WO2018030518A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2018030518A1
WO2018030518A1 PCT/JP2017/029111 JP2017029111W WO2018030518A1 WO 2018030518 A1 WO2018030518 A1 WO 2018030518A1 JP 2017029111 W JP2017029111 W JP 2017029111W WO 2018030518 A1 WO2018030518 A1 WO 2018030518A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchange
evaporator
exchange medium
refrigerant
Prior art date
Application number
PCT/JP2017/029111
Other languages
English (en)
French (fr)
Inventor
中村 崇
智弘 丸山
秀介 河井
信之介 前多
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2018030518A1 publication Critical patent/WO2018030518A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a vehicle air conditioner.
  • Patent Document 1 discloses an air conditioner including an adsorption unit having an adsorbent capable of adsorbing / desorbing a refrigerant according to temperature. Patent Document 1 discloses that the engine cooling water is heated by the heat of adsorption generated by the adsorption of the refrigerant to the adsorbent, thereby warming up the engine.
  • This air conditioner is configured to generate a differential pressure between the evaporator and the adsorption unit by the evaporation of the refrigerant in the evaporator, and supply the refrigerant evaporated by the evaporator to the adsorber unit. .
  • the amount of refrigerant evaporated in the evaporator may not be sufficiently secured.
  • the differential pressure between the evaporator and the adsorption unit is reduced, and the amount of refrigerant supplied to the adsorption unit is reduced. If it does so, the adsorption amount of the refrigerant
  • the amount of refrigerant evaporated can be secured even when the amount of refrigerant evaporated in the evaporator cannot be secured sufficiently, such as in winter.
  • FIG. 1 is a schematic diagram of a vehicle air conditioner 1 including an adsorption heat storage system 2 according to an embodiment.
  • FIG. 1A is a diagram illustrating the flow of the refrigerant M1 and the heat exchange media M2, M3, M4, and M5 when the adsorption heat storage system 2 is used in the normal cooling mode.
  • FIG. 1B is a diagram illustrating the control device 10 provided in the vehicle air conditioner 1. In FIG. 1A, only a part of the adsorbent S accommodated in the container 51 of the adsorber 5 is shown.
  • a blower 13 As shown in FIG. 1, in the vehicle air conditioner 1, a blower 13, a cooler core 79, and a heater core 73 are provided on a flow path R ⁇ b> 1 of air Air (air conditioned air) to be sent into the vehicle interior.
  • Air air conditioned air
  • the blower 13 sends out the air Air sucked from the upstream side of the blower 13 to the downstream side (cooler core 79 side), and forms a flow of the air Air (see the white arrow in the drawing) in the flow path R1.
  • the air Air sent out from the blower 13 passes through the cooler core 79, it is cooled by heat exchange with the heat exchange medium M4 flowing through the cooler core 79.
  • the heat exchange medium M4 heated by heat exchange with the air Air is returned from the cooler core 79 to the evaporator 3 and cooled by the evaporation core 3a included in the evaporator 3.
  • the cooled heat exchange medium M ⁇ b> 4 is supplied again to the cooler core 79 and used for heat exchange with the air Air passing through the cooler core 79.
  • the evaporator 3 evaporates the refrigerant M1 supplied from the condenser 4 side via the circulation path 20 under reduced pressure. Then, the heat exchange medium M4 returned from the cooler core 79 side is cooled by the heat of vaporization when the refrigerant M1 evaporates.
  • the circulation path 9 is provided across the evaporator 3 and the heat exchanger 82 provided in the exhaust gas pipe 8.
  • the heat exchange medium M5 flowing through the circulation path 9 is heated by heat exchange with the exhaust gas in the heat exchanger 82 and then supplied to the evaporator 3 to heat the evaporation core 3a of the evaporator 3.
  • a heat exchange core 52 is provided inside the container 51 filled with the adsorbent S.
  • one of the cooling heat exchange medium M ⁇ b> 2 supplied from the circulation path 6 side and the heating heat exchange medium M ⁇ b> 3 supplied from the circulation path 7 side passes through the heat exchange core 52.
  • the adsorbent S in the container 51 is cooled / heated by heat exchange with the heat exchange media M2 and M3 flowing through the heat exchange core 52.
  • the adsorbent S is an organic or inorganic adsorbent that can adsorb / desorb the refrigerant M1 depending on the temperature.
  • the adsorbent S is cooled / heated by heat exchange with the heat exchange media M2, M3, the refrigerant M1 is adsorbed / desorbed to / from the adsorbent S.
  • the term “adsorbent” in the present specification is an organic polymer material or inorganic material having a characteristic of holding (adsorbing) the refrigerant M1.
  • the adsorbent employed in the present embodiment includes not only a material that adsorbs the refrigerant M1 on the surface of the material (general adsorbent) but also a material that contains the refrigerant M1 inside the material.
  • the adsorber 5 when the adsorber 5 adsorbs the refrigerant M1 to the adsorbent S, the refrigerant M1 is sucked from the evaporator 3 side by the negative pressure generated by the adsorption of the refrigerant M1. Then, the evaporation of the refrigerant M1 in the evaporator 3 is performed.
  • the refrigerant M1 on the adsorbent S is saturated and the refrigerant M1 cannot be adsorbed, the refrigerant M1 cannot be sucked from the evaporator 3, and the evaporation of the refrigerant M1 in the evaporator 3 is stopped. End up.
  • the adsorption heat storage system 2 is provided with two adsorbers 5 (5A, 5B).
  • the vehicle air conditioner 1 normal cooling mode
  • the other adsorber 5B desorbs the refrigerant M1 from the adsorbent S. Is to be done.
  • the control device 10 When the adsorption amount of the refrigerant M1 on the adsorbent S is saturated in one adsorber 5A, the control device 10 (see FIG. 1B) replaces the adsorber 5 that adsorbs the refrigerant M1 with the adsorber. Switch from 5A to adsorber 5B. And in one adsorption machine 5A, desorption of the refrigerant
  • control apparatus 10 switches the adsorber which adsorb
  • the refrigerant M1 from the condenser 4 is stored downstream of the condenser 4, and a liquid tank (not shown) that separates the refrigerant M1 into gas and liquid, and an expansion valve that decompresses the refrigerant M1 (see FIG. (Not shown).
  • the low-temperature and low-pressure refrigerant M1 decompressed by the expansion valve is supplied again to the evaporator 3 and evaporates in the evaporator 3.
  • the refrigerant M ⁇ b> 1 circulates in the circulation path 20 using adsorption and desorption of the refrigerant M ⁇ b> 1 to the adsorbent S, and is adsorbed along the circulation path 20.
  • a cycle of the heat storage system is formed.
  • the heat exchange medium flowing through the heat exchange core 52 of the adsorber 5 is switched between the heat exchange medium M2 for cooling and the heat exchange medium M3 for heating, and the adsorber 5
  • the adsorbent S inside is cooled / heated.
  • the circulation path 6 of the cooling heat exchange medium M2 is provided with a heat exchanger 60 (sub-radiator), a condenser 4, and a pump (not shown).
  • the heat exchange medium M2 cooled by heat exchange in the heat exchanger 60 is supplied to the adsorber 5 (5A, 5B) side through the circulation path 6.
  • a CAC Charge Air Cooler
  • the heat exchange medium M2 that has passed through the adsorber 5 (5A, 5B) is circulated to the heat exchanger 60 through the CAC, and is cooled in the heat exchanger 60.
  • a bypass path 61 that bypasses the adsorber 5 (5A, 5B) is provided.
  • the control device 10 operates the switching valves 65 and 66 to cool the heat exchange medium M2 cooled by the heat exchanger 60. Is supplied to the CAC side via the bypass 61.
  • a heater core 73 is provided on the downstream side of the exhaust heat recovery unit 81.
  • the heater core 73 is installed on the downstream side of the cooler core 79 in the flow path R1. Therefore, the air Air flowing through the flow path R1 is heated by heat exchange with the heat exchange medium M3 heated by the exhaust heat recovery device 81 when passing through the heater core 73.
  • the control device 10 includes a heat exchange medium M 3 that flows through the circulation path 7, and a circulation path for the heat exchange medium supplied to the heat exchange core 52 of each adsorber 5 (5 A, 5 B). 6, the adsorption / desorption of the refrigerant M ⁇ b> 1 in each of the adsorbers 5 (5 ⁇ / b> A, 5 ⁇ / b> B) is controlled.
  • FIG. 2 is a diagram illustrating the flow of the refrigerant M1 and the heat exchange media M2 and M3 when the adsorption heat storage system 2 is used in the warm-up mode.
  • FIG. 3 is a diagram illustrating the flow of the refrigerant M1 and the heat exchange media M2 and M3 when the adsorption heat storage system 2 is used in the heat storage mode.
  • the warm-up mode is performed when the engine is started in a low-temperature environment (low-temperature environment) as in winter. For example, immediately after the engine is started in winter, the engine ENG is often at a low temperature. Therefore, when the temperature T_M3 of the cooling water (heat exchange medium M3) of the engine ENG immediately after the engine start is lower than the threshold temperature Th_w for determining whether or not the warm-up mode is to be performed, the engine ENG is promptly turned on. In order to warm up, the warm-up mode is performed.
  • the heat exchange medium M3 is heated with the heat of adsorption due to the adsorption of the refrigerant M1 to the adsorbent S, and the engine ENG is warmed with the heated heat exchange medium M3 (warm up). ) Therefore, in order to quickly heat the heat exchange medium M3, the adsorption of the refrigerant M1 to the adsorbent S is performed in parallel by the adsorbers 5A and 5B.
  • control device 10 operates the switching valve 21 and the on-off valve 23 (23A, 23B) to make the adsorbers 5A, 5B communicate with the evaporator 3 side.
  • coolant M1 to the adsorbent S is performed in parallel by adsorption machine 5A, 5B.
  • the refrigerant M1 is sucked from the evaporator 3 side.
  • the control apparatus 10 operates switching valve 55, 56, 57, 58, and the heat exchange core of adsorption machine 5A, 5B. 52 is connected to the circulation path 7 through which the heat exchange medium M3 flows.
