WO2018029807A1 - アレーアンテナ装置及びアレーアンテナ装置の製造方法 - Google Patents

アレーアンテナ装置及びアレーアンテナ装置の製造方法 Download PDF

Info

Publication number
WO2018029807A1
WO2018029807A1 PCT/JP2016/073575 JP2016073575W WO2018029807A1 WO 2018029807 A1 WO2018029807 A1 WO 2018029807A1 JP 2016073575 W JP2016073575 W JP 2016073575W WO 2018029807 A1 WO2018029807 A1 WO 2018029807A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
array antenna
slot
ridge
tube
Prior art date
Application number
PCT/JP2016/073575
Other languages
English (en)
French (fr)
Inventor
渡辺 光
丸山 貴史
大塚 昌孝
優 牛嶋
紀平 一成
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/073575 priority Critical patent/WO2018029807A1/ja
Priority to JP2018533360A priority patent/JP6522247B2/ja
Priority to EP16912688.5A priority patent/EP3499642A4/en
Priority to US16/318,924 priority patent/US11605903B2/en
Publication of WO2018029807A1 publication Critical patent/WO2018029807A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides

Definitions

  • the present invention relates to an array antenna device in which slots for transmitting and receiving electromagnetic waves are formed on the surface of a waveguide, and a method for manufacturing the array antenna device.
  • Patent Document 1 discloses an array antenna device capable of transmitting and receiving signals of two orthogonally polarized waves.
  • the first antenna includes a first antenna and a plurality of second antennas in which a plurality of slots whose longitudinal direction is the tube width direction of the second waveguide are formed on the surface of the second waveguide. And second antennas are alternately arranged.
  • the electromagnetic waves transmitted and received by the first antenna are horizontally polarized waves, and the electromagnetic waves transmitted and received by the second antenna are vertically polarized waves.
  • the first waveguide in the first antenna and the second waveguide in the second antenna are rectangular waveguides having a rectangular cross section inside.
  • the cross-sectional shape in the tube is the tube width direction in the longitudinal direction and the short direction is the height direction
  • the cross-sectional shape in the tube in the second waveguide is the height in the longitudinal direction.
  • the direction and the short direction are the tube width direction.
  • the arrangement interval between the plurality of first antennas may be one or more wavelengths of electromagnetic waves transmitted and received by the first antenna.
  • the arrangement interval of the plurality of second antennas may be one or more wavelengths of electromagnetic waves transmitted and received by the second antenna. If the arrangement interval of the first antenna or the arrangement interval of the second antenna is equal to or longer than one wavelength of the electromagnetic wave to be transmitted / received, a grating lobe that is radiation of the electromagnetic wave in an unnecessary direction may occur.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an array antenna device having an overall outer dimension smaller than that in the case where the waveguide is a rectangular waveguide. Another object of the present invention is to obtain a method for manufacturing the array antenna device.
  • the first slot for transmitting / receiving electromagnetic waves has the first antenna formed on the surface of the first waveguide
  • the second slot for transmitting / receiving electromagnetic waves has the second slot.
  • the ridge waveguide and the second waveguide in which the protrusions are formed are ridge waveguides in which the second protrusions are formed.
  • the first waveguide has a ridge waveguide having a first protrusion formed therein
  • the second waveguide has a second protrusion formed therein. Since the first and second waveguides are rectangular waveguides, it is possible to obtain an array antenna device having a smaller overall dimension than the case where the first and second waveguides are rectangular waveguides. .
  • FIG. 3A shows the y direction and the z direction in the waveguides 11 and 21 when the ridge portion 15 is provided inside the waveguide 11 and the ridge portions 25 and 26 are provided inside the waveguide 21.
  • FIG. 3B shows the ridge portion 15 is not provided inside the waveguide 11, and the y direction and z in the waveguides 11 and 21 when the ridge portions 25 and 26 are not provided inside the waveguide 21.
  • FIG. 3B shows the dimension of a direction.
  • FIG. 5A is a perspective view in which the front surface side of the first member 31 can be seen
  • FIG. 5B is a perspective view in which the back surface side of the first member 31 is visible
  • 6A is a perspective view showing the front side of the second member 32
  • FIG. 6B is a perspective view showing the back side of the second member 32.
  • FIG. 11 is an explanatory view showing a method for processing the second member 32.
  • the dividing surface B ′ between the first member 31 and the second member 32 is in the + z direction from the plane 15 a of the ridge portion 15 in the waveguide 11 and the planes 25 a and 26 a of the ridge portions 25 and 26 in the waveguide 21.
  • the split surface C ′ between the second member 32 and the third member 33 is in the + z direction from the bottom 14a of the inside 14 of the waveguide 11 and the bottom 24c of the inside 24 of the waveguide 21 of the waveguide 11.
  • FIG. 1 is a perspective view showing an array antenna apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional perspective view showing the array antenna apparatus as viewed from A of FIG. 1 and 2
  • the x direction is the tube axis direction of the waveguide slot array antennas 10 and 20
  • the y direction is the tube width direction of the waveguide slot array antennas 10 and 20
  • the z direction is the waveguide slot array antenna.
  • the height direction is 10,20.
  • the waveguide slot array antenna 10 and the waveguide slot array antenna 20 are alternately arranged in the y direction.
  • the waveguide slot array antenna 10 is a first antenna in which slots 12 a and 12 b for transmitting and receiving signals (electromagnetic waves) having a main polarization in the y direction are formed on the surface 11 a of the waveguide 11.
  • the waveguide 11 which is the first waveguide has an outer peripheral portion 13 made of a conductor such as a metal, and an inner tube 14 which is an inside is an insulator such as a hollow or a dielectric.
  • aluminum is used as the outer peripheral portion 13 of the waveguide 11, but any metal can be used as long as it operates as a conductor with respect to a radio frequency of a signal to be transmitted / received. You may do it.
  • the ridge portion 15 is a first protrusion that extends from the bottom portion 14 a of the inside 14 of the waveguide 11 toward the surface 11 a of the waveguide 11. Therefore, the waveguide 11 in the waveguide slot array antenna 10 is a ridge waveguide in which the first protrusion is formed.
  • the waveguide slot array antenna 20 is a second antenna in which a slot 22 for transmitting and receiving a signal (electromagnetic wave) whose main polarization is in the x direction is formed on the surface 21 a of the waveguide 21.
  • the waveguide 21 which is the second waveguide has an outer peripheral portion 23 made of a conductor such as metal, and an inner tube 24 which is an inside is an insulator such as a hollow or a dielectric. Note that aluminum is generally used as the outer peripheral portion 23 of the waveguide 21, but any metal can be used as long as it operates as a conductor with respect to a radio frequency of a signal to be transmitted / received. You may do it.
  • the slot 22 as the second slot is an opening provided in the surface 21a of the waveguide 21 in order to transmit and receive a signal whose main polarization is in the x direction.
  • the longitudinal direction of the opening is the y direction. It is.
  • the ridge portion 25 is a second protrusion that extends from one side 24 a of the inside 24 of the waveguide 21 toward the other side 24 b.
  • the ridge portion 26 is a second protrusion that extends from the side portion 24b of the inside 24 of the waveguide 21 toward the side portion 24a. Therefore, the waveguide 21 in the waveguide slot array antenna 20 is a ridge waveguide in which a second protrusion is formed.
  • the plane 21a parallel to the surface 21a of the waveguide 21 is in the same plane. That is, the plane 15a in the ridge portion 15 and the planes 25a and 26a in the ridge portions 25 and 26 are within the plane indicated by B in FIG.
  • the planes 25c and 26c of the ridge portions 25 and 26 are also parallel to the surface 21a of the waveguide 21, the planes 25c and 26c are in the plane indicated by B in FIG. It may be a thing. However, in the first embodiment, it is easier to process the first member 31 described later when the planes 25a and 26a are within the plane indicated by B in FIG. 2 is in the plane indicated by B.
  • the distance between the bottom 14 a of the inside 14 of the waveguide 11 and the back surface 11 b of the waveguide 11 in the waveguide 11 is such that the bottom 24 c of the inside 24 of the waveguide 21 and the back surface 21 b of the waveguide 21. Longer than the distance. That is, the bottom portion 14 a of the inside 14 of the waveguide 11 is provided at a position in the + z direction from the bottom 24 c of the inside 24 of the waveguide 21.
  • the first member 31 is a member on the + z side from the surface (hereinafter referred to as “divided surface B”) indicated by B in FIG. 2 among the plurality of members constituting the array antenna device.
  • the second member 32 is a member on the ⁇ z side of the dividing surface B among the plurality of members constituting the array antenna device, and the surface indicated by C in FIG. 2 (hereinafter, “dividing surface C”). It is a member on the + z side.
  • the third member 33 is a member on the ⁇ z side from the dividing plane C among the plurality of members constituting the array antenna device.
  • the waveguide slot array antenna 10 and the waveguide slot array antenna 20 are arranged ten by ten can be considered.
  • 1 and 2 show an example in which four waveguide slot array antennas 10 and four waveguide slot array antennas 20 are arranged in order to simplify the drawing.
  • signals to be transmitted are input from, for example, ends of the waveguides 11 and 21 in the + x direction or the ⁇ x direction.
  • Signals input from the ends of the waveguides 11 and 21 in the + x direction or the ⁇ x direction are propagated through the insides 14 and 24 of the waveguides 11 and 21.
  • a signal propagated through the inside 14 of the waveguide 11 is radiated to the outside from the slots 12a and 12b formed on the surface 11a of the waveguide 11 as a signal whose main polarization is in the y direction.
  • the signal propagated through the inside 24 of the waveguide 21 is radiated to the outside from the slot 22 formed on the surface 21a of the waveguide 21 as a signal whose main polarization is in the x direction.
  • a signal having a main polarization in the y direction coming from the outside is formed on the surface 11 a of the waveguide 11. From the existing slots 12a and 12b. In addition, a signal having a main polarization in the x direction coming from the outside is incident from a slot 22 formed on the surface 21 a of the waveguide 21. Signals incident from the slots 12a and 12b are propagated through the tube 14 of the waveguide 11, and are output from the end of the waveguide 11 in the + x direction or the ⁇ x direction, for example.
  • the signal incident from the slot 22 is propagated through the tube 24 of the waveguide 21 and is output from the end of the waveguide 21 in the + x direction or the ⁇ x direction, for example.
  • signals are input and output from the ends of the waveguides 11 and 21 in the waveguide slot arrays 10 and 20 in the + x direction or the ⁇ x direction.
  • a signal may be input / output to / from a waveguide connected to the bottom of 21.
  • the waveguide slot array antennas 10 and 20 may generate grating lobes that are radiation of electromagnetic waves in unnecessary directions. That is, the waveguide slot array antenna 10 generates a grating lobe when the arrangement interval of the plurality of waveguide slot array antennas 10 is one wavelength or more of a signal whose main polarization is in the y direction. Further, the waveguide slot array antenna 20 generates a grating lobe when the interval between the plurality of waveguide slot array antennas 20 is one or more wavelengths of a signal having the main polarization in the x direction.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 needs to be less than one wavelength of the signal whose main polarization is in the y direction. There is. Further, in order to suppress the grating lobe generated from the waveguide slot array antenna 20, it is necessary that the arrangement interval of the plurality of waveguide slot array antennas 20 be less than one wavelength of the signal whose main polarization is in the x direction. There is. In order to set the arrangement interval of the plurality of waveguide slot array antennas 10 and the arrangement interval of the plurality of waveguide slot array antennas 20 to be less than one wavelength of the signal, the waveguides 11 in the waveguide slot array antennas 10 and 20 are used. , 21 is required to be shortened in the y direction.
  • FIG. 3A shows the y direction in the waveguides 11 and 21 when the ridge portion 15 is provided inside the waveguide 11 and the ridge portions 25 and 26 are provided inside the waveguide 21. It is explanatory drawing which shows the dimension of z direction.
  • 3B shows the y direction in the waveguides 11 and 21 when the ridge portion 15 is not provided inside the waveguide 11 and the ridge portions 25 and 26 are not provided inside the waveguide 21. It is explanatory drawing which shows the dimension of z direction.
  • 3A and 3B show an example in which two waveguide slot array antennas 10 and two waveguide slot array antennas 20 are arranged to simplify the drawing.
  • the waveguides 11 and 21 are assumed to be ridge waveguides.
  • a waveguide in which the ridge portion 15 or the ridge portions 25 and 26 are not provided is a rectangular conductor. It will be described as a wave tube.
  • the waveguide 11 which is a ridge waveguide can shorten the dimension in the y direction in the tube 14 as shown in FIGS. 3A and 3B as compared with the rectangular waveguide. If the dimension in the y direction in the tube 14 can be shortened, the dimension in the y direction which is the tube width of the waveguide 11 can be shortened.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 may be less than one wavelength of a signal whose main polarization is in the y direction because the dimension in the y direction in the waveguide 11 is shortened. In this case, generation of grating lobes from the waveguide slot array antenna 10 can be suppressed. Further, the arrangement interval of the plurality of waveguide slot array antennas 20 may be less than one wavelength of a signal whose main polarization is in the x direction because the dimension in the y direction in the waveguide 11 is shortened. In this case, generation of grating lobes from the waveguide slot array antenna 20 can be suppressed.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 may vary depending on the wavelength of the signal whose main polarization is in the y direction, even if the dimension in the y direction in the waveguide 11 is shortened. There may be a case where the wave signal has one or more wavelengths. In this case, generation of grating lobes from the waveguide slot array antenna 10 cannot be suppressed.
  • the arrangement interval of the plurality of waveguide slot array antennas 20 may vary depending on the wavelength of the signal whose main polarization is in the x direction, even if the dimension in the y direction in the waveguide 11 is shortened. There may be a case where the wave signal has one or more wavelengths. In this case, generation of grating lobes from the waveguide slot array antenna 20 cannot be suppressed.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 can be less than one wavelength of the signal whose main polarization is in the y direction, the arrangement of the plurality of waveguide slot array antennas 20 results. It is also possible for the interval to be less than one wavelength of a signal whose main polarization is in the x direction. If the arrangement interval of the plurality of waveguide slot array antennas 10 can be less than one wavelength of a signal whose main polarization is in the y direction, a signal whose main polarization is in the y direction is radiated in an unnecessary direction. Can be suppressed.
  • the arrangement interval of the plurality of waveguide slot array antennas 20 can be less than one wavelength of the signal having the x-direction as the main polarization, the signal having the x-direction as the main polarization moves in an unnecessary direction. Radiation can be suppressed.
  • a slot 22 having a longitudinal direction in the y direction is formed on the surface 21a of the waveguide 21 in the waveguide slot array antenna 20 in order to transmit and receive a signal whose main polarization is in the x direction.
  • the waveguide 21 is a rectangular waveguide
  • the cross-sectional shape of the inside 24 of the waveguide 21 is, as shown in FIG. 3B
  • the longitudinal direction is the z direction
  • the lateral direction is y. It becomes a square of direction.
  • the waveguide 21 which is a ridge waveguide has a lower cut-off frequency of signals to be transmitted and received than a rectangular waveguide.
  • the waveguide 21 which is a ridge waveguide can shorten the dimension in the z direction in the tube 24 as shown in FIGS. 3A and 3B, as compared with the rectangular waveguide. If the dimension in the z direction in the tube 24 can be shortened, the dimension in the z direction which is the tube height of the waveguide 21 can be shortened.
  • the dimension in the z direction in the waveguide 21 is shortened, the dimension in the z direction of the array antenna apparatus is shortened, and the thickness of the array antenna apparatus can be reduced.
  • the two ridge portions 25 and 26 are provided symmetrically in order to improve the symmetry of the structure in the y direction in the waveguide 21. Only one side may be provided.
  • the dimension of the waveguide 21 in the waveguide slot array antenna 20 in the y direction is a dimension that is less than or equal to one-half of the guide wavelength so as not to propagate an electromagnetic wave of an unnecessary mode.
  • the longitudinal dimension of the slot 22 is generally designed to be a half of the free space wavelength. For this reason, the slot 22 has both ends in the longitudinal direction bent in the z direction, and the dimension in the y direction is less than or equal to one half. Therefore, the dimension in the z direction at both ends of the slot 22 becomes longer as the dimension in the y direction in the waveguide 21 is shortened.
  • the height difference between the surface 11a of the waveguide 11 in the waveguide slot array antenna 10 and the surface 21a of the waveguide 21 in the waveguide slot array antenna 20 increases as the dimension in the z direction in the slot 22 increases.
  • labor for processing the surfaces 11a and 21a is increased. Therefore, it is desirable that the dimension in the y direction of the inside 24 of the waveguide 21 is slightly shorter than the half of the free space wavelength.
  • the position in the z direction on the plane 15a be close to the upper portion of the inside 14 of the waveguide 11 by increasing the dimension in the z direction in the ridge portion 15 as much as possible and increasing the position in the z direction. .
  • the position in the z direction on the flat surface 15a of the ridge portion 15 is designed to be close to the upper portion of the inside 14 of the waveguide 11, and the flat surface of the ridge portions 25 and 26 has. It is assumed that the positions in the z direction at 25a and 26a are designed to be as low as possible.
