WO2018035626A1 - 重金属污泥的回收方法 - Google Patents
重金属污泥的回收方法 Download PDFInfo
- Publication number
- WO2018035626A1 WO2018035626A1 PCT/CN2016/000477 CN2016000477W WO2018035626A1 WO 2018035626 A1 WO2018035626 A1 WO 2018035626A1 CN 2016000477 W CN2016000477 W CN 2016000477W WO 2018035626 A1 WO2018035626 A1 WO 2018035626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sludge
- heavy metal
- industrial wastewater
- organic polymer
- water
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/13—Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
Definitions
- the invention relates to a method for recovering heavy metal sludge, which is based on the detection result of heavy metal in industrial wastewater, puts appropriate amount of powdery biological preparation into industrial wastewater, adsorbs heavy metal, and separately recovers, and the industrial wastewater can utilize heavy metal sludge
- the recycling method recycles the internal sludge to reconstitute the sludge into a biological agent, so that the industrial wastewater is free of waste.
- chemical agents such as alkaline agents and heavy metal replenishers are usually added to industrial wastewater, and pollutants are adsorbed in industrial wastewater by means of input chemicals, and then The condensed material is added to the industrial wastewater, and the precipitate dissolved in the industrial wastewater is concentrated and precipitated by a precipitation concentrating device, and then the concentrated precipitate is dehydrated by a filtering device such as a filter press, which is subjected to concentration, precipitation, dehydration, etc.
- the material remaining after the operation is sludge, and the sludge can be taken down for disposal of waste such as landfill.
- the inventors have collected relevant information, evaluated and considered through multiple parties, and through years of experience in the industry, through continuous trial and modification, finally designed the heavy metal sludge of the present invention. Recycling method.
- the main object of the invention is to detect the industrial wastewater by the heavy metal detection method of the wastewater, and then input the biological agent into the biological wastewater after the detection, to adsorb the metal ions in the industrial wastewater, and at the same time, the phenomenon of sludge aggregation and sedimentation is generated, and then the electricity is introduced and installed.
- the positive electrode carrier and the negative electrode carrier of the device are separated and energized to allow the metal ions on the sludge to be freely deposited and deposited on the negative electrode carrier, and then the industrial wastewater solution and the sludge generated by the sediment are dewatered by a filtering device.
- the sludge In order to discharge the water contained in the wastewater solution and the sludge, leaving only the sludge, the sludge can be dried by the drying device according to whether or not the organic matter is contained, so that the sludge remains.
- the water and organic components are heated and evaporated to dry the sludge into a lump, and then sprayed on the surface of the bulk sludge having residual warmth by spraying the organic polymer aqueous solution in the organic polymer aqueous solution.
- the water is evaporated by the residual temperature of the bulk sludge so that the organic polymer in the aqueous solution of the organic polymer adheres to the block shape.
- the block-like sludge to which the organic polymer is attached is subjected to a grinding operation by a grinder to grind the bulk sludge into fine-sized sludge, and then the fine-sized sludge is physically and
- the soluble coagulant is mixed to make a biological preparation, and the biological agent can be re-introduced into the industrial wastewater to achieve the recycling effect, so that the sludge in the industrial wastewater can be completely recovered and reused, that is, no waste is generated.
- the utility model can not only reduce the manufacturing cost of the biological preparation, but also does not need to transport the sludge to the discharge place for discharging through the vehicle, thereby reducing the cost of transportation, thereby achieving the purpose of reducing the overall production cost and harming the environment.
- the secondary object of the present invention is that the biological preparation has the function of adsorbing heavy metal ions in the water, and the metal ions adsorbed on the biological preparation can be deposited on the electrolysis device by the electrochemical reduction reaction generated by the electrolysis device.
- the content of heavy metal ions in industrial wastewater will be greatly reduced to meet the emission standards and reduce environmental pollution.
- the sludge produced after the filtration step is mainly composed of a silicon-based inorganic material in a biological preparation, and the silicon-based inorganic material does not adsorb a large amount of water, so When the accumulated sludge is dried, the drying time can be reduced to reduce the drying device. The purpose of the electricity consumed.
- FIG. 1 is a flow chart showing the steps of a preferred embodiment of the present invention.
- FIG. 3 is a flow chart (2) of a step of another embodiment of the present invention.
- FIG. 1 is a flow chart of the steps of the preferred embodiment of the present invention.
- the heavy metal sludge recovery method of the present invention is used for the recovery and treatment of industrial wastewater, and the industrial wastewater thereof.
- the heavy metal detection method of wastewater is used to detect the heavy metal content, and then the biological preparations such as powder, granules or lumps are added to the industrial wastewater to adsorb heavy metal ions and the like in the industrial wastewater, so that the industrial wastewater can be aggregated and precipitated.
- the sludge and the aqueous solution are generated, and the aqueous solution other than the sludge will meet the environmental discharge standard value, and then the following steps are carried out:
- the biological agent When the biological agent is put into the industrial wastewater, the agglomeration and sedimentation are generated in the industrial wastewater, and the sludge is formed in the industrial wastewater solution, and the positive electrode carrier and the negative electrode carrier of the electrolysis device are installed in the industrial wastewater and energized.
- the electrolysis device generates a redox reaction in the industrial wastewater to generate a free state of the heavy metal ions attached to the sludge and deposit it on the negative electrode carrier, and collect and recover the deposited heavy metal ions so that the industrial wastewater solution does not It also contains heavy metal substances or harmful substances, and becomes a wastewater solution that meets emission standards.
- the industrial wastewater solution and the sludge treated by the electrolysis device are further subjected to a dehydration operation by a filtering device to discharge the wastewater solution meeting the discharge standard value, and the moisture contained in the sludge is also followed. Discharge, leaving only the sludge with the default water content.
- the drying device can be used to dry the sludge with the default water content at the default temperature, so that the moisture contained in the sludge can be The organic component is heated by high temperature and evaporated to dry the sludge into a lump.
- a spray device such as a sprinkler, a water sprayer, an atomizer or a water spray device
- a spray device such as a sprinkler, a water sprayer, an atomizer or a water spray device
- a spray device such as a sprinkler, a water sprayer, an atomizer or a water spray device
- a small amount of water in the aqueous polymer solution evaporates due to the residual temperature of the bulk sludge, so that the organic polymer in the aqueous solution of the organic polymer adheres to the surface of the bulk sludge.