  • the heat exchange medium M3 passes through the heat exchange core 52, it is heated by heat exchange with the adsorbent S that has generated heat due to adsorption of the refrigerant M1.
  • the control device 10 operates the switching valves 75 and 76 so that the heat exchange medium M3 does not pass through the exhaust heat recovery unit 81 and the heater core 73 but passes through the bypass path 72 and passes between the engine ENG and the adsorber 5. Circulate only between them. This is because the amount of heat of the heat exchange medium M3 heated by heat exchange in the adsorbers 5A and 5B is used only for warming up the engine.
  • the differential pressure between the evaporator 3 and the adsorber 5 increases, so that the gaseous refrigerant M1 evaporated by the evaporator 3 flows into the adsorber 5 (5A, 5B) side.
  • the amount can be secured.
  • coolant M1 with the adsorbent S can be increased. Therefore, a sufficient amount of the refrigerant M1 can be supplied to the adsorber 5 (5A, 5B) even in a low temperature environment where the amount of evaporation of the refrigerant M1 in the evaporator 3 is small.
  • the utilization efficiency of the adsorbent S of the adsorber 5 (5A, 5B) until the heating of the heat exchange medium M3 by the heat of adsorption in the adsorber 5 (5A, 5B) is completed can be increased.
  • the total amount of heat of adsorption involved in heating the heat exchange medium M3 of the engine ENG can be increased.
  • the control device 10 confirms whether or not the temperature Tg of the exhaust gas flowing through the exhaust gas pipe 8 is equal to or higher than a threshold temperature Th1 at which the heat exchange medium M3 can be heated by heat exchange with the exhaust gas. To do.
  • the control device 10 operates the switching valves 75 and 76 so that the heat exchange medium M3 flows through the exhaust heat recovery unit 81 and the heater core 73. To do.
  • the heat exchange medium M3 is heated by heat exchange with the exhaust gas in addition to heat exchange with the heat quantity of the exhaust gas of the engine. Therefore, the temperature of the heat exchange medium M3 flowing downstream from the exhaust heat recovery device 81 is quickly increased.
  • the heat exchange medium M3 heated by heat exchange with the exhaust gas passes through the heater core 73, it exchanges heat with the air Air passing through the heater core 73. Therefore, the air Air supplied to the passenger compartment through the heater core 73 is heated.
  • the control device 10 operates the switching valves 65 and 66 so that the heat exchange medium M2 circulates only between the heat exchanger 60, the condenser 4, and the CAC (Charge Air Cooler).
  • the temperature T_M3 of the heat exchange medium M3 at the engine ENG outlet increases.
  • the temperature T_M3 of the heat exchange medium M3 reaches a temperature (threshold temperature Th_r) suitable for desorbing the refrigerant in the adsorbers 5A and 5B, the operation mode of the adsorption heat storage system 2 is switched to the heat storage mode. It will be.
  • the heat storage mode is performed to enable the above-described warm-up mode.
  • the heat storage mode is performed in order to desorb the refrigerant M1 from the adsorbent S when the temperature of the heat exchange medium M3 is high while the engine ENG is activated.
  • the operation mode of the adsorption heat storage system 2 is switched from the warm-up mode.
  • the control device 10 determines to execute the heat storage mode. To do.
  • the control device 10 operates the switching valves 55, 56, 57, and 58 to move the heat exchange core 52 of the adsorbers 5A and 5B to the circulation path 7 of the heat exchange medium M3. Connecting. Thereby, the adsorbent S in the adsorbers 5A and 5B is heated by heat exchange with the heat exchange medium M3 passing through the heat exchange core 52.
  • the control device 10 operates the switching valve 21 and the on-off valve 23 (23A and 23B), and the adsorbers 5A and 5B and the evaporator 3 side Block communication. Further, the control device 10 operates the switching valve 22 and the on-off valve 24 (24A, 24B) to make the adsorbers 5A, 5B communicate with the condenser 4 side.
  • desorption of the refrigerant M1 from the adsorbent S is performed in parallel in the adsorbers 5A and 5B.
  • the gaseous refrigerant M1 desorbed from the adsorbent S is discharged to the capacitor 4 side by the pressure generated by the desorption of the refrigerant M1.
  • emitted from the adsorber 5A, 5B side is condensed in the capacitor
  • the heat exchange medium M3 supplied to the adsorbers 5A and 5B is heated by heat exchange with the exhaust heat recovery unit 81. Therefore, the adsorbent S can be heated to a higher temperature than when the heat exchange medium M3 is heated only by the amount of heat of the exhaust gas of the engine ENG. Therefore, the adsorption heat storage system 2 can be maximized.
  • the amount of heat recovered by the exhaust heat recovery unit 81 is consumed for heat exchange with the heat exchange medium M3. Therefore, when the exhaust heat recovery device 81 is installed, it is possible to suitably prevent an increase in the size of the radiator for radiating the recovered heat.
  • the control device 10 operates the switching valves 65 and 66 so that the heat exchange medium M2 circulates only between the heat exchanger 60, the condenser 4, and the CAC (Charge Air Cooler).
  • the control device 10 determines that when the temperature Tx of the heat exchange medium M3 at the outlet of the adsorber 5 becomes higher than the threshold temperature Th_f for determining the completion of desorption of the refrigerant M1 from the adsorbent S.
  • the desorption of the refrigerant M1 from the adsorbent S in 5A and 5B is terminated. Thereby, the operation mode of the adsorption heat storage system 2 is switched from the heat storage mode to the normal cooling mode.
  • Heating means 11 heat exchanger 82, circulation path 9 and heat exchange medium M5 that heats the evaporator 3 and promotes evaporation of the refrigerant M1 in the evaporator 3 is provided.
  • the heat of adsorption due to the adsorption of the refrigerant M1 to the adsorbent S can be used for heating the heat exchange medium M3 for the engine.
  • the engine ENG is warmed up by the engine heat exchange medium M3 heated by the heat of adsorption of the refrigerant M1.
  • coolant M1 in the evaporator 3 is securable by heating the evaporator 3 with the heating means 11 and forcibly evaporating the refrigerant
  • the evaporator 3 is heated by the heating means 11 so that the refrigerant M1 is supplied to the evaporator 3 by heating. It can be forced to evaporate. Therefore, even if it is difficult to secure the evaporation amount of the refrigerant M1 in the evaporator 3, it is possible to increase the adsorption amount of the refrigerant M1 by adsorbing more refrigerant by the adsorbent S of the adsorber 5.
  • the utilization efficiency of the adsorbent S until the heating of the engine cooling water (heat exchanging medium M3 for the engine) by the adsorption heat is completed can be increased, so that the heat exchanging medium M3 (cooling) of the engine ENG
  • the total amount of heat of adsorption involved in the heating of water) can be increased.
  • the adsorbent S is a heat exchange medium (cooling heat exchange medium M2 and heating heat exchange medium M3). Is cooled / heated.
  • the engine (heating) heat exchange medium M ⁇ b> 3 used for heating the adsorbent S is heated by the adsorption heat due to the adsorption of the refrigerant M ⁇ b> 1 on the adsorbent S.
  • the temperature of the heat exchange medium M3 that is the cooling water of the engine ENG is also low. Therefore, when the heat exchange medium M3 is heated by the adsorption heat due to the adsorption of the refrigerant M1 to the adsorbent S, the engine ENG can be warmed by the amount of heat of the heated heat exchange medium M3. This promotes warming up of the engine ENG.
  • switching valves 55 and 56 for switching the heat exchange medium supplied to the adsorbers 5A and 5B between the heat exchange medium M3 for the engine and the heat exchange medium M2 for cooling; And a control device 10 that controls the switching valves 55 and 56.
  • the control device 10 When the temperature T_M3 of the engine heat exchange medium M3 is lower than the threshold temperature Th_w for determining whether the engine needs to be warmed up, The engine heat exchange medium M3 is supplied to the adsorbers 5A and 5B, and the heat exchange medium M3 for the engine is heated by the adsorption heat generated by the adsorption of the refrigerant M1 to the adsorbent S.
  • the heat exchange medium M3 is heated when the temperature T_M3 of the engine heat exchange medium M3 is low, such as immediately after starting the engine ENG in a low temperature environment, so that the heat exchange medium M3 is heated.
  • the temperature can be increased.
  • the engine ENG can be appropriately warmed up.
  • the heating means 11 heats the evaporator 3 with the heat quantity of the exhaust gas of the engine ENG.
  • the heating means 11 heats the evaporator 3 using the heat amount (exhaust heat) of the exhaust gas of the engine ENG. Since the exhaust gas of the engine ENG becomes high temperature in a short time immediately after the engine is started, the evaporator 3 can be heated quickly, and the evaporation of the refrigerant M1 in the evaporator 3 can be appropriately performed immediately after the engine ENG is started.
  • the exhaust heat pipe 81 and the heat exchanger 82 are provided in the exhaust gas pipe 8 through which the exhaust gas of the engine ENG flows.
  • the heat exchange medium M3 for the engine is heated by heat exchange with the exhaust gas of the engine ENG.
  • the heat exchanger 82 is provided in a region downstream of the exhaust heat recovery unit 81 in the exhaust gas flow direction in the exhaust gas pipe 8.
  • the heating unit 11 heats the evaporator 3 with the amount of heat recovered from the exhaust gas by the heat exchanger 82.
  • the heat exchange between the heat exchange medium M3 (cooling water) and the exhaust gas in the exhaust heat recovery unit 81 is not affected by the heat exchange for heating the evaporator 3.
  • a heat exchanger 82 is provided in a region downstream of the exhaust heat recovery unit 81 in the exhaust gas flow direction in the exhaust gas pipe 8, and the heat exchanger medium M3 for the engine is more heat exchanger 82. This is because it is heated by heat exchange with the exhaust gas before the amount of heat is taken away. Since the engine heat exchange medium M3 is related to the warming up of the engine ENG, the evaporator 3 can be heated without affecting the warming up of the engine ENG.
  • the evaporator 3 is heated by further using the exhaust gas from which the amount of heat has been deprived by the exhaust heat recovery device 81, the utilization efficiency of the heat amount of the exhaust gas of the engine ENG can be increased.