  • the flat surface 15a of the ridge portion 15 and the flat surfaces 25a and 26a of the ridge portions 25 and 26 are the same surface is shown.
  • the slots 12a and 12b for transmitting and receiving electromagnetic waves transmit and receive electromagnetic waves to and from the waveguide slot array antenna 10 formed on the surface 11a of the waveguide 11.
  • the slot 22 is provided with a waveguide slot array antenna 20 formed on the surface 21a of the waveguide 21, and the waveguide slot array antenna 10 and the waveguide slot array antenna 20 are alternately arranged.
  • the waveguide 11 is a ridge waveguide having a ridge portion 15 formed therein
  • the waveguide 21 is a ridge waveguide having ridge portions 25 and 26 formed therein.
  • interval of the several waveguide slot array antenna 10 becomes less than 1 wavelength of the signal which makes a y direction a main polarization, If the spacing between the waveguide slot array antennas 20 is less than one wavelength of the signal having the main polarization in the x direction, the generation of grating lobes can be suppressed.
  • FIG. 5 is a perspective view showing the first member 31 in the array antenna apparatus.
  • FIG. 5A shows the surface side of the first member 31, and
  • FIG. 5B shows the back side surface of the first member 31.
  • the surface of the first member 31 is the upper surface of the first member 31, and the back surface of the first member 31 is the lower surface of the first member 31 in FIG. It is.
  • An iris 40 is provided in the tube 24 of the waveguide 21 in the first member 31 as shown in FIG. 5B.
  • the illustration of the iris 40 is omitted so as not to complicate the description of the drawings.
  • the iris 40 is a metal plate that disturbs the electromagnetic field in the tube 24 so that a signal whose main polarization is in the x direction is radiated from the slot 22.
  • a rectangular iris 40 is provided at a position sandwiching each slot 22, that is, a position shifted by several millimeters in the + x direction and a position shifted by several millimeters in the ⁇ x direction. It has been.
  • the shape and the number of irises 40 provided in the inside 24 of the waveguide 21 are not limited as long as a signal having the main polarization in the x direction can be radiated from the slot 22.
  • the iris 40 is provided in the tube 24 of the waveguide 21, but it is sufficient that a signal having the main polarization in the x direction can be radiated from the slot 22. It is not limited. Therefore, for example, a conductor or the like may be inserted into the tube 24 of the waveguide 21.
  • the lower side of the original member P1 is cut so that the iris 40 remains.
  • an example is shown in which processing on the back surface side of the first member 31 is performed after processing on the front surface side of the first member 31, but processing on the back surface side of the first member 31 is performed. Therefore, processing on the surface side of the first member 31 may be performed.
  • FIG. 8 is an explanatory view showing a method for processing the second member 32. Since the inside of the tube 14 and the inside of the tube 24 are provided on the surface of the second member 32, there is a portion recessed in the ⁇ z direction with respect to the dividing plane B. For this reason, for example, when the member before processing the second member 32 (hereinafter referred to as “original member P2”) is a flat plate, as shown in FIG. In this way, the inside 14 of the waveguide 11 is formed and part of the inside 24 of the waveguide 21 is formed (step ST4 in FIG. 4).
  • the cross-sectional shape of the inside 24 of the waveguide 21 is a shape in which the alphabet “H” is turned sideways.
  • the cross-sectional shape of the inside 24 of the pipe in the second member 32 is a shape in which a lower rectangular portion having a wide width in the y direction and an upper rectangular portion having a narrow width in the y direction overlap.
  • the processing of the upper rectangular portion with a narrow width in the y direction in the tube 24 can be easily performed by cutting from the surface side of the second member 32, but the lower portion having a wide width in the y direction in the tube 24.
  • the processing of the rectangular portion is easier to perform the cutting from the back surface side of the second member 32 than the cutting from the front surface side of the second member 32. Therefore, in step ST4, only the processing of the upper rectangular portion having a narrow width in the y direction in the tube 24 is performed.
  • the surface 15a of the ridge portion 15 and the planes 25a and 26a of the ridge portions 25 and 26 are obtained by performing a surface grinding process for grinding the surface on the upper side of the original member P2 whose upper portion is partially cut. Is processed (step ST5 in FIG. 4). Since this surface grinding can use a surface grinding machine having a large processing area, the plane 15a of the ridge portion 15 and the planes 25a and 26a of the ridge portions 25 and 26 can be easily processed. That is, by using a surface grinding machine having a large processing area, the plane 15a of the ridge portion 15 and the planes 25a and 26a of the ridge portions 25 and 26 can be processed simultaneously, so that the processing time can be shortened.
  • a method of joining the first member 31 and the second member 32 and a method of joining the second member 32 and the third member 33 for example, a method of bonding with a conductive adhesive can be considered.
  • the joint surface between the first member 31 and the second member 32 is only one surface, and the joint surface between the second member 32 and the third member 33 is only one surface. Therefore, when the first member 31 to the third member 33 are joined using the conductive adhesive, pressure is applied to the first member 31 to the third member 33 from one direction, that is, the z direction.
  • the first member 31 to the third member 33 can be joined simply by applying.
  • the dividing surface B between the first member 31 and the second member 32 is a plane 15 a of the ridge portion 15 in the waveguide 11 and a plane 25 a of the ridge portions 25 and 26 in the waveguide 21. , 26a.
  • the process of the back surface side in the 1st member 31 becomes easy, and the process of the surface side in the 2nd member 32 becomes easy.
  • the dividing surface C between the second member 32 and the third member 33 is the position of the bottom 24 c of the inside 24 of the waveguide 21 in the waveguide 21. Thereby, the process of the back surface side in the 2nd member 32 becomes easy.
  • the dividing surface B ′ between the first member 31 and the second member 32 has a plane 15 a of the ridge portion 15 in the waveguide 11 and a plane 25 a of the ridge portions 25 and 26 in the waveguide 21.
  • 26a in the + z direction and the dividing surface C ′ between the second member 32 and the third member 33 has a bottom portion 14a of the inside 14 of the waveguide 11 in the waveguide 11 and a bottom portion 24c of the inside 24 of the waveguide 21 of the waveguide 21.
  • the dividing surface of the array antenna device is the dividing surfaces B ′ and C ′
  • the front surface side and the back surface side of the second member 32 are more than when the dividing surface of the array antenna device is the dividing surfaces B and C.
  • the number of irregularities increases. Further, unevenness is generated on the surface side of the third member 33.
  • the dividing surface of the array antenna device is the dividing surfaces B ′ and C ′
  • the cutting of the second member 32 is performed more than when the dividing surface of the array antenna device is the dividing surfaces B and C. Time and effort increases. Moreover, the cutting with respect to the 3rd member 33 is also required.
  • the dividing surface B between the first member 31 and the second member 32 is composed of the flat surface 15a of the ridge portion 15 in the waveguide 11 and the ridge portion 25 in the waveguide 21. 26, and the dividing surface C between the second member 32 and the third member 33 is a second position more than the position of the bottom 24c of the inside 24 of the waveguide 21 in the waveguide 21. The labor for cutting the member 32 and the third member 33 increases.
  • the dividing surface B between the first member 31 and the second member 32 is the flat surface 15a of the ridge portion 15 in the waveguide 11 is shown. Is in the ⁇ z direction from the plane 15 a of the ridge portion 15 in the waveguide 11, the ridge portion 15 is divided into the first member 31 and the second member 32. For this reason, when the dividing surface B is in the ⁇ z direction from the flat surface 15a of the ridge portion 15 in the waveguide 11, the first member 31 and the second member 32 are divided when they are joined. It is necessary to join so that the ridge 15 does not shift.
  • the joining surface increases compared to the case where the dividing surface B between the first member 31 and the second member 32 is the flat surface 15a of the ridge portion 15 in the waveguide 11, and thus the joining process becomes troublesome.
  • the joining accuracy may be deteriorated. As a result, a decrease in yield due to poor bonding is assumed.
  • the plane 15a of the ridge portion 15 in the waveguide 11 and the planes 25a and 26a of the ridge portions 25 and 26 in the waveguide 21 are in the same plane.
  • the array antenna device is manufactured by joining a first member 31 and a second member 32 that are divided in the z direction. Since the dividing surface B with the second member 32 is configured to be the flat surface 15a of the ridge portion 15 in the waveguide 11 and the flat surfaces 25a and 26a of the ridge portions 25 and 26 in the waveguide 21, the array antenna device Can be easily manufactured, and a decrease in yield due to poor bonding can be prevented.
  • the dividing surface C between the second member 32 and the third member 33 is the bottom 24c of the inside 24 of the waveguide 21.
  • the dividing surface C with the third member 33 may be the bottom portion 14 a of the inside 14 of the waveguide 11.
  • the dividing surface C between the second member 32 and the third member 33 is a position between the bottom portion 14a of the inside 14 of the waveguide 11 and the bottom 24c of the inside 24 of the waveguide 21 of the waveguide 21. Also good.
  • the bottom portion 14a of the inside 14 of the waveguide 11 is provided at a position in the + z direction from the bottom 24c of the inside 24 of the waveguide 21.
  • the bottom portion 14 a of the inside 14 of the tube 11 may be provided at a position in the ⁇ z direction from the bottom 24 c of the inside 24 of the waveguide 21.
  • Embodiment 2 FIG.
  • the first embodiment includes the waveguide slot array antenna 10 that transmits and receives a signal having a main polarization in the y direction, and the waveguide slot array antenna 20 that transmits and receives a signal that has a main polarization in the x direction.
  • An array antenna apparatus has been described.
  • the second embodiment includes a waveguide slot array antenna 10 that transmits and receives a signal whose main polarization is in the y direction, and a waveguide slot array antenna 50 that transmits and receives a signal whose main polarization is in the y direction.
  • the array antenna apparatus will be described.
  • FIG. 10 is a perspective view showing an array antenna apparatus according to Embodiment 2 of the present invention
  • FIG. 11 is a cross-sectional perspective view showing the array antenna apparatus as viewed from A of FIG. 10 and FIG. 11, the same reference numerals as those in FIG. 1 and FIG. FIG. 11 shows an example in which two waveguide slot array antennas 10 and two waveguide slot array antennas 50 are arranged for simplification of the drawing.
  • the slots 52a and 52b which are the second slots, are openings provided on the surface 51a of the waveguide 51 in order to transmit and receive signals having the main polarization in the y direction.
  • the longitudinal direction of the openings Is the x direction.
  • the slot 52a and the slot 52b are arranged so as to be shifted from each other in the y direction. This is because when the slots 52a and 52b are arranged in a straight line, the main polarization transmitted / received by the slot 52a and the main polarization transmitted / received by the slot 52b may cancel each other.
  • the ridge portion 55 is a second protrusion that extends from the bottom portion 54 a of the inside 54 of the waveguide 51 toward the surface 51 a of the waveguide 51. Therefore, the waveguide 51 in the waveguide slot array antenna 50 is a ridge waveguide in which a second protrusion is formed.
  • a signal having a main polarization in the y direction coming from the outside is formed on the surface 11 a of the waveguide 11. From the existing slots 12a and 12b. Further, a signal having a main polarization in the y direction coming from the outside is incident from slots 52 a and 52 b formed on the surface 51 a of the waveguide 51. Signals incident from the slots 12a and 12b are propagated through the tube 14 of the waveguide 11, and are output from the end of the waveguide 11 in the + x direction or the ⁇ x direction, for example.
  • the signals incident from the slots 52a and 52b are propagated in the tube 54 of the waveguide 51 and output from, for example, the + x direction or ⁇ x direction end of the waveguide 51.
  • signals are input and output from the ends of the waveguides 11 and 51 in the waveguide slot array antennas 10 and 50 in the + x direction or the ⁇ x direction.
  • a signal may be input / output to / from a waveguide connected to the bottom of 51 or the like.
  • the signal transmitted / received by the waveguide slot array antenna 10 and the signal transmitted / received by the waveguide slot array antenna 50 are both signals having a main polarization in the y direction.
  • the dimension in the y direction of the waveguide 11 of the waveguide slot array antenna 10 is different from the dimension in the y direction of the waveguide 51 of the waveguide slot array antenna 50. Therefore, the frequency band of the signal transmitted / received by the waveguide slot array antenna 10 and the frequency band of the signal transmitted / received by the waveguide slot array antenna 50 are different.
  • the dimension in the y direction of the waveguide 11 of the waveguide slot array antenna 10 is different from the dimension of the waveguide 51 in the waveguide slot array antenna 50 in the y direction.
  • the dimension in the y direction in the waveguide 11 of the waveguide slot array antenna 10 and the dimension in the y direction in the waveguide 51 of the waveguide slot array antenna 50 may be the same.
  • the frequency band of the signal transmitted and received by the waveguide slot array antenna 10 and the frequency band of the signal transmitted and received by the waveguide slot array antenna 50 are the same.
  • the slot array antennas 10 and 50 may transmit and receive signals having different frequencies.
  • the waveguide slot array antennas 10 and 50 may generate grating lobes that are radiations of electromagnetic waves in unnecessary directions. That is, the waveguide slot array antenna 10 generates a grating lobe when the arrangement interval of the plurality of waveguide slot array antennas 10 is one wavelength or more of the signal having the main polarization in the y direction transmitted / received by itself. To do. Further, the waveguide slot array antenna 50 generates a grating lobe when the arrangement interval of the plurality of waveguide slot array antennas 50 is one wavelength or more of a signal whose main polarization is transmitted and received by itself. To do.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 is mainly shifted in the y direction transmitted and received by the waveguide slot array antenna 10. It is necessary to make the signal less than one wavelength of the wave signal. Further, in order to suppress the grating lobe generated from the waveguide slot array antenna 50, the arrangement interval of the plurality of waveguide slot array antennas 50 is mainly shifted in the y direction transmitted and received by the waveguide slot array antenna 50. It is necessary to make the signal less than one wavelength of the wave signal.
  • the tube width of the waveguide slot array antennas 10 and 50 is used. It is necessary to shorten the dimension in the y direction.
  • the waveguides 11 and 51 in the waveguide slot array antennas 10 and 50 include ridge portions 15 and 55 extending from the bottoms 14a and 54a of the insides 14 and 54 to the surfaces 11a and 51a of the waveguides 11 and 51, respectively. It is a ridge waveguide provided.
  • the waveguides 11 and 51 which are ridge waveguides, can shorten the dimension in the y direction, which is the tube width, as compared to the rectangular waveguide.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 is such that the y direction transmitted and received by the waveguide slot array antenna 10 is the main polarization because the dimension in the y direction in the waveguides 11 and 51 is shortened.
  • the signal may be less than one wavelength. In this case, generation of grating lobes from the waveguide slot array antenna 10 can be suppressed.
  • the arrangement interval of the plurality of waveguide slot array antennas 50 is such that the y direction transmitted and received by the waveguide slot array antenna 50 is the main polarization because the dimension in the y direction in the waveguides 11 and 51 is shortened.
  • the signal may be less than one wavelength. In this case, generation of grating lobes from the waveguide slot array antenna 50 can be suppressed.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 is such that the y direction transmitted and received by the waveguide slot array antenna 10 is the main polarization even when the y direction dimensions of the waveguides 11 and 51 are shortened.
  • the arrangement interval of the plurality of waveguide slot array antennas 50 is such that the y direction transmitted and received by the waveguide slot array antenna 50 is the main polarization even if the y direction dimension of the waveguides 11 and 51 is shortened.
  • the waveguides 11 and 51 which are ridge waveguides, can shorten the dimension in the y direction in the pipes 14 and 54 as compared with the rectangular waveguide, the grating lobe is more than that of the rectangular waveguide. Can be reduced. Further, in the waveguides 11 and 51 which are ridge waveguides, the amount of reduction in the cut-off frequency is changed by changing the shape and size of the ridge portions 15 and 55.
  • the waveguides 11 and 51 which are ridge waveguides, change the arrangement interval of the plurality of waveguide slot array antennas 10 by changing the shape and size of the ridge portions 15 and 55, so that the waveguide slots It is possible to make the y direction transmitted and received by the array antenna 10 less than one wavelength of the signal having the main polarization.
  • the arrangement interval of the plurality of waveguide slot array antennas 50 can be less than one wavelength of a signal whose main polarization is in the y direction transmitted and received by the waveguide slot array antenna 50.
  • the arrangement interval of the plurality of waveguide slot array antennas 10 can be less than one wavelength of a signal whose main polarization is the y direction transmitted and received by the waveguide slot array antenna 10, the y direction is the main polarization. Can be prevented from being emitted in an unnecessary direction.
  • the arrangement interval of the plurality of waveguide slot array antennas 50 can be less than one wavelength of a signal whose main polarization is the y direction transmitted and received by the waveguide slot array antenna 10, the y direction is mainly used. It can suppress that the signal made into a polarized wave is radiated
  • the slots 12a and 12b for transmitting and receiving electromagnetic waves transmit and receive electromagnetic waves to and from the waveguide slot array antenna 10 formed on the surface 11a of the waveguide 11.
  • Slot 52a, 52b includes a waveguide slot array antenna 50 formed on the surface 51a of the waveguide 51, and the waveguide slot array antenna 10 and the waveguide slot array antenna 50 are alternately arranged.
  • the waveguide 11 is a ridge waveguide having a ridge portion 15 formed therein
  • the waveguide 51 is a ridge waveguide having a ridge portion 55 formed therein.
  • interval of the several waveguide slot array antenna 10 changes the y direction transmitted / received by the waveguide slot array antenna 10 into main polarization.
  • the spacing between the plurality of waveguide slot array antennas 50 is less than one wavelength of signals whose main polarization is in the y direction transmitted and received by the waveguide slot array antenna 50. If so, the occurrence of grating lobes can be suppressed.
  • the array antenna device includes a first member 31 and a second member 32.
  • the 1st member 31 and the 2nd member 32 are joined. It is assumed that an array antenna device is manufactured.
  • the member before processing the first member 31 (hereinafter referred to as “original member P1”) is a flat plate.
  • Slots 12a and 12b are formed by grooving a linear groove whose longitudinal direction is the x direction on the surface 11a of the waveguide 11 which is a part of the surface of the first member 31.
  • the slot 52a, 52b is formed by digging a linear groove whose longitudinal direction is the x direction on the surface 51a of the waveguide 51 which is a part of the surface of the first member 31.
  • the inside 14 of the waveguide 11 and the inside 54 of the waveguide 51 are formed by partially cutting the lower side of the original member P1.
  • an example is shown in which the inside 14 of the waveguide 11 and the inside 54 of the waveguide 51 are hollow insulators.
  • the process of the back surface side of the 1st member 31 after performing the process of the surface side of the 1st member 31 is shown here, the process of the back surface side of the 1st member 31 is shown. You may make it perform the process of the surface side of the 1st member 31 after performing.
  • the processing of the second member 32 will be described. Since the inside of the tube 14 and the inside 54 of the tube are provided on the surface of the second member 32, there is a portion that is recessed in the ⁇ z direction with respect to the dividing plane B. For this reason, for example, when the member before processing the second member 32 (hereinafter referred to as “original member P2”) is a flat plate, as shown in FIG. By cutting into two, the inside 14 of the waveguide 11 and the inside 54 of the waveguide 51 are formed.
  • the first member 31 and the second member 32 are joined.
  • a method of joining the first member 31 and the second member 32 for example, a method of bonding with a conductive adhesive can be considered.
  • the joint surface between the first member 31 and the second member 32 is only one surface.
  • the 1st member 31 and the 2nd member 32 using a conductive adhesive it is the 1st member 31 and the 2nd member 32 from one direction, ie, the z direction.
  • the first member 31 and the second member 32 can be joined simply by applying pressure.
  • the method of joining the first member 31 and the second member 32 using a conductive adhesive is shown, but the method is not limited to the method using a conductive adhesive.
  • the dividing surface B between the first member 31 and the second member 32 is the flat surface 15 a of the ridge portion 15 in the waveguide 11 and the flat surface 55 a of the ridge portion 55 in the waveguide 51. Shows things. Thereby, the process of the back surface side in the 1st member 31 becomes easy, and the process of the surface side in the 2nd member 32 becomes easy.
  • the first embodiment includes the waveguide slot array antenna 10 that transmits and receives a signal having a main polarization in the y direction, and the waveguide slot array antenna 20 that transmits and receives a signal that has a main polarization in the x direction.
  • An array antenna apparatus has been described.
  • the third embodiment includes a waveguide slot array antenna 60 that transmits and receives a signal having a main polarization in the x direction, and a waveguide slot array antenna 20 that transmits and receives a signal that has a main polarization in the x direction. The array antenna apparatus will be described.
  • FIG. 12 is a perspective view showing an array antenna apparatus according to Embodiment 3 of the present invention
  • FIG. 13 is a cross-sectional perspective view showing the array antenna apparatus viewed from A of FIG. 12 and FIG. 13, the same reference numerals as those in FIG. 1 and FIG. FIG. 13 shows an example in which two waveguide slot array antennas 60 and two waveguide slot array antennas 20 are arranged for simplification of the drawing.
  • the waveguide slot array antenna 60 is a first antenna in which a slot 62 for transmitting and receiving a signal (electromagnetic wave) whose main polarization is in the x direction is formed on the surface 61 a of the waveguide 61.
  • the waveguide 61 which is the first waveguide, has an outer peripheral portion 63 that is a conductor such as metal, and an inner portion 64 that is an inside is an insulator such as a hollow or dielectric.
  • aluminum is used as the outer peripheral portion 63 of the waveguide 61.
  • any material other than aluminum may be used as long as it operates as a conductor with respect to a radio frequency of a signal to be transmitted / received. You may do it.
  • the slot 62 which is the first slot is an opening provided in the surface 611a of the waveguide 61 in order to transmit and receive a signal whose main polarization is in the x direction, and the longitudinal direction of the opening is the y direction. It is.
  • the ridge portion 65 is a first protrusion that extends from the side portion 64 a of the inside 64 of the waveguide 61 toward the side portion 64 b.
  • the ridge portion 66 is a first protrusion that extends from the side portion 64 b of the inside 64 of the waveguide 61 toward the side portion 64 a. Therefore, the waveguide 61 in the waveguide slot array antenna 60 is a ridge waveguide in which a first protrusion is formed.
  • a plane 65a parallel to the surface 61a of the waveguide 61 among the plurality of planes 65a, 65b, 65c of the ridge portion 65 formed in the waveguide 61 Of the plurality of planes 66 a, 66 b, 66 c of the ridge portion 66 formed in the waveguide 61, the plane 66 a parallel to the surface 61 a of the waveguide 61 and the waveguide 21 are formed.
  • the plurality of planes 25 a, 25 b, 25 c of the ridge portion 25 the plane 25 a parallel to the surface 21 a of the waveguide 21 and the ridge portion 26 formed in the waveguide 21 are present.
  • the surface 21a of the waveguide 21 and the plane 26a parallel to the plane 21a are in the same plane. That is, the planes 65a and 66a in the ridge portions 65 and 66 and the planes 25a and 26a in the ridge portions 25 and 26 are within the plane indicated by B in FIG.
  • signals to be transmitted are input from, for example, the ends of the waveguides 61 and 21 in the + x direction or the ⁇ x direction.
  • Signals input from the ends of the waveguides 61 and 21 in the + x direction or the ⁇ x direction are propagated in the pipes 64 and 24 of the waveguides 61 and 21.
  • a signal propagated through the inside 64 of the waveguide 61 is radiated to the outside from the slot 62 formed on the surface 61a of the waveguide 61 as a signal having the x direction as a main polarization.
  • the signal propagated through the inside 24 of the waveguide 21 is radiated to the outside from the slot 22 formed on the surface 21a of the waveguide 21 as a signal whose main polarization is in the x direction.
  • a signal having a main polarization in the x direction coming from the outside is formed on the surface 61 a of the waveguide 61.
  • the incident light is incident from the slot 62.
  • a signal having a main polarization in the x direction coming from the outside is incident from a slot 22 formed on the surface 21 a of the waveguide 21.
  • the signal incident from the slot 62 is propagated through the pipe 64 of the waveguide 61 and is output from the end of the waveguide 61 in the + x direction or the ⁇ x direction, for example.
  • the signal incident from the slot 22 is propagated through the tube 24 of the waveguide 21 and is output from the end of the waveguide 21 in the + x direction or the ⁇ x direction, for example.
  • signals are input and output from the ends of the waveguides 61 and 21 in the waveguide slot array antennas 60 and 20 in the + x direction or the ⁇ x direction.
  • a signal may be input / output to / from a waveguide connected to the bottom of 21.
  • the signal transmitted / received by the waveguide slot array antenna 60 and the signal transmitted / received by the waveguide slot array antenna 20 are both signals having the main polarization in the x direction.
  • the dimension in the z direction in the waveguide 61 of the waveguide slot array antenna 60 is different from the dimension in the z direction in the waveguide 21 of the waveguide slot array antenna 20. Therefore, the frequency band of signals transmitted and received by the waveguide slot array antenna 60 is different from the frequency band of signals transmitted and received by the waveguide slot array antenna 20.
  • the dimension in the z direction of the waveguide 61 of the waveguide slot array antenna 60 is different from the dimension in the z direction of the waveguide 21 of the waveguide slot array antenna 20.
  • the dimension in the z direction of the waveguide 61 of the waveguide slot array antenna 60 and the dimension in the z direction of the waveguide 21 of the waveguide slot array antenna 20 may be the same.
  • the frequency band of the signal transmitted / received by the waveguide slot array antenna 60 and the frequency band of the signal transmitted / received by the waveguide slot array antenna 20 are the same.
  • the slot array antennas 60 and 20 may transmit and receive signals having different frequencies.
  • the waveguides 61 and 21 which are ridge waveguides can shorten the dimension in the z direction in the pipes 64 and 24 as compared with the rectangular waveguide. If the dimension in the z direction in the pipes 64 and 24 can be shortened, the dimension in the z direction, which is the tube height of the waveguides 61 and 21, can be shortened.
  • the dimension in the z direction of the array antenna apparatus can be shortened, and the thickness of the array antenna apparatus can be reduced.
  • the two ridge portions 65 and 66 are provided symmetrically in order to improve the symmetry of the structure in the y direction in the waveguide 61, but only one of the ridge portion 65 or the ridge portion 66 is provided. It may be provided.
  • the two ridge portions 25 and 26 are provided symmetrically, but only one of the ridge portion 25 or the ridge portion 26 is provided. It may be a thing.
  • the slot 62 for transmitting / receiving electromagnetic waves is connected to the waveguide slot array antenna 60 formed on the surface 61a of the waveguide 61 and the slot for transmitting / receiving electromagnetic waves.
  • 22 includes a waveguide slot array antenna 20 formed on the surface 21a of the waveguide 21, and the waveguide slot array antenna 60 and the waveguide slot array antenna 20 are alternately arranged.
  • the waveguide 61 is a ridge waveguide having ridge portions 65 and 66 formed therein
  • the waveguide 21 is a ridge waveguide having ridge portions 25 and 26 formed therein.
  • the surface of the first member 31 has a portion recessed in the ⁇ z direction with respect to the surface 21 a of the waveguide 21. That is, the surface 61 a of the waveguide 61 is recessed in the ⁇ z direction from the surface 21 a of the waveguide 21. For this reason, for example, when the member before processing the first member 31 (hereinafter referred to as “original member P1”) is a flat plate, as shown in FIG. The surface 61a of the waveguide 61 is formed.
  • the slot 62 is formed by performing groove processing for digging a linear groove whose longitudinal direction is the y direction on the surface 61 a of the waveguide 61.
  • the slot 22 is formed by performing groove processing for digging a linear groove whose longitudinal direction is the y direction on the surface 21 a of the waveguide 21.
  • the inner side 64 of the waveguide 61 and the inner side 24 of the waveguide 21 are formed by partially cutting the lower side of the original member P ⁇ b> 1.
  • the inside 64 of the waveguide 61 and the inside 24 of the waveguide 21 are hollow insulators.
  • the irises are provided in the pipes 64 and 24 of the waveguides 61 and 21, when the lower parts of the original member P1 are partially cut to form the pipes 64 and 24 of the waveguides 61 and 21, respectively.
  • the lower side of the original member P1 is cut so that the iris remains.
  • processing on the back surface side of the first member 31 is performed after processing on the front surface side of the first member 31, but processing on the back surface side of the first member 31 is performed. Therefore, processing on the surface side of the first member 31 may be performed.
  • the processing of the second member 32 will be described. Since the inner surface 64 and the inner tube 24 are provided on the surface of the second member 32, there is a portion recessed in the ⁇ z direction with respect to the dividing plane B. For this reason, for example, when the member before processing the second member 32 (hereinafter referred to as “original member P2”) is a flat plate, as shown in FIG. As a result of the cutting, a part of the inner pipe 64 of the waveguide 61 and a part of the inner pipe 24 of the waveguide 21 are formed.
  • the cross-sectional shape of the pipes 64 and 24 in the waveguides 61 and 21 is a shape in which the alphabet “H” is turned sideways.
  • the cross-sectional shape of the pipes 64 and 24 in the second member 32 is a shape in which the lower rectangular portion having a wide width in the y direction and the upper rectangular portion having a narrow width in the y direction overlap.
  • the upper rectangular portion having a narrow width in the y direction in the pipes 64 and 24 can be easily processed by cutting from the surface side of the second member 32, but the width in the y direction in the pipes 64 and 24 is small.
  • the processing of the wide lower rectangular portion is easier to cut from the back side of the second member 32 than to cut from the front side of the second member 32. Therefore, here, only the processing of the upper rectangular portion having a narrow width in the y direction in the pipes 64 and 24 is performed.
  • the upper surface of the original member P2 whose upper side is partially cut is subjected to surface grinding that grinds the flat surface, whereby the flat surfaces 65a and 66a of the ridge portions 65 and 66 and the flat surfaces of the ridge portions 25 and 26 are obtained. 25a and 26a are processed. Since this surface grinding can use a surface grinding machine or the like having a large processing area, the surfaces 65a and 66a of the ridge portions 65 and 66 and the surfaces 25a and 26a of the ridge portions 25 and 26 can be easily processed. .
  • the planes 65a, 66a of the ridge portions 65, 66 and the planes 25a, 26a of the ridge portions 25, 26 can be processed simultaneously, so that the processing time is shortened. Can do.
  • the inner surfaces 64 and 24 of the waveguides 61 and 21 are provided on the rear surface of the second member 32, there is a portion that is recessed in the + z direction with respect to the dividing surface C. For this reason, as shown in FIG. 13, the pipe
  • the processing of the third member 33 will be described. Since the inside of the pipe 64 is provided on the surface of the third member 33, there is a portion recessed in the ⁇ z direction with respect to the dividing plane C. For this reason, for example, when the member before processing the third member 33 (hereinafter referred to as “original member P3”) is a flat plate, the upper side of the original member P3 is partially extended as shown in FIG. By cutting in, the inside 64 of the waveguide 61 is formed.
  • the processing is performed in the order of the first member 31, the second member 32, and the third member 33, but the processing order of the first member 31, the second member 32, and the third member 33 is performed. Regardless, for example, the processing may be performed in the order of the third member 33, the second member 32, and the first member 31.
  • the first member 31 and the second member 32, and the third member 33 are processed, the first member 31 and the second member 32 are joined, and the second member 32 and the third member are joined. 33 is joined.
  • a method of joining the first member 31 and the second member 32 and a method of joining the second member 32 and the third member 33 for example, a method of bonding with a conductive adhesive can be considered.
  • the joint surface between the first member 31 and the second member 32 is only one surface, and the joint surface between the second member 32 and the third member 33 is only one surface. Therefore, when the first member 31 to the third member 33 are joined using the conductive adhesive, pressure is applied to the first member 31 to the third member 33 from one direction, that is, the z direction.
  • the first member 31 to the third member 33 can be joined simply by applying.
  • the method of joining the first member 31 to the third member 33 using the conductive adhesive is shown, but the method is not limited to the method using the conductive adhesive.
  • the first member 31 to the third member 33 may be joined by a method such as attaching or screwing. Even in the case of joining by screwing, conduction between the first member 31 to the third member 33 can be obtained by screwing to insert the screw in the z direction.
  • the dividing surface B between the first member 31 and the second member 32 is formed by the planes 65 a and 66 a of the ridge portions 65 and 66 in the waveguide 61 and the ridge portions 25 and 66 in the waveguide 21. 26 are shown as planes 25a and 26a. Thereby, the process of the back surface side in the 1st member 31 becomes easy, and the process of the surface side in the 2nd member 32 becomes easy.
  • the dividing surface C between the second member 32 and the third member 33 is the position of the bottom 24 c of the inside 24 of the waveguide 21. Thereby, the process of the back surface side in the 2nd member 32 becomes easy.
  • the planes 65a and 66a of the ridge portions 65 and 66 in the waveguide 61 and the planes 25a and 26a of the ridge portions 25 and 26 in the waveguide 21 are obtained.
  • the array antenna device is manufactured by joining the first member 31 and the second member 32 that are divided in the z direction.
  • the dividing plane B between the member 31 and the second member 32 is such that the flat surfaces 65 a and 66 a of the ridge portions 65 and 66 in the waveguide 61 and the flat surfaces 25 a and 26 a of the ridge portions 25 and 26 in the waveguide 21.
  • the array antenna device can be easily manufactured, and the yield can be prevented from being lowered due to poor bonding.
  • the split surface C between the second member 32 and the third member 33 is the bottom 24c of the inside 24 of the waveguide 21.
  • the dividing surface C with the third member 33 may be the bottom 64c of the inside 64 of the waveguide 61.
  • the dividing surface C between the second member 32 and the third member 33 is a position between the bottom 64c of the inside 64 of the waveguide 61 and the bottom 24c of the inside 24 of the waveguide 21 of the waveguide 21. Also good.
  • the bottom 64c of the inside 64 of the waveguide 61 is provided at a position in the ⁇ z direction from the bottom 24c of the inside 24 of the waveguide 21.
  • the bottom 64c of the inside 64 of the wave tube 61 may be provided at a position in the + z direction from the bottom 24c of the inside 24 of the waveguide 21.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

電磁波を送受信するスロット(12a),(12b)が、導波管(11)の表面(11a)に形成されている導波管スロットアレーアンテナ(10)と、電磁波を送受信するスロット(22)が、導波管(21)の表面(21a)に形成されている導波管スロットアレーアンテナ(20)とを備え、導波管スロットアレーアンテナ(10)と導波管スロットアレーアンテナ(20)とが交互に配列されており、導波管(11)が、内部にリッジ部(15)が形成されているリッジ導波管であり、導波管(21)が、内部にリッジ部(25),(26)が形成されているリッジ導波管である。

Description

アレーアンテナ装置及びアレーアンテナ装置の製造方法
 この発明は、導波管の表面に電磁波を送受信するスロットが形成されているアレーアンテナ装置と、そのアレーアンテナ装置の製造方法とに関するものである。
 導波管の表面に電磁波を送受信するスロットが形成されているアレーアンテナ装置は、無線通信等に用いる低損失なアンテナとして知られている。
 以下の特許文献1には、直交する2偏波の信号を送受信することが可能なアレーアンテナ装置が開示されている。
 以下の特許文献1に開示されているアレーアンテナ装置は、長手方向が第1の導波管の管軸方向である複数のスロットが、第1の導波管の表面に形成されている複数の第1アンテナと、長手方向が第2の導波管の管幅方向である複数のスロットが、第2の導波管の表面に形成されている複数の第2アンテナとを備え、第1アンテナと第2アンテナが交互に配列されている。
 第1アンテナにより送受信される電磁波は水平偏波であり、第2アンテナにより送受信される電磁波は垂直偏波である。
特開2003-318648号公報
 第1アンテナにおける第1の導波管及び第2アンテナにおける第2の導波管は、内部である管内の断面形状が方形の方形導波管である。
 そして、第1の導波管における管内の断面形状は、長手方向が管幅方向、短手方向が高さ方向であり、第2の導波管における管内の断面形状は、長手方向が高さ方向、短手方向が管幅方向である。
 このため、送受信する電磁波の波長によっては、第1の導波管の管幅が広くなり、第2の導波管の管高が高くなってしまうことがある。この結果、アレーアンテナ装置全体の外形寸法が大きくなってしまうことがあるという課題があった。
 なお、第1の導波管の管幅が広くなることで、複数の第1アンテナの配置間隔が、第1アンテナにより送受信される電磁波の1波長以上になることがある。同様に、複数の第2アンテナの配置間隔が、第2アンテナにより送受信される電磁波の1波長以上になることがある。第1アンテナの配置間隔や第2アンテナの配置間隔が、送受信する電磁波の1波長以上になると、不要な方向への電磁波の放射であるグレーティングローブが発生してしまうことがある。
 この発明は上記のような課題を解決するためになされたもので、導波管が方形導波管である場合よりも、全体の外形寸法が小さいアレーアンテナ装置を得ることを目的とする。
 また、この発明は、上記のアレーアンテナ装置の製造方法を得ることを目的とする。
 この発明に係るアレーアンテナ装置は、電磁波を送受信する第1のスロットが、第1の導波管の表面に形成されている第1のアンテナと、電磁波を送受信する第2のスロットが、第2の導波管の表面に形成されている第2のアンテナとを備え、第1のアンテナと第2のアンテナとが交互に配列されており、第1の導波管が、内部に第1の突起物が形成されているリッジ導波管、第2の導波管が、内部に第2の突起物が形成されているリッジ導波管であるようにしたものである。
 この発明によれば、第1の導波管が、内部に第1の突起物が形成されているリッジ導波管、第2の導波管が、内部に第2の突起物が形成されているリッジ導波管であるように構成したので、第1及び第2の導波管が方形導波管である場合よりも、全体の外形寸法が小さいアレーアンテナ装置を得ることができる効果がある。
この発明の実施の形態1によるアレーアンテナ装置を示す斜視図である。 図1のAから見たアレーアンテナ装置を示す断面透視図である。 図3Aは導波管11の内部にリッジ部15が設けられ、かつ、導波管21の内部にリッジ部25,26が設けられている場合の導波管11,21におけるy方向及びz方向の寸法を示す説明図である。図3Bは導波管11の内部にリッジ部15が設けられておらず、導波管21の内部にリッジ部25,26が設けられていない場合の導波管11,21におけるy方向及びz方向の寸法を示す説明図である。 この発明の実施の形態1によるアレーアンテナ装置の製造方法を示すフローチャートである。 図5Aは第1の部材31の表面側が見える斜視図、図5Bは第1の部材31の裏面側が見える斜視図である。 図6Aは第2の部材32の表面側が見える斜視図、図6Bは第2の部材32の裏面側が見える斜視図である。 アレーアンテナ装置における第3の部材33を示す斜視図である。 第2の部材32の加工方法を示す説明図である。 第1の部材31と第2の部材32との分割面B’が、導波管11におけるリッジ部15の平面15a及び導波管21におけるリッジ部25,26の平面25a,26aより+z方向であり、かつ、第2の部材32と第3の部材33との分割面C’が、導波管11における管内14の底部14a及び導波管21における管内24の底部24cより+z方向である場合のアレーアンテナ装置を示す断面透視図である。 この発明の実施の形態2によるアレーアンテナ装置を示す斜視図である。 図10のAから見たアレーアンテナ装置を示す断面透視図である。 この発明の実施の形態3によるアレーアンテナ装置を示す斜視図である。 図12のAから見たアレーアンテナ装置を示す断面透視図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1はこの発明の実施の形態1によるアレーアンテナ装置を示す斜視図であり、図2は図1のAから見たアレーアンテナ装置を示す断面透視図である。
 図1及び図2において、x方向は導波管スロットアレーアンテナ10,20の管軸方向、y方向は導波管スロットアレーアンテナ10,20の管幅方向、z方向は導波管スロットアレーアンテナ10,20の高さ方向である。
 導波管スロットアレーアンテナ10と導波管スロットアレーアンテナ20はy方向に交互に配列されている。
 導波管スロットアレーアンテナ10はy方向を主偏波とする信号(電磁波)を送受信するスロット12a,12bが、導波管11の表面11aに形成されている第1のアンテナである。
 第1の導波管である導波管11は外周部13が金属などの導体であり、内部である管内14が中空や誘電体などの絶縁体である。
 なお、導波管11の外周部13としては、アルミニウムを用いることが一般的であるが、送受信する信号の無線周波数に対して導体として動作するものであればよく、アルミニウム以外の金属などを用いるようにしてもよい。
 第1のスロットであるスロット12a,12bはy方向を主偏波とする信号を送受信するために、導波管11の表面11aに設けられている開口部であり、この開口部の長手方向はx方向である。
 この実施の形態1では、スロット12aとスロット12bは、互いにy方向にずれて配列されている。
 スロット12aとスロット12bが一直線上に配列されている場合には、スロット12aにより送受信される主偏波と、スロット12bにより送受信される主偏波とが互いに打ち消し合ってしまうことがあるからである。
 リッジ部15は導波管11における管内14の底部14aから導波管11の表面11a側に伸びている第1の突起物である。
 したがって、導波管スロットアレーアンテナ10における導波管11は、内部に第1の突起物が形成されているリッジ導波管である。
 導波管スロットアレーアンテナ20はx方向を主偏波とする信号(電磁波)を送受信するスロット22が、導波管21の表面21aに形成されている第2のアンテナである。
 第2の導波管である導波管21は外周部23が金属などの導体であり、内部である管内24が中空や誘電体などの絶縁体である。
 なお、導波管21の外周部23としては、アルミニウムを用いることが一般的であるが、送受信する信号の無線周波数に対して導体として動作するものであればよく、アルミニウム以外の金属などを用いるようにしてもよい。
 第2のスロットであるスロット22はx方向を主偏波とする信号を送受信するために、導波管21の表面21aに設けられている開口部であり、この開口部の長手方向はy方向である。
 リッジ部25は導波管21における管内24の一方の側部24aから他方の側部24b側に伸びている第2の突起物である。
 リッジ部26は導波管21における管内24の側部24bから側部24a側に伸びている第2の突起物である。
 したがって、導波管スロットアレーアンテナ20における導波管21は、内部に第2の突起物が形成されているリッジ導波管である。
 この実施の形態1では、導波管11に形成されているリッジ部15が有している複数の平面15a,15b,15cの中で、導波管11の表面11aと平行な平面15aと、導波管21に形成されているリッジ部25が有している複数の平面25a,25b,25cの中で、導波管21の表面21aと平行な平面25aと、導波管21に形成されているリッジ部26が有している複数の平面26a,26b,26cの中で、導波管21の表面21aと平行な平面26aとが同一面内である。
 即ち、リッジ部15における平面15aと、リッジ部25,26における平面25a,26aとが、図2のBが示す面内である。
 なお、リッジ部25,26が有している平面25c,26cについても、導波管21の表面21aと平行な平面であるため、平面25c,26cが、図2のBが示す面内であるものであってもよい。しかし、この実施の形態1では、平面25a,26aが、図2のBが示す面内である方が、後述する第1の部材31の加工が容易であるため、平面25a,26aが、図2のBが示す面内になっている。
 また、この実施の形態1では、導波管11における管内14の底部14aと導波管11における裏面11bとの距離が、導波管21における管内24の底部24cと導波管21における裏面21bとの距離より長い。
 即ち、導波管11における管内14の底部14aは、導波管21における管内24の底部24cより、+z方向の位置に設けられている。
 第1の部材31は、アレーアンテナ装置を構成している複数の部材のうち、図2のBが示す面(以下、「分割面B」と称する)より+z側の部材である。
 第2の部材32は、アレーアンテナ装置を構成している複数の部材のうち、分割面Bより-z側の部材であり、かつ、図2のCが示す面(以下、「分割面C」と称する)より+z側の部材である。
 第3の部材33は、アレーアンテナ装置を構成している複数の部材のうち、分割面Cより-z側の部材である。
 アレーアンテナ装置では、全体の利得の上限値が面積と正比例するため、高利得のアンテナを得るには、導波管スロットアレーアンテナ10,20を多数配列する必要がある。
 このため、例えば、導波管スロットアレーアンテナ10及び導波管スロットアレーアンテナ20を10ずつ配列する態様が考えられる。
 図1及び図2では、図面の簡単化のために、導波管スロットアレーアンテナ10と、導波管スロットアレーアンテナ20とが4つずつ配列されている例を示している。
 次に動作について説明する。
 導波管スロットアレーアンテナ10,20が信号を送信する送信アンテナとして用いられる場合、送信対象の信号は、例えば、導波管11,21における+x方向又は-x方向の端部から入力される。
 導波管11,21における+x方向又は-x方向の端部から入力された信号は、導波管11,21の管内14,24を伝搬される。
 導波管11の管内14を伝搬された信号は、導波管11の表面11aに形成されているスロット12a,12bから、y方向を主偏波とする信号として外部に放射される。
 また、導波管21の管内24を伝搬された信号は、導波管21の表面21aに形成されているスロット22から、x方向を主偏波とする信号として外部に放射される。
 導波管スロットアレーアンテナ10,20が信号を受信する受信アンテナとして用いられる場合、外部から到来して来たy方向を主偏波とする信号は、導波管11の表面11aに形成されているスロット12a,12bから入射される。
 また、外部から到来して来たx方向を主偏波とする信号は、導波管21の表面21aに形成されているスロット22から入射される。
 スロット12a,12bから入射された信号は、導波管11の管内14を伝搬され、例えば、導波管11の+x方向又は-x方向の端部から出力される。
 また、スロット22から入射された信号は、導波管21の管内24を伝搬され、例えば、導波管21の+x方向又は-x方向の端部から出力される。
 ここでは、導波管スロットアレーアンテナ10,20における導波管11,21の+x方向又は-x方向の端部から信号が入出力される例を示しているが、例えば、導波管11,21の底部などに接続されている導波管等に対して信号が入出力されるものであってもよい。
 導波管スロットアレーアンテナ10,20は、外部に信号を放射する際、不要な方向への電磁波の放射であるグレーティングローブを発生することがある。
 即ち、導波管スロットアレーアンテナ10は、複数の導波管スロットアレーアンテナ10の配置間隔が、y方向を主偏波とする信号の1波長以上である場合、グレーティングローブを発生する。
 また、導波管スロットアレーアンテナ20は、複数の導波管スロットアレーアンテナ20の配置間隔が、x方向を主偏波とする信号の1波長以上である場合、グレーティングローブを発生する。
 したがって、導波管スロットアレーアンテナ10から発生されるグレーティングローブを抑えるには、複数の導波管スロットアレーアンテナ10の配置間隔を、y方向を主偏波とする信号の1波長未満とする必要がある。
 また、導波管スロットアレーアンテナ20から発生されるグレーティングローブを抑えるには、複数の導波管スロットアレーアンテナ20の配置間隔を、x方向を主偏波とする信号の1波長未満とする必要がある。
 複数の導波管スロットアレーアンテナ10の配置間隔及び複数の導波管スロットアレーアンテナ20の配置間隔を信号の1波長未満とするには、導波管スロットアレーアンテナ10,20における導波管11,21の管幅であるy方向の寸法を短くする必要がある。
 ここで、図3Aは導波管11の内部にリッジ部15が設けられ、かつ、導波管21の内部にリッジ部25,26が設けられている場合の導波管11,21におけるy方向及びz方向の寸法を示す説明図である。
 また、図3Bは導波管11の内部にリッジ部15が設けられておらず、導波管21の内部にリッジ部25,26が設けられていない場合の導波管11,21におけるy方向及びz方向の寸法を示す説明図である。
 図3A及び図3Bでは、図面の簡単化のため、導波管スロットアレーアンテナ10と、導波管スロットアレーアンテナ20とが2つずつ配列されている例を示している。
 この実施の形態1では、導波管11,21がリッジ導波管であるものとしているが、以下、内部にリッジ部15又はリッジ部25,26が設けられていない導波管は、方形導波管であるものとして説明する。
 導波管スロットアレーアンテナ10における導波管11の表面11aには、y方向を主偏波とする信号を送受信するために、長手方向がx方向であるスロット12a,12bが形成されている。
 このため、導波管11における管内14の断面形状は、仮に、導波管11が方形導波管であるとすれば、図3Bに示すように、長手方向がy方向、短手方向がz方向の方形となる。
 ここで、リッジ導波管である導波管11は、方形導波管よりも、送受信する信号のカットオフ周波数が下がることが知られている。
 したがって、リッジ導波管である導波管11は、方形導波管と比べて、図3A及び図3Bに示すように、管内14におけるy方向の寸法を短くすることができる。管内14におけるy方向の寸法を短くすることができれば、導波管11の管幅であるy方向の寸法を短くすることができる。
 複数の導波管スロットアレーアンテナ10の配置間隔は、導波管11におけるy方向の寸法が短くなることで、y方向を主偏波とする信号の1波長未満になる場合がある。
 この場合、導波管スロットアレーアンテナ10からのグレーティングローブの発生を抑えることができる。
 また、複数の導波管スロットアレーアンテナ20の配置間隔は、導波管11におけるy方向の寸法が短くなることで、x方向を主偏波とする信号の1波長未満になる場合がある。
 この場合、導波管スロットアレーアンテナ20からのグレーティングローブの発生を抑えることができる。
 ただし、複数の導波管スロットアレーアンテナ10の配置間隔は、導波管11におけるy方向の寸法が短くなっても、y方向を主偏波とする信号の波長によっては、y方向を主偏波とする信号の1波長以上となる場合がある。
 この場合、導波管スロットアレーアンテナ10からのグレーティングローブの発生を抑えることができない。
 また、複数の導波管スロットアレーアンテナ20の配置間隔は、導波管11におけるy方向の寸法が短くなっても、x方向を主偏波とする信号の波長によっては、x方向を主偏波とする信号の1波長以上となる場合がある。
 この場合、導波管スロットアレーアンテナ20からのグレーティングローブの発生を抑えることができない。
 しかし、リッジ導波管である導波管11は、方形導波管と比べて、管内14におけるy方向の寸法を短くすることができるため、方形導波管よりも、グレーティングローブの発生量を低減することができる。
 また、リッジ導波管である導波管11は、リッジ部15の形状や大きさを変えることで、カットオフ周波数の低下量が変化する。
 このため、リッジ導波管である導波管11は、リッジ部15の形状や大きさを変えることで、複数の導波管スロットアレーアンテナ10の配置間隔を、y方向を主偏波とする信号の1波長未満にすることが可能である。また、複数の導波管スロットアレーアンテナ10の配置間隔を、y方向を主偏波とする信号の1波長未満にすることができれば、その結果として、複数の導波管スロットアレーアンテナ20の配置間隔を、x方向を主偏波とする信号の1波長未満にすることも可能である。
 複数の導波管スロットアレーアンテナ10の配置間隔を、y方向を主偏波とする信号の1波長未満にすることができれば、y方向を主偏波とする信号が、不要な方向へ放射されることを抑えることができる。
 また、複数の導波管スロットアレーアンテナ20の配置間隔を、x方向を主偏波とする信号の1波長未満にすることができれば、x方向を主偏波とする信号が、不要な方向へ放射されることを抑えることができる。
 導波管スロットアレーアンテナ20における導波管21の表面21aには、x方向を主偏波とする信号を送受信するために、長手方向がy方向であるスロット22が形成されている。
 このため、導波管21における管内24の断面形状は、仮に、導波管21が方形導波管であるとすれば、図3Bに示すように、長手方向がz方向、短手方向がy方向の方形となる。
 ここで、リッジ導波管である導波管21は、方形導波管よりも、送受信する信号のカットオフ周波数が下がることが知られている。
 したがって、リッジ導波管である導波管21は、方形導波管と比べて、図3A及び図3Bに示すように、管内24におけるz方向の寸法を短くすることができる。管内24におけるz方向の寸法を短くすることができれば、導波管21の管高であるz方向の寸法を短くすることができる。
 導波管21におけるz方向の寸法が短くなることで、アレーアンテナ装置のz方向の寸法が短くなり、アレーアンテナ装置の厚みを薄くすることができる。
 図2及び図3の例では、導波管21におけるy方向の構造の対称性を良くするために、2つのリッジ部25,26を対称に設けているが、リッジ部25又はリッジ部26の一方だけを設けているものであってもよい。
 この実施の形態1では、導波管スロットアレーアンテナ20における導波管21のy方向の寸法は、不要なモードの電磁波を伝搬しないようにするために、管内波長の2分の1以下の寸法に設計される。
 また、スロット22の長手方向の寸法は、概ね、自由空間波長の2分の1の寸法に設計される。
 このため、スロット22は、長手方向の両端がz方向に折り曲げられており、y方向の寸法が2分の1以下の寸法になっている。
 したがって、スロット22における両端部分でのz方向の寸法は、導波管21におけるy方向の寸法を短くするほど、長くなる。
 スロット22におけるz方向の寸法が長くなるほど、導波管スロットアレーアンテナ10における導波管11の表面11aと、導波管スロットアレーアンテナ20における導波管21の表面21aとの高低差が増加して、表面11a,21aに対する加工の手間が増える。
 よって、導波管21における管内24のy方向の寸法は、自由空間波長の2分の1の寸法よりも若干短い寸法であることが望ましい。
 スロット12a,12bの長手方向は、x方向であり、導波管11の表面11aに形成されるスロット12a,12bのy方向の位置を変えることで、導波管スロットアレーアンテナ10のインピーダンス整合を調整することができる。
 ただし、リッジ部15におけるz方向の寸法が短いために、リッジ部15が有している平面15aにおけるz方向の位置が低くなる場合には、スロット12a,12bのy方向の位置変化に対する導波管11の電気的な変化が少なくなる。このため、スロット12a,12bのy方向の位置を変えても、導波管スロットアレーアンテナ10のインピーダンス整合を調整できなくなることがある。
 したがって、平面15aにおけるz方向の位置は、リッジ部15におけるz方向の寸法をなるべく長くして、z方向の位置を高くすることで、導波管11における管内14の上部に近くなることが望ましい。
 導波管21の電気的な特性は、リッジ部25,26におけるz方向の寸法を変えても、大きく変化することはない。このため、この実施の形態1では、管内24の電磁界を擾乱するために、図5に示すように、管内24にアイリス40を設けている。アイリス40の詳細については後述する。
 リッジ部25,26におけるz方向の寸法を長くした場合には、リッジ部25,26とアイリス40とが近接あるいは接触することがある。リッジ部25,26とアイリス40とが近接あるいは接触することで、導波管スロットアレーアンテナ20の特性が劣化することがある。
 また、リッジ部25,26におけるz方向の寸法を長くした場合には、導波管スロットアレーアンテナ20の重量が増加する。
 したがって、リッジ部25,26が有している平面25a,26aにおけるz方向の位置は、リッジ部25,26におけるz方向の寸法をなるべく短くすることで、低くなることが望ましい。
 このため、リッジ部15が有している平面15aにおけるz方向の位置は、導波管11における管内14の上部に近くなるように設計され、かつ、リッジ部25,26が有している平面25a,26aにおけるz方向の位置は、なるべく低くなるように設計されることが想定される。
 この実施の形態1では、その設計例として、リッジ部15が有している平面15aと、リッジ部25,26が有している平面25a,26aとが同一面である例を示している。
 以上で明らかなように、この実施の形態1によれば、電磁波を送受信するスロット12a,12bが、導波管11の表面11aに形成されている導波管スロットアレーアンテナ10と、電磁波を送受信するスロット22が、導波管21の表面21aに形成されている導波管スロットアレーアンテナ20とを備え、導波管スロットアレーアンテナ10と導波管スロットアレーアンテナ20とが交互に配列されており、導波管11が、内部にリッジ部15が形成されているリッジ導波管であり、導波管21が、内部にリッジ部25,26が形成されているリッジ導波管であるように構成したので、導波管11,21が方形導波管である場合よりも、全体の外形寸法が小さいアレーアンテナ装置を得ることができる効果を奏する。
 なお、導波管11におけるy方向の寸法が短くなることで、複数の導波管スロットアレーアンテナ10の配置間隔が、y方向を主偏波とする信号の1波長未満になり、また、複数の導波管スロットアレーアンテナ20の配置間隔が、x方向を主偏波とする信号の1波長未満になれば、グレーティングローブの発生を抑えることができる。
 以下、この実施の形態1におけるアレーアンテナ装置の製造方法について説明する。
 図4はこの発明の実施の形態1によるアレーアンテナ装置の製造方法を示すフローチャートである。
 アレーアンテナ装置は、図2に示すように、第1の部材31と、第2の部材32と、第3の部材33とを備えている。
 この実施の形態1では、第1の部材31、第2の部材32、第3の部材33のそれぞれを図2に示す形状に加工してから、第1の部材31と、第2の部材32と、第3の部材33とを接合することで、アレーアンテナ装置を製造することを想定している。
 図5はアレーアンテナ装置における第1の部材31を示す斜視図である。
 図5Aは第1の部材31の表面側を示し、図5Bは第1の部材31の裏側面を示している。
 第1の部材31の表面とは、図2において、第1の部材31における上側の面であり、第1の部材31の裏面とは、図2において、第1の部材31における下側の面である。
 第1の部材31における導波管21の管内24には、図5Bに示すように、アイリス40が設けられている。
 図2及び図3では、図面の記載が煩雑にならないように、アイリス40の記載を省略している。
 アイリス40は、x方向を主偏波とする信号がスロット22から放射されるようにするために、管内24の電磁界を擾乱する金属板である。
 図5の例では、各スロット22を挟む位置、即ち、各スロット22から、+x方向に数ミリだけずれた位置と、-x方向に数ミリだけずれた位置とに、四角形のアイリス40が設けられている。ただし、スロット22から、x方向を主偏波とする信号を放射することができればよく、導波管21の管内24に設けられるアイリス40の形状や個数は問わない。
 また、図5の例では、アイリス40を導波管21の管内24に設けているが、スロット22からx方向を主偏波とする信号を放射することができればよく、アイリス40を設けるものに限るものではない。したがって、例えば、導波管21の管内24に導体などを挿入するものであってもよい。
 図6はアレーアンテナ装置における第2の部材32を示す斜視図である。
 図6Aは第2の部材32の表面側を示し、図6Bは第2の部材32の裏面側を示している。
 図7はアレーアンテナ装置における第3の部材33を示す斜視図である。図7は第3の部材33の表面側を示している。第3の部材33は平板である。
 第2の部材32の表面とは、図2において、第2の部材32における上側の面であり、第2の部材32の裏面とは、図2において、第2の部材32における下側の面である。
 また、第3の部材33の表面とは、図2において、第3の部材33における上側の面である。
 第1の部材31の加工について説明する。
 第1の部材31の表面は、導波管21の表面21aを基準にすると、-z方向に凹んでいる部分がある。即ち、導波管11の表面11aは、導波管21の表面21aより-z方向に凹んでいる。
 このため、例えば、第1の部材31を加工する前の部材(以下、「元部材P1」と称する)が平板である場合には、図2に示すように、元部材P1の上側を部分的に切削することで、導波管11の表面11aを形成する(図4のステップST1)。
 次に、導波管11の表面11aに対して、長手方向がx方向である線状の溝を掘る溝加工を行うことで、スロット12a,12bを形成する(図4のステップST2)。
 また、導波管21の表面21aに対して、長手方向がy方向である線状の溝を掘る溝加工を行うことで、スロット22を形成する(図4のステップST2)。
 第1の部材31の裏面は、管内14と管内24とが設けられるため、分割面Bを基準にすると、+z方向に凹んでいる部分がある。
 このため、図2に示すように、元部材P1の下側を部分的に切削することで、導波管11の管内14と、導波管21の管内24とを形成する(図4のステップST3)。ここでは、導波管11の管内14と導波管21の管内24とが、中空の絶縁体である例を示している。
 ただし、導波管21の管内24にアイリス40を設ける場合には、元部材P1の下側を部分的に切削して、導波管21の管内24を形成する際、図5Bに示すように、アイリス40が残るように、元部材P1の下側を切削する。
 ここでは、第1の部材31の表面側の加工を行ってから、第1の部材31の裏面側の加工を行う例を示しているが、第1の部材31の裏面側の加工を行ってから、第1の部材31の表面側の加工を行うようにしてもよい。
 第2の部材32の加工について説明する。
 図8は第2の部材32の加工方法を示す説明図である。
 第2の部材32の表面は、管内14と管内24とが設けられるため、分割面Bを基準にすると、-z方向に凹んでいる部分がある。
 このため、例えば、第2の部材32を加工する前の部材(以下、「元部材P2」と称する)が平板である場合には、図2に示すように、元部材P2の上側を部分的に切削することで、導波管11の管内14を形成するとともに、導波管21の管内24の一部を形成する(図4のステップST4)。
 図2の例では、導波管21における管内24の断面形状は、アルファベットの「H」を横向きにした形状になっている。
 このため、第2の部材32における管内24の断面形状は、y方向の幅が広い下側の矩形部と、y方向の幅が狭い上側の矩形部とが重なっている形状になっている。
 管内24におけるy方向の幅が狭い上側の矩形部の加工は、第2の部材32の表面側からの切削によって容易に加工することができるが、管内24におけるy方向の幅が広い下側の矩形部の加工は、第2の部材32の表面側からの切削を行うよりも、第2の部材32の裏面側からの切削を行う方が容易である。
 よって、ステップST4では、管内24におけるy方向の幅が狭い上側の矩形部の加工だけを行っている。
 次に、上側を部分的に切削した元部材P2の上側に対して、平面を研削する平面研削加工を行うことで、リッジ部15の平面15aと、リッジ部25,26の平面25a,26aとを加工する(図4のステップST5)。
 この平面研削加工は、加工面積が大きい平面研削盤などを用いることができるため、リッジ部15の平面15a及びリッジ部25,26の平面25a,26aを容易に加工することができる。
 即ち、加工面積が大きい平面研削盤などを用いることで、リッジ部15の平面15aと、リッジ部25,26の平面25a,26aとを同時に加工できるため、加工時間を短縮することができる。
 第2の部材32の裏面は、導波管21の管内24が設けられるため、分割面Cを基準にすると、+z方向に凹んでいる部分がある。
 このため、図2に示すように、元部材P2の下側を部分的に切削することで、導波管21の管内24を形成する(図4のステップST6)。
 管内24におけるy方向の幅が狭い上側の矩形部の加工は既に行われているので、ステップST6では、管内24におけるy方向の幅が広い下側の矩形部の加工だけを行う。
 ここでは、第2の部材32の表面側の加工を行ってから、第2の部材32の裏面側の加工を行う例を示しているが、第2の部材32の裏面側の加工を行ってから、第2の部材32の表面側の加工を行うようにしてもよい。
 また、ここでは、第1の部材31の加工を行ってから、第2の部材32の加工を行う例を示しているが、第2の部材32の加工を行ってから、第1の部材31の加工を行うようにしてもよい。
 第1の部材31及び第2の部材32の加工を行うと、第1の部材31と第2の部材32とを接合するとともに、第2の部材32と第3の部材33とを接合する(図4のステップST7)。
 第1の部材31と第2の部材32とを接合する方法、第2の部材32と第3の部材33とを接合する方法としては、例えば、導電性接着剤によって接着する方法が考えられる。
 第1の部材31と第2の部材32との接合面は、1面のみであり、第2の部材32と第3の部材33との接合面は、1面のみである。
 このため、導電性接着剤を用いて、第1の部材31~第3の部材33を接合する場合、1つの方向、即ち、z方向から第1の部材31~第3の部材33に圧力をかけるだけで、第1の部材31~第3の部材33を接合することができる。
 ここでは、導電性接着剤を用いて、第1の部材31~第3の部材33を接合する方法を示したが、導電性接着剤を用いる方法に限るものではなく、例えば、拡散接合、ろう付け、ネジ止めなどの方法によって、第1の部材31~第3の部材33を接合するようにしてもよい。ネジ止めによって接合する場合でも、ネジをz方向に挿入するネジ止めを行えば、第1の部材31~第3の部材33間の導通を得ることができる。
 この実施の形態1では、第1の部材31と第2の部材32との分割面Bが、導波管11におけるリッジ部15の平面15a及び導波管21におけるリッジ部25,26の平面25a,26aであるものを示している。これにより、第1の部材31における裏面側の加工が容易になり、また、第2の部材32における表面側の加工が容易になる。
 また、この実施の形態1では、第2の部材32と第3の部材33との分割面Cが、導波管21における管内24の底部24cの位置であるものを示している。これにより、第2の部材32における裏面側の加工が容易になる。
 ここで、図9は第1の部材31と第2の部材32との分割面B’が、導波管11におけるリッジ部15の平面15a及び導波管21におけるリッジ部25,26の平面25a,26aより+z方向であり、かつ、第2の部材32と第3の部材33との分割面C’が、導波管11における管内14の底部14a及び導波管21における管内24の底部24cより+z方向である場合のアレーアンテナ装置を示す断面透視図である。
 アレーアンテナ装置の分割面が分割面B’,C’である場合には、アレーアンテナ装置の分割面が分割面B,Cである場合よりも、第2の部材32における表面側及び裏面側の凹凸の数が増える。また、第3の部材33における表面側に凹凸が生じる。
 このため、アレーアンテナ装置の分割面が分割面B’,C’である場合には、アレーアンテナ装置の分割面が分割面B,Cである場合よりも、第2の部材32に対する切削加工の手間が増加する。また、第3の部材33に対する切削加工も必要となる。
 即ち、この実施の形態1のように、第1の部材31と第2の部材32との分割面Bが、導波管11におけるリッジ部15の平面15a及び導波管21におけるリッジ部25,26の平面25a,26aであり、かつ、第2の部材32と第3の部材33との分割面Cが、導波管21における管内24の底部24cの位置である場合よりも、第2の部材32及び第3の部材33に対する切削加工の手間が増加する。
 この実施の形態1では、第1の部材31と第2の部材32との分割面Bが、導波管11におけるリッジ部15の平面15aである例を示しているが、仮に、分割面Bが、導波管11におけるリッジ部15の平面15aより-z方向である場合、リッジ部15が、第1の部材31と第2の部材32とに分断される。
 このため、分割面Bが、導波管11におけるリッジ部15の平面15aより-z方向である場合には、第1の部材31と第2の部材32とを接合する際、分断されているリッジ部15がずれないように接合する必要がある。
 したがって、第1の部材31と第2の部材32との分割面Bが、導波管11におけるリッジ部15の平面15aである場合よりも、接合面が増えるため、接合の工程が面倒になり、かつ、接合精度が劣化する可能性がある。その結果、接合不良による歩留まりの低下が想定される。
 以上で明らかなように、この実施の形態1によれば、導波管11におけるリッジ部15の平面15aと、導波管21におけるリッジ部25,26の平面25a,26aとが同一面内であるアレーアンテナ装置を製造する際、アレーアンテナ装置がz方向に分割されている第1の部材31と、第2の部材32とを接合することで製造するものであり、第1の部材31と第2の部材32との分割面Bが、導波管11におけるリッジ部15の平面15a及び導波管21におけるリッジ部25,26の平面25a,26aであるように構成したので、アレーアンテナ装置を容易に製造することができるとともに、接合不良による歩留まりの低下を防止することができる。
 この実施の形態1では、第2の部材32と第3の部材33との分割面Cが、導波管21における管内24の底部24cであるものを示したが、第2の部材32と第3の部材33との分割面Cが、導波管11における管内14の底部14aであってもよい。
 また、第2の部材32と第3の部材33との分割面Cが、導波管11における管内14の底部14aと、導波管21における管内24の底部24cとの間の位置であってもよい。
 また、この実施の形態1では、導波管11における管内14の底部14aが、導波管21における管内24の底部24cより、+z方向の位置に設けられているものを示したが、導波管11における管内14の底部14aが、導波管21における管内24の底部24cより、-z方向の位置に設けられているものであってもよい。
実施の形態2.
 上記実施の形態1では、y方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ10と、x方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ20とを備えたアレーアンテナ装置について説明した。
 この実施の形態2では、y方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ10と、y方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ50とを備えたアレーアンテナ装置について説明する。
 図10はこの発明の実施の形態2によるアレーアンテナ装置を示す斜視図であり、図11は図10のAから見たアレーアンテナ装置を示す断面透視図である。
 図10及び図11において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
 図11では、図面の簡単化のため、2つの導波管スロットアレーアンテナ10と、2つの導波管スロットアレーアンテナ50とが配列されている例を示している。
 導波管スロットアレーアンテナ50はy方向を主偏波とする信号(電磁波)を送受信するスロット52a,52bが、導波管51の表面51aに形成されている第2のアンテナである。
 第2の導波管である導波管51は外周部53が金属などの導体であり、内部である管内54が中空や誘電体などの絶縁体である。
 なお、導波管51の外周部53としては、アルミニウムを用いることが一般的であるが、送受信する信号の無線周波数に対して導体として動作するものであればよく、アルミニウム以外の金属などを用いるようにしてもよい。
 第2のスロットであるスロット52a,52bは、y方向を主偏波とする信号を送受信するために、導波管51の表面51aに設けられている開口部であり、この開口部の長手方向はx方向である。
 この実施の形態2では、スロット52aとスロット52bは、互いにy方向にずれて配列されている。
 スロット52aとスロット52bが一直線上に配列されている場合には、スロット52aにより送受信される主偏波と、スロット52bにより送受信される主偏波とが互いに打ち消し合ってしまうことがあるからである。
 リッジ部55は導波管51における管内54の底部54aから導波管51の表面51a側に伸びている第2の突起物である。
 したがって、導波管スロットアレーアンテナ50における導波管51は、内部に第2の突起物が形成されているリッジ導波管である。
 この実施の形態2では、導波管11に形成されているリッジ部15が有している複数の平面15a,15b,15cの中で、導波管11の表面11aと平行な平面15aと、導波管51に形成されているリッジ部55が有している複数の平面55a,55b,55cの中で、導波管51の表面51aと平行な平面55aとが同一面内である。
 即ち、リッジ部15における平面15aと、リッジ部55における平面55aとが、図11のBが示す面内である。
 次に動作について説明する。
 導波管スロットアレーアンテナ10,50が信号を送信する送信アンテナとして用いられる場合、送信対象の信号は、例えば、導波管11,51における+x方向又は-x方向の端部から入力される。
 導波管11,51における+x方向又は-x方向の端部から入力された信号は、導波管11,51の管内14,54を伝搬される。
 導波管11の管内14を伝搬された信号は、導波管11の表面11aに形成されているスロット12a,12bから、y方向を主偏波とする信号として外部に放射される。
 また、導波管51の管内54を伝搬された信号は、導波管51の表面51aに形成されているスロット52a,52bから、y方向を主偏波とする信号として外部に放射される。
 導波管スロットアレーアンテナ10,50が信号を受信する受信アンテナとして用いられる場合、外部から到来して来たy方向を主偏波とする信号は、導波管11の表面11aに形成されているスロット12a,12bから入射される。
 また、外部から到来して来たy方向を主偏波とする信号は、導波管51の表面51aに形成されているスロット52a,52bから入射される。
 スロット12a,12bから入射された信号は、導波管11の管内14を伝搬され、例えば、導波管11の+x方向又は-x方向の端部から出力される。
 また、スロット52a,52bから入射された信号は、導波管51の管内54を伝搬され、例えば、導波管51の+x方向又は-x方向の端部から出力される。
 ここでは、導波管スロットアレーアンテナ10,50における導波管11,51の+x方向又は-x方向の端部から信号が入出力される例を示しているが、例えば、導波管11,51の底部などに接続されている導波管等に対して信号が入出力されるものであってもよい。
 この実施の形態2では、導波管スロットアレーアンテナ10により送受信される信号と、導波管スロットアレーアンテナ50により送受信される信号とは、共にy方向を主偏波とする信号である。
 ただし、図10及び図11の例では、導波管スロットアレーアンテナ10の導波管11におけるy方向の寸法と、導波管スロットアレーアンテナ50の導波管51におけるy方向の寸法とが異なるため、導波管スロットアレーアンテナ10により送受信される信号の周波数帯域と、導波管スロットアレーアンテナ50により送受信される信号の周波数帯域とが異なっている。
 図10及び図11の例では、導波管スロットアレーアンテナ10の導波管11におけるy方向の寸法と、導波管スロットアレーアンテナ50の導波管51におけるy方向の寸法とが異なっているが、導波管スロットアレーアンテナ10の導波管11におけるy方向の寸法と、導波管スロットアレーアンテナ50の導波管51におけるy方向の寸法とが同じであってもよい。
 この場合、導波管スロットアレーアンテナ10により送受信される信号の周波数帯域と、導波管スロットアレーアンテナ50により送受信される信号の周波数帯域とが同じになるが、同じ周波数帯域において、導波管スロットアレーアンテナ10,50が、互いに異なる周波数の信号を送受信するようにしてもよい。
 導波管スロットアレーアンテナ10,50は、外部に信号を放射する際、不要な方向への電磁波の放射であるグレーティングローブを発生することがある。
 即ち、導波管スロットアレーアンテナ10は、複数の導波管スロットアレーアンテナ10の配置間隔が、自己が送受信するy方向を主偏波とする信号の1波長以上である場合、グレーティングローブを発生する。
 また、導波管スロットアレーアンテナ50は、複数の導波管スロットアレーアンテナ50の配置間隔が、自己が送受信するy方向を主偏波とする信号の1波長以上である場合、グレーティングローブを発生する。
 したがって、導波管スロットアレーアンテナ10から発生されるグレーティングローブを抑えるには、複数の導波管スロットアレーアンテナ10の配置間隔を、導波管スロットアレーアンテナ10により送受信されるy方向を主偏波とする信号の1波長未満とする必要がある。
 また、導波管スロットアレーアンテナ50から発生されるグレーティングローブを抑えるには、複数の導波管スロットアレーアンテナ50の配置間隔を、導波管スロットアレーアンテナ50により送受信されるy方向を主偏波とする信号の1波長未満とする必要がある。
 複数の導波管スロットアレーアンテナ10の配置間隔及び複数の導波管スロットアレーアンテナ50の配置間隔を信号の1波長未満とするには、導波管スロットアレーアンテナ10,50の管幅であるy方向の寸法を短くする必要がある。
 導波管スロットアレーアンテナ10,50における導波管11,51は、管内14,54の底部14a,54aから導波管11,51の表面11a,51a側に伸びているリッジ部15,55を備えているリッジ導波管である。
 リッジ導波管である導波管11,51は、方形導波管と比べて、管幅であるy方向の寸法を短くすることができる。
 複数の導波管スロットアレーアンテナ10の配置間隔は、導波管11,51におけるy方向の寸法が短くなることで、導波管スロットアレーアンテナ10により送受信されるy方向を主偏波とする信号の1波長未満になる場合がある。
 この場合、導波管スロットアレーアンテナ10からのグレーティングローブの発生を抑えることができる。
 また、複数の導波管スロットアレーアンテナ50の配置間隔は、導波管11,51におけるy方向の寸法が短くなることで、導波管スロットアレーアンテナ50により送受信されるy方向を主偏波とする信号の1波長未満になる場合がある。
 この場合、導波管スロットアレーアンテナ50からのグレーティングローブの発生を抑えることができる。
 ただし、複数の導波管スロットアレーアンテナ10の配置間隔は、導波管11,51におけるy方向の寸法が短くなっても、導波管スロットアレーアンテナ10により送受信されるy方向を主偏波とする信号の波長によっては、y方向を主偏波とする信号の1波長以上となる場合がある。
 この場合、導波管スロットアレーアンテナ10からのグレーティングローブの発生を抑えることができない。
 また、複数の導波管スロットアレーアンテナ50の配置間隔は、導波管11,51におけるy方向の寸法が短くなっても、導波管スロットアレーアンテナ50により送受信されるy方向を主偏波とする信号の波長によっては、y方向を主偏波とする信号の1波長以上となる場合がある。
 この場合、導波管スロットアレーアンテナ50からのグレーティングローブの発生を抑えることができない。
 しかし、リッジ導波管である導波管11,51は、方形導波管と比べて、管内14,54におけるy方向の寸法を短くすることができるため、方形導波管よりも、グレーティングローブの発生量を低減することができる。
 また、リッジ導波管である導波管11,51は、リッジ部15,55の形状や大きさを変えることで、カットオフ周波数の低下量が変化する。
 このため、リッジ導波管である導波管11,51は、リッジ部15,55の形状や大きさを変えることで、複数の導波管スロットアレーアンテナ10の配置間隔を、導波管スロットアレーアンテナ10により送受信されるy方向を主偏波とする信号の1波長未満にすることが可能である。同様に、複数の導波管スロットアレーアンテナ50の配置間隔を、導波管スロットアレーアンテナ50により送受信されるy方向を主偏波とする信号の1波長未満にすることが可能である。
 複数の導波管スロットアレーアンテナ10の配置間隔を、導波管スロットアレーアンテナ10により送受信されるy方向を主偏波とする信号の1波長未満にすることができれば、y方向を主偏波とする信号が、不要な方向へ放射されることを抑えることができる。
 また、複数の導波管スロットアレーアンテナ50の配置間隔を、導波管スロットアレーアンテナ10により送受信されるy方向を主偏波とする信号の1波長未満にすることができれば、y方向を主偏波とする信号が、不要な方向へ放射されることを抑えることができる。
 以上で明らかなように、この実施の形態2によれば、電磁波を送受信するスロット12a,12bが、導波管11の表面11aに形成されている導波管スロットアレーアンテナ10と、電磁波を送受信するスロット52a,52bが、導波管51の表面51aに形成されている導波管スロットアレーアンテナ50とを備え、導波管スロットアレーアンテナ10と導波管スロットアレーアンテナ50とが交互に配列されており、導波管11が、内部にリッジ部15が形成されているリッジ導波管であり、導波管51が、内部にリッジ部55が形成されているリッジ導波管であるように構成したので、導波管11,51が方形導波管である場合よりも、全体の外形寸法が小さいアレーアンテナ装置を得ることができる効果を奏する。
 なお、導波管11,51におけるy方向の寸法が短くなることで、複数の導波管スロットアレーアンテナ10の配置間隔が、導波管スロットアレーアンテナ10により送受信されるy方向を主偏波とする信号の1波長未満になり、また、複数の導波管スロットアレーアンテナ50の配置間隔が、導波管スロットアレーアンテナ50により送受信されるy方向を主偏波とする信号の1波長未満になれば、グレーティングローブの発生を抑えることができる。
 以下、この実施の形態2におけるアレーアンテナ装置の製造方法について説明する。
 アレーアンテナ装置は、図11に示すように、第1の部材31と、第2の部材32とを備えている。
 この実施の形態2では、第1の部材31、第2の部材32のそれぞれを図11に示す形状に加工してから、第1の部材31と、第2の部材32とを接合することで、アレーアンテナ装置を製造することを想定している。
 第1の部材31の加工について説明する。
 ここでは、第1の部材31を加工する前の部材(以下、「元部材P1」と称する)が平板であるものとする。
 第1の部材31の表面の一部である導波管11の表面11aに対して、長手方向がx方向である線状の溝を掘る溝加工を行うことで、スロット12a,12bを形成する。
 また、第1の部材31の表面の一部である導波管51の表面51aに対して、長手方向がx方向である線状の溝を掘る溝加工を行うことで、スロット52a,52bを形成する。
 第1の部材31の裏面は、管内14と管内54とが設けられるため、分割面Bを基準にすると、+z方向に凹んでいる部分がある。
 このため、図11に示すように、元部材P1の下側を部分的に切削することで、導波管11の管内14と、導波管51の管内54とを形成する。
 ここでは、導波管11の管内14及び導波管51の管内54が、中空の絶縁体である例を示している。
 また、ここでは、第1の部材31の表面側の加工を行ってから、第1の部材31の裏面側の加工を行う例を示しているが、第1の部材31の裏面側の加工を行ってから、第1の部材31の表面側の加工を行うようにしてもよい。
 第2の部材32の加工について説明する。
 第2の部材32の表面は、管内14と管内54とが設けられるため、分割面Bを基準にすると、-z方向に凹んでいる部分がある。
 このため、例えば、第2の部材32を加工する前の部材(以下、「元部材P2」と称する)が平板である場合には、図11に示すように、元部材P2の上側を部分的に切削することで、導波管11の管内14と、導波管51の管内54とを形成する。
 次に、上側を部分的に切削した元部材P2の上側に対して、平面を研削する平面研削加工を行うことで、リッジ部15の平面15aと、リッジ部55の平面55aとを加工する。
 この平面研削加工は、加工面積が大きい平面研削盤などを用いることができるため、リッジ部15の平面15a及びリッジ部55の平面55aを容易に加工することができる。
 即ち、加工面積が大きい平面研削盤などを用いることで、リッジ部15の平面15aと、リッジ部55の平面55aとを同時に加工できるため、加工時間を短縮することができる。
 ここでは、第1の部材31の加工を行ってから、第2の部材32の加工を行う例を示しているが、第2の部材32の加工を行ってから、第1の部材31の加工を行うようにしてもよい。
 第1の部材31及び第2の部材32の加工を行うと、第1の部材31と第2の部材32とを接合する。
 第1の部材31と第2の部材32とを接合する方法としては、例えば、導電性接着剤によって接着する方法が考えられる。第1の部材31と第2の部材32との接合面は、1面のみである。
 このため、導電性接着剤を用いて、第1の部材31と第2の部材32とを接合する場合、1つの方向、即ち、z方向から第1の部材31と第2の部材32とに圧力をかけるだけで、第1の部材31と第2の部材32とを接合することができる。
 ここでは、導電性接着剤を用いて、第1の部材31と第2の部材32とを接合する方法を示したが、導電性接着剤を用いる方法に限るものではなく、例えば、拡散接合、ろう付け、ネジ止めなどの方法によって、第1の部材31と第2の部材32とを接合するようにしてもよい。ネジ止めによって接合する場合でも、ネジをz方向に挿入するネジ止めを行えば、第1の部材31と第2の部材32間の導通を得ることができる。
 この実施の形態2では、第1の部材31と第2の部材32との分割面Bが、導波管11におけるリッジ部15の平面15a及び導波管51におけるリッジ部55の平面55aであるものを示している。
 これにより、第1の部材31における裏面側の加工が容易になり、また、第2の部材32における表面側の加工が容易になる。
 以上で明らかなように、この実施の形態2によれば、導波管11におけるリッジ部15の平面15aと、導波管51におけるリッジ部55の平面55aとが同一面内であるアレーアンテナ装置を製造する際、アレーアンテナ装置がz方向に分割されている第1の部材31と、第2の部材32とを接合することで製造するものであり、第1の部材31と第2の部材32との分割面Bが、導波管11におけるリッジ部15の平面15a及び導波管51におけるリッジ部55の平面55aであるように構成したので、アレーアンテナ装置を容易に製造することができるとともに、接合不良による歩留まりの低下を防止することができる。
実施の形態3.
 上記実施の形態1では、y方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ10と、x方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ20とを備えたアレーアンテナ装置について説明した。
 この実施の形態3では、x方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ60と、x方向を主偏波とする信号を送受信する導波管スロットアレーアンテナ20とを備えたアレーアンテナ装置について説明する。
 図12はこの発明の実施の形態3によるアレーアンテナ装置を示す斜視図であり、図13は図12のAから見たアレーアンテナ装置を示す断面透視図である。
 図12及び図13において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
 図13では、図面の簡単化のため、2つの導波管スロットアレーアンテナ60と、2つの導波管スロットアレーアンテナ20とが配列されている例を示している。
 導波管スロットアレーアンテナ60はx方向を主偏波とする信号(電磁波)を送受信するスロット62が、導波管61の表面61aに形成されている第1のアンテナである。
 第1の導波管である導波管61は外周部63が金属などの導体であり、内部である管内64が中空や誘電体などの絶縁体である。
 なお、導波管61の外周部63としては、アルミニウムを用いることが一般的であるが、送受信する信号の無線周波数に対して導体として動作するものであればよく、アルミニウム以外の金属などを用いるようにしてもよい。
 第1のスロットであるスロット62はx方向を主偏波とする信号を送受信するために、導波管61の表面611aに設けられている開口部であり、この開口部の長手方向はy方向である。
 リッジ部65は導波管61における管内64の側部64aから側部64b側に伸びている第1の突起物である。
 リッジ部66は導波管61における管内64の側部64bから側部64a側に伸びている第1の突起物である。
 したがって、導波管スロットアレーアンテナ60における導波管61は、内部に第1の突起物が形成されているリッジ導波管である。
 この実施の形態3では、導波管61に形成されているリッジ部65が有している複数の平面65a,65b,65cの中で、導波管61の表面61aと平行な平面65aと、導波管61に形成されているリッジ部66が有している複数の平面66a,66b,66cの中で、導波管61の表面61aと平行な平面66aと、導波管21に形成されているリッジ部25が有している複数の平面25a,25b,25cの中で、導波管21の表面21aと平行な平面25aと、導波管21に形成されているリッジ部26が有している複数の平面26a,26b,26cの中で、導波管21の表面21aと平行な平面26aとが同一面内である。
 即ち、リッジ部65,66における平面65a,66aと、リッジ部25,26における平面25a,26aとが、図13のBが示す面内である。
 なお、リッジ部65,66が有している平面65c,66cについても、導波管61の表面61aと平行な平面であるため、平面65c,66cが、図13のBが示す面内であってもよい。同様に、リッジ部25,26が有している平面25c,26cについても、導波管21の表面21aと平行な平面であるため、平面25c,26cが、図13のBが示す面内であってもよい。
 しかし、この実施の形態3では、平面65a,66a,25a,26aが、図13のBが示す面内である方が、後述する第1の部材31の加工が容易であるため、平面65a,66a,25a,26aが、図13のBが示す面内になっている。
 次に動作について説明する。
 導波管スロットアレーアンテナ60,20が信号を送信する送信アンテナとして用いられる場合、送信対象の信号は、例えば、導波管61,21における+x方向又は-x方向の端部から入力される。
 導波管61,21における+x方向又は-x方向の端部から入力された信号は、導波管61,21の管内64,24を伝搬される。
 導波管61の管内64を伝搬された信号は、導波管61の表面61aに形成されているスロット62から、x方向を主偏波とする信号として外部に放射される。
 また、導波管21の管内24を伝搬された信号は、導波管21の表面21aに形成されているスロット22から、x方向を主偏波とする信号として外部に放射される。
 導波管スロットアレーアンテナ60,20が信号を受信する受信アンテナとして用いられる場合、外部から到来して来たx方向を主偏波とする信号は、導波管61の表面61aに形成されているスロット62から入射される。
 また、外部から到来して来たx方向を主偏波とする信号は、導波管21の表面21aに形成されているスロット22から入射される。
 スロット62から入射された信号は、導波管61の管内64を伝搬され、例えば、導波管61の+x方向又は-x方向の端部から出力される。
 また、スロット22から入射された信号は、導波管21の管内24を伝搬され、例えば、導波管21の+x方向又は-x方向の端部から出力される。
 ここでは、導波管スロットアレーアンテナ60,20における導波管61,21の+x方向又は-x方向の端部から信号が入出力される例を示しているが、例えば、導波管61,21の底部などに接続されている導波管等に対して信号が入出力されるものであってもよい。
 この実施の形態3では、導波管スロットアレーアンテナ60により送受信される信号と、導波管スロットアレーアンテナ20により送受信される信号とは、共にx方向を主偏波とする信号である。
 ただし、図12及び図13の例では、導波管スロットアレーアンテナ60の導波管61におけるz方向の寸法と、導波管スロットアレーアンテナ20の導波管21におけるz方向の寸法とが異なるため、導波管スロットアレーアンテナ60により送受信される信号の周波数帯域と、導波管スロットアレーアンテナ20により送受信される信号の周波数帯域とが異なっている。
 図12及び図13の例では、導波管スロットアレーアンテナ60の導波管61におけるz方向の寸法と、導波管スロットアレーアンテナ20の導波管21におけるz方向の寸法とが異なっているが、導波管スロットアレーアンテナ60の導波管61におけるz方向の寸法と、導波管スロットアレーアンテナ20の導波管21におけるz方向の寸法とが同じであってもよい。
 この場合、導波管スロットアレーアンテナ60により送受信される信号の周波数帯域と、導波管スロットアレーアンテナ20により送受信される信号の周波数帯域とが同じになるが、同じ周波数帯域において、導波管スロットアレーアンテナ60,20が、互いに異なる周波数の信号を送受信するようにしてもよい。
 導波管スロットアレーアンテナ60,20における導波管61,21の表面61a,21aには、x方向を主偏波とする信号を送受信するために、長手方向がy方向であるスロット62,22が形成されている。
 このため、導波管61,21における管内64,24の断面形状は、仮に、導波管61,21が方形導波管であるとすれば、長手方向がz方向、短手方向がy方向の方形となる。
 ここで、リッジ導波管である導波管61,21は、方形導波管よりも、送受信する信号のカットオフ周波数が下がることが知られている。
 したがって、リッジ導波管である導波管61,21は、方形導波管と比べて、管内64,24におけるz方向の寸法を短くすることができる。管内64,24におけるz方向の寸法を短くすることができれば、導波管61,21の管高であるz方向の寸法を短くすることができる。
 導波管61,21の管内64,24におけるz方向の寸法が短くなることで、アレーアンテナ装置のz方向の寸法が短くなり、アレーアンテナ装置の厚みを薄くすることができる。
 図13の例では、導波管61におけるy方向の構造の対称性を良くするために、2つのリッジ部65,66を対称に設けているが、リッジ部65又はリッジ部66の一方だけを設けているものであってもよい。
 同様に、導波管21におけるy方向の構造の対称性を良くするために、2つのリッジ部25,26を対称に設けているが、リッジ部25又はリッジ部26の一方だけを設けているものであってもよい。
 以上で明らかなように、この実施の形態3によれば、電磁波を送受信するスロット62が、導波管61の表面61aに形成されている導波管スロットアレーアンテナ60と、電磁波を送受信するスロット22が、導波管21の表面21aに形成されている導波管スロットアレーアンテナ20とを備え、導波管スロットアレーアンテナ60と導波管スロットアレーアンテナ20とが交互に配列されており、導波管61が、内部にリッジ部65,66が形成されているリッジ導波管であり、導波管21が、内部にリッジ部25,26が形成されているリッジ導波管であるように構成したので、導波管61,21が方形導波管である場合よりも、全体の外形寸法が小さいアレーアンテナ装置を得ることができる効果を奏する。即ち、厚みが薄いアレーアンテナ装置を得ることができる効果を奏する。
 以下、この実施の形態3におけるアレーアンテナ装置の製造方法について説明する。
 アレーアンテナ装置は、図13に示すように、第1の部材31と、第2の部材32と、第3の部材33とを備えている。
 この実施の形態3では、第1の部材31、第2の部材32、第3の部材33のそれぞれを図13に示す形状に加工してから、第1の部材31と、第2の部材32と、第3の部材33とを接合することで、アレーアンテナ装置を製造することを想定している。
 第1の部材31の加工について説明する。
 第1の部材31の表面は、導波管21の表面21aを基準にすると、-z方向に凹んでいる部分がある。即ち、導波管61の表面61aは、導波管21の表面21aより-z方向に凹んでいる。
 このため、例えば、第1の部材31を加工する前の部材(以下、「元部材P1」と称する)が平板である場合には、図13に示すように、元部材P1の上側を部分的に切削することで、導波管61の表面61aを形成する。
 次に、導波管61の表面61aに対して、長手方向がy方向である線状の溝を掘る溝加工を行うことで、スロット62を形成する。
 また、導波管21の表面21aに対して、長手方向がy方向である線状の溝を掘る溝加工を行うことで、スロット22を形成する。
 第1の部材31の裏面は、管内64と管内24とが設けられるため、分割面Bを基準にすると、+z方向に凹んでいる部分がある。
 このため、図13に示すように、元部材P1の下側を部分的に切削することで、導波管61の管内64と、導波管21の管内24とを形成する。ここでは、導波管61の管内64と導波管21の管内24とが、中空の絶縁体である例を示している。
 ただし、導波管61,21の管内64,24にアイリスを設ける場合には、元部材P1の下側を部分的に切削して、導波管61,21の管内64,24を形成する際、アイリスが残るように、元部材P1の下側を切削する。
 ここでは、第1の部材31の表面側の加工を行ってから、第1の部材31の裏面側の加工を行う例を示しているが、第1の部材31の裏面側の加工を行ってから、第1の部材31の表面側の加工を行うようにしてもよい。
 第2の部材32の加工について説明する。
 第2の部材32の表面は、管内64と管内24とが設けられるため、分割面Bを基準にすると、-z方向に凹んでいる部分がある。
 このため、例えば、第2の部材32を加工する前の部材(以下、「元部材P2」と称する)が平板である場合には、図13に示すように、元部材P2の上側を部分的に切削することで、導波管61の管内64の一部を形成するとともに、導波管21の管内24の一部を形成する。
 図13の例では、導波管61,21における管内64,24の断面形状は、アルファベットの「H」を横向きにした形状になっている。
 このため、第2の部材32における管内64,24の断面形状は、y方向の幅が広い下側の矩形部と、y方向の幅が狭い上側の矩形部とが重なっている形状になっている。
 管内64,24におけるy方向の幅が狭い上側の矩形部の加工は、第2の部材32の表面側からの切削によって容易に加工することができるが、管内64,24におけるy方向の幅が広い下側の矩形部の加工は、第2の部材32の表面側からの切削を行うよりも、第2の部材32の裏面側からの切削を行う方が容易である。
 よって、ここでは、管内64,24におけるy方向の幅が狭い上側の矩形部の加工だけを行う。
 次に、上側を部分的に切削した元部材P2の上側に対して、平面を研削する平面研削加工を行うことで、リッジ部65,66の平面65a,66aと、リッジ部25,26の平面25a,26aとを加工する。
 この平面研削加工は、加工面積が大きい平面研削盤などを用いることができるため、リッジ部65,66の平面65a,66a及びリッジ部25,26の平面25a,26aを容易に加工することができる。
 即ち、加工面積が大きい平面研削盤などを用いることで、リッジ部65,66の平面65a,66aと、リッジ部25,26の平面25a,26aとを同時に加工できるため、加工時間を短縮することができる。
 第2の部材32の裏面は、導波管61,21の管内64,24が設けられるため、分割面Cを基準にすると、+z方向に凹んでいる部分がある。
 このため、図13に示すように、元部材P2の下側を部分的に切削することで、導波管61,21の管内64,24を形成する。
 管内64,24におけるy方向の幅が狭い上側の矩形部の加工は既に行われているので、管内64,24におけるy方向の幅が広い下側の矩形部の加工だけを行う。
 ここでは、第2の部材32の表面側の加工を行ってから、第2の部材32の裏面側の加工を行う例を示しているが、第2の部材32の裏面側の加工を行ってから、第2の部材32の表面側の加工を行うようにしてもよい。
 第3の部材33の加工について説明する。
 第3の部材33の表面は、管内64が設けられるため、分割面Cを基準にすると、-z方向に凹んでいる部分がある。
 このため、例えば、第3の部材33を加工する前の部材(以下、「元部材P3」と称する)が平板である場合には、図13に示すように、元部材P3の上側を部分的に切削することで、導波管61の管内64を形成する。
 ここでは、第1の部材31、第2の部材32、第3の部材33の順番で加工を行っているが、第1の部材31、第2の部材32、第3の部材33の加工順は問わず、例えば、第3の部材33、第2の部材32、第1の部材31の順番で加工を行うようにしてもよい。
 第1の部材31、第2の部材32及び第3の部材33の加工を行うと、第1の部材31と第2の部材32とを接合するとともに、第2の部材32と第3の部材33とを接合する。
 第1の部材31と第2の部材32とを接合する方法、第2の部材32と第3の部材33とを接合する方法としては、例えば、導電性接着剤によって接着する方法が考えられる。
 第1の部材31と第2の部材32との接合面は、1面のみであり、第2の部材32と第3の部材33との接合面は、1面のみである。
 このため、導電性接着剤を用いて、第1の部材31~第3の部材33を接合する場合、1つの方向、即ち、z方向から第1の部材31~第3の部材33に圧力をかけるだけで、第1の部材31~第3の部材33を接合することができる。
 ここでは、導電性接着剤を用いて、第1の部材31~第3の部材33を接合する方法を示したが、導電性接着剤を用いる方法に限るものではなく、例えば、拡散接合、ろう付け、ネジ止めなどの方法によって、第1の部材31~第3の部材33を接合するようにしてもよい。ネジ止めによって接合する場合でも、ネジをz方向に挿入するネジ止めを行えば、第1の部材31~第3の部材33間の導通を得ることができる。
 この実施の形態3では、第1の部材31と第2の部材32との分割面Bが、導波管61におけるリッジ部65,66の平面65a,66a及び導波管21におけるリッジ部25,26の平面25a,26aであるものを示している。これにより、第1の部材31における裏面側の加工が容易になり、また、第2の部材32における表面側の加工が容易になる。
 また、この実施の形態3では、第2の部材32と第3の部材33との分割面Cが、導波管21における管内24の底部24cの位置であるものを示している。これにより、第2の部材32における裏面側の加工が容易になる。
 以上で明らかなように、この実施の形態3によれば、導波管61におけるリッジ部65,66の平面65a,66aと、導波管21におけるリッジ部25,26の平面25a,26aとが同一面内であるアレーアンテナ装置を製造する際、アレーアンテナ装置がz方向に分割されている第1の部材31と、第2の部材32とを接合することで製造するものであり、第1の部材31と第2の部材32との分割面Bが、導波管61におけるリッジ部65,66の平面65a,66a及び導波管21におけるリッジ部25,26の平面25a,26aであるように構成したので、アレーアンテナ装置を容易に製造することができるとともに、接合不良による歩留まりの低下を防止することができる。
 この実施の形態3では、第2の部材32と第3の部材33との分割面Cが、導波管21における管内24の底部24cであるものを示したが、第2の部材32と第3の部材33との分割面Cが、導波管61における管内64の底部64cであってもよい。
 また、第2の部材32と第3の部材33との分割面Cが、導波管61における管内64の底部64cと、導波管21における管内24の底部24cとの間の位置であってもよい。
 また、この実施の形態3では、導波管61における管内64の底部64cが、導波管21における管内24の底部24cより、-z方向の位置に設けられているものを示したが、導波管61における管内64の底部64cが、導波管21における管内24の底部24cより、+z方向の位置に設けられているものであってもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、導波管の表面に電磁波を送受信するスロットが形成されているアレーアンテナ装置に適している。
 また、この発明は、導波管の表面に電磁波を送受信するスロットが形成されているアレーアンテナ装置の製造方法に適している。
 10 導波管スロットアレーアンテナ(第1のアンテナ)、11 導波管(第1の導波管)、11a 導波管11の表面、11b 導波管11の裏面、12a,12b スロット(第1のスロット)、13 導波管11の外周部、14 導波管11の管内、14a 管内14の底部、15 リッジ部(第1の突起物)、15a,15b,15c リッジ部15における平面、20 導波管スロットアレーアンテナ(第2のアンテナ)、21 導波管(第2の導波管)、21a 導波管21の表面、21b 導波管21の裏面、22 スロット(第2のスロット)、23 導波管21の外周部、24a,24b 管内24の側部、24c 管内24の底部、25,26 リッジ部(第2の突起物)、25a,25b,25c リッジ部25における平面、26a,26b,26c リッジ部26における平面、31 第1の部材、32 第2の部材、33 第3の部材、40 アイリス、50 導波管スロットアレーアンテナ(第2のアンテナ)、51 導波管(第2の導波管)、51a 導波管51の表面、52a,52b スロット(第2のスロット)、53 導波管51の外周部、54 導波管51の管内、54a 管内54の底部、55 リッジ部(第2の突起物)、55a,55b,55c リッジ部の平面、61 導波管(第1の導波管)、61a 導波管61の表面、62 スロット(第1のスロット)、63 導波管61の外周部、64a,64b 管内64の側部、64c 管内64の底部、65,66 リッジ部(第1の突起物)、65a,65b,65c リッジ部65における平面、66a,66b,66c リッジ部66における平面。

Claims (8)

  1.  電磁波を送受信する第1のスロットが、第1の導波管の表面に形成されている第1のアンテナと、
     電磁波を送受信する第2のスロットが、第2の導波管の表面に形成されている第2のアンテナとを備え、
     前記第1のアンテナと前記第2のアンテナとが交互に配列されており、
     前記第1の導波管は、内部に第1の突起物が形成されているリッジ導波管、
     前記第2の導波管は、内部に第2の突起物が形成されているリッジ導波管であることを特徴とするアレーアンテナ装置。
  2.  前記第1の突起物が有している複数の面の中で、前記第1の導波管の表面と平行な平面と、
     前記第2の突起物が有している複数の面の中で、前記第2の導波管の表面と平行な平面とが同一面内であることを特徴とする請求項1記載のアレーアンテナ装置。
  3.  前記第1のスロットは、長手方向が前記第1の導波管における管軸方向の開口部、
     前記第2のスロットは、長手方向が前記第2の導波管における管幅方向の開口部であり、
     前記第1の突起物は、前記第1の導波管における管内の底部から前記第1の導波管の表面側に伸びている突起物、
     前記第2の突起物は、前記第2の導波管における管内の一方の側部から他方の側部側に伸びている突起物であることを特徴とする請求項1記載のアレーアンテナ装置。
  4.  前記第1のスロットは、長手方向が前記第1の導波管における管軸方向の開口部、
     前記第2のスロットは、長手方向が前記第2の導波管における管軸方向の開口部であり、
     前記第1の突起物は、前記第1の導波管における管内の底部から前記第1の導波管の表面側に伸びている突起物、
     前記第2の突起物は、前記第2の導波管における管内の底部から前記第2の導波管の表面側に伸びている突起物であることを特徴とする請求項1記載のアレーアンテナ装置。
  5.  前記第1のスロットは、長手方向が前記第1の導波管における管幅方向の開口部、
     前記第2のスロットは、長手方向が前記第2の導波管における管幅方向の開口部であり、
     前記第1の突起物は、前記第1の導波管における管内の一方の側部から他方の側部側に伸びている突起物、
     前記第2の突起物は、前記第2の導波管における管内の一方の側部から他方の側部側に伸びている突起物であることを特徴とする請求項1記載のアレーアンテナ装置。
  6.  電磁波を送受信する第1のスロットが、第1の導波管の表面に形成されている第1のアンテナと、
     電磁波を送受信する第2のスロットが、第2の導波管の表面に形成されている第2のアンテナとが交互に配置されており、
     前記第1の導波管に形成されている第1の突起物が有している複数の面の中で、前記第1の導波管の表面と平行な平面と、
     前記第2の導波管に形成されている第2の突起物が有している複数の面の中で、前記第2の導波管の表面と平行な平面とが同一面内であるアレーアンテナ装置を製造する際、
     前記アレーアンテナ装置が高さ方向に分割されている第1の部材と、第2の部材とを接合することで、前記アレーアンテナ装置を製造する方法であり、
     前記第1の部材と前記第2の部材との分割面が、前記第1の導波管の表面と平行な前記第1の突起物における平面及び前記第2の導波管の表面と平行な前記第2の突起物における平面であることを特徴とするアレーアンテナ装置の製造方法。
  7.  前記アレーアンテナ装置が高さ方向に分割されている前記第1の部材と、前記第2の部材と、第3の部材とを接合することで、前記アレーアンテナ装置を製造する方法であり、
     前記第2の部材と前記第3の部材との分割面が、前記第1の導波管における管内の底部、前記第2の導波管における管内の底部、あるいは、前記第1の導波管における管内の底部と前記第2の導波管における管内の底部との間の位置であることを特徴とする請求項6記載のアレーアンテナ装置の製造方法。
  8.  前記第1の導波管の表面と平行な前記第1の突起物における平面及び前記第2の導波管の表面と平行な前記第2の突起物における平面を平面研削によって加工することを特徴とする請求項6記載のアレーアンテナ装置の製造方法。
PCT/JP2016/073575 2016-08-10 2016-08-10 アレーアンテナ装置及びアレーアンテナ装置の製造方法 WO2018029807A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/073575 WO2018029807A1 (ja) 2016-08-10 2016-08-10 アレーアンテナ装置及びアレーアンテナ装置の製造方法
JP2018533360A JP6522247B2 (ja) 2016-08-10 2016-08-10 アレーアンテナ装置及びアレーアンテナ装置の製造方法
EP16912688.5A EP3499642A4 (en) 2016-08-10 2016-08-10 NETWORK ANTENNA DEVICE METHOD FOR MANUFACTURING NETWORK ANTENNA
US16/318,924 US11605903B2 (en) 2016-08-10 2016-08-10 Array antenna apparatus and method for manufacturing array antenna apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073575 WO2018029807A1 (ja) 2016-08-10 2016-08-10 アレーアンテナ装置及びアレーアンテナ装置の製造方法

Publications (1)

Publication Number Publication Date
WO2018029807A1 true WO2018029807A1 (ja) 2018-02-15

Family

ID=61162002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073575 WO2018029807A1 (ja) 2016-08-10 2016-08-10 アレーアンテナ装置及びアレーアンテナ装置の製造方法

Country Status (4)

Country Link
US (1) US11605903B2 (ja)
EP (1) EP3499642A4 (ja)
JP (1) JP6522247B2 (ja)
WO (1) WO2018029807A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021805A (zh) * 2019-04-15 2019-07-16 南京理工大学 复杂馈电网络中基于空气间隙波导的立体过渡结构

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263342B2 (en) 2013-10-15 2019-04-16 Northrop Grumman Systems Corporation Reflectarray antenna system
WO2018145300A1 (zh) * 2017-02-10 2018-08-16 华为技术有限公司 一种天线阵列及通信设备
US11075456B1 (en) 2017-08-31 2021-07-27 Northrop Grumman Systems Corporation Printed board antenna system
KR102578033B1 (ko) * 2018-10-30 2023-09-13 엘지전자 주식회사 차량에 탑재되는 안테나 시스템 및 이를 구비하는 차량
US10944184B2 (en) * 2019-03-06 2021-03-09 Aptiv Technologies Limited Slot array antenna including parasitic features
US10944164B2 (en) * 2019-03-13 2021-03-09 Northrop Grumman Systems Corporation Reflectarray antenna for transmission and reception at multiple frequency bands
US10892549B1 (en) 2020-02-28 2021-01-12 Northrop Grumman Systems Corporation Phased-array antenna system
CN112103643A (zh) * 2020-08-30 2020-12-18 电子科技大学 一种基于模式复合单脊波导的双极化漏波天线
US11681015B2 (en) 2020-12-18 2023-06-20 Aptiv Technologies Limited Waveguide with squint alteration
US11901601B2 (en) 2020-12-18 2024-02-13 Aptiv Technologies Limited Waveguide with a zigzag for suppressing grating lobes
US11962085B2 (en) 2021-05-13 2024-04-16 Aptiv Technologies AG Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength
US11616282B2 (en) 2021-08-03 2023-03-28 Aptiv Technologies Limited Transition between a single-ended port and differential ports having stubs that match with input impedances of the single-ended and differential ports
CN114122730B (zh) * 2021-11-23 2023-02-07 中国电子科技集团公司第三十八研究所 一种宽带金属腔体天线及设计方法及天线阵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347987A (en) * 1976-10-14 1978-04-28 Toshiba Corp Slot waveguides
JP2001308611A (ja) * 2000-04-25 2001-11-02 Kojima Press Co Ltd 導波管アンテナ
JP2003318648A (ja) 2002-04-26 2003-11-07 Mitsubishi Electric Corp スロットアレーアンテナ及びスロットアレーアンテナ装置
JP2012204975A (ja) * 2011-03-24 2012-10-22 Sumitomo Electric Ind Ltd 導波管スロットアンテナ
JP2014042197A (ja) * 2012-08-23 2014-03-06 Ntn Corp 導波管スロットアレイアンテナ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193830A (en) 1963-07-25 1965-07-06 Joseph H Provencher Multifrequency dual ridge waveguide slot antenna
JPH02280504A (ja) 1989-04-21 1990-11-16 Asahi Chem Ind Co Ltd 漏洩型導波管スロットアレーアンテナ
IL107582A (en) * 1993-11-12 1998-02-08 Ramot Ramatsity Authority For Slotted waveguide array antennas
SE510082C2 (sv) * 1993-11-30 1999-04-19 Saab Ericsson Space Ab Vågledarantenn med tvärgående och längsgående slitsar
TW200415726A (en) * 2002-12-05 2004-08-16 Adv Lcd Tech Dev Ct Co Ltd Plasma processing apparatus and plasma processing method
US8098189B1 (en) * 2008-09-23 2012-01-17 Rockwell Collins, Inc. Weather radar system and method using dual polarization antenna
JP2012004700A (ja) 2010-06-15 2012-01-05 Fujitsu Ten Ltd レーダ用アンテナ、及びレーダ装置
WO2013145842A1 (ja) 2012-03-29 2013-10-03 三菱電機株式会社 導波管スロットアレーアンテナ装置
DE102013012315B4 (de) * 2013-07-25 2018-05-24 Airbus Defence and Space GmbH Hohlleiter-Strahler. Gruppenantennen-Strahler und Synthetik-Apertur-Radar-System
US10135148B2 (en) 2014-01-31 2018-11-20 Kymeta Corporation Waveguide feed structures for reconfigurable antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347987A (en) * 1976-10-14 1978-04-28 Toshiba Corp Slot waveguides
JP2001308611A (ja) * 2000-04-25 2001-11-02 Kojima Press Co Ltd 導波管アンテナ
JP2003318648A (ja) 2002-04-26 2003-11-07 Mitsubishi Electric Corp スロットアレーアンテナ及びスロットアレーアンテナ装置
JP2012204975A (ja) * 2011-03-24 2012-10-22 Sumitomo Electric Ind Ltd 導波管スロットアンテナ
JP2014042197A (ja) * 2012-08-23 2014-03-06 Ntn Corp 導波管スロットアレイアンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499642A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021805A (zh) * 2019-04-15 2019-07-16 南京理工大学 复杂馈电网络中基于空气间隙波导的立体过渡结构
CN110021805B (zh) * 2019-04-15 2021-09-03 南京理工大学 复杂馈电网络中基于空气间隙波导的立体过渡结构

Also Published As

Publication number Publication date
US20190260137A1 (en) 2019-08-22
JP6522247B2 (ja) 2019-05-29
EP3499642A4 (en) 2019-08-21
EP3499642A1 (en) 2019-06-19
US11605903B2 (en) 2023-03-14
JPWO2018029807A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2018029807A1 (ja) アレーアンテナ装置及びアレーアンテナ装置の製造方法
JP4527760B2 (ja) アンテナ装置
KR101405283B1 (ko) 평판형 혼 어레이 안테나
US9300042B2 (en) Matching and pattern control for dual band concentric antenna feed
JP5089766B2 (ja) 導波管電力分配器及びその製造方法
JP2013187752A (ja) 導波管スロットアレーアンテナ装置
JP2015043562A5 (ja)
JPWO2021033447A5 (ja)
JP4753981B2 (ja) 導波管・ストリップ線路変換器
US11444384B2 (en) Multiple-port radiating element
TWI565136B (zh) 漸變槽線天線裝置
JP4178265B2 (ja) 導波管ホーンアンテナ、アンテナ装置、および、レーダ装置
JP6611238B2 (ja) 導波管/伝送線路変換器、アレーアンテナ及び平面アンテナ
JP2016181894A (ja) 導波管/伝送線路変換器及びアンテナ装置
JP6556406B2 (ja) アンテナ装置
US10483611B2 (en) Waveguide/transmission line converter configured to feed a plurality of antenna elements in an antenna device
US20190157735A1 (en) Waveguide strip line transducer and power feed circuit
WO2016152811A1 (ja) 導波管/伝送線路変換器及びアンテナ装置
JP2005536935A (ja) 2つの直交直線偏光を有するrlsaアンテナ
CN102074773B (zh) 波导管式正交模变换器
JP6913586B2 (ja) アンテナ装置
TWI636618B (zh) Waveguide feeding device
JP3723751B2 (ja) 円偏波発生器
CN117525911A (zh) 多通道馈源的制造方法及集成馈源的单脉冲卡塞格伦天线
JP6391560B2 (ja) 導波管変換回路及びアンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018533360

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016912688

Country of ref document: EP

Effective date: 20190311