, and is not used to limit the solution.
  • the type of image data acquired by the selector is not particularly limited. Specifically, the selector uses the pixel-by-pixel acquisition mode, and the image data obtained by taking the rotation from the first channel and the second channel may be an analog signal, or the selector uses the pixel-by-pixel acquisition method to obtain the rotation from the first channel and the second channel. Image data digital signal.
  • the scanning device further includes a first converter 207 disposed between the selector 205 and the data remapping unit 206;
  • a first converter 207 configured to perform analog-to-digital conversion on image data acquired by the selector 205;
  • the first converter 207 is further configured to send the image data obtained by the analog-to-digital conversion to the data remapping unit 206 according to the acquisition order of the selector 205.
  • the first converter 207 is set in the selection.
  • the format of the image data acquired by the selector 205 is an analog signal
  • the format of the image data sent by the selector 205 to the first converter 207 is an analog signal, which is passed through the first converter.
  • the first converter 207 obtains image data in a digital signal format, and the first converter 207 transmits the image data in the digital signal format to the data remapping unit 206.
  • the scanning device further includes a second converter 208 disposed between the first sensor 201 and the first channel 203, and disposed at the second sensor.
  • a third converter 209 between the 202 and the second channel 204.
  • a second converter 208 is configured to perform analog-to-digital conversion on the first image data collected by the first sensor 201
  • a third converter 209 is configured to collect the second image from the second sensor 202.
  • the image data is subjected to analog to digital conversion.
  • the format of the image data collected by the first sensor 201 is an analog signal.
  • the selector 205 acquires image data of the digital signal format through the first channel 203, and the selector 205 transmits the image data of the digital signal format to the data remapping unit 206.
  • the third converter 209 when the third converter 209 is disposed between the second sensor 202 and the second channel 204, the format of the image data collected by the second sensor 202 is an analog signal, and the third After the converter 209 performs analog-to-digital conversion, the selector 205 acquires image data of the digital signal format through the second channel 204, and the selector 205 transmits the image data of the digital signal format to the data remapping unit 206.
  • the first converter 207 between the device 205 and the data remapping unit 206 performs analog-to-digital conversion on the image data acquired by the selector 205, so that there is no need to provide a second between the first sensor 201 and the first channel 203.
  • the converter 208 does not need to provide the third converter 209 between the second sensor 202 and the second channel 204; or, if passing through the second converter 208 disposed between the first sensor 201 and the first channel 203 And performing analog-to-digital conversion on the first image data collected by the first sensor 201, and setting
  • the third converter 209 between the second sensor 202 and the second channel 204 performs analog-to-digital conversion on the second image data collected by the second sensor 202, and then does not need to be in the selector 205 and the data remapping unit 206.
  • the first converter 207 is disposed between.
  • the location of the first image data collected by the first sensor and the location of the second image data collected by the second sensor are not particularly limited.
  • the first image data and the second image The location of the image data may include, but is not limited to, the following three types:
  • the first type the first image data is the front image data of the file to be scanned, and the second image data is the reverse image data of the file to be scanned.
  • the scanning device provided by the present application can be used for double-sided scanning.
  • the first sensor and the second sensor can be located on the upper and lower sides of the file to be scanned.
  • the first image data is a file to be scanned.
  • the front image data, the second image data is the reverse image data of the file to be scanned.
  • the first image data and the second image data are frontal image data of the file to be scanned.
  • the first image data and the second image data are the reverse image data of the file to be scanned.
  • the scanning device can also be used for single-sided scanning.
  • the first sensor and the second sensor are located on the same side of the file to be scanned, and at this time, the scanning side is required according to the file to be scanned.
  • the first image data and the second image data are the front image data of the file to be scanned, or the first image data and the second image data are the reverse image data of the file to be scanned.
  • the application scenarios for the second and third cases may include, but are not limited to, a combination of two A4 format sensors to achieve A3 format scanning; or, in flat panel scanning, two Sensors are scanned simultaneously from both ends of the document to be scanned; or, in the case of flatbed scanning, two sensors are simultaneously scanned from the middle of the document to be scanned to both ends; or: in the case of flatbed scanning, one sensor is at the end, one sensor In the middle, this scans simultaneously in the same direction.
  • the first sensor and the second sensor may be in a positional relationship in which the upper and lower sides are not completely opposite, so that the first position can be avoided.
  • a sensor and a second sensor interfere with each other when acquiring image data and during lighting.
  • the design of staggering the layout of the two sensors is such that the first sensor is different in the time when the first image data of the file to be scanned and the second image data of the second sensor are acquired by the second sensor, and is used for double-sided scanning, First, scanning the front data of the scanned file, the unnecessary data collected after scanning the front data in the image data collected by the sensor is deleted, and the image data collected by the sensor is also collected before scanning the back data. The extra data is removed.
  • the scanning device may further include a data screening unit 210.
  • the data filtering unit is used to remove useless data, the following two methods may be included, but not limited to:
  • the first type determining the first time and the second time; and deleting the first image data in the first image data sequence collected by the first sensor after the first time, and collecting the second sensor before the second time The second image data in the second image data sequence is deleted.
  • the first time is the time when the file to be scanned leaves the first sensor
  • the second time is the time when the file to be scanned reaches the second sensor.
  • the first image data collected by the first sensor after the first time is useless data, and the removal process can be performed; the second image data collected by the second sensor before the second time is useless data, and can be performed. Removal processing.
  • the first sensor and the second sensor may be in a positional relationship in which the upper and lower sides are not completely facing, and the first sensor first scans the front side data of the scanned file to be processed.
  • FIG. 7 is a schematic diagram of a process for removing useless data in the present application.
  • the first sensor and the second sensor simultaneously perform image acquisition, and in the scanning device, the first sensor scans the front data of the to-be-processed file first, so the first sensor is
  • the first image data collected at time T1 is the front data of the file to be scanned; at this time, the file to be scanned has not yet reached the second sensor, and therefore, the second image data collected by the second sensor at time T1 is useless data.
  • the file to be scanned reaches the second sensor, and the second image data collected by the second sensor from time T2 is the back data of the file to be scanned.
  • the file to be scanned leaves the first sensor, and the first image data collected by the first sensor after the time T3 is useless data.
  • the document to be scanned leaves the second sensor, and the first sensor and the second sensor end the acquisition of the image.
  • xxxxx indicates useless data, and unnecessary data needs to be removed.
  • the first designated value and the second specified value may be preset according to actual needs, and the present application does not specifically limit this.
  • the acquired first image data sequence and The second image data sequence is stored separately.
  • the scanning device may further include at least one memory.
  • the first image data sequence and the second image data sequence may be separately stored by two memories, that is, the first image data sequence is stored by the first memory, and the second image is stored by the second memory. Data sequence.
  • FIG. 8 is a schematic diagram of storing a first image data sequence and a second image data sequence in the present application.
  • the first image data sequence obtained after being processed by the data remapping unit 206 is: R-1-1, G-1-1, B-1-1; the obtained second image data sequence It is: R-2-1, G-2-1, B-2-1.
  • the first image data sequence may be stored by the first memory on the left side of FIG. 8, and the second image data sequence may be stored by the second memory on the right side of FIG. 8 to obtain the separately stored first image data sequence and the first Two image data sequences.
  • first image data sequence and the second image data sequence separately through two memories is only a specific implementation manner, and is only used to indicate how The obtained first image data sequence and the second image data sequence are separately stored, and are not used to limit the scheme.
  • the first image data sequence and the second image data sequence may be separately stored in different locations by a memory to obtain a separately stored first image data sequence and second image data sequence.
  • the specific implementation of the present application for separately storing the first image data sequence and the second image data sequence is not particularly limited.
  • the acquired first image data sequence and the second image data sequence may further perform image processing, such as image edge sharpening processing, background removal processing, and the like, and the processing will be performed.
  • image processing such as image edge sharpening processing, background removal processing, and the like, and the processing will be performed.
  • the subsequent first image data sequence and second image data sequence are stored. This application does not specifically limit this.
  • the scanning device in the prior art includes two sensors and an image acquiring unit, wherein two sensors respectively collect The front image data and the reverse image data of the file to be scanned are further obtained by an image acquisition unit to obtain image data acquired by the two sensors in a row-by-row manner. Therefore, the scanning device must acquire the data collected by the other sensor after acquiring one line of data of one sensor. Therefore, when the scanning device is used for double-sided scanning of the scanned document, the scanning speed is When the scanning speed of the surface is twice, the scanning time is longer and the scanning efficiency is lower.