  • the heating means 11 has a dedicated circulation path 9 through which the heat transfer medium M5 for heat transfer circulates.
  • the circulation path 9 is provided across the evaporator 3 and the heat exchanger 82 provided in the exhaust gas pipe 8.
  • the heating means 11 heats the evaporator 3 by transmitting the heat amount of the exhaust gas to the evaporator 3 through the heat exchange medium M5 for heat transfer.
  • the heat exchange medium M3 (cooling water) used for warming up the engine ENG is shared with the heat exchange medium M5 used for heating the evaporator 3, the heat exchange medium used for heating the evaporator 3 and the amount of heat is reduced.
  • the engine may be warmed up at M3.
  • the warm-up of the engine ENG is delayed by the amount of heat used for heating the evaporator 3.
  • a dedicated circulation path in which the heat exchange medium M5 for heat transfer used for heating the evaporator 3 is enclosed.
  • FIG. 4 is a diagram for explaining the heating means 11A according to the second embodiment.
  • the surroundings of the heating means 11A in the vehicle air conditioner 1 are extracted and shown.
  • the heating unit 11 of the first embodiment includes the heat exchanger 82 provided in the exhaust gas pipe 8, the circulation path 9 provided across the heat exchanger 82 and the evaporator 3, have. And in this heating means 11, the structure which collect
  • the structure of the heating means for heating the evaporator 3 is not limited to this aspect.
  • the heating means 11A shown in FIG. 4 may be used.
  • the heating means 11 ⁇ / b> A is a heat pipe 12 provided across the heat exchanger 82 provided in the exhaust gas pipe 8 and the evaporator 3.
  • the heat pipe 12 is a cylindrical member sealed at both ends, and a heat exchange medium (not shown) for heat transfer is enclosed in the heat pipe 12.
  • the other end 122 side of the heat pipe 12 is inserted into the evaporator 3.
  • the other end 122 side of the heat pipe 12 can exchange heat with the evaporator 3.
  • the heating means 11A having such a configuration, the one end 121 side of the heat pipe 12 is heated by the high-temperature exhaust gas flowing through the exhaust gas pipe 8. Then, the heat exchange medium for heat transfer sealed on the one end 121 side of the heat pipe 12 is heated and vaporized by heat exchange with the heat amount (exhaust heat) of the exhaust gas.
  • the vaporized heat exchange medium for heat transfer moves to the other end 122 side of the heat pipe 12. Then, the evaporator 3 is heated by heat exchange with the vaporized heat exchange medium for heat transfer. Thereby, evaporation of the refrigerant
  • the vaporized heat transfer medium for heat transfer is cooled by heat exchange on the other end 122 side of the heat pipe 12 and changes from a gas state to a liquid state.
  • the one end 121 side of the heat pipe 12 is located below the other end 122 side in the vertical line direction. Therefore, the heat exchange medium for heat transfer in a liquid state moves to the one end 121 side of the heat pipe 12 by its own weight.
  • the heat transfer heat exchange medium vaporized on the one end 121 side moves to the other end 122 side, while the heat transfer heat exchange medium liquefied on the other end 122 side has the one end 121. Move to the side. Therefore, in the heat pipe 12, the heat amount of the exhaust gas recovered by the heat exchanger 82 is continuously transferred from the one end 121 side to the other end 122 side.
  • the heating means 11A is a heat pipe 12 in which a heat exchange medium M5 for heat transfer is enclosed.
  • the heat pipe 12 is provided across the evaporator 3 and the heat exchanger 82 of the exhaust gas pipe 8.
  • the circulation path 9 of the heating means 11 is provided across the evaporator 3 and the heat exchanger 82 provided separately from the exhaust heat recovery unit 81. Illustrated. As in the heating unit 11 ′ shown in FIG. 5, the circulation path 9 may be provided across the evaporator 3 and the exhaust heat recovery unit 81.
  • the heat exchanger 82 described above is located on the downstream side of the exhaust heat recovery unit 81 in the exhaust gas flow direction in the exhaust gas pipe 8. Therefore, the amount of heat obtained by heat exchange in the heat exchange 82 is smaller than the amount of heat obtained by heat exchange in the exhaust heat recovery unit 81.
  • the amount of heat can be recovered from the higher-temperature exhaust gas to the heat exchange medium M5. Thereby, the evaporator 3 can be heated more rapidly.
  • FIG. 6 is a diagram for explaining a heating unit 11B according to the fourth embodiment.
  • the periphery of the heating means 11B in the air conditioner is extracted and shown.
  • the circulation path 7 of the heat exchange medium M3 for the engine ENG is provided via the evaporator 3 and the heater core 73.
  • the circulation path 7 extends to the heater core 73 after the region on the downstream side of the exhaust heat recovery unit 81 passes through the evaporator 3.
  • the exhaust heat recovery device 81 and the region located in the circulation path 7 from the exhaust heat recovery device 81 to the inside of the evaporator 3 constitute the heating means 11B.
  • the heat exchange medium M ⁇ b> 3 heated by heat exchange with the exhaust gas in the exhaust heat recovery unit 81 flows through a region downstream of the exhaust heat recovery unit 81.
  • the evaporator 3 is heated by the heat exchange medium M3 for the engine ENG heated by heat exchange with the exhaust gas.
  • the heating unit 11B includes an exhaust heat recovery unit 81 that heats the heat exchange medium M3 for the engine ENG by heat exchange with the exhaust gas of the engine ENG.
  • the heating means 11B heats the evaporator 3 with the engine heat exchange medium M3 heated by heat exchange with the exhaust gas.
  • the evaporator 3 can be heated using the heat exchange medium M3 for engines. Therefore, it is not necessary to prepare a dedicated heat exchange medium or circulation path for heating the evaporator 3. Therefore, at least a portion related to heating of the evaporator in the vehicle air conditioner can be configured to be simple.
  • FIG. 7 is a diagram for explaining a heating unit 11C according to the fifth embodiment.
  • the periphery of the heating means 11C in the air conditioner is extracted and shown.
  • the evaporator 3 may be heated using existing components (blower 13, cooler core 79, heater core 73) installed in the flow path R1 of the conditioned air.
  • the blower 13 sucks air from one side in the direction along the flow path R1, sends out the sucked air Air to the other side, and causes a flow of the air Air in the flow path R1.
  • the cooler core 79 is provided so as to be able to exchange heat with the heat exchange medium M4 that circulates between the cooler core 79 and the evaporator 3.
  • the heat exchange medium M4 is heated / cooled by heat exchange with the air passing through the cooler core 79.
  • the heater core 73 is provided so as to be able to exchange heat with the heat exchange medium M3 for the engine ENG that flows through the circulation path 7.
  • the heater core 73 is provided on the downstream side of the exhaust heat recovery unit 81 of the exhaust gas pipe 8.
  • the heat exchange medium M3 heated by heat exchange with the exhaust gas in the exhaust heat recovery unit 81 is supplied to the heater core 73.
  • the air Air passing through the heater core 73 is heated by heat exchange with the heat exchange medium M3 in the heater core 73.
  • the flow direction of the air Air in the flow path R1 is a flow direction (a flow direction from the left to the right in the drawing) when adjusting the conditioned air (air whose temperature is adjusted) by the air conditioner. Is the opposite direction.
  • the air Air heated by the heater core 73 passes through the cooler core 79.
  • the heat exchange medium M4 is heated by heat exchange between the heated air Air and the heat exchange medium M4.
  • the heated heat exchange medium M4 is supplied to the evaporator 3 to heat the evaporator 3. Since the heat exchange medium M4 circulates between the cooler core 79 and the evaporator 3, the evaporator 3 can be continuously heated with the heated heat exchange medium M4. Thereby, evaporation of the refrigerant
  • the heating means 11C is a blower 13 that generates a flow of air Air in the flow path R1 of conditioned air.
  • a cooler core 79 that performs heat exchange with the evaporator 3
  • the heater cores 73 heated by the heat quantity of the exhaust gas are arranged at intervals in the flow direction of the air Air in the flow path R1.
  • the blower 13 heats the evaporator 3
  • the blower 13 sets the flow of the air Air in the flow path R ⁇ b> 1 in a direction from the heater core 73 toward the cooler core 79.
  • the evaporator 3 can be heated using the configuration of the existing vehicle air conditioner 1 without adding a configuration for heating the evaporator 3.
  • the adsorption heat storage system 2 includes the two adsorbers 5 (5A, 5B) is exemplified, but the number of the adsorbers 5 included in the adsorption heat storage system 2 is limited to two. Instead, it is sufficient that at least one is provided.
  • the heat exchange medium M3 warmed by the adsorption heat is used for warming up the engine ENG is exemplified, the heat exchange medium M3 may be used for warming up other equipment that needs warming up.