- the lump sludge to which the organic polymer adheres may be subjected to a grinding operation by a grinder to grind the lump sludge into a powdery or granular shape.
- the above-mentioned industrial wastewater detection heavy metal analysis method is an optical coloring method or an electrochemical analysis method, which uses a heavy metal and a special organic color developing agent to form a colored complex or a specific heavy metal reduction potential, which is generally expressed in ppm concentration units.
- the wastewater testing operation is a general industrial wastewater testing operation mode, which is not a necessary technical content of the present invention, and therefore will not be described in detail; in addition, whether the sludge contains organic matter can be detected by chemical oxygen demand (COD) detection, and its chemistry
- Oxygen demand refers to the amount of oxidant consumed during chemical oxidation of a substance that can be oxidized in water under specified conditions, expressed in milligrams of oxygen consumed per liter of water, and is not a necessary technical content of the present invention.
- the biological agent introduced in the industrial wastewater is a non-polluting inorganic or organic material such as a silicon-based inorganic material, an organic polymer, and a soluble coagulant having an aluminum (Al) or iron (Fe) component.
- a silicon-based inorganic material can occupy about 40-60%
- the organic polymer can occupy about 10-20%
- the coagulant may comprise about 30-40%, which is one of the preferred embodiments of the biological agent used in the present invention, and is not limited to the formulation, composition, ratio, etc.
- the silicon-based inorganic material is non- Water-soluble and available for organic polymers and soluble coagulants with aluminum (Al) or iron (Fe) components to cause precipitation in water; and the organic polymer has high molecular weight and long chain a negatively charged property, a biodegradable polymer that can sequester metal ions in water; and the aluminum or iron-based soluble coagulant is soluble in water and is used to adsorb particles in water and produce a coagulant for precipitation; in which the Chelate effect is utilized Two less coordination atoms multidentate ligand (e.g., an organic polymer) with a chemical reaction to form a metal ion chelate ring.
- Two less coordination atoms multidentate ligand e.g., an organic polymer
- the above silicon-based inorganic material is preferably made of Diatomaceous, but in practical applications, it may be silica dioxide, kaolinite, Montmorillonite, orthoquinone.
- An inorganic material such as Vermiculite or Zeolite; and the organic polymer is preferably gamma-polyglycolic acid ( ⁇ -PGA; gamma-Polyglutamic acid), but in practical applications, it may also be chitosan (chitosan), polyacrylic acid or sodium polystyrene sulfonate [poly(sodium styrenesulfonate)]; and the aluminum or iron coagulant is preferably aluminum sulfate [Al 2 (SO 4 ) 3 ], but in practical applications, it can also be polyaluminum chloride (PAC; PolyAluminum chloride), ferric chloride (FeCl 3 ; Ferric chloride), ferrous chloride (FeCl 2 ; Ferrous chloride) or sulfuric
- the electrolysis device in the above step (100) is preferably implemented to include a positive electrode carrier and a negative electrode carrier, and the positive electrode carrier and the negative electrode carrier can be placed in industrial wastewater and energized to make heavy metal ions attached to the sludge (eg, Cu 2+ , Zn 2+ , etc.) by a redox reaction to produce a free phenomenon and deposited on the negative electrode carrier, wherein the voltage applied is between 0.1-20 volts and the current is between 0.1-10 amps, but
- the electrolysis device can be further equipped with a stirrer in the industrial wastewater to evenly distribute the sludge in the industrial wastewater to increase the area where the heavy metal ions contact the negative electrode carrier, and the efficiency of the electrolysis.
- a conductive activated carbon cloth or a conductive carbon cloth may be further attached to the positive electrode carrier and the negative electrode carrier, and the carbon cloth has a large surface area to contact the heavy metal ions to further accelerate the rate of electrolysis;
- the positive electrode carrier and the negative electrode carrier are preferably made of at least one layer of platinized titanium mesh, but in practical applications, it may be a gold-plated titanium mesh, a palladium-plated titanium mesh or a chemical-free metal.
- a mesh-like carrier made of stainless steel mesh material, the carrier may also be in the shape of a plate or a sheet.
- the electrolysis device is one of the preferred embodiments of the present invention, and thus does not limit the electrolysis of the present invention.
- the structure and material of the device, as well as the voltage and current of the current can also be flexibly adjusted according to the actual application.
- the sludge treated by the filtering device has a water content default value of about 50-80%; and the sludge component contains a silicon-based inorganic material (such as diatomaceous earth), an organic polymer. (such as PGA) and other substances (such as oil, toluene and other solvents), wherein the composition of the silicon-based inorganic material is about 60-70%, the composition of the organic polymer is about 30-20%, and the composition of other substances is about Occupy 10% and so on.
- a silicon-based inorganic material such as diatomaceous earth
- an organic polymer such as PGA
- other substances such as oil, toluene and other solvents
- the drying device adjusts the default temperature according to whether the sludge contains the organic matter, and the default temperature is 100-600 ° C.
- the default temperature is 100-600 ° C.
- the value of the default temperature can be invented according to the actual operating conditions, depending on the sludge, weather changes, etc., in the temperature limit range permitted by the dry device, the default temperature can be adjusted elastically. For example, if the sludge contains no organic matter, the 100-200 can be utilized.
- Drying at °C if the sludge contains organic matter, it can be dried at 400-600 °C; in addition, the organic content can be reflected by detecting different chemical oxygen demand, and the elasticity is within the allowable temperature range of the drying device. Adjusting the temperature of the drying temperature; when the sludge is heated above 400 ° C through an oxygen-free drying device, the organic polymer and other substances in the sludge are heated and sintered to leave only carbon, and if the sludge passes through the general atmosphere The environmentally operated drying device is heated at 600 ° C, and the organic polymer and other substances in the sludge are heated to form carbon dioxide (CO 2 ) and escape into the air.