  • the selector in the present application acquires image data in turn from the first channel 203 and the second channel 204 by means of pixel-by-pixel acquisition.
  • the selector 205 may acquire a second image data pixel point output by the second sensor 202 by using an interval time after the first sensor 201 outputs a first image data pixel point, and output a first portion by using the second sensor 202. The interval time after the two image data pixels intersects to acquire a first image data pixel point output by the first sensor 201.
  • the length of the data that the selector 205 can collect in each acquisition period is smaller than the data length output by the sensor, thereby ensuring that the selector 205 can continuously and continuously cross-roll the image data collected by the first sensor 201. And image data collected by the second sensor 202. Further, the scanning speed of the double-sided scanning of the scanned document is the same as the scanning speed of the single-sided scanning, which greatly saves the scanning time and improves the scanning efficiency.
  • the scanning device provided by the present application collects images by scanning the files simultaneously by two sensors, and processes the images collected by the two sensors through a selector, thereby saving hardware cost and solving the problem in the prior art.
  • a double-scan scanning device has a problem of high hardware cost.
  • the selector adopts a pixel-by-pixel acquisition mode to obtain image data from the first channel and the second channel in turn, so that the scanning speed of the scanning device when performing double-sided scanning is approximately equal to that of single-sided scanning. Scanning speed improves scanning efficiency.
  • the present application also provides an image forming apparatus.
  • FIG. 9( a ) is a first structural diagram of an image forming apparatus provided by the present application.
  • the image forming apparatus includes the scanning device 91 and the imaging device according to the first embodiment. 92.
  • the imaging device 92 is configured to form an image on the imaging medium based on the image data processed by the scanning device 91.
  • the material of the imaging medium can be determined according to actual needs, which is not specifically limited in the present application.
  • the present application does not particularly limit the imaging method of the imaging device 91 shown in FIG. 9(a).
  • the imaging device 91 may employ any one of imaging methods such as laser imaging and inkjet imaging.
  • FIG. 9(b) is a schematic diagram of a second structure of the image forming apparatus provided by the present application.
  • the image forming apparatus 900 includes the above-described scanning device and imaging device 908, which simultaneously serves as a controller of the scanning device and the imaging device 908.
  • the imaging device 908 is configured to perform imaging according to image data acquired by the scanning device.
  • the scanning device includes an automatic document feeder (A/DF), and the A/DF includes a pickup roller assembly 909 and a paper discharge roller assembly 905 to the pickup roller.
  • the assembly 909 and the paper discharge roller assembly 905 provide a driving force for the first motor 903, A first sensor 904 that reads the first image data of the file to be scanned, the first sensor 905 is located within the A/DF frame; and a second sensor 906 that is located below the planar scanning platform 910.
  • the models of the first sensor 904 and the second sensor 906 are not particularly limited.
  • the first sensor 904 and the second sensor 906 may be configured as a contact image sensor (CIS); or the first sensor 904 and the second sensor 906 may also be partially or fully configured as a charge coupled device (Charge) Coupled Device, CCD).
  • CIS contact image sensor
  • CCD charge coupled device Coupled Device
  • the process of performing double-sided scanning by the scanning device shown in FIG. 9(b) is: after the document to be scanned passes through the paper feed port 901, the pickup roller assembly 909 passes the document to be scanned along the predetermined paper path in the A/DF.
  • the scanned document to be scanned is discharged to the output tray by the paper discharge roller assembly 905.
  • the scanning speed when the scanning device performs double-sided scanning can acquire image data and transmit data according to the first sensor 904 and the second sensor 906.
  • the speed and the number of revolutions of the first motor 903 are set in accordance with predetermined parameters, which is not particularly limited in the present application.
  • the process of performing single-sided scanning by the scanning device shown in FIG. 9(b) is: placing the image to be scanned in the document to be scanned face down on the plane scanning platform 910, and moving the second through the second motor 911.
  • the sensor 906, at this time, the second sensor 906 can acquire the side of the document with data and complete the one-sided scanning.
  • FIG. 10 is a schematic diagram of a third structure of the scanning device provided by the present application.
  • the scanning device provided in this embodiment is provided with a first sensor 1006 (first sensor 904 in FIG. 9(b)) and a second sensor 1007 (second sensor 906 in FIG. 9(b)).
  • the image acquisition unit 1020 is further provided with an image acquisition unit 1020 and a scan interface 1010.
  • the image acquisition unit 1020 is provided with four data channels, one channel, two channels, three channels, and four channels.
  • the image acquisition unit 1020 is also provided with a selection of data for selecting different channels.
  • the image acquisition controller 1013 may perform data processing on the data sent by the selector 1022, and provide a control signal when the image acquisition unit 1020 collects data on different channels.
  • the sensor control unit 1011 is configured to the first sensor 1006 and the second sensor 1007. Send control signals such as clock control signals and lighting control signals.
  • the scanning device is further provided with a register bus 1003 connected to the scan interface 1010, the CPU 1002 of the scanning device is connected to the scan interface 1010 through the register bus 1003, and the CPU 1002 also exchanges data with an external memory, a USB interface or the like through the data bus 1001;
  • the CPU 1002 can also issue a control command to the motor controller 1004 via the register bus 1003, and the motor controller 1004 transmits a clock signal to the motor 1005 in accordance with the received control command.
  • the scan interface 1010, the image acquisition unit 1020, the register bus 1003, and the CPU 1002 and the data bus 1001 in the dotted line frame in FIG. 10 can be integrated into one controller, so there is no need to separately add additional
  • the image acquisition unit hardware circuit reduces the cost.
  • the image forming apparatus collects images by using two sensors at the same time, and processes the images collected by the two sensors through a selector, thereby saving hardware cost and solving the problem in the prior art.
  • a scanning device that realizes double-sided scanning has a problem of high hardware cost.
  • the selector adopts a pixel-by-pixel acquisition mode to obtain image data from the first channel and the second channel in turn, so that the scanning speed of the scanning device when performing double-sided scanning is approximately equal to that of single-sided scanning. Scanning speed improves scanning efficiency.
  • the present application further provides a scanning method.
  • FIG. 11 is a schematic flowchart of a scanning method provided by the present application. As shown in FIG. 11, the method includes:
  • the first sensor collects first image data of the file to be scanned.
  • the second sensor collects second image data of the file to be scanned.
  • the selector acquires image data in turn from the first channel and the second channel by using a pixel-by-pixel acquisition manner to obtain a first image data from the first channel and a second channel from each of the acquisition channels. Two image data.
  • the method further includes:
  • the data remapping unit remaps the acquired image data according to the acquisition order of the selector to obtain a first image data sequence and a second image data sequence; the first image data sequence includes the first array arranged in the order in which the selectors are acquired.
  • the image data, the second image data sequence includes second image data arranged in the order in which the selectors are acquired.
  • the method before the data remapping unit remaps the acquired image data according to the order in which the selector is obtained, the method further includes:
  • the first converter performs analog-to-digital conversion on the acquired image data, and sends the image data obtained by the analog-to-digital conversion to the data remapping unit according to the order of acquisition by the selector.
  • the selector uses a pixel-by-pixel acquisition method to obtain image data in turn from the first channel and the second channel, and the method further includes:
  • the second converter performs analog-to-digital conversion on the first image data collected by the first sensor
  • the third converter performs analog-to-digital conversion on the second image data collected by the second sensor.
  • the method further includes:
  • the data screening unit determines the first time and the second time; and the data filtering unit deletes the first image data in the first image data sequence collected by the first sensor after the first time, and the second sensor before the second time The second image data in the collected second image data sequence is deleted; or
  • the data screening unit deletes the first image data of the end in the first image data sequence according to the first specified value, and the data filtering unit deletes the second image data starting from the second image data sequence according to the second specified value. .
  • the selection frequency when the selector selects the channel is greater than or equal to twice the output frequency of the first sensor; and/or, when the selector selects the channel The selection frequency is greater than or equal to twice the output frequency of the second sensor.
  • the first image data is the front image data of the file to be scanned
  • the second image data is the reverse image data of the file to be scanned
  • the first image data and the second image data are files to be scanned.
  • the front image data; or the first image data and the second image data are the reverse image data of the file to be scanned.
  • FIG. 2(a) or FIG. 2(b) Since the scanning method provided in this embodiment is used for the scanning device shown in FIG. 2(a) or FIG. 2(b), the portion not described in detail in this embodiment can be referred to FIG. 2(a) or FIG. 2 ( b) related instructions.
  • the scanning method provided by the present application collects images by scanning the files simultaneously by two sensors, and processes the images collected by the two sensors through a selector, thereby saving hardware costs and solving the prior art for realizing the implementation.
  • a double-scan scanning device has a problem of high hardware cost.
  • the selector adopts a pixel-by-pixel acquisition mode to obtain image data from the first channel and the second channel in turn, so that the scanning speed of the scanning device when performing double-sided scanning is approximately equal to that of single-sided scanning. Scanning speed improves scanning efficiency.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Can be based on reality It is necessary to select some or all of the units to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Input (AREA)

