WO2018145300A1 - 一种天线阵列及通信设备 - Google Patents

一种天线阵列及通信设备 Download PDF

Info

Publication number
WO2018145300A1
WO2018145300A1 PCT/CN2017/073246 CN2017073246W WO2018145300A1 WO 2018145300 A1 WO2018145300 A1 WO 2018145300A1 CN 2017073246 W CN2017073246 W CN 2017073246W WO 2018145300 A1 WO2018145300 A1 WO 2018145300A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
waveguide
sub
center
radiation
Prior art date
Application number
PCT/CN2017/073246
Other languages
English (en)
French (fr)
Inventor
彭杰
杨晓强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780057832.9A priority Critical patent/CN109716589B/zh
Priority to EP17895877.3A priority patent/EP3567677A4/en
Priority to PCT/CN2017/073246 priority patent/WO2018145300A1/zh
Publication of WO2018145300A1 publication Critical patent/WO2018145300A1/zh
Priority to US16/537,320 priority patent/US10903582B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0068Dielectric waveguide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • H01Q5/55Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas

Definitions

  • the present application relates to the technical field of antennas, and in particular to an antenna array and a communication device.
  • the wireless communication base station antenna in order to ensure the quality of the downlink signal coverage, multiple antenna elements are usually used to form an array in the vertical direction to generate a higher beam gain, and the amplitude and phase excitation of each element are properly configured.
  • the beam has a certain downtilt angle with respect to the normal direction of the front surface (as shown in Figure 1).
  • the low-band base station antenna usually adopts a symmetric matrix form, and the excitation amplitude and excitation phase of the array element are controlled on a feeding network composed of a microstrip line or a coaxial cable, and the beam down is relatively simple.
  • the waveguide slot antenna of the millimeter wave band since the size of the waveguide of the feed network is large and the wavelength of the waveguide is long, there are many problems of beam downtilt, such as processing difficulty and inconsistent beam pointing.
  • FIG. 1 is a schematic perspective view of the structure.
  • the antenna array is mainly formed by the feeding waveguide 300 and the rectangular top opening of the waveguide.
  • the plurality of radiating elements 301 are formed.
  • the feeding waveguides 300 are generally reduced in size by an implementation of the ridge waveguides, and the radiating elements 301 are arranged along the feeding waveguides at a certain interval.
  • the base station device signal enters the feed waveguide from the waveguide port 302, and the electromagnetic wave propagates in the feed waveguide to the waveguide end 303.
  • Each slit cuts the conduction current on the waveguide wall, and the slot couples part of the energy in the feed waveguide and is free.
  • the waveguide end 303 is typically fitted with an absorbing load for absorbing the unradiated energy of the radiating element, which propagates as a traveling wave within the feed waveguide.
  • the waveguide traveling wave array is widely used due to its simple structure, but it has serious dispersion problems, which will seriously affect the performance of the broadband communication system.
  • the amplitude phase excitation of the array elements is determined by the required antenna radiation pattern characteristics.
  • the excitation amplitude of the array elements in the waveguide traveling wave array is controlled by the distance t of the gap offset waveguide center line, and the excitation phase of the array elements is determined by the center spacing of adjacent slots. d control.
  • the adjacent slot center distance d can be determined by the following formula 1, where ⁇ is the free space wavelength corresponding to the antenna operating frequency, and ⁇ g is The feeder waveguide wavelength corresponding to the antenna operating frequency.
  • the waveguide traveling wave antenna array is widely used due to its simple structure. However, in the broadband communication system, the dispersion problem will seriously affect the system performance. As shown in Fig. 2, the typical traveling pattern curve of the waveguide traveling wave array is shown at 27 GHz. The pattern curves at the 28 GHz and 29 GHz frequencies are 310 to 312, respectively, and the beam pointing angles are 6/10/15 degrees. If the antenna array is used in a wireless base station communication system, for the end user, the beam corresponding to the partial frequency point points to the unaligned user, which may result in degradation of the received signal quality of the terminal device.
  • Equation 1 For a fixed array spacing d (greater than ⁇ /2), ⁇ and ⁇ g decrease with increasing frequency at different frequencies, and the absolute value of ⁇ g is greater than ⁇ . Moreover, the slope of ⁇ g with frequency is also larger than ⁇ , which makes the direction ⁇ of the beam off-line normal at different frequency points inconsistent. If d ⁇ g /2, the beam pointing angle decreases with increasing frequency. If d> ⁇ g /2, the beam pointing angle becomes larger as the frequency increases. This phenomenon is called beam squint or beam dispersion. Beam squint or beam dispersion affects the communication effect of the antenna.
  • the application provides an antenna array and a communication device for improving the communication effect of the antenna array.
  • the present application provides an antenna array, the antenna array includes: a feed waveguide, and a cover plate covering the feed waveguide; the feed waveguide is provided with a waveguide port, and the cover plate is disposed along the a plurality of radiating slits arranged in a length direction of the feed waveguide and configured to emit a signal fed by the waveguide port, wherein the plurality of radiating slits on one side of the waveguide port are a first sub-array at the input a plurality of radiation slits on the other side of the waveguide are a second sub-array;
  • a difference between a beam pointing angle of the first sub-array and a beam pointing angle of the antenna array, a beam pointing angle of the second sub-array, and a beam pointing angle of the antenna array at a center frequency of an antenna array operating frequency The values are all smaller than the set threshold, and as the frequency of the antenna array changes, the first sub-array and the second sub-array beam pointing angles have opposite trends with frequency.
  • the plurality of radiating slits are staggered along a center line of the feed waveguide; in the first sub-array, a center-to-center spacing of adjacent radiating slits is s1, and the second sub- In the array, the center-to-center spacing of adjacent radiating slits is s2, wherein s1 is greater than half the wavelength of the feed waveguide, and s2 is less than half the wavelength of the feed waveguide.
  • the plurality of radiating slits in the first sub-array are equally spaced, and the plurality of radiating slits in the second sub-array are equally spaced.
  • a distance between a center of the radiation slit adjacent to the waveguide port and the waveguide port is t1 in the first sub-array; and a second sub-array adjacent to the waveguide port The distance between the center of the radiation slot and the waveguide port is t2; wherein both t1 and t2 are less than half of the wavelength of the feed waveguide.
  • the feed waveguide is a double ridge waveguide, the waveguide being located between two ridges of the double ridge waveguide, the two ridges respectively corresponding to one subarray.
  • the plurality of radiating slits are staggered along a center line of the feed waveguide; a center pitch of adjacent radiating slits in the first sub-array and a phase in the second sub-array
  • the center spacing of adjacent radiation slots is s3, and the s3 is greater than half of the wavelength of the feed waveguide;
  • the feed waveguide is a double ridge waveguide, the waveguide is located between two ridges of the double ridge waveguide, the two ridges respectively correspond to one subarray, and the ridge corresponding to the first sub array The height is higher than the height of the ridge corresponding to the second sub-array.
  • a distance between a center of the radiation slit adjacent to the waveguide port and the waveguide port is t1 in the first sub-array; and a second sub-array adjacent to the waveguide port The distance between the center of the radiation slot and the waveguide port is t2; wherein t1 is greater than t2, and both t1 and t2 are less than half the wavelength of the feed waveguide.
  • a plurality of radiating slits of the first sub-array are located on a same side of a center line of the feed waveguide, and a plurality of radiating slits of the second sub-array are along the feed waveguide Center lines are staggered; a center-to-center spacing of adjacent radiating slots in the first sub-array and a center-to-center spacing of adjacent radiating slots in the second sub-array are both s4, and the s4 is smaller than the feed waveguide Half the wavelength.
  • a distance between a center of the radiation slit adjacent to the waveguide port and the waveguide port is t1 in the first sub-array; and a second sub-array adjacent to the waveguide port The distance between the center of the radiation slot and the waveguide port is t2; wherein t1 is greater than t2, and both t1 and t2 are less than half the wavelength of the feed waveguide.
  • s4 is one quarter of the waveguide wavelength of the feed waveguide at the center frequency of the operating frequency band.
  • a sidewall corresponding to the radiation slit is disposed on a sidewall of the feed waveguide, and a ridge corresponding to the branch is disposed on a ridge of the feed waveguide
  • the radiation slit is located at one side of the center line of the feed waveguide, and the branch and the gap are located on the other side of the center line of the feed waveguide.
  • the present application further provides a communication device, comprising: a baseband precoder, a transceiver channel connected to the baseband precoder, and the antenna array according to any one of the above aspects connected to the transceiver channel.
  • FIG. 1 is a schematic structural view of a serial feed waveguide slot antenna in the prior art
  • FIG. 3 is a topological diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna array according to Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of a radiation unit of an antenna array according to Embodiment 1 of the present application.
  • FIG. 6 is a top plan view of an antenna array according to Embodiment 1 of the present application.
  • FIG. 10 is a schematic structural diagram of an antenna array according to Embodiment 2 of the present application.
  • FIG. 11 is a top plan view of an antenna array according to Embodiment 2 of the present application.
  • FIG. 15 is a schematic structural diagram of an antenna array according to Embodiment 3 of the present application.
  • FIG. 16 is a top plan view of an antenna array according to Embodiment 3 of the present application.
  • 17 is a low-medium-high-frequency point pattern curve of the first sub-array 105 according to Embodiment 3 of the present application;
  • FIG. 20 is a structural block diagram of a communication device according to an embodiment of the present application.
  • the present application proposes a novel antenna array including: a feeding waveguide, and a cover plate covering the feeding waveguide; feeding a waveguide is disposed on the waveguide, and the cover plate is provided with a plurality of radiation slits arranged along the length direction of the feed waveguide and used for transmitting the signal fed by the waveguide port, wherein the plurality of radiation slits located on one side of the waveguide port are a first sub-array, the plurality of radiation slits on the other side of the input waveguide being a second sub-array;
  • a difference between a beam pointing angle of the first sub-array and a beam pointing angle of the antenna array, a beam pointing angle of the second sub-array, and a beam pointing angle of the antenna array at a center frequency of an antenna array operating frequency The values are all smaller than the set threshold, and as the frequency of the antenna array changes, the first sub-array and the second sub-array beam pointing angles have opposite trends with frequency.
  • the asymmetric sub-array synthesis method of the center feed reduces the beam pointing difference of different frequency points.
  • the specific principle is as follows: Referring to the topology structure of the antenna array shown in FIG. 3, the array feed port is placed in the middle of the array, and the antenna arrays are arranged on both sides of the port according to the traditional traveling wave array, and the entire array is bounded by the feed port. Divided into two first sub-arrays and a second sub-array, the phase difference between the array elements (antennas) of the two sub-arrays approximately satisfies a certain relationship by reasonably setting the position of each array element or setting the feed waveguide structure.
  • the specific principle is: for the center frequency point F0 of the working frequency band, the equivalent phase difference between the adjacent array elements of the first sub-array and the second sub-array is Satisfying the central frequency point array pattern pointing angle is the required angle ⁇ ; for the low-end frequency point FL of the working frequency band, the equivalent phase difference between the array elements of the first sub-array is The equivalent phase difference between the array elements of the second sub-array is For the high-end frequency point FH of the working frequency band, the equivalent phase difference between the array elements of the first sub-array is The equivalent phase difference between the array elements of the second sub-array is For the first sub-array, the equivalent phase difference between the array elements increases as the frequency increases, and the direction beam angle of the first sub-array becomes larger as the frequency increases.
  • the array elements For the second sub-array, the array elements The phase difference between the two sub-arrays decreases as the frequency increases.
  • the beam direction of the second sub-array becomes smaller as the frequency increases.
  • the direction of the beam direction of the entire array is determined by the opposite direction of the two sub-array beam pointing angles.
  • the frequency remains the same, which improves the communication performance of the antenna.
  • FIG. 4 is a schematic structural diagram of an antenna array according to Embodiment 1 of the present application
  • FIG. 5 is a schematic structural diagram of a radiation unit of an antenna array according to Embodiment 1 of the present application
  • 6 is a top view of the antenna array provided in Embodiment 1 of the present application;
  • the antenna array is composed of a feeding waveguide and a cover plate, and a plurality of radiation slits 11 to 18 are distributed along the feeding waveguide on the cover plate, and the radiation slits can be divided into 20 and 21 directions.