- CO 2 carbon dioxide
- the effective organic component content in the aqueous solution of the organic polymer in the above step (103) is about 1-10% by default, and is preferably a mixture of polyglutamic acid and water, but in practical applications,
- the aqueous solution mixed with water, such as chitosan, polyacrylic acid or sodium polystyrene sulfonate has the same main component as the organic polymer in the biological preparation;
- the soluble coagulant in the above step (105) is preferably implemented as Aluminum sulfate, but in practical applications, it may also be a coagulant in the form of powder, granules, etc., such as polyaluminum chloride, ferric chloride, ferrous chloride or ferrous sulfate, the main components and biological agents.
- the coagulant with aluminum or iron is the same.
- the filtering device, the drying device, the squirting device, and the grinder are conventional devices for general applications, and are manufactured by different manufacturers. Different factors such as the device, or some operation or condition limitation, may be slightly adjusted without affecting the implementation of the steps of the present invention, and are not intended to limit the device of the present invention, so the details of the various devices are not described in detail. Operating mode for understanding.
- the implementation step is to first install the positive electrode carrier and the negative electrode carrier of the electrolysis device in the industrial wastewater and electrify the sludge to the sludge.
- the adsorbed metal ions are deposited on the negative electrode carrier of the electrolysis device by a redox reaction, and at the same time, the agitator in the water is activated to uniformly distribute the heavy metal sludge in the wastewater solution to increase the area of the heavy metal ions contacting the negative electrode carrier. , thereby accelerating the rate at which heavy metal ions are deposited on the negative electrode carrier of the electrolysis device.
- the filtration device can be used to discharge the wastewater solution, leaving only the dewatered sludge, and the heavy metal of the wastewater solution at this time.
- Ion residuals, suspended solids (SS), and chemical oxygen demand (COD) are standard values for emissions.
- the dewatered sludge is dried by a drying device, and the drying temperature is determined by the content of the organic matter contained in the industrial wastewater. If the chemical oxygen demand (COD) value is less than 100 mg/ L, drying at 100-200 ° C, if the value of chemical oxygen demand (COD) is greater than 100 mg / L, drying is performed at 400-600 ° C to heat the sludge by the drying device.
- the water inside the sludge is evaporated, and the sludge is dried and formed into a block shape, and the bulk sludge can be sprayed on the surface with a small amount of an aqueous solution of an organic polymer by means of a spray device, in an organic polymer aqueous solution.
- the water is heated by the residual heat of the sludge and evaporated, so that the organic polymer is dried and adhered to the surface of the sludge, and the dried sludge can be ground into fine shards by a grinder and added.
- the soluble coagulant is physically mixed to reproduce the biological preparation, and the biological preparation produced by the same can be re-introduced into the industrial wastewater to reach the adsorbed water.
- Medium heavy metal ions with the purpose of sedimentation.
- the heavy metal-free sludge in the original industrial wastewater can be used.
- Partially re-formed into biological preparations for reuse in industrial wastewater for recycling, and heavy metal sludge in industrial wastewater can be completely recycled and reused, thereby achieving the effect of no waste generation, and not only reducing biological agents
- the manufacturing cost does not need to be transported to the discharge site by means of transportation to reduce the transportation cost, thereby reducing the overall production cost and reducing the environmental risk.
- the biological preparation has the function of adsorbing heavy metal ions in the water, and the heavy metal ions adsorbed on the biological preparation are deposited on the negative carrier of the electrolysis device by the redox reaction generated by the electrolysis device, and the industrial wastewater is The content of heavy metal ions is greatly reduced to meet the emission standards and reduce environmental pollution.
- FIG. 2 and FIG. 3 are flowcharts (1) and (2) of another embodiment of the present invention, it is clear from the figure that the present invention is preferably implemented in steps (100) to ( 105) Previously, the following water purification steps can be performed first:
- a general flocculant such as a powder, a granule, a lump or a liquid is introduced into an industrial waste water to adsorb particles in the water and form a rubber feather to cause precipitation.
- the general flocculating agent in the above step (1002) is preferably implemented as a polymeric alumina (PAC), but in practical applications, it may also be a chlorination of a polyacrylamide (PAM) additive or a polymeric alumina added to a polymeric alumina.
- PAC polyaluminum iron
- PAC polyaluminum iron
- Another embodiment of the present invention is formulated with a flocculant in industrial wastewater, and the flocculant can further reduce industrial waste.
- Particles in water such as sand, sand, metal particles, plant materials, humus, etc.
- SS suspended solids
- COD effect of oxygen
- the present invention is mainly directed to industrial wastewater which has been first analyzed by heavy metals and which is administered with biological agents, and heavy metal sludge thereof.
- the sludge inside the industrial wastewater can be recycled by electrolysis, dehydration, drying, spraying of organic polymer, grinding and adding a soluble coagulant to re-form the sludge into a biological preparation.