Abstract

本申请提供了一种扫描装置、图像形成设备和扫描方法。一方面,本申请提供的扫描装置包括第一传感器、第二传感器、对应第一传感器的第一通道、对应第二传感器的第二通道和选择器;其中,第一传感器,用于采集待扫描文件的第一图像数据;第二传感器,用于采集待扫描文件的第二图像数据;选择器,用于利用逐像素获取方式,从第一通道和第二通道中轮流获取图像数据,以在每个获取周期内获得一个来自第一通道的第一图像数据和一个来自第二通道的第二图像数据。因此,本申请提供的技术方案能够解决现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。

Description

一种扫描装置、图像形成设备和扫描方法
本申请要求于2016年08月26日提交中国专利局、申请号为201610736117.5、发明名称为“一种扫描装置、图像形成设备和扫描方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像处理技术领域,尤其涉及一种扫描装置、图像形成设备和扫描方法。
背景技术
目前,为了提高读取文档的生产率和改进安静性等,现有技术中采用了具有双面扫描功能的扫描装置。
请参考图1,其为现有技术中用于双面扫描的扫描装置的结构示意图。如图1所示,现有技术中的扫描装置为了支持若对待扫描文件进行双面扫描,对于待扫描文件的两面需要分别配置对应的一套硬件模块,每套硬件模块中都包括传感器、转换器、图像处理单元、边界处理单元、帧存储器、选择器、接口。因此,现有技术中,实现双面扫描时硬件成本比较高。
【申请内容】
有鉴于此,本申请提供了一种扫描装置、图像形成设备和扫描方法,用以解决现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。
一方面,本申请提供了一种扫描装置,所述扫描装置包括第一传感器、第二传感器、对应所述第一传感器的第一通道、对应所述第二传感器的第二通道和选择器;
所述第一传感器,用于采集待扫描文件的第一图像数据;
所述第二传感器,用于采集所述待扫描文件的第二图像数据;
所述选择器,用于利用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据,以在每个获取周期内获得一个来 自第一通道的第一图像数据和一个来自第二通道的第二图像数据。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述扫描装置还包括数据重映射单元;
所述数据重映射单元,用于将从所述第一传感器和所述第二传感器获取到的所述图像数据,按照所述选择器的获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列;所述第一图像数据序列包括按照所述选择器的获取顺序排列的第一图像数据,所述第二图像数据序列包括按照所述选择器的获取顺序排列的第二图像数据。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述扫描装置还包括设置在选择器与所述数据重映射单元之间的第一转换器;
所述第一转换器,用于将所述选择器获取到的图像数据进行模数转换;
所述第一转换器,还用于按照所述选择器的获取顺序,将模数转换后得到的图像数据发送给所述数据重映射单元。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述扫描装置还包括设置在第一传感器与第一通道之间的第二转换器、设置在第二传感器与第二通道之间的第三转换器;
所述第二转换器,用于将所述第一传感器采集的第一图像数据进行模数转换;
所述第三转换器,用于将所述第二传感器采集的第二图像数据进行模数转换。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述扫描装置还包括数据筛选单元,用于:
确定第一时刻和第二时刻;以及,将所述第一时刻后所述第一传感器采集到的、所述第一图像数据序列中的第一图像数据删除,将所述第二时刻前所述第二传感器采集到的、所述第二图像数据序列中的第二图像数据删除;或者,
按照第一指定数值,将所述第一图像数据序列中末端的第一图 像数据删除,以及,按照第二指定数值,将所述第二图像数据序列中起始的第二图像数据删除。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,
所述选择器选择通道时的选择频率大于或者等于所述第一传感器输出频率的两倍;和/或,
所述选择器选择通道时的选择频率大于或者等于所述第二传感器输出频率的两倍。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,
所述第一图像数据为待扫描文件的正面图像数据,所述第二图像数据为所述待扫描文件的反面图像数据;或者,
所述第一图像数据和所述第二图像数据均为待扫描文件的正面图像数据;或者,
所述第一图像数据和所述第二图像数据均为待扫描文件的反面图像数据。
上述技术方案中的一个技术方案具有如下有益效果:
本申请提供的扫描装置,通过两个传感器同时对待扫描文件进行图像的采集,并通过一个选择器对两个传感器采集到的图像进行处理,节省了硬件成本,解决了现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。而且,选择器采用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据的工作方式,使得该扫描装置实现双面扫描时的扫描速度近似等于单面扫描时的扫描速度,提高了扫描效率。
另一方面,本申请还提供了一种图像形成设备,其特征在于,所述设备包括:上述扫描装置和成像装置;
所述成像装置,用于根据所述扫描装置处理后的图像数据,在成像介质上形成图像。
上述技术方案中的一个技术方案具有如下有益效果:
本申请提供的图像形成设备,通过两个传感器同时对待扫描文 件进行图像的采集,并通过一个选择器对两个传感器采集到的图像进行处理,节省了硬件成本,解决了现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。而且,选择器采用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据的工作方式,使得该扫描装置实现双面扫描时的扫描速度近似等于单面扫描时的扫描速度,提高了扫描效率。
再一方面,本申请还提供了一种扫描方法,所述方法包括:
第一传感器采集待扫描文件的第一图像数据;
第二传感器采集所述待扫描文件的第二图像数据;
选择器利用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据,以在每个获取周期内获得一个来自第一通道的第一图像数据和一个来自第二通道的第二图像数据。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:
数据重映射单元将获取到的所述图像数据,按照所述选择器的获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列;所述第一图像数据序列包括按照所述选择器的获取顺序排列的第一图像数据,所述第二图像数据序列包括按照所述选择器的获取顺序排列的第二图像数据。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,数据重映射单元将获取到的所述图像数据,按照所述选择器的获取顺序进行重映射之前,所述方法还包括:
第一转换器将从所述第一传感器和所述第二传感器获取到的所述图像数据进行模数转换,并按照所述选择器的获取顺序,将模数转换后得到的图像数据发送给所述数据重映射单元。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,选择器利用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据之前,所述方法还包括:
第二转换器将所述第一传感器采集的第一图像数据进行模数转换;
第三转换器将所述第二传感器采集的第二图像数据进行模数转换。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,数据重映射单元将获取到的所述图像数据,按照所述选择器的获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列之后,所述方法还包括:
数据筛选单元确定第一时刻和第二时刻;以及,数据筛选单元将所述第一时刻后所述第一传感器采集到的、所述第一图像数据序列中的第一图像数据删除,将所述第二时刻前所述第二传感器采集到的、所述第二图像数据序列中的第二图像数据删除;或者,
数据筛选单元按照第一指定数值,将所述第一图像数据序列中末端的第一图像数据删除,以及,数据筛选单元按照第二指定数值,将所述第二图像数据序列中起始的第二图像数据删除。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,
所述选择器选择通道时的选择频率大于或者等于所述第一传感器输出频率的两倍;和/或,
所述选择器选择通道时的选择频率大于或者等于所述第二传感器输出频率的两倍。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,
所述第一图像数据为待扫描文件的正面图像数据,所述第二图像数据为所述待扫描文件的反面图像数据;或者,
所述第一图像数据和所述第二图像数据均为待扫描文件的正面图像数据;或者,
所述第一图像数据和所述第二图像数据均为待扫描文件的反面图像数据。
上述技术方案中的一个技术方案具有如下有益效果:
本申请提供的扫描方法,通过两个传感器同时对待扫描文件进行图像的采集,并通过一个选择器对两个传感器采集到的图像进行 处理,节省了硬件成本,解决了现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。而且,选择器采用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据的工作方式,使得该扫描装置实现双面扫描时的扫描速度近似等于单面扫描时的扫描速度,提高了扫描效率。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是现有技术中用于双面扫描的扫描装置的结构示例图;
图2(a)是本申请所提供的扫描装置的第一结构示意图;
图2(b)是本申请所提供的扫描装置的第二结构示意图;
图3是本申请所提供的扫描装置的信号频率示意图;
图4是本申请中控制信号的示意图;
图5是本申请中选择器获取图像数据的示意图;
图6是本申请中图像数据的处理过程示意图;
图7是本申请中去除无用数据的过程示意图;
图8是本申请中对第一图像数据序列和第二图像数据序列进行存储的示意图;
图9(a)是本申请提供的图像形成设备的第一结构示意图;
图9(b)是本申请提供的图像形成设备的第二结构示意图;
图10是本申请提供的扫描装置的第三结构示意图;
图11是本申请所提供的扫描方法的流程示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申 请保护的范围。