  • the signal is fed from the waveguide port 3 located in the middle portion of the feed waveguide, and the power splits into two paths in the feed waveguide and propagates in the direction of 20, 21 in a traveling wave manner, and radiates outward through the radiation slits 11 to 18. signal.
  • the radiation slits 11 to 14 are the first sub-array, and the radiation slits 15 to 18 are the second sub-array.
  • the plurality of radiation slits are staggered along the center line of the feed waveguide;
  • the center-to-center spacing of adjacent radiating slits is s1
  • the center-to-space spacing of adjacent radiating slits in the second sub-array is s2
  • the center-to-center spacing s1 of adjacent radiating slits of sub-array 1 distributed along the 20-direction is greater than
  • the center spacing s2 of adjacent radiating slits distributed along the direction of the 21st is achieved by using two sets of unequal spacing radiating elements.
  • the feed waveguide is in the form of a ridge waveguide, which may be a standard metal.
  • the waveguide or dielectric waveguide takes into account the loss and the size of the antenna array, which uses a metal ridge waveguide.
  • the ridge waveguide can effectively compress the width of the wide side of the feed waveguide, which is advantageous for reducing the grating lobes of the pattern combined into a two-dimensional array; specifically, the feed waveguide uses a double ridge waveguide, and the waveguide port serves as a feed port. It is disposed between the two ridges 4 of the double ridge waveguide. And the two ridges 4 of the input waveguide are in one-to-one correspondence with the first sub-array and the second sub-array.
  • a sidewall corresponding to the radiation slot is disposed on a sidewall of the feed waveguide, and a ridge corresponding to the branch is disposed on the ridge of the feed waveguide, and the radiation slit is located at a center line of the feed waveguide
  • the sides, branches and notches are located on the other side of the centerline of the feed waveguide.
  • a corresponding set of radiating slits, branches and notches constitute a radiating element.
  • the direction in which the branch 30 and the notch 31 are offset from the feed waveguide center line 22 is opposite to the direction in which the radiation slit is offset from the center line, that is, the radiation slit and the branch 30 and the notch 31 are respectively located on both sides of the waveguide center line.
  • the RF signal is fed from the port 30, and the remaining energy is radiated from the port 31.
  • the function of the branch 30 and the notch 31 is to cancel the reflection of the RF signal by the radiation slot, that is, to ensure the matching of the feed port 40
  • the pattern of the antenna array is completely determined by the bit excitation amplitude and excitation phase of each radiating element (the influence of the radiating element position is included in the excitation phase).
  • the RF signal is from the middle of the feeding waveguide.
  • Part of the waveguide port 3 is input.
  • the power is divided into two paths and propagated in the directions of 20 and 21 respectively.
  • the waveguide port 3 is located between the two ridges of the double ridge waveguide, and the signal power ratio propagating in two directions is proportional.
  • the amplitude distribution of the second sub-array 102, and the excitation amplitude of each radiating element included in the first sub-array 101 and the second sub-array 102 can be adjusted by changing the distance of the radiation slit from the waveguide center line 22, each radiating element specific
  • the amplitude excitation is determined by the required antenna pattern. In fact, the array element excitation amplitude has little to do with the beam pointing dispersion problem to be solved in this application. instruction of.
  • the center-to-center spacing t1 of the waveguide 3 and the radiating slot 14 of the first sub-array 101 near the waveguide 3 is greater than the center-to-center spacing of the waveguide 3 and the radiating slot 15 of the second sub-array 102 near the waveguide 3.
  • T2 and the distances of t1 and t2 are smaller than the half-feed waveguide wavelength, such that the excitation phase of the radiation unit where the radiation slot 15 is located leads the radiation unit 14 where the radiation slot 14 is located, and the radiation gap spacing arranged along the direction of the feed waveguide 20.
  • S1 is larger than the radiation gap spacing s2 arranged in the direction of the feed waveguide 21, wherein s1 is greater than half of the wavelength of the feed waveguide, such that the radiating elements 11-14 arranged in the 20 direction, on the one hand, the feed path difference s1 is larger than the feed waveguide
  • a phase difference of >180 degrees is introduced at half the wavelength, and an additional phase of 180 degrees is introduced due to the staggered arrangement of adjacent frames along the centerline of the waveguide.
  • the equivalent phase of the radiating elements 11 to 14 (actual phase difference and integral multiple of 360 degrees)
  • the phase after modulo such as the actual phase difference is 380 degrees, and the equivalent phase difference is 20 degrees
  • s2 is less than half of the wavelength of the feed waveguide, such that the radiating elements 15-18 arranged in the direction of 21, on the one hand, introduce a phase difference of ⁇ 180 degrees due to the difference s2 of the feed path being less than half the wavelength of the feed waveguide
  • the equivalent phases of the radiating elements 15-18 are also advanced in advance (for example, the radiating slit 16 leads the radiating slit 15 and the radiating slit 17 leads the radiating slit).
  • the equivalent excitation phases of the radiating elements corresponding to the radiation slots 11-18 are sequentially advanced, so the beam pointing angle of the pattern of the entire array will deviate from the front normal of the array in the 20 direction.
  • the size of t1, t2, s1, s2, and d is determined by the excitation phase required by the radiating element. These dimensions usually need to be determined by multiple iterations.
  • the beam downtilt angle to be designed is ⁇ (offset from the normal to 20 directions).
  • the ridge height d is adjusted so that the waveguide wavelength ⁇ g2 of the feed waveguide at the center frequency of the operating frequency band is approximately 1.4 times the free space wavelength ⁇ , that is, at the center frequency point.
  • the initial phase difference between the radiating elements is Adjusting the sizes of t1, t2, s1, and s2 so that the equivalent phase difference between adjacent units of the radiation elements 11 to 18 at the center frequency point is approximately due to Is satisfied
  • the phase difference required for the beam to point to the angle ⁇ at the interval of the array, and the spacing of the radiating elements after adjusting t1, t2, s1, and s2 is not equal to Therefore, the beam direction of the array pattern will have a certain deviation from the angle ⁇ .
  • two phase differences can be calculated by using s1 and s2.
  • the size of s1 can be adjusted again so that the equivalent phase difference of the radiation slots 11 to 14 is approximately
  • the error preferably does not exceed 10% of the set pointing angle.
  • the directional pattern beam pointing angles of the first sub-arrays 101 and 102 are both ⁇ , and the sizes of t1 and t2 are continuously adjusted so that the directional pattern beams of the two sub-arrays are oriented at an angle ⁇ .
  • the above setting makes the central frequency point pattern beam pointing angle of the working frequency band ⁇ .
  • the waveguide wavelength ⁇ g1 of the feeding waveguide is greater than the waveguide wavelength ⁇ g2 of the center frequency feeding waveguide, for the first sub- Array 101, due to the spacing of the array
  • the radiating equivalent phase difference of each radiating element of the first sub-array 101 is less than
  • the direction beam angle of the first sub-array 101 is smaller than ⁇
  • the second sub-array 102 due to the inter-frame spacing:
  • Each radiating element of the second sub-array 102 has an excitation equivalent phase difference greater than The direction beam of the second sub-array 102 is greater than ⁇ , and the direction of the beam direction of the two sub-arrays is opposite to ⁇ , and the beam direction of the two sub-arrays is partially offset and approximated to the angle ⁇ ;
  • the waveguide wavelength ⁇ g3 of the feed waveguide is smaller than the
  • FIG. 7 and FIG. 8 respectively show the low-mid-high-frequency point pattern curves corresponding to the first sub-array 101 and the second sub-array 102 of the antenna array of the first embodiment, and the low-medium-high-frequency point pattern beam pointing angle of the first sub-array 101.
  • 4.7 degrees, 6.6 degrees, 9.0 degrees, respectively, and the low-medium-high-frequency point pattern beam pointing angles of the second sub-array 102 are 9.9 degrees, 7.4 degrees, and 4.9 degrees, respectively, and the first sub-array 101 and the second sub-segment are actually viewed separately.
  • the pattern of the low-mid-high-frequency point is used regardless of the scheme in which the array spacing of the first sub-array 101 is greater than the half-wavelength of the waveguide or the scheme in which the spacing of the second sub-array 102 is less than the half-wavelength of the waveguide.
  • the pointing angle It can be seen that the beam pointing angle of the pattern of the first sub-array 101 becomes larger as the frequency increases, and the beam pointing angle of the pattern of the second sub-array 102 becomes smaller as the frequency increases. 9 is the low-mid-high-frequency point pattern curve of the whole array.
  • the beam pointing angles of the low-mid-high-frequency point pattern of the full-array pattern are 6.7 degrees, 7 degrees, and 6.7 degrees, respectively. It can be seen that compared with the first sub-array 101 or Two high frequency sub-array low point 102 of beam directivity angle difference, the whole array pattern beam pointing angle difference is much smaller. The reason for achieving the above effect is that the direction beam pointing angle of the first sub-array 101 and the second sub-array 102 is opposite to the frequency, so that the synthesized pattern remains substantially unchanged due to partial cancellation.
  • Embodiment 1 divides the array into two sub-arrays by placing the antenna waveguide port in the middle portion of the array, and by adjusting the position of the waveguide port and the spacing of the two sub-array radiation units, The direction beam of the center frequency point in the working frequency band is directed to the required angle, and the direction of the beam direction of the one of the sub-arrays is opposite to that of the other sub-array, so that the pattern of the two sub-arrays is directed to the angle of the beam. Basically, it does not change with frequency, which solves the problem that the beam direction of the prior art pattern changes with frequency.
  • FIG. 10 is a structural diagram of an antenna array according to Embodiment 2 of the present application
  • FIG. 11 is a side view of an antenna array according to Embodiment 2 of the present application.
  • the feed waveguide provided in this embodiment is also fed by a ridge waveguide, and the radiation unit structure is also identical to the ridge waveguide and the radiation unit in Embodiment 1.
  • the difference between the antenna array provided in this embodiment and the antenna array of Embodiment 1 is that, in this embodiment, the adjacent radiation slot pitch of the first sub-array 103 along the 20 direction and the second sub-array 104 of the 21 direction
  • the spacing between adjacent radiating slits is uniform, that is, the center spacing of adjacent radiating slits in the first sub-array 103 and the center-to-center spacing of adjacent radiating slits in the second sub-array 104 are both s4, and s4 is greater than half of the wavelength of the feeding waveguide.
  • the ridge height d1 of the feed waveguide corresponding to the first sub-array 103 does not coincide with the ridge height d2 of the feed waveguide corresponding to the second sub-array 104.
  • the excitation amplitude control of each radiating element in Embodiment 2 of the present application is similar to that of Embodiment 1, and can be controlled by adjusting the height of the double ridge of the waveguide and the position of each radiating slit from the center line of the waveguide.
  • the center-to-center spacing t1 of the waveguide 3 and the radiation slot 64 of the first sub-array 103 adjacent to the waveguide 3 is greater than the center-to-center spacing of the waveguide 3 and the radiating slot 65 of the second sub-array 104 adjacent to the waveguide 3.
  • T2 and the distances of t1 and t2 are all smaller than the half-feed waveguide wavelength, such that the excitation equivalent phase of the radiation unit 65 leads the radiation unit 64, and the ridge height of the feed waveguide of the first sub-array 103 is higher, and the corresponding waveguide
  • the wavelength is shorter, the half-wavelength of the waveguide is smaller than the adjacent array spacing s3 of the first sub-array 103, so that the radiation slits 61-64 arranged along the 20-direction are introduced on the one hand because the difference s3 of the feeding path is greater than half of the wavelength of the feeding waveguide.
  • the equivalent phases of the radiating elements 61-64 are sequentially advanced (for example, the radiation slit 62 leads the radiation slit 61).
  • the radiation slit 63 leads the radiation slit 62)
  • the ridge height of the feed waveguide of the second sub-array 104 is lower
  • the corresponding waveguide wavelength is longer
  • the half-wavelength wavelength is greater than the adjacent array spacing of the second sub-array 104.
  • the staggered arrangement additionally introduces a phase difference of 180 degrees, so that the equivalent phases of the radiating elements 65-68 are also advanced in advance (for example, the radiating slit 66 leads the radiating slit 65, and the radiating slit 67 leads the radiating slit 66).
  • the radiating slit 61 The excitation equivalent phase of the radiation unit corresponding to ⁇ 68 is sequentially advanced, so the beam pointing angle of the pattern of the entire array will deviate from the normal of the array toward the 20 direction.
  • the size of t1, t2, d1, d2, s3 is determined by the excitation phase required by the radiating element.
  • the beam downtilt angle to be designed is ⁇ (offset from the normal to the 20 direction).
  • the spacing s3 of the radiating element is set to be the center of the working frequency band.
  • the phase difference between the elements of the array required by the antenna pattern beam pointing to the ⁇ angle is Adjusting the ridge height d1 of the ridge 5 of the feed network of the first sub-array 103 such that the waveguide waveguide 103 has a waveguide wavelength ⁇ g21 ⁇ 2*s3 at the center frequency of the operating frequency band, while causing the radiation elements of the first sub-array 103