- the industrial waste water treatment has no effect of generating waste, so the structure and the device which can achieve the foregoing effects are all covered by the present invention, and such simple modification and equivalent structural change are all included in the patent scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Sludge (AREA)
Abstract
一种重金属污泥的回收方法,用于处理含重金属的工业污泥,先置入电析装置并通电,以使污泥上重金属离子沉积于负极载体上,再利用压滤装置来排出污泥中附含的水份,便可借由烘干装置对污泥中残留水份进行加热蒸发,以使污泥呈块状,再使用喷润装置于具残留温度的块状污泥表面喷洒有机聚合物水溶液,有机聚合物水溶液的水份因接触到块状污泥的余温而蒸发,其有机聚合物即附着于块状污泥表面,再通过研磨机将附着有机聚合物的块状污泥磨成细小状泥屑,并使细小状泥屑混合于可溶性混凝剂中,完成生物制剂再生,可供再次投入含重金属工业废水中进行循环利用,不产生额外污泥废弃物,进而降低生物制剂的制造成本及减少重金属污泥对环境的危害。
Description
本发明涉及一种重金属污泥的回收方法,该方法是依据工业废水重金属检测结果,投入适量粉状生物制剂于工业废水中,吸附重金属后,再分别进行回收,其工业废水可利用重金属污泥回收方法来将内部污泥循环再利用,以将污泥重新制成生物制剂,使工业废水无废弃物产生。
随着科技的日新月异,许多制造高科技电子、电气产品的工厂,不断研发制造各式新产品,以提供人们在工作或日常生活中应用高科技的电子、电气产品,而在高科技电子、电气产品的制造、加工过程中,例如半导体制程、面板加工制程或金属表面加工处理、电镀等,都会产生大量的工业废水;且在传统的工业制造加工中,例如机械工场、铁工场、炼钢厂或铸造厂等,也都会产生许多的工业废水,则不论是高科技加工或传统工业制造加工等所产生的工业废水,都因为含有大量的重金属及有毒、有害物等,导致工业废水颜色乌黑、气味浓烈,若直接予以排放入河川、大海或将处理过的污泥直接进行掩埋,则将造成土地、动植物、水源及大海中生物的食物链等严重的影响,对人类的居住、生活空间等产生严重的危害,故引起了世界卫生组织的重视,对于工业废水的排放,订定了极严格的标准,务求工业废水中含带的有害物质可以降低、减少,避免造成环境、空气等污染。
再者,目前工业废水在排放前的后续处理程序中,通常会在工业废水中添加碱性药剂、重金属补集剂等化学药剂,借助投入的化学药剂在工业废水中吸附污染物,然后再于工业废水中添加凝结材料,并利用沉淀浓缩装置使工业废水中溶出的沉淀物予以浓缩沉淀,然后通过压滤机等过滤装置将浓缩的沉淀物进行脱水作业,其经由浓缩、沉淀、脱水等处理作业后剩余的物质即为污泥,便可将污泥接下进行填埋等废弃物的处理。
然而,在工业废水处理的过程中无法有效将有害的废气、废水、废弃物等确实完全消除,而仅是将其处理至工业废弃物排放标准可被接受的范围内,所以产生的污泥仍会通过专责清运机构依法清除处理,其背后隐藏的风险如:任意弃置、掩埋所造成对地区水质或土壤的污染危害,亦或是未能顺利合法运往清除处
理地区以及资源的浪费等,皆为目前各种污泥处理方法所无法解决。
因此,要如何解决上述现有技术存在的问题与缺失,成为从事此行业的相关厂商所亟待研究改善的方向。
发明内容
故,发明人有鉴于上述缺失,于是搜集相关资料,经由多方评估及考虑,并以从事于此行业累积的多年经验,经由不断试作及修改,最终设计出本发明所述的重金属污泥得回收方法。
本发明的主要目的在于通过废水重金属检测方法针对工业废水进行检测,再于检测后的工业废水投入生物制剂来吸附工业废水中的金属离子,同时产生污泥凝集沉淀现象,接着导入装设有电析装置的正极载体及负极载体间,并予以通电,以供污泥上的金属离子产生游离状态并沉积于负极载体上,再将工业废水溶液及沉淀产生的污泥利用过滤装置来进行脱水作业,以将废水溶液及污泥中含附的水份排出,仅留下污泥,之后便可依照是否含有有机物,利用烘干装置对污泥进行烘干作业,即可使污泥内残留的水份及有机成份受到加热而蒸发,以供污泥干燥呈块状,再使用喷润装置于具有残留温热度的块状污泥表面上喷洒有机聚合物水溶液,其有机聚合物水溶液内的水份因受到块状的污泥的余温而蒸发,以使有机聚合物水溶液内的有机聚合物附着于块状的污泥表面上,再针对附着有机聚合物的块状的污泥来通过研磨机进行研磨作业,以将块状的污泥研磨成细小状的泥屑,再将细小状的泥屑通过物理方式与可溶性混凝剂混合,以制作出生物制剂,便可将生物制剂再次投入于工业废水中达到循环利用的效用,以使工业废水中的污泥可完全的回收再利用,即无废弃物的产生,其不仅可降低生物制剂的制造成本,且也不需通过交通工具将污泥载送至排放地进行排放,即可降低运输上的成本,进而达到减少整体生产成本、危害环境的目的。
本发明的次要目的在于该生物制剂为具有供吸附水中重金属离子的功能,便可借由电析装置所产生的电化学还原反应将吸附在生物制剂上的金属离子沉积于电析装置上,使其工业废水中的重金属离子的含量便会大幅地降低,以达到符合排放的规范标准、降低对环境污染的目的。
本发明的另一目的在于该经由过滤步骤后所产生的污泥,其主要成份为由生物制剂中的硅基无机材堆积而成,其因硅基无机材并不会大量吸附水分,所以由其堆积而成的污泥进行烘干作业时,便可减少烘干的时间,以达到降低烘干装置
所耗费的电力的目的。
图1为为本发明较佳实施例的步骤流程图;
图2为为本发明另一实施例的步骤流程图(一);
图3为为本发明另一实施例的步骤流程图(二)。
为达成上述目的与功效,,下面结合附图以及较佳实施例对本发明所采用的技术手段及其构造、实施的方法等特征与功能详加说明如下,以使本领域技术人员完全了解本发明。
请参阅图1所示,为本发明较佳实施例的步骤流程图,由图中所示可以清楚看出,本发明的重金属污泥回收方法为用于工业废水的回收处理作业,其工业废水中是先利用废水重金属检测方法来检测重金属含量,再于工业废水中投入粉末状、颗粒状或块碇状等生物制剂来吸附工业废水中的重金属离子等物质,以使工业废水产生凝集沉淀现象而生成污泥及水溶液,且污泥之外的水溶液便会符合环境排放的标准值,再依照下列步骤实施处理:
(100)工业废水中投入生物制剂,则工业废水中产生凝集沉淀作用,进而于工业废水溶液中形成污泥,再于工业废水中装设电析装置的正极载体及负极载体并予以通电,其电析装置即于工业废水中产生氧化还原反应,以将依附于污泥上的重金属离子产生游离状态并沉积于负极载体上且可将沉积的重金属离子予以收集回收,以使工业废水溶液中不再含带重金属物质或有害物质等,成为符合排放标准的废水溶液。