在本申请中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请中可能采用术语第一、第二等来描述传感器等,但这些传感器等不应限于这些术语。这些术语仅用来将传感器等彼此区分开。例如,在不脱离本申请范围的情况下,第一传感器也可以被称为第二传感器,类似地,第二传感器也可以被称为第一传感器。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
实施例一
本申请给出一种扫描装置,请参考图2(a),其为本申请所提供的扫描装置的第一结构示意图;请参考图2(b),其为本申请所提供的扫描装置的第二结构示意图。
如图2(a)或如图2(b)所示,该扫描装置包括第一传感器201、第二传感器202、对应第一传感器201的第一通道203、对应第二传感器202的第二通道204和选择器205;
第一传感器201,用于采集待扫描文件的第一图像数据;
第二传感器202,用于采集待扫描文件的第二图像数据;
选择器205,用于利用逐像素获取方式,从第一通道203和第二通道204中轮流获取图像数据,以在每个获取周期内获得一个来自 第一通道203的第一图像数据和一个来自第二通道204的第二图像数据。
具体的,本申请中,待扫描文件可以包括但不限于:文档、证件、图像和照片中至少一个,本申请对此不进行特别限定。
需要说明的是,如图2(a)或如图2(b)所示,本申请提供的扫描装置中可以包括但不限于第一通道203和第二通道204这两个通道,选择器205可以在扫描装置中的至少两个通道中任意选择两个通道作为第一通道203和第二通道204,并通过第一通道203获取第一图像数据,通过第二通道204获取第二图像数据,本申请对此不进行特别限定。
具体的,本申请中,如图2(a)或如图2(b)所示,选择器205采用逐像素(Pixel by Pixel)获取方式,或者也可以称为一个像素一个像素地获取方式,从第一通道203和第二通道204轮流获取图像数据,并且,在每个获取周期内,可以通过第一通道203获取到一个第一图像数据,且通过第二通道204获取到一个第二图像数据。例如,第一图像数据可以是第一图像数据像素点,第二图像数据可以是第二图像数据像素点。
本申请中,选择器205利用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据,即选择器205可以利用第一传感器201输出两个第一图像数据像素点之间的间隔时间,来获取第二传感器202输出的一个第二图像数据,同样地,也利用第二传感器202输出两个第二图像数据像素点之间的间隔时间,获取第一传感器201输出的一个第一图像数据,这样可以提高选择器获取图像数据像素点的效率。
具体的,本申请中,如图2(a)或如图2(b)所示,选择器205选择通道时的选择频率大于或者等于第一传感器201输出频率的两倍;和/或,选择器205选择通道时的选择频率大于或者等于第二传感器202输出频率的两倍。
在一个具体的实现过程中,如图2(a)或如图2(b)所示,第一传感器201的输出频率和第二传感器202的输出频率一致时,选 择器205选择通道时的选择频率要大于或者等于第一传感器201输出频率的两倍。因此,在第一传感器201、第二传感器202和选择器205处理的数据长度相同的情况下,第一传感器201、第二传感器202中输出数据的输出频率为f1;而选择器205的选择通道时的选择频率要大于第一传感器201输出数据时的输出频率的2倍,即选择器205的选择通道时的选择频率大于2×f1。
进一步优选地,如图2(a)或如图2(b)所示,若第一传感器201输出数据时的位数为n1,选择器205获取数据时的位数为n2,图像获取单元中选择器205选择通道时的选择频率大于或等于第一传感器201的输出频率的2×n2/n1倍。也就是说,即使n1>n2,但是选择器205的选择频率非常快,可以同时采集第一传感器201的数据和第二传感器202的数据,选择器205在一个周期内可以选择第一传感器201和第二传感器202在n2/n1个周期内的数据。如此,选择器205在每个获取周期内能够采集到的数据长度小于传感器输出的数据长度,从而保证了选择器205能够不间断地、连续地、交叉轮流获取第一传感器201所采集到的图像数据和第二传感器202所采集到的图像数据。
因此,采用本实施例提供的上述技术方案中,在对待扫描文件进行双面扫描的扫描速度与进行单面扫描的扫描速度相同,极大地节省了扫描时间,提高了扫描效率。
请参考图3,其为本申请所提供的扫描装置的信号频率示意图。如图3所示,VSMP(Video sample timing pulse)表示时钟控制信号,第一传感器201在接收到该时钟控制信号后采集第一图像数据,且第二传感器202在接收到该时钟控制信号后采集第二图像数据;第一传感器201传输的信号为Sig1,第二传感器202传输的信号为Sig2,Sig1信号行和Sig2信号行中的1、2、3、4、5、6表示图像数据像素点;DATA CLK为选择器205选择第一通道203或选择第二通道204获取图像数据时的选择信号;图3中的用两条竖行虚线表示不同的通道,数据信号为选择器205获取到的图像数据信号;具体的,数据信号行中1-2、1-3、1-4、1-5、1-6以及2-1、2-2、2-3、2-4、 2-5、2-6中短横线前面的1和2分别表示获取数据时选择的通道,短横线后面的1、2、3、4、5、6分别表示每个通道中不同的图像数据像素点。
如图3所示,VSMP信号较为松散,即第一传感器201和第二传感器202的输出频率较低,假设为f1;而DATA CLK信号较为密集,说明选择器205在一个选择周期内选择第一通道203或选择第二通道204的次数较为频繁,即选择器205的选择频率较高,假设选择器205的选择频率为f2。在一个具体的实现过程中,为了实现选择器205利用逐像素获取方式,从第一通道203和第二通道204中轮流获取图像数据,DATA CLK信号的选择频率f2可以为VSMP信号的信号频率f1的2倍及以上,即选择器205选择通道时的选择频率f2需要大于或者等于2f1。
在一个具体的实现过程中,第一传感器根据接收到传感器控制单元发送的控制信号后,采集该控制信号所指示颜色的第一图像数据,以及,第二传感器根据接收到的传感器控制单元发送的控制信号后,采集该控制信号所指示颜色的第二图像数据。
需要说明的是,本申请中,第一传感器和第二传感器接收到的控制信号可以包括但不限于时钟控制信号和点灯控制信号中至少一个。
具体的,第一传感器可以根据接收到的时钟控制信号,在指定的时刻采集第一图像数据,或者,在收到时钟控制信号之后立即采集第一图像数据,以及,第二传感器可以根据接收到的时钟控制信号,在指定的时刻采集第二图像数据,或者,在收到时钟控制信号之后立即采集第二图像数据。
具体的,第一传感器可以根据接收到的点灯控制信号,采集该点灯控制信号所指示颜色的第一图像数据,以及,第二传感器可以根据接收到的时钟控制信号,采集该点灯控制信号所指示颜色的第二图像数据。
具体的,传感器控制单元发送给第一传感器和第二传感器的控制信号可以相同,可以不同,本申请对此不进行特别限定。
具体的,请参考图4,其为本申请中控制信号的示意图。如图4所示,TR为传感器控制单元发送给第一传感器201和第二传感器202的时钟控制信号,Sig1为选择器205通过第一通道203获取到的第一图像数据的信号示意图,Sig2为选择器205通过第二通道204获取到的第二图像数据的信号示意图,其中,R表示红色灯被点亮时的红色的图像数据信号,G表示绿色灯被点亮时的绿色的图像数据信号,B表示蓝色灯被点亮时的蓝色的图像数据信号。
需要说明的是,第一传感器和第二传感器在接收到控制信号后,即采集控制信号所指示颜色的图形数据,而选择器通过第一通道和第二通道获取到的图像数据比点灯控制信号的发出晚一个周期。
具体的,如图4所示,当传感器控制单元在Ta时刻时发送了时钟控制信号和红色灯的点灯控制信号,则在TR为Ta时刻时R信号由低电平变化为高电平,红色灯被点亮,此时,第一传感器根据接收到的时钟控制信号和红色灯的点灯控制信号,采集红色的第一图像数据,并且,第二传感器根据接收到的时钟控制信号和红色灯的点灯控制信号,采集红色的第二图像数据;而Sig1信号在Tb时刻表示为R,即表示选择器在Tb时刻通过第一通道获取到红色的第一图像数据,同时,Sig2信号在Tb时刻表示为R,即表示选择器在Tb时刻通过第二通道获取到红色的第二图像数据。
类似的,如图4所示,当传感器控制单元在Tb时刻时发送了时钟控制信号和绿色灯的点灯控制信号,则在TR为Tb时刻时G信号由低电平变化为高电平,表示绿色灯被点亮,此时,第一传感器根据接收到的时钟控制信号和绿色灯的点灯控制信号,采集绿色的第一图像数据,并且,第二传感器根据接收到的时钟控制信号和绿色灯的点灯控制信号,采集绿色的第二图像数据;而Sig1信号在Tc时刻表示为G,即表示选择器在Tc时刻通过第一通道获取到绿色的第一图像数据,同时,Sig2信号在Tc时刻表示为G,即表示选择器在Tc时刻通过第二通道获取到绿色的第二图像数据。
类似的,如图4所示,当传感器控制单元在Tc时刻时发送了时钟控制信号和蓝色灯的点灯控制信号,则在TR为Tc时刻时B信号 由低电平变化为高电平,表示蓝色灯被点亮,此时,第一传感器根据接收到的时钟控制信号和蓝色灯的点灯控制信号,采集蓝色的第一图像数据,并且,第二传感器根据接收到的时钟控制信号和蓝色灯的点灯控制信号,采集蓝色的第二图像数据;而Sig1信号在Td时刻表示为B,即表示选择器在Td时刻通过第一通道获取到蓝色的第一图像数据,同时,Sig2信号在Td时刻表示为B,即表示选择器在Td时刻通过第二通道获取到蓝色的第二图像数据。
基于此,选择器利用逐像素获取方式,从第一通道和第二通道轮流获取到的图像数据为第一传感器采集到的第一图像数据和第二传感器采集到的第二图像数据的交叉数据。
以图5为例进行举例说明,请参考图5,其为本申请中选择器获取图像数据的示意图。
具体的,本申请实施例中可以通过“甲-乙-丙”的形式表示图像数据像素点,其中,表示甲灯点亮时,乙通道,第丙个图像数据像素点。具体的,甲可以表示为R、G和B,其中,R表示红灯,G表示绿灯,B表示蓝灯。如图5所示,R-1-1、R-1-2、R-1-3为第一传感器采集到的第一图像数据像素点,其中,R-1-2表示红灯亮时,第一通道,第2个图像数据像素点。B-2-1、B-2-2、B-2-3为第二传感器采集到的第二图像数据像素点,其中,B-2-3表示蓝灯亮时,第二通道,第2-3中的3表示第二传感器采集到的蓝色的第3个图像数据像素点。
如图5所示,红灯亮时,选择器利用逐像素获取方式,从第一通道和第二通道轮流获取图像数据,是在通过第一通道获取到第一图像数据像素点R-1-1之后,通过第二通道获取一个第二图像数据像素点R-2-1,之后,从第一通道和第二通道轮流获取图像数据,进而,选择器利用逐像素获取方式,从第一通道和第二通道轮流获取到的图像数据为R-1-1、R-2-1、R-1-2、R-2-2、R-1-3、R-2-3……该图像数据为第一传感器采集到的第一图像数据和第二传感器采集到的第二图像数据的交叉数据。