  • bypass path 72 bypasses the heater core 73 and the exhaust heat recovery unit 81
  • the bypass path 72 connects one of the heater core 73 and the exhaust heat recovery unit 81. What is necessary is just to be provided so that it may detour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

【課題】冬季のような蒸発器での冷媒の蒸発量を十分に確保できない場合であっても、冷媒の蒸発量を確保する。 【解決手段】車両用空調装置1は、吸着蓄熱システム2を備える。吸着蓄熱システム2は、冷媒M1の蒸発器であるエバポレータ3と、エバポレータ3で蒸発させた冷媒M1の吸着/脱着が可能な吸着材Sを有する吸着器5(5A、5B)と、吸着材Sから脱着した冷媒M1を凝縮するコンデンサ4と、を有している。エバポレータ3を加熱してエバポレータ3での冷媒M1の蒸発を促進させる加熱手段11を備える。吸着材Sへの冷媒M1の吸着による吸着熱を、エンジン用の熱交換媒体M3の加熱に利用可能として、加熱手段11が、冷媒M1の吸着熱で加熱されたエンジン用の熱交換媒体M3で、エンジンENGを暖機する。

Description

車両用空調装置
 本発明は、車両用空調装置に関する。
 特許文献1には、温度に応じて冷媒の吸着/脱着が可能な吸着材を有する吸着ユニットを備える空調装置が開示されている。この特許文献1には、吸着材への冷媒の吸着により生じた吸着熱でエンジン冷却水を加熱して、エンジンを暖機することが開示されている。
特開平08-296921号公報
 この空調装置では、蒸発器での冷媒の蒸発により、蒸発器と吸着ユニットとの間で差圧を生じさせて、蒸発器で蒸発させた冷媒を吸着器ユニットに供給するように構成されている。
 しかし、冬季のように温度が低い環境下でエンジンの暖機を行う場合には、蒸発器での冷媒の蒸発量を十分に確保できないことがある。この場合には、蒸発器と吸着ユニットの間の差圧が小さくなって、吸着ユニットに供給される冷媒量が減少してしまう。
 そうすると、吸着材への冷媒の吸着量が少なくなって、発生する吸着熱の熱量が少なくなる。かかる場合、エンジン冷却水の加熱効率が低下してしまう。
 そこで、冬季のような蒸発器での冷媒の蒸発量を十分に確保できない場合であっても、冷媒の蒸発量を確保できるようにすることが求められている。
 本発明は、
 冷媒の蒸発器と、
 蒸発器で蒸発させた冷媒の吸着/脱着が可能な吸着材を有する少なくとも1つの吸着器と、
 吸着材から脱着した冷媒を凝縮する凝縮器と、を有する吸着蓄熱システムを備えた車両用空調装置であって、
 前記蒸発器を加熱する加熱手段を備え、
 前記吸着材への前記冷媒の吸着による吸着熱を、エンジン用の熱交換媒体の加熱に利用可能とした構成の車両用空調装置とした。
 本発明によれば、冬季のような蒸発器での冷媒の蒸発量を十分に確保できない場合であっても、冷媒の蒸発量を確保できる。
第1の実施の形態にかかる吸着蓄熱システムを利用した車両用空調装置の概略図である。 第1の実施の形態にかかる吸着蓄熱システムを暖機モードで使用している場合を説明する図である。 第1の実施の形態にかかる吸着蓄熱システムを蓄熱モードで使用している場合を説明する図である。 第2の実施の形態にかかる加熱手段を説明する図である。 第3の実施の形態にかかる加熱手段を説明する図である。 第4の実施の形態にかかる加熱手段を説明する図である。 第5の実施の形態にかかる加熱手段を説明する図である。
<第1の実施の形態>
 以下、本発明の第1の実施の形態を説明する。
 図1は、実施の形態にかかる吸着蓄熱システム2を備える車両用空調装置1の概略図である。図1の(a)は、吸着蓄熱システム2を通常冷房モードで使用している場合の冷媒M1や熱交換媒体M2、M3、M4、M5の流れを説明する図である。図1の(b)は、車両用空調装置1が備える制御装置10を説明する図である。
 なお、図1の(a)では、吸着器5の容器51に収容された吸着材Sの一部のみを示している。
 図1に示すように、車両用空調装置1では、車室内に送出する空気Air(空調空気)の流路R1上に、送風機13と、クーラコア79と、ヒータコア73と、が設けられている。
 送風機13は、当該送風機13の上流側から吸引した空気Airを下流側(クーラコア79側)に送出して、流路R1内に空気Airの流れ(図中の白抜き矢印参照)を形成する。
 送風機13から送出された空気Airは、クーラコア79を通過する際に、クーラコア79内を通流する熱交換媒体M4との間での熱交換で冷却される。
 空気Airとの熱交換により暖められた熱交換媒体M4は、クーラコア79からエバポレータ3に戻されて、エバポレータ3が備える蒸発コア3aで冷却される。そして、冷却された熱交換媒体M4は、クーラコア79に再び供給されて、クーラコア79を通過する空気Airとの間での熱交換に利用される。
 エバポレータ3は、循環路20を介してコンデンサ4側から供給された冷媒M1を、減圧下で蒸発させる。そして、冷媒M1が蒸発する際の気化熱で、クーラコア79側から戻された熱交換媒体M4を冷却する。
 エバポレータ3は、循環路9を通流する熱交換媒体M5との熱交換により加熱されるようになっている。例えば冬季などの低温環境下では、エバポレータ3での冷媒M1の蒸発量が少なくなる。このような場合に、熱交換媒体M5との熱交換によりエバポレータ3(蒸発コア3a)を加熱すると、冷媒M1の蒸発が促進されて、冷媒M1の蒸発量を確保できる。
 循環路9は、エバポレータ3と、排気ガス管8に設けた熱交換器82とに跨がって設けられている。循環路9を通流する熱交換媒体M5は、熱交換器82での排気ガスとの熱交換で加熱されたのち、エバポレータ3に供給されて、エバポレータ3の蒸発コア3aを加熱する。
 エバポレータ3に冷媒M1を供給する循環路20では、エバポレータ3の下流側に、2つの吸着器5(5A、5B)が、並列に設けられている。
 なお、以下の説明においては、吸着器5A、5Bを特に区別しない場合には、単純に吸着器5と標記する。
 吸着器5では、吸着材Sが充填された容器51の内部に、熱交換コア52が設けられている。
 吸着器5では、循環路6側から供給された冷却用の熱交換媒体M2と、循環路7側から供給された加熱用の熱交換媒体M3のうちの一方が、熱交換コア52を通流する。
 容器51内の吸着材Sは、熱交換コア52を通流する熱交換媒体M2、M3との熱交換により、冷却/加熱される。
 吸着材Sは、温度に応じて冷媒M1の吸着/脱着が可能な有機系、または無機系の吸着材である。吸着材Sが、熱交換媒体M2、M3との熱交換により冷却/加熱されると、吸着材Sに対する冷媒M1の吸着/脱着が行われるようになっている。
 ここで、本明細書における用語「吸着材」は、冷媒M1を保持(吸着)する特性を有する有機系の高分子材料や無機材料である。本実施形態で採用する吸着材には、材料の表面に、冷媒M1を吸着させるもの(一般的な吸着材)だけではなく、材料の内部に冷媒M1を収容するものも含まれる。
 また、実施の形態では、循環路20を通流する冷媒M1として、例えば水を用いている。循環路6、7を通流する熱交換媒体M2、M3として、例えば、水にエチレングリコール系の不凍液を混合した流体を用いている。
 この吸着器5を備える吸着蓄熱システム2では、吸着器5において吸着材Sへの冷媒M1の吸着を実施すると、冷媒M1の吸着で生じた負圧により、エバポレータ3側から冷媒M1が吸引されて、エバポレータ3での冷媒M1の蒸発が行われる。
 ここで、吸着材Sへの冷媒M1の吸着量が飽和して、冷媒M1の吸着ができなくなると、エバポレータ3側から冷媒M1を吸引できなくなって、エバポレータ3での冷媒M1の蒸発が停止してしまう。
 そのため、吸着蓄熱システム2には、2つの吸着器5(5A、5B)が設けられている。そして、車両用空調装置1の冷房運転時(通常冷房モード)には、一方の吸着器5Aで冷媒M1の吸着を行っている間、他方の吸着器5Bで吸着材Sからの冷媒M1の脱着が行われるようになっている。
 そして、一方の吸着器5Aにおいて、吸着材Sへの冷媒M1の吸着量が飽和すると、制御装置10(図1の(b)参照)が、冷媒M1の吸着を行う吸着器5を、吸着器5Aから吸着器5Bに切り替える。そして、一方の吸着器5Aにおいて、吸着材Sからの冷媒M1の脱着を実施する。
 すなわち、制御装置10が、吸着材Sへの冷媒M1の吸着を行う吸着器と、吸着材Sからの冷媒M1の脱着を行う吸着器を、吸着器5Aと吸着器5Bの間で交互に切り替えることで、エバポレータ3での冷媒M1の蒸発を連続して行えるようにしている。
 なお、冷媒M1の吸着を行う吸着器と、吸着材Sからの冷媒M1の脱着を行う吸着器との切り替えは、制御装置10が、切替弁21、22と、開閉弁23(23A、23B)、24(24A、24B)を制御することで行われる。
 また、吸着器の切り替えは、制御装置10が、温度センサや圧力センサの出力信号などに基づいて決定する。
 冷媒M1の循環路20では、吸着器5の下流側にコンデンサ4が設けられている。
 吸着器5において吸着材Sから脱着した気体状の冷媒M1は、コンデンサ4に供給されたのち、コンデンサ4のコア4aでの熱交換媒体M2との熱交換により冷却されて、気体状態から液体状態に凝縮する。
 さらに、循環路20では、コンデンサ4の下流側に、コンデンサ4からの冷媒M1を溜めると共に、冷媒M1を気液に分離するリキッドタンク(図示せず)と、冷媒M1を減圧する膨張弁(図示せず)と、が設けられている。
 膨張弁で減圧された低温低圧の冷媒M1は、前記したエバポレータ3に再び供給されて、エバポレータ3内で蒸発するようになっている。
 このように、吸着蓄熱システム2では、冷媒M1が、吸着材Sへの冷媒M1の吸着と脱着を利用して、循環路20内を循環するようになっており、循環路20に沿って吸着蓄熱システムのサイクルが形成されている。
 吸着蓄熱システム2では、吸着器5の熱交換コア52を通流する熱交換媒体が、冷却用の熱交換媒体M2と、加熱用の熱交換媒体M3との間で切り替えられて、吸着器5内の吸着材Sの冷却/加熱が行われる。
 そのため、吸着器5(5A、5B)の熱交換コア52の上流側と下流側には、切替弁55、56が設けられている。