(101)再将经由电析装置处理过的工业废水溶液及污泥利用过滤装置来进行脱水作业,以将符合排放标准值的废水溶液排出,而污泥内所含附的水份也随之排出,仅留下含水量为默认值的污泥。
(102)之后便可依照污泥中是否含有有机物质,再利用烘干装置对含水量为默认值的污泥以默认温度进行烘干作业,即可使污泥内所含附的水份及有机成份受到高温加热而蒸发,以供污泥干燥呈块状。
(103)再使用喷润装置(如洒水器、喷水器、雾化器或淋水装置等)于块状的污泥表面上喷洒有效生物成分含量为默认值的少量有机聚合物水溶液,其有机
聚合物水溶液内的少数水份因受到块状的污泥的余温而蒸发,以使有机聚合物水溶液内的有机聚合物附着于块状的污泥表面上。
(104)即可将附着有有机聚合物的块状的污泥来通过研磨机进行研磨作业,以将块状的污泥研磨成粉末状或颗粒状等形状的泥屑。
(105)以将粉末状或颗粒状等泥屑与粉末状或颗粒状等的可溶性混凝剂予以混合,以制作出粉末状、颗粒状或块碇状等可供投入工业废水中的生物制剂。
上述工业废水检测重金属分析方法为光学呈色法或电化学分析法,是利用重金属与特殊有机显色剂形成有色络合物或特定的重金属还原电位,一般以ppm的浓度单位表示,此种工业废水检测作业,为一般工业废水检测作业模式,并非本发明的必要技术内容,故不予以详述说明;另外,污泥是否含有机物可借由化学需氧量(COD)检测得知,其化学需氧量是指水中能被氧化的物质在规定条件下进行化学氧化过程中所消耗氧化剂的量,以每升水消耗氧的毫克数表示(mg/L),亦非本发明的必要技术内容。
再者,上述投入于工业废水中的生物制剂为可由硅基无机材、有机聚合物及具铝(Al)系或铁(Fe)系成份的可溶性混凝剂等无污染性的无机或有机材质所混制而成,其中,该硅基无机材可约占有40-60%、有机聚合物可约占有10-20%、具铝(Al)系或铁(Fe)系成份的可溶性混凝剂可约占有30-40%,此为本发明所应用的生物制剂较佳实施例之一,非因此局限本发明生物制剂的配方、成份、比例等;且该硅基无机材为非水溶性且可供有机聚合物和具铝(Al)系或铁(Fe)系成份的可溶性混凝剂附着以于水中产生沉淀现象的无机材;而该有机聚合物为具有高分子量、长链状,带负电荷的特性,即可对水中金属离子产生螯合作用的可供生物分解的聚合物;又该铝系或铁系可溶性混凝剂为可溶于水中且供吸附水中微粒并产生沉淀现象的混凝剂;其中螯合作用(Chelate effect)是为利用至少二个配位原子的多齿配体(如有机聚合物)与一个金属离子形成螯合环的化学反应。
再者,上述的硅基无机材较佳实施为硅藻土(Diatomaceous),但于实际应用时,亦可为二氧化硅(Silicon dioxide)、高岭土(Kaolinite)、蒙脱土(Montmorillonite)、蛭石(Vermiculite)或沸石(Zeolite)等无机材;且该有机聚合物较佳实施为聚麸胺酸(γ-PGA;gamma-Polyglutamic acid),但于实际应用时,亦可为几丁聚醣(chitosan)、聚丙烯酸(polyacrylic acid)或聚苯乙烯磺酸钠[poly(sodium styrenesulfonate)]等有机聚合物;而该铝系或铁系混凝剂较佳实施
为硫酸铝〔Al2(SO4)3〕,但于实际应用时,亦可为聚合氯化铝(PAC;PolyAluminum chloride)、氯化铁(FeCl3;Ferric chloride)、氯化亚铁(FeCl2;Ferrous chloride)或硫酸亚铁(FeSO4;Ferrous sulfate)等可溶于水且无污染性或伤害性物质等的具铝(Al)系或铁(Fe)系成份的可溶性混凝剂,此为本发明所应用的生物制剂较佳实施例之一,非因此局限本发明生物制剂的配方、成份、比例等。
且上述步骤(100)中的电析装置较佳实施为包括正极载体及负极载体,即可将正极载体及负极载体置入于工业废水中并通电以使附着于污泥上的重金属离子(如Cu2+,Zn2+等)借由氧化还原反应以产生游离现象,并沉积于负极载体上,其中通电的电压为位于0.1-20伏特之间,而电流位于0.1-10安培之间,但于实际应用时,其电析装置亦可于工业废水中进一步装设有搅拌器,便可使工业废水中的污泥均匀分布,以增加重金属离子接触于负极载体的面积,进而电析的效率,且正极载体及负极载体上亦可分别进一步贴附有具导电性的活性碳布或导电碳布,其碳布具有较大的表面积以接触于重金属离子,以更进一步加速电析的速率;而该正极载体及负极载体较佳实施为至少一层镀铂钛网所制成,但于实际应用时,亦可为镀金钛网、镀钯钛网或是无化学反应性的金属电镀不锈钢网材而成的网材状的载体,该载体亦可为板状或片状等形状,此种电析装置为本发明所应用的较佳实施例之一,非因此局限本发明电析装置的构造、材料,且通电的电压与电流亦可依实际应用而做弹性调整。
然而,上述步骤(101)中经由过滤装置处理过的污泥,其含水量默认值约为50-80%;而污泥成份为包含有硅基无机材(如硅藻土)、有机聚合物(如PGA)及其它物质(如油份、甲苯等溶剂),其中硅基无机材的成份约占有60-70%、有机聚合物的成份约占有30-20%、其它物质的成份约占有10%等。
另外,上述步骤(102)中烘干装置是依照污泥是否含有机物来调整默认温度进行烘干作业,其默认温度则可为100-600℃,此为本发明较佳实施例,并非限定本发明默认温度的数值,可依据实际操作状况,视污泥、天气变化等在供干装置许可的温度限制范围中进行弹性调整默认温度的高低,例如污泥不含有机物,则可利用100-200℃进行烘干,若污泥含有机物,则可利用400-600℃进行烘干;此外,仍可依检测出不同的化学需氧量反映出有机物含量,在烘干装置许可温度范围内,弹性调整烘干温度的高低;而当污泥通过无氧气的烘干装置400℃以上加热,其污泥内的有机聚合物及其他物质受到加热而烧结仅留下碳,而若污泥通过
一般大气环境操作的烘干装置以600℃加热,其污泥内的有机聚合物及其他物质受到加热而形成二氧化碳(CO2)并逸散于空气之中。
又,上述步骤(103)中的有机聚合物水溶液中有效生物成分含量默认值约为1-10%,其较佳实施为聚麸胺酸与水的混合液,但于实际应用时,亦可为几丁聚醣、聚丙烯酸或聚苯乙烯磺酸钠等与水混合的水溶液,其主要成份与生物制剂中的有机聚合物相同;则上述步骤(105)中可溶性混凝剂较佳实施为硫酸铝,但于实际应用时,亦可为聚合氯化铝、氯化铁、氯化亚铁或硫酸亚铁等粉末状、颗粒状等形状的混凝剂,其主要成份与生物制剂中的具铝系或铁系成份的混凝剂相同。
且上述有关步骤(101)、(102)、(103)及(104)中过滤装置、烘干装置、喷润装置及研磨机等为一般应用的既有装置,因不同厂商生产制造的机型、装置等不同因素,或有些许操作或条件限制等,可在不影响本发明步骤实施的情况下略作调整,并不以此作为限制本发明的设备,故不予赘述各种装置的详细操作模式,以供了解。
由上述的实施步骤可清楚得知,上述的重金属污泥回收方法于使用时,其实施步骤是先将于工业废水中装设电析装置的正极载体及负极载体并予以通电,以将污泥上所吸附的金属离子通过氧化还原反应来沉积于电析装置的负极载体上,且同时启动水中的搅拌器使重金属污泥均匀分布于废水溶液中,以增加重金属离子接触于负极载体上的面积,进而加速重金属离子沉积于电析装置的负极载体上的速率,待电析完成后,即可利用过滤装置以将废水溶液排出,仅留下脱过水的污泥,此时废水溶液的重金属离子残留、悬浮固体(SS)及化学需氧量(COD)为符合排放的标准值。
接着将脱过水的污泥利用烘干装置来进行烘干作业,其烘干的温度视工业废水中所含的有机物质的含量而定,若化学需氧量(COD)的数值小于100mg/L,则利用100-200℃进行烘干,若检测出化学需氧量(COD)的数值大于100mg/L,则利用400-600℃进行烘干,以将污泥受到烘干装置的加热而使污泥内部的水份蒸发,其污泥便干燥而呈块状,而块状的污泥便可借由喷润装置于表面上喷洒少量的有机聚合物水溶液,其有机聚合物水溶液中的水份便受到污泥的余热加温而蒸发,使有机聚合物干燥并附着于污泥的表面上,即可再利用研磨机将烘干过后的污泥研磨成细小状的泥屑,并添加可溶性混凝剂予以物理方式进行混合,以重新制作出生物制剂,其制造出的生物制剂便可供再次投入于工业废水中达到吸附水
中重金属离子且具沉降的目的。
本发明为具有下列的优点:
(一)当投有生物制剂的工业废水经过电析、脱水、烘干、喷洒有机聚合物、研磨及添加可溶性混凝剂的步骤后,即可将原先工业废水内的不含重金属的污泥部分重新制作成生物制剂,以供再次投入工业废水中来循环利用,其工业废水内的重金属污泥便可完全的回收再利用,即可达到无废弃物产生的效果,且不仅可降低生物制剂的制造成本,亦不需通过交通工具将污泥载送至排放地进行排放,以降低运输成本,进而达到减少整体生产成本、降低危害环境风险的目的。
(二)该生物制剂为具有供吸附水中重金属离子的功能,再借由电析装置所产生的氧化还原反应将吸附于生物制剂的重金属离子沉积于电析装置的负极载体上,其工业废水中的重金属离子的含量便会大幅地降低,以达到符合排放的规范标准、降低对环境污染的目标。
(三)经由过滤步骤后所产生的污泥,其因生物制剂中的硅基无机材并不会大量吸附水分,而生物制剂大部分为由硅基无机材所组成,所以当由过滤装置处理过后所堆积而成的污泥进行烘干作业时,便可借由含水率较低的生物制剂来减少烘干的时间,以达到降低烘干装置所耗费的电力的效果。
再请参阅图2以及图3所示,为本发明另一实施例的步骤流程图(一)及(二),由图中可清楚看出,本发明于较佳实施步骤(100)至(105)之前是可先执行下列的净水步骤:
(1001)利用重金属分析方法于工业废水中检测工业废水的重金属含量。
(1002)于工业废水中投入粉末状、颗粒状、块碇状或液状等一般絮凝剂,以供吸附水中微粒并形成胶羽产生沉淀现象。
(1003)再投入粉末状、颗粒状或块碇状等生物制剂,来吸附工业废水中金属离子,以使工业废水产生凝集沉淀现象而生成污泥及水溶液,且污泥的外的水溶液便会符合环境排放的标准值,即可继续执行步骤(100)至(105)。
上述步骤(1002)中的一般絮凝剂较佳实施为聚合氧化铝(PAC),但于实际应用时,亦可为聚合氧化铝添加聚丙烯酰胺(PAM)的混合剂或聚合氧化铝添加氯化铝铁(PAC;poly Aluminum Ferric chloride)等为与聚合氧化铝混合以供吸附水中微粒并产生凝集沉淀现象的制剂;且该胶羽为加絮凝剂于水中经由物化作用或凝聚作用所形成的小的胶凝性及可沉降性物质。
本发明的另一实施例于工业废水中投有絮凝剂,其絮凝剂可进一步将工业废
水中的微粒(如沙、砂石、金属微粒、植物材料、腐质物等)形成胶羽且产生沉淀现象,即可达到进一步降低工业废水中的重金属离子残留、悬浮固体(SS)及化学需氧量(COD)的效果。
是以,以上所述仅为本发明的较佳实施例而已,非因此局限本发明的专利范围,本发明主要针对的是已先利用重金属分析并投有生物制剂的工业废水,其重金属污泥可通过电析、脱水、烘干、喷洒有机聚合物、研磨及添加可溶性混凝剂的步骤来将工业废水内部的污泥循环再利用,以将该污泥重新制作成生物制剂,即可达到使工业废水处理无产生废弃物的效果,故举凡可达成前述效果的结构、装置皆应受本发明所涵盖,此种简易修饰及等效结构变化,均应同理包括于本发明的专利范围内,合予陈明。
Claims (10)
- 一种重金属污泥的回收方法,用于工业废水的重金属与污泥回收处理作业,先利用重金属分析方法对工业废水进行检测,再于检测后的工业废水中投入生物制剂来吸附工业废水中的重金属离子,并产生凝集沉淀现象而生成污泥及符合排放标准的水溶液,且该污泥之外的水溶液因符合排放标准值便回收使用,而污泥部分则依照下列步骤实施处理:(100)投入生物制剂处理过的工业废水中装设电析装置,并于二电极载体间通电,以供吸附于污泥上的重金属离子且通过电沉积于电极上收集回收;(101)再将工业废水溶液及沉淀产生的污泥利用过滤装置来对污泥进行脱水作业,以将废水溶液及污泥中含附的水份排出,仅留下含水量为默认值的污泥;(102)之后便利用烘干装置对含水量为默认值的污泥以默认温度进行烘干作业,即使污泥内残留的水份及有机成份受到高温加热而蒸发,以供污泥干燥呈块状;(103)再使用喷润装置于具有残留温热度块状的污泥表面上喷洒有效生物成分含量为默认值的有机聚合物水溶液,其有机聚合物水溶液内的水份因受到块状的污泥残存的余温而蒸发,以使有机聚合物水溶液内的有机聚合物附着于块状的污泥表面上;(104)即针对附着有机聚合物的块状的污泥来通过研磨机进行研磨作业,以将块状的污泥研磨成细小状的泥屑;(105)最后将细小状的泥屑与可溶性混凝剂予以混合,以制作出供投入工业废水中的生物制剂。
- 如权利要求1所述的重金属污泥的回收方法,其中该工业废水检测重金属分析方法为光学呈色法与电化学分析法;而该工业废水使用的生物制剂为由硅基无机材、有机聚合物及具铝系或铁系成份的可溶性混凝剂所混制而成;而该硅基无机材约占有40-60%、有机聚合物约占有10-20%、具铝系或铁系成份的混凝剂约占有30-40%。
- 如权利要求2所述的重金属污泥的回收方法,其中该生物制剂的硅基无机材为二氧化硅、高岭土、硅藻土、蒙脱土、蛭石或沸石等无机材;且该有机聚合物为聚麸胺酸、几丁聚醣、聚丙烯酸或聚苯乙烯磺酸钠等有机聚合物;而该具铝系或铁系成份的混凝剂为硫酸铝、聚合氯化铝、氯化亚铁或硫酸亚铁的可溶性混 凝剂。
- 如权利要求1所述的重金属污泥的回收方法,其中该步骤(100)中的电析装置通电的电压为位于0.1-20伏特的间,而电流位于0.1-10安培之间;而该正极载体及负极载体为至少一层镀铂钛网、镀金钛网或镀钯钛网所制成的网材或是不锈钢网材。
- 如权利要求4所述的重金属污泥的回收方法,其中该电析装置为进一步于工业废水中设有搅拌器,以及正极载体及负极载体上分别贴附有具导电性的活性碳布或导电碳布。
- 如权利要求1所述的重金属污泥的回收方法,其中该步骤(101)中经由过滤装置处理过的污泥,其含水量默认值约为50-80%,而污泥成份为包含有硅基无机材、有机聚合物及其它物质(油份、甲苯),其中硅基无机材约占有60-70%、有机聚合物30-20%、其它物质10%。