  • the excitation equivalent phase difference at the center frequency is approximated as Preferably, the error does not exceed 10% of the set pointing angle, and the ridge height d2 of the ridge 6 of the feed network of the second sub-array 104 is adjusted such that the waveguide wavelength of the feeding waveguide of 104 is at the center frequency of the operating frequency band ⁇ g22 >2 *s3, at the same time, the excitation equivalent phase difference of each radiating element of the second sub-array 104 at the center frequency is approximated as Preferably, the error does not exceed 10% of the set pointing angle, so
  • the above setting makes the center frequency point pattern beam pointing angle of the working frequency band ⁇ .
  • the waveguide wavelength ⁇ g11 of the feeding waveguide at the low frequency point is larger than that of the feeding waveguide Center frequency point waveguide wavelength ⁇ g21 , array spacing
  • Each radiating element of the first sub-array 103 has an excitation equivalent phase difference smaller than Therefore, the direction beam angle of the first sub-array 103 is smaller than ⁇ .
  • the waveguide wavelength ⁇ g12 of the feed waveguide at the low frequency point is greater than the waveguide wavelength ⁇ g22 of the center frequency point feed waveguide, and the inter-array spacing
  • Each radiating element of the second sub-array 104 has an excitation equivalent phase difference greater than The direction of the beam direction of the second sub-array 104 is greater than ⁇ .
  • the direction of the beam pointing angle of the two sub-array directions is opposite to ⁇ , the direction of the beam pattern of the two sub-arrays is partially offset and approximated to the angle ⁇ ;
  • the waveguide wavelength ⁇ g31 of the feeding waveguide at the low frequency point is smaller than the waveguide wavelength ⁇ g21 of the feeding waveguide at the center frequency point, the spacing of the arrays
  • Each radiating element of the first sub-array 103 has an excitation equivalent phase difference greater than Therefore, the direction beam angle of the first sub-array 103 is greater than ⁇ .
  • the waveguide wavelength ⁇ g32 of the feed waveguide at the high-frequency point is smaller than the waveguide wavelength ⁇ g22 of the center-frequency feed waveguide.
  • Spacial The radiating element phase difference of each radiating element of the second sub-array 104 is less than
  • the direction beam angle of the second sub-array 104 is smaller than ⁇ .
  • the direction of the beam pointing angle of the two sub-array directions is opposite to ⁇ , the beam direction of the two sub-arrays synthesized at the high-frequency frequency point is partially offset and approximated. ⁇ angle.
  • FIG. 12 and FIG. 13 respectively show the low-mid-high-frequency point pattern curves corresponding to the first sub-array 103 and the second sub-array 104 of the antenna array of the second embodiment, and the low-medium-high-frequency point pattern beam pointing of the first sub-array 103
  • the angles are 1.1 degrees, 3.2 degrees, and 6.3 degrees, respectively, and the beam pointing angles of the low, medium, and high frequency point patterns of the second sub-array 104 are 6.2 degrees, 2.8 degrees, and -0.2 degrees, respectively, and the pattern beams of the low, medium, and high frequency points of the two subarrays are respectively There is a big difference in the pointing angles.
  • the beam pointing angle of the pattern of the first sub-array 103 becomes larger as the frequency increases, and the beam pointing angle of the pattern of the second sub-array 104 becomes smaller as the frequency increases.
  • 14 is the low-middle-high-frequency point pattern curve of the whole array.
  • the beam pointing angles of the low-middle-high-frequency point pattern of the full array pattern are 3.1 degrees, 3.0 degrees, and 2.9 degrees, respectively. It can be seen that the beam direction angle difference of the pattern of the whole array is different. It is much smaller than the subarray.
  • the reason for achieving the above effect is that the direction beam pointing angle of the first sub-array 103 and the second sub-array 104 is opposite to the frequency change, so that the synthesized pattern remains substantially unchanged due to partial cancellation.
  • the array is divided into two sub-arrays by adjusting the position of the waveguide port and the two sub-array feed waveguides.
  • the height of the ridges causes the direction beam of the center frequency point of the working frequency band to point to the required angle, and the direction of the beam direction of one of the sub-arrays changes with the frequency, and the direction of the two sub-arrays is combined.
  • the beam pointing angle of the figure does not change substantially with frequency, which solves the problem that the beam direction of the prior art pattern changes with frequency.
  • FIG. 15 is a structural diagram of an antenna array according to Embodiment 3 of the present application
  • FIG. 16 is a side view of an antenna array according to Embodiment 3 of the present application.
  • the ridge waveguide feeding is also employed, and the radiation unit structure is also in conformity with the first embodiment.
  • the adjacent array pitch of the first sub-array 103 in the 20 direction coincides with the adjacent radiation slit pitch of the second sub-array 104 along the 21 direction, and the first sub-array along the 20 direction All of the 105's positions are biased toward the waveguide centerline 22
  • the direction of the array of second sub-arrays 106 in the 21 direction deviating from the centerline of the waveguide is staggered.
  • the excitation amplitude control of each radiating element is similar to that of Embodiment 1, and can be controlled by adjusting the height of the double ridge of the waveguide and the position of each radiating slit from the center line of the waveguide.
  • the center-to-center spacing t1 of the waveguide 3 and the radiating slot 74 of the first sub-array 105 near the waveguide 3 is greater than the center-to-center spacing of the waveguide 3 and the radiating slot 75 of the second sub-array 106 near the waveguide 3.
  • T2 and the distances of t1 and t2 are all smaller than the half-feed waveguide wavelength, so that the excitation phase of the radiation unit 75 leads the radiation unit 74.
  • the center-to-center spacing of the radiation slit 75 and the radiation slit 74 is preferably adjacent to the two sub-arrays.
  • the center spacing of the radiation slots is equal and the excitation phase difference between the radiation slot 75 and the radiation slot 74 is 90 degrees at the center frequency, the radiation gap of the first sub-array 105 is the same as the direction of the waveguide center line, and the radiating element spacing s4 is smaller than the feeding waveguide.
  • s4 is one quarter of the wavelength of the center frequency point waveguide, such that the radiation slits 71 to 74 arranged in the 20 direction are equal to one quarter of the wavelength of the feed waveguide because the difference s4 of the feed path is equal to Introducing a phase difference of 90 degrees, the excitation phase is sequentially advanced by 90 degrees (such as the radiation slit 72 leading the radiation slit 71), and the direction of the radiation slit of the second sub-array 106 deviating from the center line of the waveguide is staggered.
  • the adjacent radiating elements will additionally introduce a phase difference of 180 degrees, so that the radiating elements corresponding to the radiating slots 75-78 arranged along the 21 direction are successively 270 degrees behind, equivalent to The phase of the radiation unit corresponding to the radiation slits 75-78 is sequentially advanced by 90 degrees (for example, the radiation slit 76 leads the radiation slit 75).
  • the equivalent excitation phase of the radiation unit corresponding to the radiation slits 71-78 is advanced by 90 degrees, so The beam pointing angle of the pattern of the entire array will deviate from the normal to the front in the 20 direction.
  • t1, t2, s4 and ridge height are determined by the excitation phase required by the radiating element.
  • the beam downtilt angle to be designed is ⁇ (offset from the normal to the 20 direction), first set the spacing of the radiating elements.
  • the excitation unit has a phase difference of 90 degrees and a beam pointing angle of ⁇
  • the direction of the beam direction of the pattern is also ⁇ .
  • the above setting makes the central frequency point pattern beam pointing angle of the working frequency band ⁇ .
  • the waveguide wavelength ⁇ g1 of the feeding waveguide at the low frequency point is larger than that of the feeding waveguide.
  • the radiating elements of the first sub-array 105 are excited to have a phase difference of less than 90 degrees, so that the pattern beam pointing angle of the first sub-array 105 is smaller than ⁇ , and for the second sub-array 106, the waveguide wavelength of the feeding waveguide at the low-frequency point is ⁇ .
  • G1 is greater than the waveguide wavelength ⁇ g2 of the center frequency feed waveguide, the spacing of the array
  • Each radiating element of the second sub-array 106 excites an equivalent phase difference greater than 90 degrees, and the second sub-array 106 has a pattern beam pointing angle greater than ⁇ , and at a low frequency point, the direction of the beam pointing angle of the two sub-array directions is opposite to ⁇ .
  • the direction beam beam direction synthesized by the two sub-arrays will partially cancel and approximate the angle ⁇ ; at the high frequency point of the working frequency band, for the first sub-array 105, the waveguide wavelength ⁇ g3 of the feeding waveguide at the high frequency point is smaller than the feeding power Waveguide center frequency point waveguide wavelength ⁇ g2 , array spacing
  • the radiating elements of the first sub-array 105 are excited to have a phase difference greater than 90 degrees, so that the pattern beam pointing angle of the first sub-array 105 is greater than ⁇
  • the waveguide wavelength of the feeding waveguide at the high-frequency point ⁇ g3 is smaller than the waveguide wavelength ⁇ g2 of the center-frequency feed waveguide, and the spacing of the elements
  • Each radiating element of the second sub-array 106 excites an equivalent phase difference of less than 90 degrees, and the pattern beam pointing angle of the second sub-array 106 is less than ⁇ , and the direction of the beam pointing angle of the two
  • FIG. 17 and FIG. 18 respectively show the low-mid-high-frequency point pattern curves corresponding to the first sub-array 105 and the second sub-array 106 of the antenna array of the third embodiment, and the low-medium-high-frequency point pattern beam pointing angle of the first sub-array 105 They are 18.3 degrees, 22.1 degrees, and 24.4 degrees, respectively, and the beam pointing angles of the low, medium, and high frequency point patterns of the second sub-array 106 are 24.3 degrees, 21.4 degrees, and 20.6 degrees, respectively, and the pattern beam pointing angles of the low, medium, and high frequency points of the two sub-arrays are respectively.
  • the beam pointing angle of the pattern of the first sub-array 105 becomes larger as the frequency increases
  • the beam pointing angle of the pattern of the second sub-array 106 becomes smaller as the frequency increases
  • the low-mid-high-frequency point pattern curve of the whole array, the beam pointing angles of the low-middle-high-frequency point pattern of the full array pattern are 22.4 degrees, 22.0 degrees, and 21.4 degrees, respectively. It can be seen that the difference in the beam pointing angle of the full array is different. The subarray is much smaller. The reason for achieving the above effect is that the direction beam directing angle of the first sub-array 105 and the second sub-array 106 is opposite to the frequency, so that the synthesized pattern remains substantially unchanged due to partial cancellation.
  • the above embodiment 3 divides the array into two sub-arrays by placing the antenna waveguide port in the middle portion of the array, and by adjusting the position of the waveguide port and the direction of the two sub-array radiation slots deviating from the center line of the waveguide,
  • the center frequency point pattern beam of the working frequency band points to the required angle, and the direction beam direction angle of one of the sub-arrays changes with the frequency of the other sub-array, so that the direction of the beam pattern of the two sub-arrays is basically not followed.
  • the frequency variation solves the problem that the beam direction of the prior art pattern changes with frequency.
  • the embodiment 2 and the third embodiment that the present application divides the feed port into the middle part of the array and splits the entire array into two sub-groups based on the conventional waveguide traveling wave antenna array.
  • Array one of the sub-arrays by setting the different sub-spaces of the two sub-arrays (Embodiment 1) or different feed waveguide ridge heights (Example 2) or different Arrays away from the waveguide centerline direction (Example 3)
  • the phase difference between the cells becomes larger as the frequency increases.
  • the pointing angle of the beam formed by the sub-array becomes larger as the frequency increases, and the phase difference between the cells of the other sub-array becomes smaller as the frequency increases, and the beam formed by the sub-array The pointing angle becomes smaller as the frequency increases.
  • the beam pointing angle of the entire array is basically constant with the frequency because the two sub-array beam pointing angles are opposite to the frequency.
  • the present application also provides a communication device including a baseband precoder, a transceiver channel connected to the baseband precoder, and an antenna array of any of the above connected to the transceiver channel.
  • the antenna array disclosed in the present application is applied to an AAU module (Active Antenna Unit active antenna unit) in a 5G wireless communication millimeter wave band base station system, and the system architecture is as shown in FIG. 20, and the antenna array part is composed of several rows and several columns.
  • the antenna array elements form a rectangular array, and one column in the vertical direction corresponds to one antenna port and is connected to one RF transceiver channel, and the horizontal direction multiple columns are connected to the multiple RF transceiver channels.
  • the vertical direction of the array is fixed by a fixed analog weight of the antenna feed network to form a single beam, and the array horizontal direction is controlled by the RF channel or the baseband for flexible amplitude and phase control to form multiple beams, thereby improving the coverage quality of the wireless signal and improving the network capacity. the goal of.

Abstract

一种天线阵列及通信设备,该天线阵列包括:馈电波导,以及覆盖在馈电波导上的盖板;馈电波导上设置有波导口,盖板上设置有沿馈电波导的长度方向排列且用于发射波导口馈入的信号的多个辐射缝隙,分为第一子阵列和第二子阵列;在天线阵列工作频率的中心频点,所述第一子阵列的波束指向角度与及天线阵列需要波束指向角度的差值、所述第二子阵列波束指向角度与天线阵列需要波束指向角度的差值均小于设定阈值,且随着天线阵列的频率变化,所述第一子阵列及所述第二子阵列波束指向角度随频率变化趋势相反。因此,在第一子阵列及第二子阵列合成时,可以较好的减小不同频点波束指向差异,进而提高天线阵列的通信效果。

Description

一种天线阵列及通信设备 技术领域
本申请涉及到天线的技术领域,尤其涉及到一种天线阵列及通信设备。
背景技术
当前无线通信中,高速数据业务以及万物互联的接入需求正呈现出一种爆炸式的增长,为适应未来业务需求,各设备商均大力投入对第五代移动通信(简称5G)系统的需求分析以及关键技术研究,其中毫米波天线阵列是5G研究的一个关键技术点。在毫米波频段,波导缝隙天线由于其馈电损耗小、辐射效率高,得到了广泛的应用。
在无线通信基站天线中,为保证下行信号覆盖质量,通常会采用多个天线阵子在垂直面方向组成阵列来产生较高的波束增益,并通过合理的配置每个阵元的幅度以及相位激励,使得波束相对阵面法线方向有一定下倾角(如图1所示)。低频段基站天线通常采用对称阵子形式,阵元的激励幅度和激励相位在微带线或者同轴电缆组成的馈电网络上控制,实现波束下倾相对简单。而毫米波频段的波导缝隙天线,由于馈电网络波导尺寸较大而且波导波长较长,实现波束下倾存在较多的问题,比如加工困难、波束指向不一致等。
针对波导缝隙天线阵列实现波束下倾,现有技术方案一采用串行馈电的波导行波阵列方式,图1为结构透视示意图,天线阵列主要由馈电波导300以及波导顶面开矩形缝隙形成的多个辐射单元301组成,馈电波导300通常采用脊波导的实现形式来缩小尺寸,辐射单元301按照一定的间距沿馈电波导排列。基站设备信号由波导口302进入馈电波导,电磁波在馈电波导中往波导末端303传播,每个缝隙由于切割了波导壁上的传导电流,缝隙会在馈电波导内耦合部分能量并向自由空间辐射,波导末端303通常会安装一个吸波负载用于吸收辐射单元未辐射完的能量,电磁波在馈电波导内以行波的方式传播。波导行波阵列由于其结构简单应用较为广泛,但因其存在较严重的色散问题,会严重影响宽带通信系统的性能。
阵元的幅度相位激励由需要的天线辐射方向图特性决定,波导行波阵列中阵元的激励幅度由缝隙偏移波导中心线的距离t控制,阵元的激励相位由相邻缝隙的中心间距d控制。不考虑幅度加权,假如要求方向图波束指向角偏离阵面法线方向为θ度,则相邻缝隙中心间距d可由如下公式1决定,其中λ为天线工作频率对应的自由空间波长,λg为天线工作频率对应的馈电波导波长。
Figure PCTCN2017073246-appb-000001
波导行波天线阵列由于其结构简单应用较为广泛,但在宽带通信系统中,由于其存在色散问题会严重影响系统性能,如图2所示为波导行波阵列典型的方向图曲线,在27GHz、28GHz、29GHz频点上方向图曲线分别为310~312,波束指向角度分别为6/10/15度。若将此天线阵列用于无线基站通信系统,对终端用户而言,相当于部分频点的波束指向未对准用户,这会导致终端设备接收信号质量下降。
分析现有技术一存在上述缺点的原因可参考公式1,对于固定的阵子间距d(大于λ/2), 在不同频率上λ、λg随频率增高而减小,λg的绝对值大于λ而且λg随频率变化的斜率也大于λ,这就使得在不同的频点上波束偏离阵面法线的方向θ不一致,如果d<λg/2,波束指向角度随频率增加而减小,如果d>λg/2,波束指向角度随频率增加而变大,这种现象我们称之为波束斜视或者波束色散,波束斜视或者波束色散会影响到天线的通信效果。
发明内容
本申请提供了一种天线阵列及通信设备,用以提高天线阵列的通信效果。
本申请提供了一种天线阵列,该天线阵列包括:馈电波导,以及覆盖在馈电波导上的盖板;所述馈电波导上设置有波导口,所述盖板上设置有沿所述馈电波导的长度方向排列且用于发射所述波导口馈入的信号的多个辐射缝隙,其中,位于所述波导口的一侧的多个辐射缝隙为第一子阵列,位于所述输入波导的另一侧多个辐射缝隙为第二子阵列;
在天线阵列工作频率的中心频点,所述第一子阵列的波束指向角度与及天线阵列需要波束指向角度的差值、所述第二子阵列波束指向角度与天线阵列需要波束指向角度的差值均小于设定阈值,且随着天线阵列的频率变化,所述第一子阵列及所述第二子阵列波束指向角度随频率变化趋势相反。
在上述技术方案中,通过设置波束指向角度随频率变化趋势相反的第一子阵列及所述第二子阵列,且第一子阵列及第二子阵列的波束指向角度与天线阵列的波束指向角度偏离方向相反,但相反的角度近似,因此,在第一子阵列及第二子阵列合成时,可以较好的减小不同频点波束指向差异,进而提高天线阵列的通信效果。
在一个具体的实施方案中,所述多个辐射缝隙沿所述馈电波导的中心线交错设置;所述第一子阵列中,相邻的辐射缝隙的中心间距为s1,所述第二子阵列中,相邻的辐射缝隙的中心间距为s2,其中,s1大于所述馈电波导波长的一半,s2小于所述馈电波导波长的一半。
在一个具体的实施方案中,所述第一子阵列中的多个辐射缝隙等间距设置,所述第二子阵列中的多个辐射缝隙等间距设置。
在一个具体的实施方案中,所述第一子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t1;所述第二子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t2;其中,t1及t2均小于所述馈电波导波长的一半。
在一个具体的实施方案中,所述馈电波导为双脊波导,所述波导口位于所述双脊波导的两个脊之间,所述两个脊分别对应一个子阵列。
在一个具体的实施方案中,所述多个辐射缝隙沿所述馈电波导的中心线交错设置;所述第一子阵列中相邻的辐射缝隙的中心间距及所述第二子阵列中相邻的辐射缝隙的中心间距均为s3,且所述s3大于所述馈电波导波长的一半;
所述馈电波导为双脊波导,所述波导口位于所述双脊波导的两个脊之间,所述两个脊分别对应一个子阵列,且与所述第一子阵列对应的脊的高度高于与所述第二子阵列对应的脊的高度。
在一个具体的实施方案中,所述第一子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t1;所述第二子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t2;其中,t1大于t2,且t1及t2均小于所述馈电波导波长的一半。
在一个具体的实施方案中,所述第一子阵列的多个辐射缝隙位于所述馈电波导的中心线的同一侧,所述第二子阵列的多个辐射缝隙沿所述馈电波导的中心线交错设置;所述第一子阵列中相邻的辐射缝隙的中心间距及所述第二子阵列中相邻的辐射缝隙的中心间距均为s4,且所述s4小于所述馈电波导波长的一半。
在一个具体的实施方案中,所述第一子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t1;所述第二子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t2;其中,t1大于t2,且t1及t2均小于所述馈电波导波长的一半。
在一个具体的实施方案中,s4为馈电波导在工作频段的中心频点的波导波长的四分之一。
在一个具体的实施方案中,针对每个辐射缝隙,所述馈电波导的侧壁上设置有与该辐射缝隙对应的枝节,所述馈电波导的脊上设置有与所述枝节对应的缺口,且所述辐射缝隙位于所述馈电波导中心线的一侧,所述枝节及所述缺口位于所述馈电波导中心线的另一侧。
本申请还提供了一种通信设备,其特征在于,包括基带预编码器,与所述基带预编码器连接的收发通道,与所述收发通道连接的上述任一项所述的天线阵列。
在上述技术方案中,通过设置波束指向角度随频率变化趋势相反的第一子阵列及所述第二子阵列,且第一子阵列及第二子阵列的波束指向角度与天线阵列的波束指向角度偏离方向相反,但相反的角度近似,因此,在第一子阵列及第二子阵列合成时,可以较好的减小不同频点波束指向差异,进而提高天线阵列的通信效果。
附图说明
图1为现有技术中串行馈电波导缝隙天线的结构示意图;
图2为现有技术中串行馈电波导缝隙天线低中高频点方向图;
图3为申请实施例提供的天线阵列的拓扑图;
图4为本申请实施例1提供的天线阵列的结构示意图;
图5为本申请实施例1提供的天线阵列的辐射单元的结构示意图;
图6为本申请实施例1提供的天线阵列的俯视图;
图7为本申请实施例1提供的第一子阵列101低中高频点方向图曲线;
图8为本申请实施例1提供的第二子阵列102低中高频点方向图曲线;
图9为本申请实施例1提供的天线阵列的全阵列低中高频点方向图曲线;
图10为本申请实施例2提供的天线阵列的结构示意图;
图11为本申请实施例2提供的天线阵列的俯视图;
图12为本申请实施例2提供的第一子阵列103低中高频点方向图曲线;
图13为本申请实施例2提供的第二子阵列104低中高频点方向图曲线;
图14为本申请实施例2提供的天线阵列的全阵列低中高频点方向图曲线;
图15为本申请实施例3提供的天线阵列的结构示意图;
图16为本申请实施例3提供的天线阵列的俯视图;
图17为本申请实施例3提供的第一子阵列105低中高频点方向图曲线;
图18为本申请实施例3提供的第二子阵列106低中高频点方向图曲线;
图19为本申请实施例3提供的天线阵列的全阵列低中高频点方向图曲线;
图20为本申请实施例提供的通信设备的结构框图。
具体实施方式
鉴于现有技术方案中的天线阵列存在方向图波束指向不一致的问题,本申请提出一种新型的天线阵列,该天线阵列包括:馈电波导,以及覆盖在馈电波导上的盖板;馈电波导上设置有波导口,盖板上设置有沿馈电波导的长度方向排列且用于发射波导口馈入的信号的多个辐射缝隙,其中,位于波导口的一侧的多个辐射缝隙为第一子阵列,位于输入波导的另一侧多个辐射缝隙为第二子阵列;
在天线阵列工作频率的中心频点,所述第一子阵列的波束指向角度与及天线阵列需要波束指向角度的差值、所述第二子阵列波束指向角度与天线阵列需要波束指向角度的差值均小于设定阈值,且随着天线阵列的频率变化,所述第一子阵列及所述第二子阵列波束指向角度随频率变化趋势相反。
在该天线阵列中,通过中心馈电的不对称子阵合成方式较好的减小了不同频点波束指向差异。具体原理如下:参考图3所示的天线阵列的拓扑结构,将阵列馈电端口置于阵列中间,端口两侧各自按照传统行波阵列的方式排列若干天线阵子,整个阵列以馈电端口为界分为两个第一子阵列和第二子阵列,通过合理设置每个阵元的位置或者设置馈电波导结构使得两个子阵的阵元(天线)间相位差近似满足一定的关系。具体原理为:即对于工作频段的中心频点F0,第一子阵列与第二子阵列的相邻阵元间等效相位差均为
Figure PCTCN2017073246-appb-000002
满足中心频点阵列方向图指向角度为需要的θ角;对于工作频段的低端频点FL,第一子阵列的阵元间等效相位差为
Figure PCTCN2017073246-appb-000003
而第二子阵列的阵元间等效相位差为
Figure PCTCN2017073246-appb-000004
对于工作频段的高端频点FH,第一子阵列的阵元间等效相位差为
Figure PCTCN2017073246-appb-000005
而第二子阵列的阵元间等效相位差为
Figure PCTCN2017073246-appb-000006
对于第一子阵列来说,阵元间的等效相位差随频率增高而加大,第一子阵列的方向图波束指向角度随频率增高而变大,对于第二子阵列来说,阵元间的相位差随频率增高而减小,第二子阵列的方向图波束指向随频率增高而变小,整个阵列合成的方向图波束指向角度由于两个子阵波束指向角度随频率变化趋势相反而基本随频率保持不变,从而可以改善天线的通信效果。
为了方便理解本实施例提供的天线阵列,下面结合具体的附图以及实施例对本申请提供的天线阵列进行详细的描述。
实施例1
一并参考图4、图5及图6,其中,图4为本申请实施例1提供的天线阵列的结构示意图;图5为本申请实施例1提供的天线阵列的辐射单元的结构示意图;图6为本申请实施例1提供的天线阵列的俯视图;
如图4所示,在本实施例中,天线阵列由馈电波导及盖板组成,盖板上沿馈电波导分布有若干辐射缝隙11~18,辐射缝隙可以分为沿20以及21方向分布的两组,信号从位于馈电波导中间部分的波导口3馈入,在馈电波导内功分为两路并以行波的方式沿20、21方向传播,并通过辐射缝隙11~18往外辐射信号。
在具体设置时,辐射缝隙11~14为第一子阵列,辐射缝隙15~18为第二子阵列,在具体设置辐射缝隙时,多个辐射缝隙沿馈电波导的中心线交错设置;第一子阵列中,相邻的辐射缝隙的中心间距为s1,第二子阵列中,相邻的辐射缝隙的中心间距为s2,沿20方向分布的子阵1的相邻辐射缝隙中心间距s1要大于沿21方向分布的相邻辐射缝隙中心间距s2,本申请实施例1就是利用了两组不等间距的辐射单元实现。
如图4所示,在本实施例中,馈电波导采用脊波导的形式,该脊波导可以为标准金属 波导或者介质波导,作为一个具体实施方式,考虑到耗损以及天线阵列的尺寸,该介质波导采用金属脊波导。脊波导可以有效压缩馈电波导宽边的宽度,这有利于减小组合成二维阵列后的方向图的栅瓣;具体的,该馈电波导采用双脊波导,且波导口作为馈电端口设置在双脊波导的两个脊4之间。且输入波导的两个脊4与第一子阵列及第二子阵列一一对应。
此外,针对每个辐射缝隙,馈电波导的侧壁上设置有与该辐射缝隙对应的枝节,馈电波导的脊上设置有与枝节对应的缺口,且辐射缝隙位于馈电波导中心线的一侧,枝节及缺口位于馈电波导中心线的另一侧。并且对应的一组辐射缝隙、枝节及缺口组成一个辐射单元。枝节30与缺口31偏离馈电波导中心线22的方向与辐射缝隙偏离中心线的方向相反,即辐射缝隙与枝节30以及缺口31分别位于波导中心线两侧。射频信号从端口30馈入,经辐射单元辐射后剩余能量由端口31馈出,枝节30与缺口31的作用是用于抵消辐射缝隙对射频信号的反射,即保证馈入端口40匹配。
为了方便理解本实施例1的天线阵列,下面详细说明其工作原理:
天线阵列的方向图完全由每个辐射单元的位激励幅度、激励相位决定(辐射单元位置的影响包含在激励相位中考虑),对激励幅度而言,参考图6,射频信号从馈电波导中间部分的波导口3输入,在馈电波导内功率功分为两路并分别沿20以及21方向传播,波导口3位于双脊波导的两个脊之间,沿两个方向传播的信号功率比例由波导口3的靠近传播方向20的脊50以及靠近传播方向21的脊51控制,脊的高度d越高分配的功率越大,可以改变脊50以及脊51的高度调整第一子阵列101与第二子阵列102的幅度分布,而第一子阵列101与第二子阵列102所包含的各个辐射单元的激励幅度可以通过改变辐射缝隙偏离波导中心线22的距离调整,每个辐射单元具体的幅度激励由需要的天线方向图决定,实际上阵元激励幅度对本申请所要解决的波束指向色散问题并无太大关联,在此不做更详细的说明。
对激励相位而言,波导口3与第一子阵列101中靠近波导口3的辐射缝隙14的中心间距t1大于波导口3与第二子阵列102中靠近波导口3的辐射缝隙15的中心间距t2,且t1、t2的距离均小于半倍馈电波导波长,这样辐射缝隙15所在的辐射单元的激励相位超前于辐射缝隙14所在的辐射单元14,沿馈电波导20方向排列的辐射缝隙间距s1大于沿馈电波导21方向排列的辐射缝隙间距s2,其中s1大于馈电波导波长的一半,这样沿20方向排布的辐射单元11~14,一方面由于馈电路径差异s1大于馈电波导波长一半而引入>180度的相位差,另一方面由于相邻阵子沿波导中心线交错排列额外引入180度相位差,因此辐射单元11~14的等效相位(实际相位差与360度整数倍取模后的相位,比如实际相位差为380度,等效相位差为20度)是依次超前的(比如辐射缝隙12超前辐射缝隙11,辐射缝隙13超前于辐射缝隙12),s2小于馈电波导波长的一半,这样且沿21方向排布的辐射单元15~18,一方面由于馈电路径差异s2小于馈电波导波长一半而引入<180度的相位差,另一方面由于相邻阵子沿波导中心线交错排列额外引入180度相位差,因此辐射单元15~18的等效相位也是依次超前的(比如辐射缝隙16超前辐射缝隙15,辐射缝隙17超前于辐射缝隙16),整体来看,辐射缝隙11~18对应的辐射单元等效的激励相位是依次超前的,因此整个阵列的方向图波束指向角会朝20方向偏离阵面法线。t1、t2、s1、s2、d的尺寸由辐射单元需要的激励相位决定,这几个尺寸通常需要通过多次迭代来确定,比如需要设计的波束下倾角为θ(偏离法线指向20方向),首先调整脊高d的使得馈电波导在工作频段的中心频点的波导波长λg2近似为1.4倍自由空间波长λ,即在中心频点
Figure PCTCN2017073246-appb-000007
初始的辐射单元间相位差为
Figure PCTCN2017073246-appb-000008
调整t1、t2、s1、s2的尺寸使得在中心频点辐射单元11~18相邻单元等效相位差近似为
Figure PCTCN2017073246-appb-000009
由于
Figure PCTCN2017073246-appb-000010
是满足
Figure PCTCN2017073246-appb-000011
阵子间距下波束指向θ角需要的相位差,而调整t1、t2、s1、s2后辐射单元间距不等于
Figure PCTCN2017073246-appb-000012
因此阵列方向图波束指向与θ角会有一定偏差,此时可以用s1,s2再算出两个相位差,
Figure PCTCN2017073246-appb-000013
可再次调整s1的尺寸使得辐射缝隙11~14的等效相位差近似为
Figure PCTCN2017073246-appb-000014
误差优选不超过所设定指向角度的10%。调整s2的尺寸使得辐射缝隙15~18的等效相位差近似为
Figure PCTCN2017073246-appb-000015
误差优选不超过所设定指向角度的10%。这样第一子阵列101以及102的方向图波束指向角都为θ,继续调整t1、t2的尺寸使得两个子阵合成的方向图波束指向角度为θ。
以上的设置使工作频段的中心频点方向图波束指向角为θ,在工作频段的低频点,馈电波导的波导波长λg1大于中心频点馈电波导的波导波长λg2,对第一子阵列101而言,由于阵子间距
Figure PCTCN2017073246-appb-000016
第一子阵列101的各个辐射单元激励等效相位差小于
Figure PCTCN2017073246-appb-000017
第一子阵列101的方向图波束指向角度小于θ,对第二子阵列102而言,由于阵子间距:
Figure PCTCN2017073246-appb-000018
第二子阵列102的各个辐射单元激励等效相位差大于第二子阵列102的方向图波束指向角度大于θ,在低频点由于两个子阵方向图波束指向角度偏离θ的方向相反,两个子阵合成的方向图波束指向会部分抵消而近似指向θ角度;在工作频段的高频点,馈电波导的波导波长λg3小于中心频点馈电波导的波导波长λg2,对第一子阵列101而言,由于阵子间距
Figure PCTCN2017073246-appb-000020
第一子阵列101的各个辐射单元激励等效相位差大于
Figure PCTCN2017073246-appb-000021
第一子阵列101的方向图波束指向角度大于θ,对第二子阵列102而言,由于阵子间距:
Figure PCTCN2017073246-appb-000022
第二子阵列102的各个辐射单元激励等效相位差小于
Figure PCTCN2017073246-appb-000023
第二子阵列102的方向图波束指向角度小于θ,同样由于两个子阵方向图波束指向角度偏离θ的方向相反,在高频频点两个子阵合成的方向图波束指向也会部分抵消而近似指向θ角度。
图7、图8分别给出了实施例1天线阵列的第一子阵列101以及第二子阵列102对应的低中高频点方向图曲线,第一子阵列101低中高频点方向图波束指向角度分别为4.7度、6.6度、9.0度,而第二子阵列102低中高频点方向图波束指向角度分别为9.9度、7.4度、4.9度,实际上单独看第一子阵列101和第二子阵列102,可以看出不管是采用第一子阵列101的阵子间距大于半倍波导波长的方案或者采用第二子阵列102的阵子间距小于半倍波导波长的方案,低中高频点的方向图波束指向角度都会存在较大的差异,同时可以看出第一子阵列101的方向图波束指向角度随频率增高而变大,第二子阵列102的方向图波束指向角度随频率增高而变小,图9为整个阵列的低中高频点方向图曲线,全阵方向图低中高频点方向图波束指向角度分别为6.7度、7度、6.7度,可以看出,相比第一子阵列101或者第二子阵列102的低中高频点波束指向角度差异,全阵的方向图波束指向角度差异要小很多。达成以上效果的原因是第一子阵列101和第二子阵列102的方向图波束指向角度随频率变化的趋势相反,使得合成的方向图由于部分抵消而基本保持不变。
通过上述描述可以看出,实施例1与现有技术相比,通过将天线波导口置于阵列中间部分,将阵列分为两个子阵,通过调整波导口位置以及两个子阵辐射单元的间距,使得在工作频段的中心频点方向图波束指向所需要的角度,同时其中一个子阵的方向图波束指向角度随频率变化趋势与另外一个子阵相反,这样两个子阵合成的方向图波束指向角度基本不随频率变化,解决了现有技术方向图波束指向随频率变化的问题。
实施例2
图10给出了本申请实施例2的天线阵列结构图,图11给出了本申请实施例2的天线阵列的侧视图。本实施例提供的馈电波导同样采用脊波导馈电,辐射单元结构也与实施例1中的脊波导及辐射单元一致。本实施例提供的天线阵列与实施例1的天线阵列的差别在于:在本实施例中,沿20方向的第一子阵列103的相邻辐射缝隙间距与沿21方向的第二子阵列104的相邻辐射缝隙间距一致,即第一子阵列103中相邻的辐射缝隙的中心间距及第二子阵列104中相邻的辐射缝隙的中心间距均为s4,且s4大于馈电波导波长的一半。此外,在本实施例中,第一子阵列103对应的馈电波导的脊高度d1与第二子阵列104对应的馈电波导的脊高度d2不一致。
本申请实施例2公开天线阵列的工作原理为:
本申请实施例2中的各辐射单元的激励幅度控制与实施例1类似,可以通过调整波导口双脊的高度以及各个辐射缝隙偏离波导中心线位置控制。对激励相位而言,波导口3与第一子阵列103中靠近波导口3的辐射缝隙64的中心间距t1大于波导口3与第二子阵列104中靠近波导口3的辐射缝隙65的中心间距t2,且t1、t2的距离均小于半倍馈电波导波长,这样辐射单元65的激励等效相位超前于辐射单元64,第一子阵列103的馈电波导的脊高度较高,对应的波导波长较短,半倍波导波长小于第一子阵列103的相邻阵子间距s3,这样沿20方向排布的辐射缝隙61~64,一方面由于馈电路径差异s3大于馈电波导波长一半而引入>180度的相位差,另一方面由于相邻阵子沿波导中心线交错排列额外引入180度相位差,因此辐射单元61~64的等效相位是依次超前的(比如辐射缝隙62超前辐射缝隙61,辐射缝隙63超前于辐射缝隙62),第二子阵列104的馈电波导的脊高度较低,对应的波导波长较长,半倍波导波长大于第二子阵列104的相邻阵子间距s3,这样且沿21方向排布的辐射缝隙65~68,一方面由于馈电路径差异s3小于馈电波导波长一半而引入<180度的相位差,另一方面由于相邻阵子沿波导中心线交错排列额外引入180度相位差,因此辐射单元65~68的等效相位也是依次超前的(比如辐射缝隙66超前辐射缝隙65,辐射缝隙67超前于辐射缝隙66),整体来看,辐射缝隙61~68对应的辐射单元的激励等效相位是依次超前的,因此整个阵列的方向图波束指向角会朝20方向偏离阵面法线。t1、t2、d1、d2、s3的尺寸由辐射单元需要的激励相位决定,比如需要设计的波束下倾角为θ(偏离法线指向20方向),首先设置辐射单元的间距s3近似为工作频段中心频点的0.7倍波长,天线方向图波束指向θ角度需要的阵元间相位差为
Figure PCTCN2017073246-appb-000024
调整第一子阵列103的馈电网络的脊5的脊高d1使得103的馈电波导在工作频段的中心频点的波导波长λg21<2*s3,同时使得第一子阵列103各辐射单元在中心频点的激励等效相位差近似为
Figure PCTCN2017073246-appb-000025
误差优选不超过所设定指向角度的10%,调整第二子阵列104的馈电网络的脊6的脊高d2使得104的馈电波导在工作频段的中心频点的波导波长λg22>2*s3,同时使得第二子阵列104各辐射单元在中心频点的激励等效相位差近似为
Figure PCTCN2017073246-appb-000026
误差优选不超过所设定指向角度的10%,这样第一子阵列103以及第二子阵列104 的中心频点方向图波束指向角都为θ,继续调整t1、t2的尺寸使得两个子阵合成的方向图波束指向角度也为θ。
以上的设置使工作频段的中心频点方向图波束指向角为θ,在工作频段的低频点,对第一子阵列103而言,馈电波导在低频点的波导波长λg11大于馈电波导的中心频点波导波长λg21,阵子间距
Figure PCTCN2017073246-appb-000027
第一子阵列103的各个辐射单元激励等效相位差小于
Figure PCTCN2017073246-appb-000028
因此第一子阵列103的方向图波束指向角度小于θ,对第二子阵列104而言,馈电波导在低频点的波导波长λg12大于中心频点馈电波导的波导波长λg22,阵子间距
Figure PCTCN2017073246-appb-000029
第二子阵列104的各个辐射单元激励等效相位差大于
Figure PCTCN2017073246-appb-000030
第二子阵列104的方向图波束指向角度大于θ,在低频点由于两个子阵方向图波束指向角度偏离θ的方向相反,两个子阵合成的方向图波束指向会部分抵消而近似指向θ角度;在工作频段的高频点,对第一子阵列103而言,馈电波导在低频点的波导波长λg31小于馈电波导在中心频点的波导波长λg21,阵子间距
Figure PCTCN2017073246-appb-000031
第一子阵列103的各个辐射单元激励等效相位差大于
Figure PCTCN2017073246-appb-000032
因此第一子阵列103的方向图波束指向角度大于θ,对第二子阵列104而言,馈电波导在高频点的波导波长λg32小于中心频点馈电波导的波导波长λg22,阵子间距
Figure PCTCN2017073246-appb-000033
第二子阵列104的各个辐射单元激励等效相位差小于
Figure PCTCN2017073246-appb-000034
第二子阵列104的方向图波束指向角度小于θ,同样由于两个子阵方向图波束指向角度偏离θ的方向相反,在高频频点两个子阵合成的方向图波束指向也会部分抵消而近似指向θ角度。
如图12、图13分别给出了实施例2天线阵列的第一子阵列103以及第二子阵列104对应的低中高频点方向图曲线,第一子阵列103低中高频点方向图波束指向角度分别为1.1度、3.2度、6.3度,而第二子阵列104低中高频点方向图波束指向角度分别为6.2度、2.8度、-0.2度,两个子阵低中高频点的方向图波束指向角度都有较大的差异,同时可以看出第一子阵列103的方向图波束指向角度随频率增高而变大,第二子阵列104的方向图波束指向角度随频率增高而变小,图14为整个阵列的低中高频点方向图曲线,全阵方向图低中高频点方向图波束指向角度分别为3.1度、3.0度、2.9度,可以看出,全阵的方向图波束指向角度差异要比子阵的小很多。达成以上效果的原因是第一子阵列103和第二子阵列104的方向图波束指向角度随频率变化的趋势相反,使得合成的方向图由于部分抵消而基本保持不变。
通过上述描述可以看出,本申请实施例2与现有技术相比,通过将天线波导口置于阵列中间部分,将阵列分为两个子阵列,通过调整波导口位置以及两个子阵馈电波导脊的高度,使得在工作频段的中心频点方向图波束指向所需要的角度,同时其中一个子阵的方向图波束指向角度随频率变化趋势与另外一个子阵相反,这样两个子阵合成的方向图波束指向角度基本不随频率变化,解决了现有技术方向图波束指向随频率变化的问题。
实施例3
图15给出了本申请实施例3的天线阵列结构图,图16给出了本申请实施例3的天线阵列的侧视图。在实施例3同样采用脊波导馈电,辐射单元结构也与实施例1一致。差别在于:在实施例3中,沿20方向的第一子阵列103的相邻阵子间距与沿21方向的第二子阵列104的相邻辐射缝隙间距一致,而且沿20方向的第一子阵列105的所有阵子都偏向波导中心线22 的同一侧,沿21方向的第二子阵列106的阵子偏离波导中心线的方向是交错的。
本申请实施例3的天线阵列工作原理为:
各辐射单元的激励幅度控制与实施例1类似,可以通过调整波导口双脊的高度以及各个辐射缝隙偏离波导中心线位置控制。对激励相位而言,波导口3与第一子阵列105中靠近波导口3的辐射缝隙74的中心间距t1大于波导口3与第二子阵列106中靠近波导口3的辐射缝隙75的中心间距t2,且t1、t2的距离均小于半倍馈电波导波长,这样辐射单元75的激励相位超前于辐射单元74,本实施例优选辐射缝隙75与辐射缝隙74的中心间距与两个子阵相邻辐射缝隙的中心间距相等且辐射缝隙75与辐射缝隙74的激励相位差在中心频点为90度,第一子阵列105的辐射缝隙偏离波导中心线的方向相同,辐射单元间距s4小于馈电波导波长一半,本实施例优选s4为中心频点波导波长的四分之一,这样沿20方向排布的辐射缝隙71~74,由于馈电路径差异s4等于馈电波导波长的四分之一而引入90度的相位差,其激励相位是依次超前90度的(比如辐射缝隙72超前辐射缝隙71),第二子阵列106的辐射缝隙偏离波导中心线的方向是交错的,由于辐射缝隙偏离波导中心线方向是交错的,相邻辐射单元会额外引入180度相位差,这样沿21方向排布的辐射缝隙75~78对应的辐射单元相位依次落后270度,等效于辐射缝隙75~78对应的辐射单元相位依次超前90度(比如辐射缝隙76超前辐射缝隙75),整体来看,辐射缝隙71~78对应的辐射单元的等效激励相位依次超前90度,因此整个阵列的方向图波束指向角会朝20方向偏离阵面法线。t1、t2、s4以及脊高的尺寸由辐射单元需要的激励相位决定,比如需要设计的波束下倾角为θ(偏离法线指向20方向),首先设置辐射单元的间距
Figure PCTCN2017073246-appb-000035
即满足辐射单元激励相位差为90度且波束指向角为θ,调整馈电波导的脊高使得馈电波导在工作频段的中心频点的波导波长λg2=4*s4,这样第一子阵列105以及第二子阵列106的辐射单元激励等效相位差在中心频点为90度,且中心频点方向图波束指向角都为θ,再细微调整t1、t2的尺寸使得两个子阵合成的方向图波束指向角度也为θ。
以上的设置使工作频段的中心频点方向图波束指向角为θ,在工作频段的低频点,对第一子阵列105而言,馈电波导在低频点的波导波长λg1大于馈电波导的中心频点波导波长λg2,阵子间距
Figure PCTCN2017073246-appb-000036
第一子阵列105的各个辐射单元激励相位差小于90度,因此第一子阵列105的方向图波束指向角度小于θ,对第二子阵列106而言,馈电波导在低频点的波导波长λg1大于中心频点馈电波导的波导波长λg2,阵子间距
Figure PCTCN2017073246-appb-000037
第二子阵列106的各个辐射单元激励等效相位差大于90度,第二子阵列106的方向图波束指向角度大于θ,在低频点由于两个子阵方向图波束指向角度偏离θ的方向相反,两个子阵合成的方向图波束指向会部分抵消而近似指向θ角度;在工作频段的高频点,对第一子阵列105而言,馈电波导在高频点的波导波长λg3小于馈电波导的中心频点波导波长λg2,阵子间距
Figure PCTCN2017073246-appb-000038
第一子阵列105的各个辐射单元激励相位差大于90度,因此第一子阵列105的方向图波束指向角度大于θ,对第二子阵列106而言,馈电波导在高频点的波导波长λg3小 于中心频点馈电波导的波导波长λg2,阵子间距
Figure PCTCN2017073246-appb-000039
第二子阵列106的各个辐射单元激励等效相位差小于90度,第二子阵列106的方向图波束指向角度小于θ,在高频点由于两个子阵方向图波束指向角度偏离θ的方向相反,两个子阵合成的方向图波束指向会部分抵消而近似指向θ角度。
图17、图18分别给出了实施例3天线阵列的第一子阵列105以及第二子阵列106对应的低中高频点方向图曲线,第一子阵列105低中高频点方向图波束指向角度分别为18.3度、22.1度、24.4度,而第二子阵列106低中高频点方向图波束指向角度分别为24.3度、21.4度、20.6度,两个子阵低中高频点的方向图波束指向角度都有较大的差异,同时可以看出第一子阵列105的方向图波束指向角度随频率增高而变大,第二子阵列106的方向图波束指向角度随频率增高而变小,图19为整个阵列的低中高频点方向图曲线,全阵方向图低中高频点方向图波束指向角度分别为22.4度、22.0度、21.4度,可以看出,全阵的方向图波束指向角度差异要比子阵列的小很多。达成以上效果的原因是第一子阵列105和第二子阵列106的方向图波束指向角度随频率变化的趋势相反,使得合成的方向图由于部分抵消而基本保持不变。
上述实施例3与现有技术相比,通过将天线波导口置于阵列中间部分,将阵列分为两个子阵列,通过调整波导口位置以及两个子阵辐射缝隙偏离波导中心线的方向,使得在工作频段的中心频点方向图波束指向所需要的角度,同时其中一个子阵的方向图波束指向角度随频率变化趋势与另外一个子阵相反,这样两个子阵合成的方向图波束指向角度基本不随频率变化,解决了现有技术方向图波束指向随频率变化的问题。
通过上述具体的实施例1、实施例2及实施例3可以看出,本申请在传统波导行波天线阵列的基础上,将馈电端口置于阵列中间部分,将整个阵列拆分为两个子阵列,通过分别设置两个子阵列不同的阵子间距(实施例1)或者不同的馈电波导脊高度(实施例2)或者不同的阵子偏离波导中心线方向(实施例3),使得其中一个子阵列的单元间相位差随频率增高而变大,该子阵列形成的波束的指向角度随频率增高而变大,另外一个子阵列的单元间相位差随频率增高而变小,该子阵列形成的波束的指向角度随频率增高而变小,整个阵列合成的波束指向角度由于两个子阵波束指向角度随频率变化趋势相反而基本随频率保持不变。
本申请还提供了一种通信设备,该通信设备包括基带预编码器,与基带预编码器连接的收发通道,与收发通道连接的上述任一项的天线阵列。
具体的,本申请公开的天线阵列应用于5G无线通信毫米波频段基站系统中的AAU模块(Active Antenna Unit有源天线单元),系统架构如图20所示,天线阵列部分由若干行以及若干列天线阵元组成一个矩形阵列,垂直方向一列对应一个天线端口与一路射频收发通道相连,水平方向多列与多路射频收发通道相连。阵列垂直方向通过天线馈电网络的固定模拟加权形成一个单波束,而阵列水平方向通过射频通道或者基带进行灵活的幅相控制形成多个波束,这样可以达到改善无线信号的覆盖质量以及提升网络容量的目的。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种天线阵列,其特征在于,包括:馈电波导,以及覆盖在馈电波导上的盖板;所述馈电波导上设置有波导口,所述盖板上设置有沿所述馈电波导的长度方向排列且用于发射所述波导口馈入的信号的多个辐射缝隙,其中,位于所述波导口的一侧的多个辐射缝隙为第一子阵列,位于所述输入波导的另一侧多个辐射缝隙为第二子阵列;
    在天线阵列工作频率的中心频点,所述第一子阵列的波束指向角度与及天线阵列需要波束指向角度的差值、所述第二子阵列波束指向角度与天线阵列需要波束指向角度的差值均小于设定阈值,且随着天线阵列的频率变化,所述第一子阵列及所述第二子阵列波束指向角度随频率变化趋势相反。
  2. 如权利要求1所述的天线阵列,其特征在于,所述多个辐射缝隙沿所述馈电波导的中心线交错设置;所述第一子阵列中,相邻的辐射缝隙的中心间距为s1,所述第二子阵列中,相邻的辐射缝隙的中心间距为s2,其中,s1大于所述馈电波导波长的一半,s2小于所述馈电波导波长的一半。
  3. 如权利要求2所述的天线阵列,其特征在于,所述第一子阵列中的多个辐射缝隙等间距设置,所述第二子阵列中的多个辐射缝隙等间距设置。
  4. 如权利要求2所述的天线阵列,其特征在于,所述第一子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t1;所述第二子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t2;其中,t1及t2均小于所述馈电波导波长的一半。
  5. 如权利要求4所述的天线阵列,其特征在于,所述馈电波导为双脊波导,所述波导口位于所述双脊波导的两个脊之间,所述两个脊分别对应一个子阵列。
  6. 如权利要求1所述的天线阵列,其特征在于,所述多个辐射缝隙沿所述馈电波导的中心线交错设置;所述第一子阵列中相邻的辐射缝隙的中心间距及所述第二子阵列中相邻的辐射缝隙的中心间距均为s3,且所述s3大于所述馈电波导波长的一半;
    所述馈电波导为双脊波导,所述波导口位于所述双脊波导的两个脊之间,所述两个脊分别对应一个子阵列,且与所述第一子阵列对应的脊的高度高于与所述第二子阵列对应的脊的高度。
  7. 如权利要求6所述的天线阵列,其特征在于,所述第一子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t1;所述第二子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t2;其中,t1大于t2,且t1及t2均小于所述馈电波导波长的一半。
  8. 如权利要求1所述的天线阵列,其特征在于,所述第一子阵列的多个辐射缝隙位于所述馈电波导的中心线的同一侧,所述第二子阵列的多个辐射缝隙沿所述馈电波导的中心线交错设置;所述第一子阵列中相邻的辐射缝隙的中心间距及所述第二子阵列中相邻的辐射缝隙的中心间距均为s4,且所述s4小于所述馈电波导波长的一半。
  9. 如权利要求8所述的天线阵列,其特征在于,所述第一子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t1;所述第二子阵列中,靠近所述波导口的辐射缝隙的中心与所述波导口的间距为t2;其中,t1大于t2,且t1及t2均小于所述馈电波导波长的一半。
  10. 如权利要求9所述的天线阵列,其特征在于,s4为馈电波导在工作频段的中心频 点的波导波长的四分之一。
  11. 如权利要求5~10任一项所述的天线阵列,其特征在于,针对每个辐射缝隙,所述馈电波导的侧壁上设置有与该辐射缝隙对应的枝节,所述馈电波导的脊上设置有与所述枝节对应的缺口,且所述辐射缝隙位于所述馈电波导中心线的一侧,所述枝节及所述缺口位于所述馈电波导中心线的另一侧。
  12. 一种通信设备,其特征在于,包括基带预编码器,与所述基带预编码器连接的收发通道,与所述收发通道连接的如权利要求1~11任一项所述的天线阵列。
PCT/CN2017/073246 2017-02-10 2017-02-10 一种天线阵列及通信设备 WO2018145300A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780057832.9A CN109716589B (zh) 2017-02-10 2017-02-10 一种天线阵列及通信设备
EP17895877.3A EP3567677A4 (en) 2017-02-10 2017-02-10 ANTENNA NETWORK AND COMMUNICATION DEVICE
PCT/CN2017/073246 WO2018145300A1 (zh) 2017-02-10 2017-02-10 一种天线阵列及通信设备
US16/537,320 US10903582B2 (en) 2017-02-10 2019-08-09 Antenna array and communications device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073246 WO2018145300A1 (zh) 2017-02-10 2017-02-10 一种天线阵列及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/537,320 Continuation US10903582B2 (en) 2017-02-10 2019-08-09 Antenna array and communications device