 この切替弁55、56により、各吸着器5(5A、5B)の熱交換コア52の接続先が、冷却用の熱交換媒体M2が通流する循環路6と、加熱用の熱交換媒体M3が通流する循環路7との間で切り替えられる。
 実施の形態では、熱交換コア52の接続先の切り替えを、車両用空調装置1が備える制御装置10が、切替弁55、56を操作することで実施する。
 冷却用の熱交換媒体M2の循環路6には、熱交換器60(サブラジエータ)と、コンデンサ4と、図示しないポンプと、が設けられている。熱交換器60での熱交換により冷却された熱交換媒体M2が、循環路6を通って吸着器5(5A、5B)側に供給される。
 この循環路6では、吸着器5(5A、5B)の下流側に、CAC(Charge Air Cooler)が設けられている。吸着器5(5A、5B)を通過した熱交換媒体M2は、CACを通って、熱交換器60に循環して、熱交換器60において冷却される。
 循環路6では、吸着器5(5A、5B)をバイパスするバイパス路61が設けられている。
 吸着器5(5A、5B)側に熱交換媒体M2を供給する必要がない場合には、制御装置10が切替弁65、66を操作して、熱交換器60で冷却された熱交換媒体M2を、バイパス路61を介してCAC側に供給する。
 加熱用の熱交換媒体M3の循環路7は、エンジンENGの冷却用の媒体が通流する循環路である。
 実施の形態では、エンジンENGの排気ガスの熱量(排熱)で加熱された高温の熱交換媒体M3で、吸着器5(5A、5B)内の吸着材Sが加熱されるようになっている。
 循環路7では、エンジンENGの下流側に、排熱回収器81が設けられている。
 この排熱回収器81は、エンジンENGから延びる排気ガス管8の途中に設けられている。排熱回収器81では、循環路7を通流する熱交換媒体M3と、排気ガス管8から排出される高温の排気ガスとの熱交換により、熱交換媒体M3が加熱される。
 なお、排熱回収器81は、排気ガス管8での排気ガスの通流方向において、前記した熱交換器82よりも上流側に位置している。そのため、熱交換器82よりも高い温度で熱交換を行えるようになっている。
 これにより、排気ガス管8に、排熱回収器81に加えて他の熱交換器82が設けられていることによって、排熱回収器81での熱量の回収が影響を受けないようにされている。
 循環路7では、排熱回収器81の下流側に、ヒータコア73が設けられている。このヒータコア73は、前記した流路R1内で、クーラコア79の下流側に設置されている。
 そのため、流路R1内を通流する空気Airは、ヒータコア73を通過する際に、排熱回収器81で加熱された熱交換媒体M3との熱交換により、加熱されるようになっている。
 循環路7には、エンジンENGの上流側と下流側を接続する流路71が設けられている。この流路71には、熱交換器70(ラジエータ)と、図示しないポンプと、が設けられている。
 そして、吸着器5(5A、5B)側に熱交換媒体M3を供給する必要がない場合には、制御装置10が切替弁77、78を操作して、流路71側にのみ、熱交換媒体M3を通流させる。
 さらに、循環路7では、排熱回収器81とヒータコア73を迂回するバイパス路72が設けられている。
 例えばエンジンENGの暖機時に、制御装置10が切替弁75、76を操作して、バイパス路72側にのみ、熱交換媒体M3を通流させることができる。これにより、エンジンENGを通過した熱交換媒体M3が、吸着器5側に直接供給される。
 また、前記した切替弁55、56の間に、吸着器5Bを迂回するバイパス路59が設けられている。例えば、制御装置10が切替弁57、58を操作して、熱交換媒体M3を、吸着器5Bの熱交換コア52を通流させずに、バイパス路59のみを通流させることができる。これにより、熱交換媒体M3を、吸着器5Bを通さずに、エンジンENG側に到達させることができる。
 車両用空調装置1では、制御装置10が、各吸着器5(5A、5B)の熱交換コア52に供給される熱交換媒体を、循環路7を通流する熱交換媒体M3と、循環路6を通流する熱交換媒体M2との間で切り替えつつ、各吸着器5(5A、5B)での冷媒M1の吸着/脱着を制御する。
 実施の形態では、車両用空調装置1での吸着蓄熱システム2の使用態様として、前記した(1)通常冷房モードの他に、(2)暖機モードと、(3)蓄熱モードと、が用意されている。そして、(2)暖機モードと(3)蓄熱モードを利用して、エンジンENGの冷却水(熱交換媒体M3)を加熱することで、エンジンENGの始動直後の暖機運転を促進できるようになっている。
 以下、各モード(2)、(3)の制御態様を説明する。
 図2は、吸着蓄熱システム2を暖機モードで使用している場合における冷媒M1や熱交換媒体M2、M3の流れを説明する図である。
 図3は、吸着蓄熱システム2を蓄熱モードで使用している場合における冷媒M1や熱交換媒体M2、M3の流れを説明する図である。
<暖機モード>
 暖機モードは、冬季のように温度が低い環境下(低温環境下)でのエンジン始動時に実施される。
 例えば冬季におけるエンジン始動直後では、エンジンENGが低温になっていることが多い。
 そのため、エンジン始動直後のエンジンENGの冷却水(熱交換媒体M3)の温度T_M3が、暖機モードを実施するか否かの判定用の閾値温度Th_wよりも低い場合には、エンジンENGを速やかに暖機するために、暖機モードが実施される。
 図2に示すように、この暖機モードでは、吸着材Sへの冷媒M1の吸着による吸着熱で、熱交換媒体M3を加熱して、加熱された熱交換媒体M3でエンジンENGを暖める(暖機する)。そのため、熱交換媒体M3を速やかに暖めるために、吸着材Sへの冷媒M1の吸着が、吸着器5A、5Bで並行して実施される。
 具体的には、制御装置10が、切替弁21と開閉弁23(23A、23B)を操作して、吸着器5A、5Bと、エバポレータ3側とを連通させる。
 これにより、吸着器5A、5Bにおいて、吸着材Sへの冷媒M1の吸着が並行して行われる。そして、吸着材Sへの冷媒M1の吸着により生じた負圧により、エバポレータ3側から冷媒M1が吸引される。
 そして、吸着器5A、5Bでの吸着材Sへの冷媒M1の吸着開始と同時に、制御装置10が、切替弁55、56、57、58を操作して、吸着器5A、5Bの熱交換コア52を、熱交換媒体M3が通流する循環路7に接続する。
 これにより、熱交換媒体M3が、熱交換コア52を通過する際に、冷媒M1の吸着により発熱した吸着材Sとの熱交換で加熱されることになる。
 そして、吸着器5A、5Bで加熱された熱交換媒体M3は、循環路7において吸着器5の後段に位置するエンジンENG内を通流する。これにより、エンジンENGが、吸着器5A、5Bで加熱された熱交換媒体M3により暖められて暖機されることになる。
 ここで、暖機モードの実施時には、エンジンENGの暖機を速やかに実施する必要がある。そのため、制御装置10が、切替弁75、76を操作して、熱交換媒体M3が、排熱回収器81とヒータコア73を通らずに、バイパス路72を通って、エンジンENGと吸着器5の間のみを循環するようにする。
 吸着器5A、5Bでの熱交換により加熱された熱交換媒体M3の熱量を、エンジンの暖機にのみ利用するためである。
 冬季におけるエンジンENGの始動直後は、排気ガス管8を通流する排気ガスの温度も低いことが多い。
 そのため、エンジンENGを通過したのち、吸着器5A、5Bに至る途上の熱交換媒体M3が、排熱回収器81とヒータコア73を通過すると、熱交換媒体M3の熱量が、排熱回収器81とヒータコア73で奪われてしまうからである。
 ここで、低温環境下では、エバポレータ3における冷媒M1の蒸発量が少なくなる。そのため、実施の形態では、暖機モードの開始時に、熱交換器82で熱交換媒体M5に回収した排気ガスの熱量(排熱)で、エバポレータ3を加熱するようになっている。
 具体的には、制御装置10が、熱交換媒体M5の循環路9に付設した図示しないポンプを稼働させて、熱交換媒体M5をエバポレータ3と熱交換器82との間で循環させる。
 これにより、熱交換器82での熱交換により加熱された熱交換媒体M5で、エバポレータ3が加熱されるようになっている。
 エンジンENGの排気ガスは、エンジンENG始動後の比較的に短時間で高温になる。
 実施の形態では、このエンジンENG始動直後の排気ガスの熱量を利用してエバポレータ3を強制的に加熱することで、エバポレータ3を加熱しない場合よりも、エンジンの始動直後からエバポレータ3での冷媒M1の蒸発量を増加させている。
 すなわち、エバポレータ3での冷媒M1の蒸発量が少なくなる低温時に、エバポレータを加熱して冷媒M1の蒸発を促進させることで、吸着材Sに吸着させる冷媒M1の量を確保している。
 また、エバポレータ3が加熱されると、エバポレータ3と吸着器5との間の差圧が大きくなるので、エバポレータ3で蒸発した気体状の冷媒M1の吸着器5(5A、5B)側への流入量を確保することができる。これにより、吸着材Sでの冷媒M1の吸着量を増やすことができる。
 よって、エバポレータ3での冷媒M1の蒸発量が少なくなる低温環境下の場合でも、十分な量の冷媒M1を、吸着器5(5A、5B)に供給することができる。これにより、吸着器5(5A、5B)での吸着熱による熱交換媒体M3の加熱が終了するまでの間での吸着器5(5A、5B)の吸着材Sの利用効率を高めることができる。さらに、エンジンENGの熱交換媒体M3の加熱に関与する吸着熱の総量を増やすことができる。
 そして、制御装置10が、排気ガス管8を通流する排気ガスの温度Tgが、当該排気ガスとの熱交換による熱交換媒体M3の加熱が可能な閾値温度Th1以上であるか否かを確認する。
 排気ガスの温度Tgが閾値温度Th1以上となった時点で、制御装置10が、切替弁75、76を操作して、熱交換媒体M3が排熱回収器81とヒータコア73を通流するようにする。
 これにより、熱交換媒体M3は、エンジンの排気ガスの熱量との熱交換に加えて、排気ガスとの熱交換により加熱される。よって、排熱回収器81よりも下流側を通流する熱交換媒体M3の温度が、速やかに上昇することになる。
 また、排気ガスとの熱交換により加熱された熱交換媒体M3は、ヒータコア73を通過する際に、当該ヒータコア73を通過する空気Airとの間で熱交換を行う。そのため、ヒータコア73を通って車室内に供給される空気Airが、加熱される。
 なお、この暖機モードの実施時には、循環路6内の熱交換媒体M2を吸着器5(5A、5B)に供給する必要がない。
 そのため、制御装置10が、切替弁65、66を操作して、熱交換媒体M2が、熱交換器60と、コンデンサ4と、CAC(Charge Air Cooler)との間のみを循環するようにする。