- 如权利要求1所述的重金属污泥回收方法,其中该步骤(102)中的默认温度为100-600℃,若污泥不含有机物,则默认温度利用100-200℃进行烘干,但若污泥含有机物,则默认温度利用400-600℃进行烘干。
- 如权利要求1所述的重金属污泥的回收方法,其中该步骤(103)中的有机聚合物的生物成分含量默认值约1-10%,且该有机聚合物混合液为聚麸胺酸、几丁聚醣、聚丙烯酸或聚苯乙烯磺酸钠等有机聚合物的混合溶液;而该步骤(104)中细小状的泥屑为粉末状或颗粒状的泥屑;又该步骤(105)中可溶性混凝剂为硫酸铝、聚合氯化铝、氯化亚铁或硫酸亚铁的粉末状或颗粒状混凝剂,其主要成份与生物制剂内的成份相同,以供利用物理方式混合于细小状的泥屑来产生生物制剂。
- 如权利要求1所述的重金属污的泥回收方法,其中该步骤(100)至(105)的装设电析装置并予以通电前,先进行下列步骤:(1001)利用重金属分析方法于工业废水中检测工业废水的重金属含量;(1002)于工业废水中投入一般絮凝剂,以吸附水中微粒;(1003)再投入生物制剂,来吸附工业废水中金属离子,以使工业废水产生凝集沉淀现象而生成污泥及水溶液,且污泥的外的水溶液便会符合环境排放的标准值,再继续执行步骤(100)至(105)。
- 如权利要求9所述的重金属污泥回收方法,其中该步骤(1002)中的一般絮凝剂为聚合氧化铝、聚合氧化铝与聚丙烯酰胺混合剂或聚合氧化铝与氯化铝 铁等与聚合氧化铝混合以吸附水中微粒并产生凝集沉淀现象的制剂。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680070168.7A CN109071293A (zh) | 2016-08-23 | 2016-08-23 | 重金属污泥的回收方法 |
PCT/CN2016/000477 WO2018035626A1 (zh) | 2016-08-23 | 2016-08-23 | 重金属污泥的回收方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/000477 WO2018035626A1 (zh) | 2016-08-23 | 2016-08-23 | 重金属污泥的回收方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018035626A1 true WO2018035626A1 (zh) | 2018-03-01 |
Family
ID=61245946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/000477 WO2018035626A1 (zh) | 2016-08-23 | 2016-08-23 | 重金属污泥的回收方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109071293A (zh) |
WO (1) | WO2018035626A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299507A (zh) * | 2020-10-12 | 2021-02-02 | 联合环境水处理(大丰)有限公司 | 工业废水达标排放检测方法 |
CN113307325A (zh) * | 2021-06-17 | 2021-08-27 | 唐山市蓝翔环保设备有限公司 | 一种用于污水处理的无害药剂及其制备方法 |
CN113880158A (zh) * | 2021-10-26 | 2022-01-04 | 广州市芦苇环保科技有限责任公司 | 一种聚丙烯酰胺净水剂及其生产方法 |
CN115322922A (zh) * | 2022-06-24 | 2022-11-11 | 中山大学 | 一种污泥资源再生的方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112607892A (zh) * | 2020-11-09 | 2021-04-06 | 西安重光明宸检测技术有限公司 | 一种高效环保降低污水cod的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101486517A (zh) * | 2009-02-17 | 2009-07-22 | 南通京源水工自动化设备有限公司 | 一种脱硫废水的处理工艺 |
CN101913745A (zh) * | 2010-08-16 | 2010-12-15 | 娄底市裕德科技有限公司 | 一种污水厂污泥中重金属的脱除工艺 |
CN201686574U (zh) * | 2010-04-22 | 2010-12-29 | 长沙华时捷环保科技发展有限公司 | 含重金属偏酸性废水的处理系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5256750A (en) * | 1975-11-04 | 1977-05-10 | Stanley Electric Co Ltd | Floating and separating method for suspended material in water |
CN102021609B (zh) * | 2009-09-18 | 2013-11-06 | 石尚烨 | 增大接触比表面积的有价金属回收用电解槽 |
CN201777952U (zh) * | 2010-09-10 | 2011-03-30 | 昆明理工大学 | 一种用于处理含重金属废水的一体化装置 |
CN103755113B (zh) * | 2014-01-22 | 2015-11-04 | 厦门添福运环保科技股份有限公司 | 污泥重金属离子吸附固离法 |
CN204079666U (zh) * | 2014-09-26 | 2015-01-07 | 海天水务集团股份公司 | 一种应用于页岩气回流水循环回收处理装置 |
CN105836938A (zh) * | 2016-06-03 | 2016-08-10 | 常州大学 | 一种含重金属与氟离子冶炼废水的处理装置 |
CN107434322A (zh) * | 2017-07-25 | 2017-12-05 | 浙江奇彩环境科技股份有限公司 | 一种甲基硫菌灵废水的处理方法 |
-
2016
- 2016-08-23 CN CN201680070168.7A patent/CN109071293A/zh active Pending
- 2016-08-23 WO PCT/CN2016/000477 patent/WO2018035626A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101486517A (zh) * | 2009-02-17 | 2009-07-22 | 南通京源水工自动化设备有限公司 | 一种脱硫废水的处理工艺 |