类似的,如图5所示,绿灯亮时,选择器利用逐像素获取方式, 从第一通道和第二通道轮流获取图像数据,是在通过第一通道获取到第一图像数据像素点G-1-1之后,通过第二通道获取一个第二图像数据像素点G-2-1,之后,从第一通道和第二通道轮流获取图像数据,进而,选择器利用逐像素获取方式,从第一通道和第二通道轮流获取到的图像数据为G-1-1、G-2-1、G-1-2、G-2-2、G-1-3、G-2-3……该图像数据为第一传感器采集到的第一图像数据和第二传感器采集到的第二图像数据的交叉数据。
类似的,如图5所示,蓝灯亮时,选择器利用逐像素获取方式,从第一通道和第二通道轮流获取图像数据,是在通过第一通道获取到第一图像数据像素点B-1-1之后,通过第二通道获取一个第二图像数据像素点B-2-1,之后,从第一通道和第二通道轮流获取图像数据,进而,选择器利用逐像素获取方式,从第一通道和第二通道轮流获取到的图像数据为B-1-1、B-2-1、B-1-2、B-2-2、B-1-3、B-2-3……该图像数据为第一传感器采集到的第一图像数据和第二传感器采集到的第二图像数据的交叉数据。
具体的,本申请中,如图2(a)或如图2(b)所示,该扫描装置还包括数据重映射单元206,需要说明的是数据重映射单元206不仅可以设置成属于扫描装置的一部分,还可以设置成属于与扫描装置相连接的计算机的一部分。
如图2(a)或如图2(b)所示,数据重映射单元206,用于将获取到的图像数据,按照获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列;第一图像数据序列包括按照选择器205的获取顺序排列的第一图像数据,第二图像数据序列包括按照选择器205的获取顺序排列的第二图像数据。
以图6所示为例进行举例说明。请参考图6,其为本申请中图像数据的处理过程示意图。
如图6所示,若G灯点亮时,第一传感器采集到的第一图像数据像素点为G-1-1、G-1-2、G-1-3;第二传感器采集到的第二图像数据像素点为G-2-1、G-2-2、G-2-3,则选择器利用逐像素获取方式,从第一通道和第二通道中轮流获取到的图像数据为G-1-1、G-2-1、 G-1-2、G-2-2、G-1-3、G-2-3,数据重映射单元按照选择器的获取顺序对该图像数据进行重映射,以获得第一图像数据序列和第二图像数据序列,其中,第一图像数据序列中包括按照选择器的获取顺序获取到的第一图像数据像素点:G-1-1、G-1-2、G-1-3;第二图像数据序列中包括按照选择器的获取顺序获取到的第二图像数据像素点G-2-1、G-2-2、G-2-3。
在一个具体的实现过程中,数据重映射单元将获取到的图像数据,按照获取顺序进行重映射,可以包括但不限于以下的实现方式:
例如,数据重映射单元将获取到的图像数据,按照获取顺序间隔抽取该图像数据中的图像数据像素点,将间隔抽取的序号为单号的图像数据像素点,按照选择器的获取顺序排列,得到第一图像数据序列,并且,将间隔抽取的序号为双号的图像数据像素点,按照选择器的获取顺序排列,得到第二图像数据序列。可以理解的是,该举例仅用以说明如何将获取到的图像数据,按照获取顺序进行重映射,并不用以限制本方案。
需要说明的是,本申请中,对于选择器获取到的图像数据的类型不进行特别限定。具体的,选择器利用逐像素获取方式,从第一通道和第二通道中轮流获取图像数据可以为模拟信号,或者,选择器利用逐像素获取方式,从第一通道和第二通道中轮流获取图像数据数字信号。
可以理解的是,根据选择器获取到的图像数据的类型不同,该扫描装置中用于进行模数转换的转换器的位置不同。
具体的,在一个具体的实现过程中,请参考图2(a),该扫描装置还包括设置在选择器205与数据重映射单元206之间的第一转换器207;
第一转换器207,用于将选择器205获取到的图像数据进行模数转换;
第一转换器207,还用于按照选择器205的获取顺序,将模数转换后得到的图像数据发送给数据重映射单元206。
可以理解的是,如图2(a)所示,第一转换器207设置于选择 器205与数据重映射单元206之间时,选择器205获取到的图像数据的格式为模拟信号,选择器205发送给第一转换器207的图像数据的格式为模拟信号,经第一转换器207进行模数转换后,第一转换器207得到数字信号格式的图像数据,第一转换器207将数字信号格式的图像数据发送给数据重映射单元206。
具体的,在另一个具体的实现过程中,请参考图2(b),该扫描装置还包括设置在第一传感器201与第一通道203之间的第二转换器208、设置在第二传感器202与第二通道204之间的第三转换器209。
如图2(b)所示,第二转换器208,用于将第一传感器201采集的第一图像数据进行模数转换;第三转换器209,用于将第二传感器202采集的第二图像数据进行模数转换。
可以理解的是,如图2(b)所示,第二转换器208设置于第一传感器201与第一通道203之间时,第一传感器201采集到的图像数据的格式为模拟信号,经第二转换器208进行模数转换后,选择器205通过第一通道203获取到数字信号格式的图像数据,选择器205将数字信号格式的图像数据发送给数据重映射单元206。
类似的,如图2(b)所示,第三转换器209设置于第二传感器202与第二通道204之间时,第二传感器202采集到的图像数据的格式为模拟信号,经第三转换器209进行模数转换后,选择器205通过第二通道204获取到数字信号格式的图像数据,选择器205将数字信号格式的图像数据发送给数据重映射单元206。
需要说明的是,本申请中,如图2(a)或如图2(b)所示,只需要对第一图像数据和第二图像数据进行一次模数转换,因此,若通过设置在选择器205与数据重映射单元206之间的第一转换器207,将选择器205获取到的图像数据进行模数转换,则不需要再在第一传感器201与第一通道203之间设置第二转换器208,且不需要再在第二传感器202与第二通道204之间设置第三转换器209;或者,若通过设置在第一传感器201与第一通道203之间的第二转换器208,将第一传感器201采集的第一图像数据进行模数转换,且通过设置 在第二传感器202与第二通道204之间的第三转换器209,将第二传感器202采集的第二图像数据进行模数转换,则不需要再在选择器205与数据重映射单元206之间设置第一转换器207。
需要说明的是,本申请中,对第一传感器采集到的第一图像数据的位置和第二传感器采集到的第二图像数据的位置不进行特别限定,具体的,第一图像数据和第二图像数据的位置可以包括但不限于以下三种:
第一种:第一图像数据为待扫描文件的正面图像数据,第二图像数据为待扫描文件的反面图像数据。
可以理解的是,本申请所提供的扫描装置可以用于双面扫描,此时,第一传感器和第二传感器可以位于待扫描文件的上下两侧,此时,第一图像数据为待扫描文件的正面图像数据,第二图像数据为待扫描文件的反面图像数据。
第二种:第一图像数据和第二图像数据均为待扫描文件的正面图像数据。
第三种:第一图像数据和第二图像数据均为待扫描文件的反面图像数据。
可以理解的时,本申请所提供的扫描装置还可以用于单面扫描,此时,第一传感器和第二传感器位于待扫描文件的同侧,此时,根据待扫描文件需要进行扫描的一面,第一图像数据和第二图像数据均为待扫描文件的正面图像数据,或者,第一图像数据和第二图像数据均为待扫描文件的反面图像数据。
具体的,本申请中,对于第二种和第三种情况的应用场景可以包括但不限于:可以用两个A4幅面的传感器组合起来实现A3幅面的扫描;或者,在平板扫描时,用两个传感器从待扫描文档两端同时向中间扫描;或者,在平板扫描时,用两个传感器从待扫描文档中间同时向两端扫描;或者:在平板扫描时,一个传感器在端部,一个传感器在中间,这样沿着相同的方向同时扫描。
具体的,本申请提供的扫描装置用于双面扫描时,第一传感器和第二传感器可以为上下不完全正对的位置关系,这样可以避免第 一传感器和第二传感器在获取图像数据时以及点灯过程中对彼此造成的干扰。这种将两个传感器错开布局的设计,使得第一传感器在获取待扫描文件的第一图像数据和第二传感器获取待扫描文件的第二图像数据的时刻不同,用于双面扫描时,假设首先对扫描待处理文件的正面数据进行扫描,则需要将传感器采集到的图像数据中扫描正面数据之后采集到的无用数据进行删除,还需要将传感器采集到的图像数据中扫描背面数据前采集到的多余数据去掉。
具体的,本申请中,如图2(a)或如图2(b)所示,该扫描装置还可以包括数据筛选单元210。具体的,数据筛选单元用于去除无用数据时,可以包括但不限于以下两种方式:
第一种:确定第一时刻和第二时刻;以及,将第一时刻后第一传感器采集到的、第一图像数据序列中的第一图像数据删除,将第二时刻前第二传感器采集到的、第二图像数据序列中的第二图像数据删除。
需要说明的是,第一时刻为待扫描文件离开第一传感器的时刻,第二时刻为待扫描文件达到第二传感器的时刻。
可以理解的是,第一传感器在第一时刻之后采集到的第一图像数据为无用数据,可以进行去除处理;第二传感器在第二时刻之前采集到的第二图像数据为无用数据,可以进行去除处理。
举例说明,假设第一传感器和第二传感器可以为上下不完全正对的位置关系,且由第一传感器首先对扫描待处理文件的正面数据进行扫描。此时,请参考图7,其为本申请中去除无用数据的过程示意图。
如图7所示,在T1时刻,第一传感器和第二传感器同时进行图像采集,并且,该扫描装置中由第一传感器首先对扫描待处理文件的正面数据进行扫描,所以,第一传感器在T1时刻采集到的第一图像数据即为待扫描文件的正面数据;而此时,待扫描文件还未到达第二传感器,因此,第二传感器在T1时刻采集到的第二图像数据为无用数据。直到T2时刻,待扫描文件达到第二传感器,第二传感器自T2时刻开始采集到的第二图像数据为待扫描文件的背面数据。在 T3时刻,待扫描文件离开第一传感器,第一传感器在T3时刻之后采集到的第一图像数据为无用数据。在T4时刻,待扫描文件离开第二传感器,第一传感器和第二传感器采集图像结束。如图7所示,xxxxx表示无用数据,需要将无用数据去除。
如图7所示,只需要确定第一时刻T3和第二时刻T2,所以,将T3时刻之后第一传感器采集到的、第一图像数据序列中的第一图像数据删除,并将T2时刻之前,第二传感器采集到的、第二图像数据序列中的第二图像数据删除,即可将采集到的无用数据进行删除。
第二种:按照第一指定数值,将第一图像数据序列中末端的第一图像数据删除,以及,按照第二指定数值,将第二图像数据序列中起始的第二图像数据删除。
具体的,本申请中,第一指定数值和第二指定数值可以根据实际需要进行预设,本申请对此不进行特别限定。
可以理解的是,本申请中,经数据重映射单元对选择器获取到的数据进行重映射,得到第一图像数据序列和第二图像数据序列之后,可以将获取到的第一图像数据序列和第二图像数据序列分别进行存储。
具体的,本申请中,该扫描装置还可以包括至少一个存储器。
在一个具体的实现过程中,可以通过两个存储器对第一图像数据序列和第二图像数据序列分别进行存储,即通过第一存储器存储第一图像数据序列,并通过第二存储器存储第二图像数据序列。
具体的,请参考图8,其为本申请中对第一图像数据序列和第二图像数据序列进行存储的示意图。如图8所示,若经数据重映射单元206进行处理后得到的第一图像数据序列为:R-1-1,G-1-1,B-1-1;得到的第二图像数据序列为:R-2-1,G-2-1,B-2-1。则可以通过图8左侧的第一存储器对第一图像数据序列进行存储,通过图8右侧的第二存储器对第二图像数据序列进行存储,以得到分开存储的第一图像数据序列和第二图像数据序列。
可以理解的是,通过两个存储器对第一图像数据序列和第二图像数据序列分别进行存储只是一种具体实现方式,仅用以表明如何 将获取到的第一图像数据序列和第二图像数据序列分别进行存储,并不用以限制本方案。具体的,本申请中还可以通过一个存储器将第一图像数据序列和第二图像数据序列分别存储在不同的位置,以得到分开存储的第一图像数据序列和第二图像数据序列。本申请对分开存储第一图像数据序列和第二图像数据序列的具体实现方式不进行特别限定。
需要说明的是,本申请中,还可以进一步对获取到的第一图像数据序列和第二图像数据序列进行图像处理,如图像边缘锐化处理、背景去除处理等图像处理操作,并且,将处理后的第一图像数据序列和第二图像数据序列进行存储。本申请对此不进行特别限定。
需要说明的是,现有技术中,还存在一种可以用于双面扫描的扫描装置,现有技术中的这种扫描装置包括两个传感器和一个图像获取单元,其中,两个传感器分别采集待扫描文件的正面图像数据和反面图像数据,进而通过一个图像获取单元以逐行的方式交叉获取两个传感器采集到的图像数据。因此,这种扫描装置必须在获取到一个传感器一整行的数据之后,才能去获取另一个传感器采集到的数据,因此,使用这种扫描装置对待扫描文件进行双面扫描时,其扫描速度为当面扫描速度的两倍,扫描时间较长,扫描效率较低。
相比之下,如图2(a)或如图2(b)所示,本申请中的选择器是利用逐像素获取的方式,从第一通道203和第二通道204轮流获取图像数据,本申请中,选择器205可以利用第一传感器201输出一个第一图像数据像素点之后的间隔时间交叉获取第二传感器202输出的一个第二图像数据像素点,并利用第二传感器202输出一个第二图像数据像素点之后的间隔时间交叉获取第一传感器201输出的一个第一图像数据像素点。从而,选择器205在每个获取周期内能够采集到的数据长度小于传感器输出的数据长度,从而保证了选择器205能够不间断地、连续地交叉轮流获取第一传感器201所采集到的图像数据和第二传感器202所采集到的图像数据。进而,在对待扫描文件进行双面扫描的扫描速度与进行单面扫描的扫描速度相同,极大地节省了扫描时间,提高了扫描效率。
本申请中的一个技术方案具有以下有益效果:
本申请提供的扫描装置,通过两个传感器同时对待扫描文件进行图像的采集,并通过一个选择器对两个传感器采集到的图像进行处理,节省了硬件成本,解决了现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。而且,选择器采用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据的工作方式,使得该扫描装置实现双面扫描时的扫描速度近似等于单面扫描时的扫描速度,提高了扫描效率。
实施例二
本申请还提供了一种图像形成设备。
请参考图9(a),其为本申请提供的图像形成设备的第一结构示意图;如图9(a)所示,该图像形成设备包括如实施例一所述的扫描装置91和成像装置92。
具体的,如图9(a)所示,成像装置92用于根据扫描装置91处理后的图像数据,在成像介质上形成图像。
具体的,本申请中,成像介质的材料可以根据实际需要进行确定,本申请对此不进行特别限定。
具体的,本申请对如图9(a)所示的成像装置91的成像方式不进行特别限定。例如,成像装置91可以采用激光成像、喷墨成像等成像方式中的任意一种。
请参考图9(b),其为本申请提供的图像形成设备的第二结构示意图。
如图9(b)所示,图像形成设备900包括上述的扫描装置和成像装置908,控制装置907同时作为扫描装置和成像装置908的控制器。
具体的,如图9(b)所示,成像装置908,用于根据扫描装置获取的图像数据进行成像。
本申请中,如图9(b)所示,扫描装置包括自动送纸器(Automatic Document Feeder,A/DF),A/DF包括搓纸辊组件909、排纸辊组件905,向搓纸辊组件909和排纸辊组件905提供驱动力的第一马达903, 读取待扫描文件第一图像数据的第一传感器904,第一传感器905位于A/DF框架内;以及第二传感器906,第二传感器906位于平面扫描平台910的下方。
本申请中,如图9(b)所示,对第一传感器904和第二传感器906的型号不做特别限定。优选地,第一传感器904和第二传感器906可以设置为接触式图像传感器(Contact Image Sensor,CIS);或者,第一传感器904和第二传感器906也可以部分或者全部设置为电荷耦合器件(Charge Coupled Device,CCD)。
如图9(b)所示的扫描装置进行双面扫描的过程为:待扫描文件经过进纸口901后,搓纸辊组件909将待扫描文件沿着A/DF中预定的纸张路径经过第一传感器904和第二传感器906;第一传感器904和第二传感器906分别采集待扫描文件的第一图像数据和第二图像数据。第一传感器904获取到第一图像数据和第二传感器906获取到第二图像数据后,扫描完成的待扫描文件就通过排纸辊组件905被排出至出纸盘。
具体的,如图9(b)所示的扫描装置进行双面扫描时的扫描速度,即每分钟完成扫描的页数,可以根据第一传感器904和第二传感器906获取图像数据、传输数据的速度、第一马达903的转速,按照预定参数进行设置,本申请对此不进行特别限定。
如图9(b)所示的扫描装置进行单面扫描的过程为:将待扫描文件中需要进行图像扫描的一面朝下,放置在平面扫描平台910上,通过第二马达911移动第二传感器906,此时,第二传感器906就可以获取文档中有数据的一面,完成单面扫描。
具体的,请参考图10,其为本申请提供的扫描装置的第三结构示意图。
如图10所示,本实施例提供的扫描装置除了设置有第一传感器1006(图9(b)中的第一传感器904)、第二传感器1007(图9(b)中的第二传感器906),还设置有图像获取单元1020、扫描接口1010,图像获取单元1020设置有4个数据通道,1通道、2通道、3通道、4通道,图像获取单元1020还设置有选择不同通道数据的选择器 1022和转换器1021。图像获取控制器1013可以对选择器1022发送的数据进行数据处理,并且在图像获取单元1020不同通道采集数据时,提供控制信号;传感器控制单元1011,用于向第一传感器1006、第二传感器1007发送时钟控制信号、点灯控制信号等控制信号。另外,该扫描装置还设置有与扫描接口1010连接的寄存器总线1003,扫描装置的CPU1002通过寄存器总线1003与扫描接口1010连接,CPU1002还通过数据总线1001与外部的存储器、USB接口等交换数据;并且CPU1002还通过寄存器总线1003可以给马达控制器1004发出控制指令,马达控制器1004根据接收到的控制指令向马达1005发送时钟信号。
在一个具体的实现过程中,图10中的虚线框内的扫描接口1010、图像获取单元1020、寄存器总线1003和CPU1002、数据总线1001都可以集成在一个控制器中,因此不需要单独再增加额外的图像获取单元硬件电路,降低了成本。
本申请中的一个技术方案具有以下有益效果:
本申请提供的图像形成设备,通过两个传感器同时对待扫描文件进行图像的采集,并通过一个选择器对两个传感器采集到的图像进行处理,节省了硬件成本,解决了现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。而且,选择器采用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据的工作方式,使得该扫描装置实现双面扫描时的扫描速度近似等于单面扫描时的扫描速度,提高了扫描效率。
实施例三
基于上述实施例一所提供扫描装置,本申请进一步给出一种扫描方法。
请参考图11,其为本申请所提供的扫描方法的流程示意图。如图11所示,该方法包括:
S1101,第一传感器采集待扫描文件的第一图像数据。
S1102,第二传感器采集待扫描文件的第二图像数据。
需要说明的是,本申请中,S1101和S1102的步骤是同时进行的, 没有先后顺序的存在,第一传感器和第二传感器同时进行各自图像数据的采集。
S1103,选择器利用逐像素获取方式,从第一通道和第二通道中轮流获取图像数据,以在每个获取周期内获得一个来自第一通道的第一图像数据和一个来自第二通道的第二图像数据。
具体的,该方法还包括:
数据重映射单元将获取到的图像数据,按照选择器的获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列;第一图像数据序列包括按照选择器的获取顺序排列的第一图像数据,第二图像数据序列包括按照选择器的获取顺序排列的第二图像数据。
在一个具体的实现过程中,数据重映射单元将获取到的图像数据,按照选择器的获取顺序进行重映射之前,该方法还包括:
第一转换器将获取到的图像数据进行模数转换,并按照选择器的获取顺序,将模数转换后得到的图像数据发送给数据重映射单元。
在另一个具体的实现过程中,选择器利用逐像素获取方式,从第一通道和第二通道中轮流获取图像数据之前,该方法还包括:
第二转换器将第一传感器采集的第一图像数据进行模数转换;
第三转换器将第二传感器采集的第二图像数据进行模数转换。
具体的,本申请中,数据重映射单元将获取到的图像数据,按照获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列之后,该方法还包括:
数据筛选单元确定第一时刻和第二时刻;以及,数据筛选单元将第一时刻后第一传感器采集到的、第一图像数据序列中的第一图像数据删除,将第二时刻前第二传感器采集到的、第二图像数据序列中的第二图像数据删除;或者,
数据筛选单元按照第一指定数值,将第一图像数据序列中末端的第一图像数据删除,以及,数据筛选单元按照第二指定数值,将第二图像数据序列中起始的第二图像数据删除。
在一个具体的实现过程中,选择器选择通道时的选择频率大于或者等于第一传感器输出频率的两倍;和/或,选择器选择通道时的 选择频率大于或者等于第二传感器输出频率的两倍。
在一个具体的实现过程中,第一图像数据为待扫描文件的正面图像数据,第二图像数据为待扫描文件的反面图像数据;或者,第一图像数据和第二图像数据均为待扫描文件的正面图像数据;或者,第一图像数据和第二图像数据均为待扫描文件的反面图像数据。
由于本实施例所提供的扫描方法以用于图2(a)或者图2(b)所示的扫描装置,本实施例未详细描述的部分,可参考对图2(a)或者图2(b)的相关说明。
本申请中的一个技术方案具有以下有益效果:
本申请提供的扫描方法,通过两个传感器同时对待扫描文件进行图像的采集,并通过一个选择器对两个传感器采集到的图像进行处理,节省了硬件成本,解决了现有技术中用于实现双面扫描的扫描装置存在的硬件成本较高的问题。而且,选择器采用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据的工作方式,使得该扫描装置实现双面扫描时的扫描速度近似等于单面扫描时的扫描速度,提高了扫描效率。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实 际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (15)

  1. 一种扫描装置,其特征在于,所述扫描装置包括第一传感器、第二传感器、对应所述第一传感器的第一通道、对应所述第二传感器的第二通道和选择器;
    所述第一传感器,用于采集待扫描文件的第一图像数据;
    所述第二传感器,用于采集所述待扫描文件的第二图像数据;
    所述选择器,用于利用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据,以在每个获取周期内获得一个来自第一通道的第一图像数据和一个来自第二通道的第二图像数据。
  2. 根据权利要求1所述的扫描装置,其特征在于,所述扫描装置还包括数据重映射单元;
    所述数据重映射单元,用于将从所述第一传感器和所述第二传感器获取到的所述图像数据,按照所述选择器的获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列;所述第一图像数据序列包括按照所述选择器的获取顺序排列的第一图像数据,所述第二图像数据序列包括按照所述选择器的获取顺序排列的第二图像数据。
  3. 根据权利要求2所述的扫描装置,其特征在于,所述扫描装置还包括设置在选择器与所述数据重映射单元之间的第一转换器;
    所述第一转换器,用于将所述选择器获取到的图像数据进行模数转换;
    所述第一转换器,还用于按照所述选择器的获取顺序,将模数转换后得到的图像数据发送给所述数据重映射单元。
  4. 根据权利要求2所述的扫描装置,其特征在于,所述扫描装置还包括设置在第一传感器与第一通道之间的第二转换器、设置在第二传感器与第二通道之间的第三转换器;
    所述第二转换器,用于将所述第一传感器采集的第一图像数据进行模数转换;
    所述第三转换器,用于将所述第二传感器采集的第二图像数据进行模数转换。
  5. 根据权利要求2所述的扫描装置,其特征在于,所述扫描装置还包括数据筛选单元,用于:
    确定第一时刻和第二时刻;以及,将所述第一时刻后所述第一传感器采集到的、所述第一图像数据序列中的第一图像数据删除,将所述第二时刻前所述第二传感器采集到的、所述第二图像数据序列中的第二图像数据删除;或者,
    按照第一指定数值,将所述第一图像数据序列中末端的第一图像数据删除,以及,按照第二指定数值,将所述第二图像数据序列中起始的第二图像数据删除。
  6. 根据权利要求1所述的扫描装置,其特征在于,
    所述选择器选择通道时的选择频率大于或者等于所述第一传感器输出频率的两倍;和/或,
    所述选择器选择通道时的选择频率大于或者等于所述第二传感器输出频率的两倍。
  7. 根据权利要求1至6中任一项所述的扫描装置,其特征在于,
    所述第一图像数据为待扫描文件的正面图像数据,所述第二图像数据为所述待扫描文件的反面图像数据;或者,
    所述第一图像数据和所述第二图像数据均为待扫描文件的正面图像数据;或者,
    所述第一图像数据和所述第二图像数据均为待扫描文件的反面图像数据。
  8. 一种图像形成设备,其特征在于,所述设备包括:如权利要求1至7中任一项所述的扫描装置和成像装置;
    所述成像装置用于根据所述扫描装置处理后的图像数据,在成像介质上形成图像。
  9. 一种扫描方法,其特征在于,所述方法包括:
    第一传感器采集待扫描文件的第一图像数据;
    第二传感器采集所述待扫描文件的第二图像数据;
    选择器利用逐像素获取方式,从第一通道和第二通道中轮流获取图像数据,以在每个获取周期内获得一个来自第一通道的第一图 像数据和一个来自第二通道的第二图像数据。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    数据重映射单元将获取到的所述图像数据,按照所述选择器的获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列;所述第一图像数据序列包括按照所述选择器的获取顺序排列的第一图像数据,所述第二图像数据序列包括按照所述选择器的获取顺序排列的第二图像数据。
  11. 根据权利要求10所述的方法,其特征在于,数据重映射单元将获取到的所述图像数据,按照所述选择器的获取顺序进行重映射之前,所述方法还包括:
    第一转换器将从所述第一传感器和所述第二传感器获取到的所述图像数据进行模数转换,并按照所述选择器的获取顺序,将模数转换后得到的图像数据发送给所述数据重映射单元。
  12. 根据权利要求10所述的方法,其特征在于,选择器利用逐像素获取方式,从所述第一通道和所述第二通道中轮流获取图像数据之前,所述方法还包括:
    第二转换器将所述第一传感器采集的第一图像数据进行模数转换;
    第三转换器将所述第二传感器采集的第二图像数据进行模数转换。
  13. 根据权利要求10所述的方法,其特征在于,数据重映射单元将获取到的所述图像数据,按照所述选择器的获取顺序进行重映射,得到第一图像数据序列和第二图像数据序列之后,所述方法还包括:
    数据筛选单元确定第一时刻和第二时刻;以及,数据筛选单元将所述第一时刻后所述第一传感器采集到的、所述第一图像数据序列中的第一图像数据删除,将所述第二时刻前所述第二传感器采集到的、所述第二图像数据序列中的第二图像数据删除;或者,
    数据筛选单元按照第一指定数值,将所述第一图像数据序列中 末端的第一图像数据删除,以及,数据筛选单元按照第二指定数值,将所述第二图像数据序列中起始的第二图像数据删除。
  14. 根据权利要求9所述的方法,其特征在于,
    所述选择器选择通道时的选择频率大于或者等于所述第一传感器输出频率的两倍;和/或,
    所述选择器选择通道时的选择频率大于或者等于所述第二传感器输出频率的两倍。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,
    所述第一图像数据为待扫描文件的正面图像数据,所述第二图像数据为所述待扫描文件的反面图像数据;或者,
    所述第一图像数据和所述第二图像数据均为待扫描文件的正面图像数据;或者,
    所述第一图像数据和所述第二图像数据均为待扫描文件的反面图像数据。
PCT/CN2017/093524 2016-08-26 2017-07-19 一种扫描装置、图像形成设备和扫描方法 WO2018036308A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2019103342A RU2735942C2 (ru) 2016-08-26 2017-07-19 Сканирующее устройство, система формирования изображения и способ сканирования
EP17842731.6A EP3490236A4 (en) 2016-08-26 2017-07-19 SCANNING DEVICE, IMAGING APPARATUS, AND SCANNING METHOD
US16/276,989 US10477060B2 (en) 2016-08-26 2019-02-15 Scanning device, image-forming apparatus, and scanning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610736117.5 2016-08-26
CN201610736117.5A CN106357949B (zh) 2016-08-26 2016-08-26 一种扫描装置、图像形成设备和扫描方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/276,989 Continuation US10477060B2 (en) 2016-08-26 2019-02-15 Scanning device, image-forming apparatus, and scanning method

Publications (1)

Publication Number Publication Date
WO2018036308A1 true WO2018036308A1 (zh) 2018-03-01

Family

ID=57855095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093524 WO2018036308A1 (zh) 2016-08-26 2017-07-19 一种扫描装置、图像形成设备和扫描方法

Country Status (5)

Country Link
US (1) US10477060B2 (zh)
EP (1) EP3490236A4 (zh)
CN (1) CN106357949B (zh)
RU (1) RU2735942C2 (zh)
WO (1) WO2018036308A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106357949B (zh) * 2016-08-26 2019-08-06 珠海赛纳打印科技股份有限公司 一种扫描装置、图像形成设备和扫描方法
CN110233948A (zh) * 2019-07-15 2019-09-13 珠海奔图电子有限公司 扫描设备、图像形成装置、扫描方法及存储介质
CN112100424B (zh) * 2020-08-28 2024-06-18 中保车服科技服务股份有限公司 证件图像分类采集方法、装置、设备和介质
JP2022065848A (ja) * 2020-10-16 2022-04-28 セイコーエプソン株式会社 画像読取装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280545A (en) * 1988-12-29 1994-01-18 Canon Kabushiki Kaisha Image information processing apparatus capable of synthesizing front- and back-surface information
CN1395217A (zh) * 2001-07-06 2003-02-05 力捷电脑股份有限公司 一步两曝光的扫描方法
CN1791173A (zh) * 2004-12-13 2006-06-21 崴强科技股份有限公司 影像信号合成模组及方法
CN1816093A (zh) * 2005-02-03 2006-08-09 虹光精密工业(苏州)有限公司 双面扫描装置
CN106357949A (zh) * 2016-08-26 2017-01-25 珠海赛纳打印科技股份有限公司 一种扫描装置、图像形成设备和扫描方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908719A (en) * 1987-12-26 1990-03-13 Kabushiki Kaisha Toshiba Scanning apparatus with a mechanism to scan both sides of an original
JP2821161B2 (ja) * 1989-03-07 1998-11-05 キヤノン株式会社 画像情報処理装置
US5023711A (en) * 1989-10-16 1991-06-11 Eastman Kodak Company Line scanning apparatus using staggered linear segments with adjoining overlap regions
JP3428764B2 (ja) * 1995-03-03 2003-07-22 キヤノン株式会社 信号処理装置
US5760919A (en) * 1995-12-01 1998-06-02 Xerox Corporation Duplex documents scanner with alternating scan lines from dual imaging stations
DE19605938B4 (de) * 1996-02-17 2004-09-16 Fachhochschule Wiesbaden Bildabtaster
JP3353220B2 (ja) * 1996-03-25 2002-12-03 ミノルタ株式会社 画像処理装置
US6075622A (en) * 1997-10-14 2000-06-13 Eastman Kodak Company Duplex document scanner for processing multiplexed images with a single data path
US6160578A (en) * 1998-06-18 2000-12-12 Redlake Imaging Corporation High speed, increased bandwidth camera
US6512546B1 (en) * 1998-07-17 2003-01-28 Analog Devices, Inc. Image sensor using multiple array readout lines
CN1614985A (zh) * 2003-11-07 2005-05-11 虹光精密工业(苏州)有限公司 图像撷取装置及其方法
US7394632B2 (en) * 2004-09-30 2008-07-01 Rockwell Automation Technologies, Inc. Line interface module
US8929688B2 (en) * 2004-10-01 2015-01-06 University Of Washington Remapping methods to reduce distortions in images
JP4636246B2 (ja) * 2005-06-30 2011-02-23 ブラザー工業株式会社 画像読取装置
JP4692115B2 (ja) * 2005-07-11 2011-06-01 ソニー株式会社 画像処理装置および撮像装置
JP5084677B2 (ja) * 2008-09-12 2012-11-28 キヤノン株式会社 原稿サイズ検知装置
TWI389548B (zh) * 2008-11-14 2013-03-11 Genesys Logic Inc 雙面文件掃描系統及其方法
JP5532992B2 (ja) * 2010-02-10 2014-06-25 セイコーエプソン株式会社 書画カメラ、書画カメラの制御方法およびプログラム
US9143696B2 (en) * 2012-10-13 2015-09-22 Hewlett-Packard Development Company, L.P. Imaging using offsetting accumulations
JP6324176B2 (ja) * 2014-04-07 2018-05-16 キヤノン株式会社 画像読取装置、制御方法、プログラム、システム
CN104104825B (zh) * 2014-07-03 2017-03-29 宁波术有电子科技有限公司 基于fpga的双面扫描仪采集系统的校正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280545A (en) * 1988-12-29 1994-01-18 Canon Kabushiki Kaisha Image information processing apparatus capable of synthesizing front- and back-surface information
CN1395217A (zh) * 2001-07-06 2003-02-05 力捷电脑股份有限公司 一步两曝光的扫描方法
CN1791173A (zh) * 2004-12-13 2006-06-21 崴强科技股份有限公司 影像信号合成模组及方法
CN1816093A (zh) * 2005-02-03 2006-08-09 虹光精密工业(苏州)有限公司 双面扫描装置
CN106357949A (zh) * 2016-08-26 2017-01-25 珠海赛纳打印科技股份有限公司 一种扫描装置、图像形成设备和扫描方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490236A4 *

Also Published As

Publication number Publication date
RU2019103342A (ru) 2020-09-28
CN106357949A (zh) 2017-01-25
EP3490236A1 (en) 2019-05-29
EP3490236A4 (en) 2019-07-03
US10477060B2 (en) 2019-11-12
US20190182403A1 (en) 2019-06-13
CN106357949B (zh) 2019-08-06
RU2019103342A3 (zh) 2020-09-28
RU2735942C2 (ru) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2018036308A1 (zh) 一种扫描装置、图像形成设备和扫描方法
US20080266422A1 (en) Image processing apparatus and camera system
JP2014121016A (ja) 画像処理装置および画像処理方法
US7710613B2 (en) Image information apparatus
US7038719B2 (en) Image sensing apparatus, image processing method, recording medium, and program
CN101355619B (zh) 成像设备以及控制该成像设备的方法
JPH0146910B2 (zh)
US10200559B2 (en) Image scanning apparatus with two-sided scanning, control method therefor, and multifunction apparatus
JP5410158B2 (ja) 撮像システムおよび電子情報機器
US20060103896A1 (en) Duplex scan apparatus
US8792144B2 (en) Image reading device and image reading method
JPH07298008A (ja) 両面画像読取装置
JP2000351242A (ja) 画像形成装置
JP5304169B2 (ja) 画像処理装置および画像処理方法
JP7081477B2 (ja) 画像処理装置、画像処理装置の制御方法、およびプログラム
JP4105959B2 (ja) デジタルカメラ
JPH05165955A (ja) 画像処理方法
US20200228739A1 (en) Configurable interface alignment buffer between dram and logic unit for multiple-wafer image sensors
JPH09205524A (ja) ファクシミリ装置
JP2016116171A (ja) 画像処理装置、制御方法およびプログラム
TW530479B (en) Method for judging a compression ratio of a scanner automatically
JP2001186417A (ja) 欠陥画素検出装置
JP2009193337A (ja) ページメモリコントローラ
JP2002057880A (ja) 画像処理装置
JP2003298817A (ja) 画像処理装置、画像形成装置、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017842731

Country of ref document: EP

Effective date: 20190219

NENP Non-entry into the national phase

Ref country code: DE