 暖機モードでのエンジンENGの暖機が進むと、エンジンENG出口での熱交換媒体M3の温度T_M3が上昇する。
 そして、熱交換媒体M3の温度T_M3が、吸着器5A、5Bでの冷媒の脱着を行うのに適した温度(閾値温度Th_r)になると、吸着蓄熱システム2の運転モードが、蓄熱モードに切り替えられることになる。
<蓄熱モード>
 蓄熱モードは、前記した暖機モードを実施できるようにするために実施される。
 ここで、暖機モードを実施するためには、吸着材Sが冷媒M1を吸着していない状態にしておく必要がある。そのため、蓄熱モードは、エンジンENGが起動している間の熱交換媒体M3の温度が高いときに、吸着材Sから冷媒M1を脱着させるために実施される。
 実施の形態において蓄熱モードは、吸着蓄熱システム2の運転モードが、暖機モードから切り換えられる。
 この蓄熱モードでは、吸着材Sからの冷媒M1の脱着が、吸着器5A、5Bで並行して実施される。
 具体的には、エンジンENG出口の熱交換媒体M3の温度T_M3が、蓄熱モードを開始するか否かの判定用の閾値温度Th_rよりも高い場合に、制御装置10が、蓄熱モードの実施を決定する。
 蓄熱モードの実施が決定されると、制御装置10が、切替弁55、56、57、58を操作して、吸着器5A、5Bの熱交換コア52を、熱交換媒体M3の循環路7に接続する。これにより、吸着器5A、5B内の吸着材Sが、熱交換コア52を通過する熱交換媒体M3との熱交換により加熱される。
 そして、吸着器5A、5Bでの吸着材Sの加熱開始後に、制御装置10が、切替弁21と開閉弁23(23A、23B)を操作して、吸着器5A、5Bと、エバポレータ3側との連通を遮断する。さらに、制御装置10が、切替弁22と開閉弁24(24A、24B)を操作して、吸着器5A、5Bと、コンデンサ4側とを連通させる。
 これにより、吸着器5A、5Bにおいて、吸着材Sからの冷媒M1の脱着が並行して行われる。そして、冷媒M1の脱着により生じた圧力で、吸着材Sから脱着した気体状の冷媒M1が、コンデンサ4側に排出されることになる。
 そして、吸着器5A、5B側から排出された気体状の冷媒M1は、コンデンサ4において凝縮されて、液体状態の冷媒M1となる。
 なお、吸着器5A、5Bに供給される熱交換媒体M3は、排熱回収器81との熱交換で加熱される。そのため、熱交換媒体M3がエンジンENGの排気ガスの熱量のみで加熱されている場合に比べて、吸着材Sをより高温に加熱することができる。よって、吸着蓄熱システム2を最大限に発揮することができるようになっている。
 特に、エンジンの放熱が厳しくなる夏季においては、排熱回収器81で回収された熱量が熱交換媒体M3との熱交換に消費される。そのため、排熱回収器81を設置した場合に、回収した熱を放熱するための放熱器の大型化を好適に防止できる。
 なお、この蓄熱モードの実施時には、循環路6内の熱交換媒体M2を吸着器5(5A、5B)に供給する必要がない。そのため、制御装置10は、切替弁65、66を操作して、熱交換媒体M2が、熱交換器60と、コンデンサ4と、CAC(Charge Air Cooler)との間のみを循環するようにする。
 そして、制御装置10は、吸着器5出口での熱交換媒体M3の温度Txが、吸着材Sからの冷媒M1の脱着終了を判定するための閾値温度Th_fよりも高くなった時点で、吸着器5A、5Bにおける冷媒M1の吸着材Sからの脱着を終了する。
 これにより、吸着蓄熱システム2の運転モードが、蓄熱モードから通常冷房モードに切り替えられることになる。
 以下、実施の形態にかかる車両用空調装置1の特徴を、効果と共に列挙する。
(1)車両用空調装置1は、吸着蓄熱システム2を備える。
 吸着蓄熱システム2は、
 冷媒M1の蒸発器であるエバポレータ3と、
 エバポレータ3で蒸発させた冷媒M1の吸着/脱着が可能な吸着材Sを有する吸着器5(5A、5B)と、
 吸着材Sから脱着した冷媒M1を凝縮するコンデンサ4(凝縮器)と、を有している。
 エバポレータ3を加熱してエバポレータ3での冷媒M1の蒸発を促進させる加熱手段11(熱交換器82、循環路9および熱交換媒体M5)を備える。
 吸着材Sへの冷媒M1の吸着による吸着熱を、エンジン用の熱交換媒体M3の加熱に利用可能である。
 冷媒M1の吸着熱で加熱されたエンジン用の熱交換媒体M3で、エンジンENGを暖機する。
 このように構成すると、エバポレータ3を加熱手段11で加熱して冷媒M1を強制的に蒸発させることで、エバポレータ3での冷媒M1の蒸発量を確保できる。さらに、エバポレータ3と吸着器5(吸着器5A、5B)の間の差圧を大きくすることができる。
 これにより、冬季のように温度が低い環境下でエンジンENGの暖機を行う場合であっても、多くの冷媒M1を吸着器5に供給して、吸着材Sに吸着させることができる。これにより、吸着材Sでの冷媒M1の吸着量を増やすことができる。
 さらに、例えば冬季のように、低温であるためにエバポレータ3での冷媒M1の蒸発量を確保し難い場合であっても、加熱手段11でエバポレータ3を加熱することで、エバポレータ3において冷媒M1を強制的に蒸発させることができる。
 よって、エバポレータ3での冷媒M1の蒸発量を確保し難い場合であっても、吸着器5の吸着材Sにより多くの冷媒を吸着させて、冷媒M1の吸着量を増やすことができる。
 これにより、吸着熱によるエンジン冷却水(エンジン用の熱交換媒体M3)の加熱が終了するまでの間での吸着材Sの利用効率を高めることができるので、エンジンENGの熱交換媒体M3(冷却水)の加熱に関与する吸着熱の総量を増やすことができる。
(2)吸着器5A、5Bでは、吸着材Sに対する冷媒M1の吸着/脱着を行う際に、熱交換媒体(冷却用の熱交換媒体M2、加熱用の熱交換媒体M3)で、吸着材Sを冷却/加熱する。
 吸着器5A、5Bでは、吸着材Sの加熱に用いられるエンジン用(加熱用)の熱交換媒体M3を、吸着材Sへの冷媒M1の吸着による吸着熱で加熱する。
 冬季のように温度が低い環境下でエンジンENGを始動した直後では、エンジンENGの冷却水である熱交換媒体M3の温度もまた低くなっている。
 そのため、熱交換媒体M3を、吸着材Sへの冷媒M1の吸着による吸着熱で加熱すると、加熱された熱交換媒体M3の熱量で、エンジンENGを暖めることができる。これによりエンジンENGの暖機が促進される。
(3)吸着器5A、5Bに供給する熱交換媒体を、エンジン用の熱交換媒体M3と冷却用の熱交換媒体M2との間で切り替える切替弁55、56と、
 切替弁55、56を制御する制御装置10と、を有している。
 制御装置10は、
 エンジン用の熱交換媒体M3の温度T_M3が、エンジンの暖機の要否を判断するための閾値温度Th_w未満であるときに、
 エンジン用の熱交換媒体M3を吸着器5A、5Bに供給して、吸着材Sへの冷媒M1の吸着による吸着熱で、エンジン用の熱交換媒体M3を加熱する。
 このように構成すると、温度が低い環境下でエンジンENGを始動した直後のように、エンジン用の熱交換媒体M3の温度T_M3が低いときに、熱交換媒体M3を加熱して、熱交換媒体M3の温度を高くすることができる。これにより、エンジンENGの暖機を適切に行うことができる。
(4)加熱手段11は、エンジンENGの排気ガスの熱量によりエバポレータ3を加熱する。
 このように構成すると、加熱手段11は、エンジンENGの排気ガスの熱量(排熱)を利用してエバポレータ3を加熱する。エンジンENGの排気ガスは、エンジン始動直後の短時間で高温になるので、エバポレータ3を速やかに加熱して、エバポレータ3での冷媒M1の蒸発をエンジンENGの始動直後から適切に行うことができる。
(5)エンジンENGの排気ガスが通流する排気ガス管8には、排熱回収器81と熱交換器82が設けられている。
 排熱回収器81では、エンジン用の熱交換媒体M3が、エンジンENGの排気ガスとの熱交換で加熱される。
 熱交換器82は、排気ガス管8での排気ガスの通流方向における排熱回収器81よりも下流側の領域に設けられている。
 加熱手段11は、熱交換器82で排気ガスから回収した熱量でエバポレータ3を加熱する。
 このように構成すると、排熱回収器81における熱交換媒体M3(冷却水)と排気ガスとの熱交換が、エバポレータ3の加熱のための熱交換の影響を受けることがない。
 熱交換器82が、排気ガス管8での排気ガスの通流方向における排熱回収器81よりも下流側の領域に設けられており、エンジン用の熱交換媒体M3のほうが、熱交換器82で熱量が奪われる前の排気ガスとの熱交換により加熱されるからである。
 エンジン用の熱交換媒体M3はエンジンENGの暖機に関わるので、上記のように構成することで、エンジンENGの暖機に影響を与えることなく、エバポレータ3を加熱することができる。
 また、排熱回収器81で熱量が奪われた排気ガスをさらに利用して、エバポレータ3を加熱するので、エンジンENGの排気ガスの熱量の利用効率を高めることができる。
(6)加熱手段11は、伝熱用の熱交換媒体M5が循環する専用の循環路9を有している。
 循環路9は、エバポレータ3と排気ガス管8に設けた熱交換器82とに跨がって設けられている。
 加熱手段11は、伝熱用の熱交換媒体M5を介して、排気ガスの熱量をエバポレータ3に伝達して、エバポレータ3を加熱する。
 エンジンENGの暖機に用いる熱交換媒体M3(冷却水)を、エバポレータ3の加熱に用いる熱交換媒体M5と、を共用すると、エバポレータ3の加熱に用いられて熱量が低下した後の熱交換媒体M3でエンジンを暖機することになる場合がある。
 この場合には、エバポレータ3の加熱に用いられた熱量分だけ、エンジンENGの暖機が遅れてしまう。
 上記のように、エンジンENG用の熱交換媒体M3(冷却水)が通流する循環路7とは別に、エバポレータ3の加熱に用いる伝熱用の熱交換媒体M5が封入された専用の循環路9を用意することで、エンジンENGの暖機が遅れる事態の発生を好適に防止できる。
<第2の実施の形態>
 次に第2の実施の形態にかかる加熱手段11Aを説明する。
 図4は、第2の実施の形態にかかる加熱手段11Aを説明する図である。この図4では、車両用空調装置1における加熱手段11A周りを抜き出して示している。
 前記したように、第1の実施の形態の加熱手段11は、排気ガス管8に設けられた熱交換器82と、熱交換器82とエバポレータ3とに跨って設けられた循環路9と、を有している。そして、この加熱手段11では、循環路内を通流する伝熱用の熱交換媒体M5に、排気ガスの熱量を回収して、回収した熱量でエバポレータ3を加熱する構成を採用していた。
 エバポレータ3を加熱するための加熱手段の構成は、この態様に限定されるものではない。