CN201686574U (zh) * | 2010-04-22 | 2010-12-29 | 长沙华时捷环保科技发展有限公司 | 含重金属偏酸性废水的处理系统 |
CN101913745A (zh) * | 2010-08-16 | 2010-12-15 | 娄底市裕德科技有限公司 | 一种污水厂污泥中重金属的脱除工艺 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299507A (zh) * | 2020-10-12 | 2021-02-02 | 联合环境水处理(大丰)有限公司 | 工业废水达标排放检测方法 |
CN113307325A (zh) * | 2021-06-17 | 2021-08-27 | 唐山市蓝翔环保设备有限公司 | 一种用于污水处理的无害药剂及其制备方法 |
CN113880158A (zh) * | 2021-10-26 | 2022-01-04 | 广州市芦苇环保科技有限责任公司 | 一种聚丙烯酰胺净水剂及其生产方法 |
CN115322922A (zh) * | 2022-06-24 | 2022-11-11 | 中山大学 | 一种污泥资源再生的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109071293A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018035626A1 (zh) | 重金属污泥的回收方法 | |
Yu et al. | Key factors for optimum performance in phosphate removal from contaminated water by a Fe–Mg–La tri-metal composite sorbent | |
Netpradit et al. | Application of ‘waste’metal hydroxide sludge for adsorption of azo reactive dyes | |
Li et al. | Oxidation and removal of thallium and organics from wastewater using a zero-valent-iron-based Fenton-like technique | |
CN109809519A (zh) | 一种有机-无机复合污水处理剂及其制备方法 | |
Gamshadzehi et al. | One-pot synthesis of microporous Fe2O3/g-C3N4 and its application for efficient removal of phosphate from sewage and polluted seawater | |
Zhang et al. | Removal of anionic dyes from aqueous solution by leaching solutions of white mud | |
Cai et al. | Advanced treatment of piggery tail water by dual coagulation with Na+ zeolite and Mg/Fe chloride and resource utilization of the coagulation sludge for efficient decontamination of Cd2+ | |
CN106076261B (zh) | 一种重金属离子吸附剂及制备方法和应用 | |
CN106698582A (zh) | 利用工业粉煤灰和纳米铁处理含重金属污染物工业废水的方法 | |
CN109761331A (zh) | 一种磁性污水处理剂及其制备方法 | |
CN103601313B (zh) | 垃圾渗滤液的处理方法 | |
CN111470575A (zh) | 一种磁性除磷剂及其制备方法 | |
Nguyen et al. | Preparation of Zn-doped biochar from sewage sludge for chromium ion removal | |
CN104478055B (zh) | 污水处理复合剂、其制备方法和应用方法 | |
CN104475040B (zh) | 改性磁性纳米吸附材料及其制备方法和应用 | |
Xu et al. | Simultaneous and efficient removal of multiple heavy metal (loid) s from aqueous solutions using Fe/Mn (hydr) oxide and phosphate mineral composites synthesized by regulating the proportion of Fe (II), Fe (III), Mn (II) and PO43– | |
Hang et al. | Adsorption performances of naked and 3-aminopropyl triethoxysilane-modified mesoporous TiO2 hollow nanospheres for Cu2+, Cd2+, Pb2+, and Cr (VI) ions | |
CN104438288B (zh) | 一种含砷废料中砷的稳定及分离方法 | |
CN114275868A (zh) | 一种重金属靶向去除剂及其制备方法和应用 | |
CN104353407A (zh) | 一种Fe-Mn体系吸附剂及其制备和应用方法 | |
TWI632946B (zh) | Heavy metal sludge recovery method | |
Yilleng et al. | Adsorption of hexavalent chromium from aqueous solution by granulated activated carbon from Canarium schweinfurthii seed shell | |
CN102872805A (zh) | 一种除去水中重铬酸根的复合吸附材料及其制备方法 | |
CN113083216B (zh) | 二维镍基复合金属氧化物吸附剂及制法和去除磷酸根的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16913650 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16913650 Country of ref document: EP Kind code of ref document: A1 |