Publications (1)

Publication Number Publication Date
WO2018145300A1 true WO2018145300A1 (zh) 2018-08-16

Family

ID=63107125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073246 WO2018145300A1 (zh) 2017-02-10 2017-02-10 一种天线阵列及通信设备

Country Status (4)

Country Link
US (1) US10903582B2 (zh)
EP (1) EP3567677A4 (zh)
CN (1) CN109716589B (zh)
WO (1) WO2018145300A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361803A (zh) * 2021-12-24 2022-04-15 中国电子科技集团公司第五十四研究所 一种频率扫描的波导缝隙天线
US20230006355A1 (en) * 2018-04-30 2023-01-05 Nxp Usa, Inc. Antenna with switchable beam pattern
EP4005018A4 (en) * 2019-07-23 2023-07-26 Veoneer US, LLC MEANDER-SHAPED RIFT WAVES AND RELATED SENSOR ARRANGEMENTS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819306B2 (en) * 2018-10-24 2020-10-27 Thinkom Solutions, Inc. Lossless lobing circuit for multi-subarray tracking
CN112864635B (zh) * 2019-11-28 2022-08-09 上海华为技术有限公司 一种阵列天线以及设备
US11349220B2 (en) * 2020-02-12 2022-05-31 Veoneer Us, Inc. Oscillating waveguides and related sensor assemblies
CN114361769A (zh) * 2022-01-04 2022-04-15 上海航天电子通讯设备研究所 一种非周期排布阵列天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201112554Y (zh) * 2007-09-28 2008-09-10 中国电子科技集团公司第五十四研究所 镜面扫描阵列天线
CN201413867Y (zh) * 2009-04-15 2010-02-24 东南大学 能产生四个不同极化方式的天线
US20120056776A1 (en) * 2010-09-03 2012-03-08 Kabushiki Kaisha Toshiba Antenna device and radar device
CN102394376A (zh) * 2011-07-12 2012-03-28 北京理工大学 毫米波圆极化一维和差车载通信天线
CN103384032A (zh) * 2013-06-24 2013-11-06 中国电子科技集团公司第十研究所 宽带低副瓣脊波导缝隙阵列天线
CN204011734U (zh) * 2013-09-29 2014-12-10 中国电子科技集团公司第三十八研究所 一种圆极化天线

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL135900C (zh) * 1959-10-07
US3599216A (en) * 1969-08-11 1971-08-10 Nasa Virtual-wall slot circularly polarized planar array antenna
SE442074B (sv) * 1984-04-17 1985-11-25 Ericsson Telefon Ab L M Elektriskt styrd gruppantenn med reducerade sidolober
SE449540B (sv) * 1985-10-31 1987-05-04 Ericsson Telefon Ab L M Vagledarelement for en elektriskt styrd radarantenn
US5189433A (en) * 1991-10-09 1993-02-23 The United States Of America As Represented By The Secretary Of The Army Slotted microstrip electronic scan antenna
US5955998A (en) * 1995-08-14 1999-09-21 Ems Technologies, Inc. Electronically scanned ferrite line source
WO2003044896A1 (fr) * 2001-11-20 2003-05-30 Anritsu Corporation Radiateur de type a fentes a guide d'ondes ayant une construction facilitant sa production
US7091921B2 (en) * 2002-02-21 2006-08-15 Matshushita Electric Industrial Co., Ltd. Traveling-wave combining array antenna apparatus
US6947003B2 (en) * 2002-06-06 2005-09-20 Oki Electric Industry Co., Ltd. Slot array antenna
US7202832B2 (en) * 2004-01-07 2007-04-10 Motia Vehicle mounted satellite antenna system with ridged waveguide
US7391381B2 (en) * 2004-01-07 2008-06-24 Motia Vehicle mounted satellite antenna system with in-motion tracking using beam forming
EP2267833A4 (en) * 2008-03-25 2012-12-05 Mitsubishi Electric Corp WAVE-LINE POWER DISTRIBUTOR AND METHOD FOR THE PRODUCTION THEREOF
US9368878B2 (en) * 2009-05-23 2016-06-14 Pyras Technology Inc. Ridge waveguide slot array for broadband application
JP5424954B2 (ja) * 2010-03-29 2014-02-26 三菱電機株式会社 導波管スロットアレーアンテナ
DE102012109101A1 (de) * 2012-09-26 2014-03-27 Endress + Hauser Gmbh + Co. Kg Füllstandsmessgerät
CN102931492B (zh) * 2012-10-31 2015-02-11 北京遥测技术研究所 中心馈电脊波导缝隙天线
FI127914B (fi) * 2014-08-21 2019-05-15 Stealthcase Oy Sähkömagneettisia aaltoja ohjaava laite ja menetelmä
CN104538742B (zh) * 2015-01-09 2017-05-31 中国电子科技集团公司第三十八研究所 一种圆极化波导缝隙天线及其设计方法
IL241951B (en) * 2015-10-07 2018-04-30 Israel Aerospace Ind Ltd Galvo components, production methods and their organizations
US10263465B2 (en) * 2015-12-17 2019-04-16 Witricity Corporation Radiative wireless power transmission
JP6879729B2 (ja) * 2015-12-24 2021-06-02 日本電産株式会社 スロットアレーアンテナ、ならびに当該スロットアレーアンテナを備えるレーダ、レーダシステム、および無線通信システム
WO2018029807A1 (ja) * 2016-08-10 2018-02-15 三菱電機株式会社 アレーアンテナ装置及びアレーアンテナ装置の製造方法
EP3565059B1 (en) * 2018-04-30 2021-04-07 NXP USA, Inc. Antenna with switchable beam pattern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201112554Y (zh) * 2007-09-28 2008-09-10 中国电子科技集团公司第五十四研究所 镜面扫描阵列天线
CN201413867Y (zh) * 2009-04-15 2010-02-24 东南大学 能产生四个不同极化方式的天线
US20120056776A1 (en) * 2010-09-03 2012-03-08 Kabushiki Kaisha Toshiba Antenna device and radar device
CN102394376A (zh) * 2011-07-12 2012-03-28 北京理工大学 毫米波圆极化一维和差车载通信天线
CN103384032A (zh) * 2013-06-24 2013-11-06 中国电子科技集团公司第十研究所 宽带低副瓣脊波导缝隙阵列天线
CN204011734U (zh) * 2013-09-29 2014-12-10 中国电子科技集团公司第三十八研究所 一种圆极化天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567677A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230006355A1 (en) * 2018-04-30 2023-01-05 Nxp Usa, Inc. Antenna with switchable beam pattern
US11870146B2 (en) * 2018-04-30 2024-01-09 Nxp Usa, Inc. Antenna with switchable beam pattern
EP4005018A4 (en) * 2019-07-23 2023-07-26 Veoneer US, LLC MEANDER-SHAPED RIFT WAVES AND RELATED SENSOR ARRANGEMENTS
CN114361803A (zh) * 2021-12-24 2022-04-15 中国电子科技集团公司第五十四研究所 一种频率扫描的波导缝隙天线

Also Published As

Publication number Publication date
CN109716589B (zh) 2020-12-15
US20190363449A1 (en) 2019-11-28
EP3567677A4 (en) 2020-02-05
US10903582B2 (en) 2021-01-26
CN109716589A (zh) 2019-05-03
EP3567677A1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018145300A1 (zh) 一种天线阵列及通信设备
US10804606B2 (en) Broadband low-beam-coupling dual-beam phased array
US11735807B2 (en) Antenna module and electronic device
US20220255236A1 (en) Butler-based quasi-omni mimo antenna
CN110137672B (zh) 一种集边射和端射于一体的波束扫描天线阵列
EP1425817B1 (en) Dual mode switched beam antenna
US6480167B2 (en) Flat panel array antenna
KR100269584B1 (ko) 쵸크 반사기를 갖는 저 사이드로브 이중 편파 지향성 안테나
EP2337153B1 (en) Slot array antenna and radar apparatus
CN105474462A (zh) 一种混合结构双频双波束三列相控阵天线
Schaubert Wide-band phased arrays of Vivaldi notch antennas
CN207282711U (zh) 一种毫米波圆极化阵列天线及其辐射体
WO2023273624A1 (zh) 基于单元波束异构的毫米波宽角扫描相控阵天线
CN113659325B (zh) 集成基片间隙波导阵列天线
KR102377589B1 (ko) 광범위 주파수-스캔 방식의 선형 슬롯 배열 안테나 장치
CN113690636B (zh) 基于超表面的毫米波宽角扫描相控阵天线
CN112993553A (zh) 天线单元以及天线结构
JP2004104682A (ja) アンテナ装置
CN111082218A (zh) 共口径复合天线单元及相控阵天线
CN115036687B (zh) 一种基于蝶形超表面的高辐射特性天线
CN115117616B (zh) 一种基于rgw结构的victs天线
CN218867364U (zh) 一种具有高增益低副瓣的阵列mimo天线
Movahedinia et al. Large dielectric resonator antenna ESPAR for massive MIMO systems
JP3344802B2 (ja) 平面アンテナ
Farahani et al. Ridge Gap Array Antenna with Inter-Element Spacing of a Wavelength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895877

Country of ref document: EP

Effective date: 20190805