 例えば、図4に示す加熱手段11Aとしても良い。
 この加熱手段11Aは、排気ガス管8に設けられた熱交換器82と、エバポレータ3とに跨って設けられたヒートパイプ12である。
 ヒートパイプ12は、両端が封止された筒状部材であり、ヒートパイプ12の内部には、伝熱用の熱交換媒体(図示せず)が封入されている。
 ヒートパイプ12の一端121側は、排気ガス管8に付設された熱交換器82に挿入されている。熱交換器82においてヒートパイプ12の一端121側は、排気ガスの通流方向に沿う向きで設けられている。
 ヒートパイプ12の内部に封入された伝熱用の熱交換媒体は、ヒートパイプ12の熱交換器82内に位置する領域において、排気ガス管8を通流する排気ガスとの熱交換が可能になっている。
 ヒートパイプ12の他端122側は、エバポレータ3の内部に挿入されている。ヒートパイプ12の他端122側は、エバポレータ3との熱交換が可能になっている。
 かかる構成の加熱手段11Aでは、ヒートパイプ12の一端121側が、排気ガス管8を通流する高温の排気ガスで加熱される。そうすると、ヒートパイプ12の一端121側に封入された伝熱用の熱交換媒体が、排気ガスの熱量(排熱)との熱交換で加熱されて、気化する。
 そして、気化した伝熱用の熱交換媒体が、ヒートパイプ12の他端122側まで移動する。そうすると、エバポレータ3が、気化した伝熱用の熱交換媒体との熱交換により加熱される。これにより、エバポレータ3での冷媒M1の蒸発が促進される。
 気化した伝熱用の熱交換媒体は、ヒートパイプ12の他端122側での熱交換により冷却されて、気体状態から液体状態になる。
 本実施形態では、ヒートパイプ12の一端121側が、他端122側よりも鉛直線方向における下側に位置している。そのため、液体状態になった伝熱用の熱交換媒体は、自重により、ヒートパイプ12の一端121側まで移動する。
 これにより、ヒートパイプ12では、一端121側で気化した伝熱用の熱交換媒体が、他端122側まで移動する一方で、他端122側で液化した伝熱用熱交換媒体が、一端121側まで移動する。
 よって、ヒートパイプ12では、熱交換器82で回収した排気ガスの熱量の、一端121側から他端122側への移送が連続して行われる。
 このように、
(7)加熱手段11Aは、伝熱用の熱交換媒体M5が内部に封入されたヒートパイプ12である。
 ヒートパイプ12は、エバポレータ3と、排気ガス管8の熱交換器82とに跨がって設けられている。
 このように構成すると、エンジンENGの排気ガスの熱量(排熱)とエバポレータ3との熱交換が、ヒートパイプ12を介した潜熱移動により行われる。よって、熱交換を効率よく行うことができる。
 さらに、ヒートパイプ12に封入された伝熱用の熱交換媒体が、完全に気化した状態になると、エバポレータ3への熱量の移送が終了する。よって、伝熱用の熱交換媒体の沸点を選択することで、目的の温度に達した時点で、エバポレータ3の加熱を自動的に終了できる。
<第3の実施の形態>
 また、前記した第1の実施の形態では、加熱手段11の循環路9を、エバポレータ3と、排熱回収器81とは別に設けられた熱交換器82とに跨がって設けた場合を例示した。
 図5に示す加熱手段11’のように、循環路9を、エバポレータ3と、排熱回収器81とに跨がって設けた構成としても良い。
 このように構成すると、排気ガス管8に設けた既存の排熱回収器81を共用することになり、前記した加熱手段11の熱交換器82を廃止できる。これにより部品点数の削減による空調装置の作成コストの低減が期待できる。
 また、前記した熱交換器82は、排気ガス管8での排気ガスの通流方向において、排熱回収器81の下流側に位置していた。そのため、熱交換で82での熱交換により得られる熱量は、排熱回収器81での熱交換で得られる熱量よりも少なくなる。
 上記のように構成して、循環路9を排熱回収器81に接続することで、より高温の排気ガスから熱交換媒体M5に熱量を回収できる。
 これにより、エバポレータ3をより迅速に加熱することができる。
<第4の実施の形態>
 次に第4の実施の形態にかかる加熱手段11Bを説明する。
 図6は、第4の実施の形態にかかる加熱手段11Bを説明する図である。この図6では、空調装置における加熱手段11B周りを抜き出して示している。
 図6に示すように、エンジンENG用の熱交換媒体M3の循環路7は、エバポレータ3とヒータコア73を経由して設けられている。
 循環路7は、排熱回収器81よりも下流側の領域がエバポレータ3を経由したのち、ヒータコア73まで延びている。
 排熱回収器81と、循環路7における排熱回収器81からエバポレータ3内に至る位置する領域と、で加熱手段11Bを構成している。
 循環路7では、排熱回収器81よりも下流側の領域を、排熱回収器81における排気ガスとの熱交換で加熱された熱交換媒体M3が通流する。
 第4の実施形態にかかる加熱手段11Bでは、排気ガスとの熱交換で加熱されたエンジンENG用の熱交換媒体M3で、エバポレータ3を加熱するようになっている。
 このように、
(8)加熱手段11Bは、エンジンENG用の熱交換媒体M3を、エンジンENGの排気ガスとの熱交換により加熱する排熱回収器81を有している。
 加熱手段11Bは、排気ガスとの熱交換で加熱されたエンジン用の熱交換媒体M3で、エバポレータ3を加熱する。
 このように構成すると、エンジン用の熱交換媒体M3を利用してエバポレータ3を加熱することができる。
 よって、エバポレータ3を加熱するための専用の熱交換媒体や循環路を用意する必要が無い。
 従って、車両用空調装置におけるエバポレータの加熱に関わる部分を、少なくとも簡単な構成にすることができる。
<第5の実施の形態>
 次に第5の実施の形態の加熱手段11Cを説明する。
 図7は、第5の実施の形態にかかる加熱手段11Cを説明する図である。この図7では、空調装置における加熱手段11C周りを抜き出して示している。
 前記した実施の形態では、伝熱用の熱交換媒体が通流する循環路9や、伝熱用の熱交換媒体が封入されたヒートパイプ12を用いて、エバポレータ3を加熱する場合を例示した。本願発明は、これらの態様にのみ限定されるものではない。
 例えば、図7に示すように、空調空気の流路R1内に設置された既存の構成要素(送風機13、クーラコア79、ヒータコア73)を用いて、エバポレータ3を加熱するようにしても良い。
 送風機13は、流路R1に沿う方向における一方側から空気を吸引し、吸引した空気Airを他方側に送出して、流路R1内に空気Airの流れを生じさせる。
 クーラコア79は、当該クーラコア79とエバポレータ3との間を循環する熱交換媒体M4と熱交換可能に設けられている。熱交換媒体M4は、クーラコア79を通過する空気との熱交換により、加熱/冷却されるようになっている。
 ヒータコア73は、循環路7を通流するエンジンENG用の熱交換媒体M3と熱交換可能に設けられている。循環路7においてヒータコア73は、排気ガス管8の排熱回収器81の下流側に設けられている。ヒータコア73には、排熱回収器81での排気ガスとの熱交換で加熱された熱交換媒体M3が供給される。
 ヒータコア73を通過する空気Airは、当該ヒータコア73における熱交換媒体M3との熱交換により加熱されるようになっている。
 第5の実施の形態では、送風機13が、ヒータコア73側から空気を吸引することで、ヒータコア73とクーラコア79とを順番に通過する空気の流れが、流路R1内に形成される。この際の流路R1における空気Airの通流方向は、空調装置で空調空気(温度が調整された空気)を調整する場合の通流方向(図中、左から右に向かう通流方向)とは反対方向である。
 そのため、送風機13により、ヒータコア73からクーラコア79に向かう空気Airの流れを生じさせると、ヒータコア73で加熱された空気Airが、クーラコア79を通過する。そうすると、クーラコア79では、加熱された空気Airと熱交換媒体M4との熱交換により、熱交換媒体M4が加熱される。これにより、加熱された熱交換媒体M4が、エバポレータ3に供給されて、エバポレータ3を加熱する。
 熱交換媒体M4は、クーラコア79とエバポレータ3との間で循環しているので、加熱された熱交換媒体M4で、エバポレータ3を連続して加熱できる。
 これにより、エバポレータ3での冷媒M1の蒸発が促進される。
(9)加熱手段11Cは、空調空気の流路R1内に空気Airの流れを生じさせる送風機13である。
 流路R1内には、エバポレータ3との間で熱交換を行うクーラコア79と、
 排気ガスの熱量で加熱されるヒータコア73と、が流路R1における空気Airの通流方向に間隔をあけて並んでいる。
 送風機13は、エバポレータ3を加熱する際に、流路R1内の空気Airの流れを、ヒータコア73からクーラコア79に向かう方向に設定する。
 このように構成すると、エバポレータ3を加熱するための構成を追加することなく、既存の車両用空調装置1の構成を用いて、エバポレータ3を加熱できる。
 前記した実施の形態では、吸着蓄熱システム2が二つの吸着器5(5A、5B)を備える場合を例示したが、吸着蓄熱システム2が備える吸着器5の数は、2つに限定されるものではなく、少なくとも1つ備えていれば良い。
 また、吸着熱で暖められた熱交換媒体M3をエンジンENGの暖機に用いた場合を例示したが、熱交換媒体M3を他の暖機が必要な機器の暖機に用いても良い。
 また、吸着熱で暖められた熱交換媒体M3の熱量を、車両用空調装置1のヒータコアでの空調空気の加温に用いても良い。
 さらに、実施の形態では、バイパス路72が、ヒータコア73と排熱回収器81とを迂回している場合を例示したが、バイパス路72が、ヒータコア73と排熱回収器81のうちの一方を迂回するように設けられていれば良い。
 1   車両用空調装置
 2   吸着蓄熱システム
 3   エバポレータ(蒸発器)
 4   コンデンサ(凝縮器)
 5(5A、5B)  吸着器
 6、7   循環路
 8   排気ガス管
 9   循環路
 10   制御装置
 11、11’、11A、11B、11C   加熱手段
 12   ヒートパイプ
 13   送風機
 20  循環路
 21、22  切替弁
 23(23A、23B)、24(24A、24B)  開閉弁
 51  容器
 52  熱交換コア
 55~58  切替弁
 59  バイパス路
 60  熱交換器(サブラジエータ)
 61  バイパス路
 65、66  切替弁
 70  熱交換器(ラジエータ)
 71  流路
 72  バイパス路
 73  ヒータコア
 75~78  切替弁
 79  クーラコア
 81  排熱回収器
 ENG エンジン
 M1  冷媒
 M(M2、M3、M4、M5)   熱交換媒体
 R1  流路
 S   吸着材

Claims (9)

  1.  冷媒の蒸発器と、
     前記蒸発器で蒸発させた冷媒の吸着/脱着が可能な吸着材を有する少なくとも1つの吸着器と、
     前記吸着材から脱着した冷媒を凝縮する凝縮器と、を有する吸着蓄熱システムを備えた車両用空調装置であって、
     前記蒸発器を加熱する加熱手段を備え、
     前記吸着材への前記冷媒の吸着による吸着熱を、エンジン用の熱交換媒体の加熱に利用可能としたことを特徴とする車両用空調装置。
  2.  前記吸着器では、前記吸着材に対する前記冷媒の吸着/脱着を行う際に、熱交換媒体で前記吸着材を冷却/加熱するように構成されており、
     前記吸着器では、前記吸着材の加熱に用いられる前記エンジン用の熱交換媒体を、前記吸着材への前記冷媒の吸着による吸着熱で加熱することを特徴とする請求項1に記載の車両用空調装置。
  3.  前記吸着器に供給する熱交換媒体を、前記エンジン用の熱交換媒体と冷却用の熱交換媒体との間で切り替える切替弁と、
     前記切替弁を制御する制御装置と、を有しており、
     前記制御装置は、
     前記エンジン用の熱交換媒体の温度が、前記エンジンの暖機の要否を判断するための閾値温度未満であるときに、
     前記エンジン用の熱交換媒体を前記吸着器に供給して、前記吸着材への前記冷媒の吸着による吸着熱で、前記エンジン用の熱交換媒体を加熱することを特徴とする請求項2に記載の車両用空調装置。
  4.  前記加熱手段は、前記エンジンの排気ガスの熱量により前記蒸発器を加熱することを特徴とする請求項1から請求項3の何れか一項に記載の車両用空調装置。
  5.  前記エンジン用の熱交換媒体を、前記エンジンの排気ガスとの熱交換により加熱する排熱回収器が、前記排気ガスが通流する排気ガス管に設けられており、
     前記加熱手段は、
     前記排気ガス管での前記排気ガスの通流方向における前記排熱回収器よりも下流側を通流する排気ガスの熱量により、前記蒸発器を加熱することを特徴とする請求項4に記載の車両用空調装置。
  6.  前記加熱手段は、
     伝熱用の熱交換媒体を循環させる循環路を有しており、
     前記循環路は、前記蒸発器と前記排気ガス管とに跨がって設けられており、
     前記加熱手段は、前記伝熱用の熱交換媒体を介して、前記排気ガスの熱量を前記蒸発器に伝達して、前記蒸発器を加熱することを特徴とする請求項5に記載の車両用空調装置。
  7.  前記加熱手段は、
     伝熱用の熱交換媒体が内部に封入されたヒートパイプを有しており、
     前記ヒートパイプは、前記蒸発器と前記排気ガス管とに跨がって設けられていることを特徴とする請求項5に記載の車両用空調装置。
  8.  前記エンジン用の熱交換媒体を、前記エンジンの排気ガスとの熱交換により加熱する排熱回収器を有しており、
     前記加熱手段は、前記排気ガスとの熱交換で加熱された前記エンジン用の熱交換媒体で、前記蒸発器を加熱することを特徴とする請求項1から請求項3の何れか一項に記載の車両用空調装置。
  9.  前記加熱手段は、空気の流路内に空気の流れを生じさせる送風機を有しており、
     前記流路内には、前記蒸発器との熱交換を行うクーラコアと、前記排気ガスの熱量により加熱されるヒータコアとが、前記流路における前記空気の通流方向で並んでおり、
     前記送風機は、前記蒸発器を加熱する際に、前記流路内の前記空気の流れを、前記ヒータコアから前記クーラコアに向かう方向に設定することを特徴とする請求項8に記載の車両用空調装置。
PCT/JP2017/029111 2016-08-12 2017-08-10 車両用空調装置 WO2018030518A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016158688A JP2019168113A (ja) 2016-08-12 2016-08-12 吸着蓄熱システムを利用した車両用空調装置
JP2016-158688 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018030518A1 true WO2018030518A1 (ja) 2018-02-15

Family

ID=61162391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029111 WO2018030518A1 (ja) 2016-08-12 2017-08-10 車両用空調装置

Country Status (2)

Country Link
JP (1) JP2019168113A (ja)
WO (1) WO2018030518A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296921A (ja) * 1995-04-27 1996-11-12 Nippondenso Co Ltd 吸着式冷凍装置及び吸着式空調装置
JPH1183235A (ja) * 1997-07-09 1999-03-26 Denso Corp 冷凍装置および空調装置
JP2005037084A (ja) * 2003-07-17 2005-02-10 Denso Corp 吸着式冷凍機
JP2008202853A (ja) * 2007-02-20 2008-09-04 Osaka Gas Co Ltd 吸収式ヒートポンプシステム
JP2009262748A (ja) * 2008-04-24 2009-11-12 Toyota Central R&D Labs Inc 車両用化学蓄熱システム
JP2011163601A (ja) * 2010-02-05 2011-08-25 Hitachi Appliances Inc 吸収式ヒートポンプ装置
JP2014118007A (ja) * 2012-12-14 2014-06-30 Toyota Motor Corp 吸着式空調装置
WO2017154569A1 (ja) * 2016-03-07 2017-09-14 カルソニックカンセイ株式会社 吸着式冷凍システム、および車両用の空調装置
JP2017166429A (ja) * 2016-03-16 2017-09-21 カルソニックカンセイ株式会社 排熱回収システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296921A (ja) * 1995-04-27 1996-11-12 Nippondenso Co Ltd 吸着式冷凍装置及び吸着式空調装置
JPH1183235A (ja) * 1997-07-09 1999-03-26 Denso Corp 冷凍装置および空調装置
JP2005037084A (ja) * 2003-07-17 2005-02-10 Denso Corp 吸着式冷凍機
JP2008202853A (ja) * 2007-02-20 2008-09-04 Osaka Gas Co Ltd 吸収式ヒートポンプシステム
JP2009262748A (ja) * 2008-04-24 2009-11-12 Toyota Central R&D Labs Inc 車両用化学蓄熱システム
JP2011163601A (ja) * 2010-02-05 2011-08-25 Hitachi Appliances Inc 吸収式ヒートポンプ装置
JP2014118007A (ja) * 2012-12-14 2014-06-30 Toyota Motor Corp 吸着式空調装置
WO2017154569A1 (ja) * 2016-03-07 2017-09-14 カルソニックカンセイ株式会社 吸着式冷凍システム、および車両用の空調装置
JP2017166429A (ja) * 2016-03-16 2017-09-21 カルソニックカンセイ株式会社 排熱回収システム

Also Published As

Publication number Publication date
JP2019168113A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
US9610825B2 (en) Motor vehicle climate control system
JP4096646B2 (ja) 冷却システム
JP6015137B2 (ja) 吸収式ヒートポンプ装置
US9789746B2 (en) Adsorption air-conditioning system
JP2020147153A (ja) 車載温調装置
JP6562004B2 (ja) 吸着式ヒートポンプを備えた車両用エアコン装置
JP2011242017A (ja) 車両用空調装置
US10987994B2 (en) Air-conditioning system and climate control method for a fuel cell vehicle
JP6361395B2 (ja) 車両用冷暖房システム
JP4363336B2 (ja) 冷暖房装置
JP7380650B2 (ja) 車載温調システム
JP3959829B2 (ja) 冷凍装置および空調装置
JPH0961001A (ja) 吸着式冷却装置
US10864800B2 (en) Method for a vehicle climate control system
JP2017166429A (ja) 排熱回収システム
WO2018030518A1 (ja) 車両用空調装置
WO2017154569A1 (ja) 吸着式冷凍システム、および車両用の空調装置
JP2003312240A (ja) 車両用空調装置
JP2004237816A (ja) 車両用吸着式空調装置
JP3925245B2 (ja) 車両用蓄熱システム
JP6683102B2 (ja) 吸着式ヒートポンプを備えた車両用エアコン装置
JP2014118007A (ja) 吸着式空調装置
JP4069691B2 (ja) 車両用空調装置
JP2018118562A (ja) 吸着式ヒートポンプを備えた車両用エアコン装置
JP6724621B2 (ja) 車両用熱利用システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP