WO2023273624A1 - 基于单元波束异构的毫米波宽角扫描相控阵天线 - Google Patents

基于单元波束异构的毫米波宽角扫描相控阵天线 Download PDF

Info

Publication number
WO2023273624A1
WO2023273624A1 PCT/CN2022/092091 CN2022092091W WO2023273624A1 WO 2023273624 A1 WO2023273624 A1 WO 2023273624A1 CN 2022092091 W CN2022092091 W CN 2022092091W WO 2023273624 A1 WO2023273624 A1 WO 2023273624A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
array element
aperture
millimeter
phased array
Prior art date
Application number
PCT/CN2022/092091
Other languages
English (en)
French (fr)
Inventor
薛泉
车文荃
廖绍伟
肖瑾
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023273624A1 publication Critical patent/WO2023273624A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the invention belongs to the field of radar and communication, and relates to a phased array antenna capable of wide-angle scanning, in particular to a millimeter-wave wide-angle scanning phased array antenna based on unit beam heterogeneity.
  • the 5G millimeter wave frequency band mainly adopts massive MIMO and beamforming technology.
  • the wide-angle scanning phased array antenna is the key to beamforming, and its performance is crucial for millimeter wave systems.
  • the achievable impedance bandwidth is 16.1%
  • the maximum beam scanning angle can reach ⁇ 45°
  • the SLL is lower than -12 dB
  • the gain is as high as 11 dBi.
  • the scanning angle is the largest, compared with the maximum radiation direction of the antenna gain, the gain scanning decreases by 4dB, and the performance is relatively good.
  • the phase shifter in this scheme has better performance, the scanning angle of the antenna array is too small, and the gain drops seriously when scanning at large angles, which cannot meet the scanning requirements of wider angles. Zhao Z et al. in Microstrip Phased Array Antenna With Small Element Space for 5G Millimeter-Wave Applications[C].
  • phased array scanning antennas are designed based on the same unit and feed.
  • the design freedom of the array is low and the antenna scanning angle is narrow, which cannot meet the wide-angle scanning application.
  • the present invention provides a millimeter-wave wide-angle scanning phased antenna based on unit beam heterogeneity. array antenna.
  • the millimeter-wave wide-angle scanning phased array antenna based on unit beam heterogeneity provided by the present invention includes a plurality of array elements with different directional patterns, wherein different directional patterns are obtained by adjusting the inclination angle of the beams of the array elements .
  • the multiple array elements include at least one non-tilted beam plane aperture array element and at least one inclined beam plane aperture array element, the beam of the non-tilted beam plane aperture array element is not tilted, and the The beam of the oblique beam plane aperture array element has an inclination angle.
  • non-tilted beam plane aperture array element includes:
  • the An upper substrate the upper substrate is provided with a radiation structure
  • the radiation structure includes a metal back cavity, a topological metal patch, a first parasitic patch and a tuning slot
  • the metal back cavity includes a metal strip and a grounded metal patch through holes
  • the topological metal patch includes a plurality of sequentially connected metal patches
  • the tuning gap is set on the upper substrate
  • the metal floor is located on the bottom surface of the upper substrate, and a coupling gap is opened on the metal floor;
  • An underlying substrate the bottom surface of the underlying substrate is provided with a microstrip line forming a feeding structure with the coupling slot, and a tuning branch is provided on the side of the microstrip line close to the coupling slot;
  • the structure of the oblique beam plane aperture array element is based on the structure of the non-inclined beam plane aperture array, and also includes an additional aperture radiation structure, and the additional aperture radiation structure includes a plurality of second parasitic patches , arranged on any side in the length direction of the upper substrate, and adjusting the size of the beam tilt by changing the size and number of the second parasitic patches.
  • tuning slit is opened on the upper substrate and located in the topological structure metal patch.
  • pads are provided at the interface of the microstrip line.
  • multiple second parasitic patches are used to control the aperture field distribution, resulting in a phase lag.
  • the beam is inclined to the left, and when the additional aperture radiation structure is located on the other side in the length direction of the upper substrate, the beam is inclined to the right .
  • each of the array elements is a microstrip patch antenna fed by microstrip slot coupling, wherein the inclined aperture surface is obtained by folding the patch on at least one microstrip patch antenna .
  • the array element is tilted to obtain a tilted aperture surface, and the tilt angle is adjustable.
  • each of the array elements is a substrate-integrated waveguide slot array fed by a coaxial center.
  • the present invention proposes a new scanning phased array, which forms an array by introducing units with different orientation patterns, that is, "heterogeneous phased array".
  • the present invention uses a plurality of array element types with different beam inclination angles to form a phased array.
  • the optimization and synthesis method of the wide-angle scanning heterogeneous phased array pattern is studied. By optimizing the excitation amplitude and phase of the array element, the degree of freedom brought by the different pattern of each array element is used to realize the beam Scanning performance has been further improved.
  • the beams of the planar aperture array elements can be designed to have different inclination angles as required.
  • the present invention adopts a traveling wave excitation radiation scheme.
  • the traveling wave propagating in positive dispersion mode will produce phase lag along the propagation direction. If the traveling wave radiates during the propagation process, the radiation beam will face the traveling wave propagation direction.
  • an "additional aperture radiation structure" is added on the side of the array element, so that the surface wave traveling wave "flows" from the array element Adding an aperture radiation structure and radiating at the same time can realize the generation of tilt-controllable beams.
  • Figure 1 is a schematic diagram of heterogeneous array elements provided by an embodiment of the present invention, wherein, figure (a) is a schematic diagram of structural heterogeneity of array elements, figure (b) is a schematic diagram of heterogeneous layout of array elements, and figure (c) It is a schematic diagram of array element structure/layout hybrid heterogeneity.
  • Fig. 2 is a schematic exploded view of the structure of the non-tilted beam planar aperture array element provided by the embodiment of the present invention.
  • the Fig. 3 is a top view of a non-tilted beam plane aperture array element provided by an embodiment of the present invention.
  • the Fig. 4 is a schematic exploded view of the structure of the non-tilted beam plane aperture array element provided by the embodiment of the present invention in a side view.
  • the Fig. 5 is a schematic structural diagram of the underlying substrate in the non-tilted beam plane aperture array element provided by the embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of an oblique beam plane aperture array element provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an oblique beam plane aperture array element provided by an embodiment of the present invention, and the additional aperture radiation structure is located on a different side from that shown in FIG. 6 .
  • the Fig. 8 is a leftward tilted direction diagram of the tilted beam plane aperture array element provided by the embodiment of the present invention.
  • the Fig. 9 is a rightward tilted direction diagram of the tilted beam plane aperture array element provided by the embodiment of the present invention.
  • the Fig. 10 is a schematic diagram of the reflection coefficient of a non-tilted beam plane aperture column unit in an embodiment of the present invention.
  • the Fig. 11 is a schematic diagram of the actual gain of the non-tilted beam plane aperture column unit in the embodiment of the present invention.
  • the Fig. 12 is a directional diagram of a non-tilted beam plane aperture column unit at 29.5 GHz in an embodiment of the present invention.
  • the Fig. 13 is a schematic diagram of the antenna efficiency of the non-tilted beam plane aperture column unit in the embodiment of the present invention.
  • Fig. 14 is a schematic diagram of a millimeter-wave wide-angle scanning heterogeneous array based on array element structure heterogeneity in an embodiment of the present invention.
  • Fig. 15 is a schematic diagram of reflection coefficients of a phased array antenna with heterogeneous array element structures in an embodiment of the present invention.
  • Fig. 16 is a schematic diagram of gains of a phased array antenna with heterogeneous array element structures in an embodiment of the present invention.
  • Fig. 17 is a schematic diagram of antenna efficiency of a phased array antenna with heterogeneous array element structures in an embodiment of the present invention.
  • the Figure 18 is a phased array antenna with heterogeneous array element structure in the embodiment of the present invention. Schematic diagram of scanning performance at 29.5GHz.
  • the Fig. 19 is a schematic diagram of the scanning performance of each frequency point of the phased array antenna with heterogeneous array element structure in the embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a 1 ⁇ 4 homogeneous array control array antenna.
  • Fig. 21 is a schematic structural diagram of a millimeter-wave wide-angle scanning heterogeneous array based on a heterogeneous array element layout, in which (a) is a top view, and (b) is a side view.
  • Fig. 22 is a schematic structural diagram of a millimeter-wave wide-angle scanning heterogeneous array based on array element structure/layout hybrid heterogeneity.
  • Fig. 23 is a schematic diagram of scanning performance of a millimeter-wave wide-angle scanning heterogeneous array based on array element structure/layout hybrid heterogeneity.
  • the traditional scanning phased array is composed of multiple array elements with the same structure and parallel positions, and the pattern of each array element is the same.
  • a homoogeneous phased array In order to distinguish it from the proposed "heterogeneous phased array”, we can use It is called a “homogeneous phased array”.
  • the isomorphic phased array is analyzed by the principle of the pattern product, and through the control of the excitation phase and amplitude of the array element, the vector field in the far area in a specific direction is superimposed or cancelled, and the beam scanning or shaping is realized. Limited by the analysis method, this scheme requires all array elements to be the same and have regular positions, which actually limits the degree of freedom in the design of beam scanning, thus limiting the optimal performance of the scanning array in a given volume.
  • the present invention proposes the following idea of improving the scanning performance of the phased array.
  • array architecture a new scanning phased array is proposed, and the array is formed by introducing units with different orientation patterns, that is, "heterogeneous phased array".
  • heterogeneous phased array The essence of heterogeneous phased arrays to improve scanning performance is to use the degrees of freedom provided by the diversity of array element patterns generated by heterogeneity.
  • the present invention can adopt a plurality of array element types with different beam inclination angles to form a phased array; the idea of tilting the beam is to generate a phase lag, so three beam tilt ideas are proposed below,
  • the phased array is formed by changing the array element structure (that is, the size and number of the second parasitic patch (13) in the additional aperture radiation structure) and structural tilt design; based on different array elements
  • the type of array element, and at the same time, the phased array is formed by changing the structure of the array element and designing the structure tilt. Therefore, there are three possible formation schemes for heterogeneous phased arrays, which are heterogeneous array element structure, heterogeneous array element layout, and hybrid heterogeneous array element structure/layout.
  • the embodiment of the present invention adopts three schemes realized by using a 4-element array as shown in FIG. 1 . It can be understood that the 4-element array is only a specific example in the embodiments of the present invention, and in other embodiments, other numbers of array elements can also be set as required.
  • the two array elements on both sides of the array and the array element in the middle are on the same plane, and the structure of the array element with an additional aperture radiation structure is non-centrosymmetric about the scanning plane, so that the The wave will produce a phase lag in the process of propagation, thereby realizing the controllable tilt angle of the unit beam.
  • the size of the beam inclination is determined by the size and number of the second parasitic patch in the radiation structure of the additional aperture.
  • the two array elements on both sides of the array obtain an inclined aperture surface through the inclination of the array element structure, which can also produce a phase lag, so that the beam inclination angle can be adjusted. control.
  • the inclination angle of the beam is realized by changing the inclination degree of the array element structure.
  • heterogeneous phased arrays In order to study the performance of heterogeneous phased arrays, we start with arrays with small array elements, such as 4-element arrays. A heterogeneous phased array antenna is established, and the pattern of each array element when independently excited is obtained through electromagnetic simulation. After the expected beam pointing is given, the excitation phase of each array element is calculated by the basic working principle of the phased array, which is used as the initial value, and the optimal scanning is obtained by numerically optimizing the excitation amplitude phase of each array element performance.
  • the present invention utilizes surface traveling waves transmitted directionally on a dielectric plate to expand the physical aperture of the antenna along one dimension to generate a uniform aperture radiation field to achieve broadband, high gain, and low loss planar aperture array element.
  • the transmission structure supporting the directional propagation of the surface wave is firstly designed, and the corresponding excitation structure is designed according to the surface wave propagation mode.
  • Surface waves propagate along the transmitting structure and form an aperture field above it.
  • the polarization directions of the aperture field formed by different surface wave modes can be different, and the aperture field distribution will show periodic changes on the wavelength scale.
  • topological patches are placed on the aperture to realize the control of the aperture distribution electric field, thereby obtaining a pattern with a wide beam on the scanning surface and a high gain on the non-scanning surface.
  • the non-tilted beam plane aperture array element is shown in Figure 2 to Figure 5.
  • the antenna has a three-layer PCB structure, in which the upper substrate 1 is used to design the radiation structure of the antenna, the bottom substrate 8 is the feeding part of the antenna, and the middle substrate 7 It is an adhesive layer for bonding the upper substrate 1 and the bottom substrate 8 .
  • the radiation part of the antenna includes a metal back cavity 2, a topological structure metal patch 3, a first parasitic patch 12, a tuning slot 4 and a metal floor 5, wherein: the topological structure metal patch 3 and the metal floor 5 are printed on the upper substrate respectively 1 on both sides, metal back cavity 2 metal strips and grounded metallized vias.
  • the radiating part of the antenna is excited by a feeding structure composed of a microstrip line and a coupling slot.
  • the coupling slot 6 is located at the center of the metal floor 5 , and the microstrip line 9 is printed on the bottom surface of the underlying substrate 8 .
  • a tuning stub 10 is loaded on the end of the microstrip line close to the coupling slot 6 .
  • a pad 11 is provided at the interface of the microstrip line 9 for connecting a test connector.
  • a metal back cavity 2 is loaded around the topological structure metal patch 3, and the back cavity is a low-loss dielectric layer.
  • the surface wave propagates longitudinally in the topological structure metal patch 3 .
  • the aperture field distribution makes the aperture distribution of the scanning surface more uneven and the aperture distribution of the non-scanning surface more uniform, thereby realizing beamforming.
  • beamforming is realized on an extremely small aperture, and it is still suitable for use as an array element of a millimeter-wave phased array while achieving high gain.
  • the structure of the array element with the inclined beam plane aperture is shown in Figure 6 and Figure 7.
  • an additional aperture radiation structure is added on the upper substrate 1, and the additional aperture radiation structure includes a row of second parasitic patches 13, and the second parasitic patches 13 are arranged on the upper substrate 1. Any one of the two sides in the length direction implements a direction pattern inclined to the left and a direction pattern inclined to the right, respectively, as shown in FIG. 8 and FIG. 9 .
  • the traveling wave propagating in the positive dispersion mode will produce a phase lag along the propagation direction. If the traveling wave radiates during propagation, the radiation beam will face the propagation direction of the traveling wave.
  • an "additional aperture radiation structure" is added on the side of the array element, so that the surface wave traveling wave "flows" from the array element to the additional aperture radiation structure and radiates at the same time. It is possible to generate a tilt-controllable beam, and the size of the tilt angle is controlled by the additional aperture radiation structure. In this embodiment, the size and number of the second parasitic patch 13 are changed to control the size of the beam tilt.
  • the realization idea of the oblique beam plane aperture array element is to generate phase lag. Since the high-frequency wavelength is short, the high-frequency can be shifted by fine-tuning the size and number of the additional aperture radiation structure, while the low-frequency wavelength is long, and a larger amount needs to be changed to make the low-frequency shift. But this may lead to excessive high-frequency excursions, losing the effect of improving scanning performance. Therefore, the size of the inclination angle needs to be considered comprehensively in combination with the overall beam synthesized by the array.
  • the present invention has carried out preliminary simulation verification on the proposed non-tilted beam plane aperture array element, and designed the array element working at 24.25-29.5GHz to realize in-band impedance matching and high and stable gain.
  • the antenna size is 0.7 ⁇ 3.453 ⁇ 0.097 ⁇ 3 (the wavelength corresponds to 30GHz)
  • the simulation effect of the antenna is shown in Figure 10-13, which produces a horizontal wide beam and a vertical narrow beam pattern, and the in-band gain remains above 10dBi.
  • the impedance bandwidth of the antenna covers 24.25GHz - 29.5GHz, its relative bandwidth exceeds 20%.
  • Figure 11 shows the actual gain of the non-tilted beam plane aperture column unit. From the simulation results, it can be seen that the gain remains above 10dBi in the 24.25GHz-29.5GHz frequency band, and the highest gain can reach 11.25dBi.
  • Figure 12 is the radiation pattern of the E-plane and H-plane working at 29.5GHz, and the 3dB beamwidth of the E-plane is -53deg-49.6deg. The difference between the main lobe and the side lobe of the H plane is greater than 7dB.
  • the beam width is wider towards the low frequency, and the beam width is the narrowest at 29.5 GHz.
  • Figure 13 shows the antenna efficiency of the non-slanted beam plane aperture column unit in the entire working frequency band, and it can be seen that the efficiency in the entire frequency band is greater than 82%. Simulation results show that the proposed design ideas and methods are effective.
  • the present invention has carried out preliminary simulation verification on the proposed tilted beam plane aperture column unit, and based on the non-tilted beam plane aperture column unit, it also realizes the coverage of 24.25GHz - 29.5GHz, the in-band gain remains above 10dBi.
  • the beam tilt angle is about 10°. Because the wavelength of each frequency point is different, the beam tilt angle of each frequency point is slightly different.
  • the phased array antenna includes a plurality of array elements with different directional patterns, wherein different directional patterns are obtained by adjusting the inclination angle of the beams of the array elements, and at least one of the multiple array elements includes A non-tilted beam plane aperture array element and at least one inclined beam plane aperture array element, the beams of the non-tilted beam plane aperture array element are not inclined, and the beams of the inclined beam plane aperture array element have an inclination angle.
  • a 1 ⁇ 4 phase control system working at 24.25-29.5GHz is designed.
  • the array antenna please refer to Figure 1(a) and Figure 14, provides a phased array antenna composed of 4 array elements, including inclined beam plane aperture array elements on both sides whose pattern is inclined to the left ( The reference number in the figure is 14), the oblique beam plane aperture array element with the direction diagram tilted to the right (the reference number in the figure is 16), and the two non-inclined beam plane aperture array elements in the middle (in the figure The reference number is 15).
  • the radiation structure of the additional aperture in the beam plane aperture array element 14 whose pattern is inclined to the left is located on the left side of the upper substrate 1 in the length direction
  • the additional aperture in the inclined beam plane aperture array element 16 whose pattern is inclined to the right The radiation structure is located on the right side of the upper substrate 1 in the length direction.
  • the overall beam width of the array is broadened, and because the high frequency tilt angle is larger, it is beneficial to improve the high frequency
  • the scanning performance is more obvious, which solves the technical problem that the traditional phased array has poor scanning performance as it goes to high frequency.
  • Figures 15-19 show the overall performance of the phased array antenna composed of the aforementioned 4-element array. It can be seen from Figure 15 that the impedance bandwidth of the antenna covers 24.25GHz - 29.5GHz mmWave frequency band, its relative bandwidth exceeds 20%.
  • Figure 16 shows the actual gain of the antenna, which achieves in-band impedance matching, high and stable gain. The in-band gain is kept above 15dBi, and the highest gain can reach 15.3dBi.
  • Figure 17 shows the antenna efficiency of the antenna in the entire operating frequency band, and it can be seen that the efficiency in the entire frequency band is greater than 82%.
  • Figure 18 shows the scanning performance of the heterogeneous array working at 29.5GHz. The gain is reduced by 3dB, and the scanning angle is ⁇ 62.24°. As shown in Figure 19, the sweep angle of 3dB gain reduction in the entire frequency band is greater than 60°, and the maximum sweep angle can be 63°.
  • a 1 ⁇ 4 isomorphic array is given below for comparison.
  • the structure is shown in FIG. 20 , and the isomorphic phased array is composed of four non-slanted beam plane aperture array elements 15 .
  • the isomorphic phased array also covers the bandwidth of 24.25GHz-29.5GHz, the in-band gain is kept above 15dBi, the maximum scanning angle is 58°, and the gain is reduced by 3dB; 55° scanning covers 25GHz-28.5GHz, and the high frequency is 29.5GHz Can only sweep to 51°.
  • the simulation found that the higher the frequency, the smaller the scan angle. Compared with the previous heterogeneous array, the high-frequency scanning performance of the isomorphic array is poor. Therefore, the effect of the idea of unit beam heterogeneity is verified.
  • a substrate-integrated waveguide (SIW) slot array fed by the coaxial center is proposed.
  • the structure of the specific embodiment is shown in Figure 21.
  • An inclined aperture surface so that the formation of the array realizes the heterogeneous layout of the array elements, so as to realize the controllable beam inclination angle.
  • the value range of the array spacing is 0.453 ⁇ -0.5 ⁇ , where ⁇ is the wavelength.
  • Array spacing also has an effect on the beamwidth of the array, which affects scanning performance.
  • the present invention improves the overall scanning performance of the array by adjusting the size ( ⁇ ) of the inclination angle of the array elements and the array spacing.
  • a kind of microstrip patch antenna fed by microstrip slot coupling is proposed.
  • the structure of the specific embodiment is as shown in Fig. 22.
  • the chip antenna is fed through the microstrip slot coupling of one divided into two and two divided into four.
  • the two array elements on both sides of the array (defined as the first array element 31 and the second array element 33) are changed from flat traditional patches to stepped patches, and multi-layer patches are connected through metallized vias. Thereby realizing the folding of the patch.
  • the folded patch proposed by the present invention is equivalent to directly tilting the traditional patch to obtain a tilted aperture surface, thus forming an array to realize array layout heterogeneity, thereby realizing controllable beam inclination angle, the size of the inclination angle is determined by the folding Size control of patches.
  • the positions of the first array element 31 and the second array element 33 of the column are changed, and the original center slot feed is changed to offset feed, thereby realizing hybrid heterogeneity of array element structure/layout.
  • Figure 23 shows the scanning performance when the center frequency is 27.5GHz, the gain is reduced by 3dB, and the scanning angle is ⁇ 65°. Simulation results show that the scanning angle is greater than 60° in the whole working frequency band, and the maximum can reach 75°. Compared with the traditional patch antenna, the scanning performance is greatly improved.
  • a new scanning phased array is proposed, by introducing units with different orientation patterns to form an array, that is, "heterogeneous phased array”.
  • heterogeneous phased array Through array element beam heterogeneity, each array element has a different pattern, which provides greater design freedom for the phased array, thereby achieving better scanning performance.
  • the present invention mainly focuses on the research and verification of one-dimensional heterogeneous phased arrays, relevant theories and methods can also be extended to two-dimensional heterogeneous phased arrays.
  • the present invention proposes a wideband, high-gain, and low-loss planar aperture array element with programmable beam inclination angle, and realizes beam inclination angle control by introducing gradient phase distribution on the transverse aperture of the array element.
  • the present invention proposes a new idea of improving the scanning performance of the phased array.
  • a new scanning phased array is proposed, and the array is formed by introducing units with different orientation patterns, that is, "heterogeneous phased array".
  • the essence of heterogeneous phased arrays to improve scanning performance is to use the degrees of freedom provided by the diversity of array element patterns generated by heterogeneity.
  • the present invention can use a plurality of array element types with different beam inclinations to form a phased array; Design and form a phased array; based on different array element types, at the same time through the structure change and structural tilt design of the array element to form a phased array. Therefore, there are three possible formation schemes for heterogeneous phased arrays, which are heterogeneous array element structure, heterogeneous array element layout, and hybrid heterogeneous array element structure/layout.
  • the beams of the planar aperture array elements can be designed to have different inclination angles on the transverse plane.
  • the present invention adopts a traveling wave excitation radiation scheme.
  • the traveling wave propagating in positive dispersion mode will produce phase lag along the propagation direction. If the traveling wave radiates during the propagation process, the radiation beam will face the traveling wave propagation direction.
  • an "additional aperture radiation structure" is added on the side of the array element, so that the surface wave traveling wave "flows" from the array element
  • the additional aperture radiation structure is radiated simultaneously, so as to realize the generation of tilt-controllable beams.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了非倾斜波束平面口径列阵元,包括上层基板,上层基板上设置有辐射结构,辐射结构包括金属背腔、拓扑结构金属贴片、第一寄生贴片和调谐缝隙;金属地板,所述金属地板位于上层基板的底面,所述金属地板上开设有耦合缝隙;中层基板,中层基板位于金属地板下方;以及底层基板,所述底层基板的底面上设置有与所述耦合缝隙组成馈电结构的微带线,且所述微带线上靠近耦合缝隙的一侧设置有调谐枝节。还提供有倾斜波束平面口径列阵元以及由非倾斜波束平面口径列阵元和倾斜波束平面口径列阵元组成相控阵天线。通过引入具有不同方向图的单元,组成阵列,使各个阵元具有不同方向图,为相控阵提供更大的设计自由度,从而实现更优异的扫描性能。

Description

基于单元波束异构的毫米波宽角扫描相控阵天线 技术领域
本发明属于雷达及通信领域,涉及一种具备宽角扫描能力的相控阵天线,尤其涉及基于单元波束异构的毫米波宽角扫描相控阵天线。
背景技术
5G技术的快速发展,使得毫米波相控阵天线备受关注。为克服毫米波频段的超高路径损耗问题以及实现空间全覆盖,5G毫米波频段主要采用大规模MIMO以及波束赋形技术。其中,宽角扫描相控阵天线是波束赋形的关键,其性能的好坏对于毫米波系统而言至关重要。
现有宽角扫描相控阵技术的研究,大部分采用了展宽阵元波束、提高阵元间隔离度、方向图可重构技术等方式来实现。Ji Y等在《Reconfigurable Phased-Array Antenna Using Continuously Tunable Substrate Integrated Waveguide Phase Shifter[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11):6894-6908》中提出了一种可重构相控阵天线,其中包含连续可调的SIW移相器。通过采用多谐振孔耦合方案,天线单元实现了宽带特性和理想的辐射性能。SIW移相器设计为易于与天线集成,可提供较大的相位变化范围。最终,天线单元组成1×4的阵列后,可实现的阻抗带宽为16.1%,波束扫描角度最大可达±45°,SLL低于-12 dB,增益高达11 dBi。当扫描角度最大时,相比于天线增益最大辐射方向,增益扫描下降4dB,性能较为优良。尽管该方案中的移相器具有较好的性能,但是天线阵列扫描角度过小,且大角度扫描时增益下降严重,无法满足更宽角度的扫描需求。Zhao Z等在《Microstrip Phased Array Antenna With Small Element Space for 5G Millimeter-Wave Applications[C]. 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2020》中提出了一种紧凑型双层广角扫描1×4微带贴片阵列,工作频率为28 GHz。贴片周围加载了带容性金属化过孔,以减小天线单元的尺寸,并起到了展宽波束宽度的作用。阵元间距仅为0.34λ0(@28GHz),U形去耦结构被引入到相邻的之间天线单元间以减少相互耦合。最终实现天线主波束可以在27.55-28.59GHz的频带内从-50°到+50°进行扫描,增益波动小于3dB,适用于广角扫描应用。但该方案虽然实现了较宽的扫描角度及较好的增益平坦度,但其天线带宽过窄,无法满足毫米波宽带的应用需求。
在现有方案中,大多相控阵扫描天线都基于相同的单元以及馈电进行设计,阵列的设计自由度低且实现的天线扫描角度都较窄,无法满足宽角扫描应用。
技术解决方案
为了解决现有技术中相控阵扫描天线由于单元相同而导致相控阵的设计自由度受限,扫描波束范围受限等问题,本发明提供基于单元波束异构的毫米波宽角扫描相控阵天线。
本发明提供的基于单元波束异构的毫米波宽角扫描相控阵天线,包括多个具有不同方向图的列阵元,其中,通过对列阵元的波束的倾角进行调节以获得不同方向图。
进一步地,多个所述列阵元中包括至少一个非倾斜波束平面口径列阵元和至少一个倾斜波束平面口径列阵元,所述非倾斜波束平面口径列阵元的波束不倾斜,所述倾斜波束平面口径列阵元的波束具有倾角。
进一步地,所述非倾斜波束平面口径列阵元,包括:
    上层基板,所述上层基板上设置有辐射结构,所述辐射结构包括金属背腔、拓扑结构金属贴片、第一寄生贴片和调谐缝隙,所述金属背腔包括金属条带和接地的金属化过孔,所述拓扑结构金属贴片包括多个依次相连的金属贴片,调谐缝隙开设在上层基板上;
    金属地板,所述金属地板位于上层基板的底面,所述金属地板上开设有耦合缝隙;
    中层基板,所述中层基板位于金属地板下方;以及
底层基板,所述底层基板的底面上设置有与所述耦合缝隙组成馈电结构的微带线,且所述微带线上靠近耦合缝隙的一侧设置有调谐枝节;
其中,所述倾斜波束平面口径列阵元的结构是在所述非倾斜波束平面口径列阵结构的基础上,还包括附加口径辐射结构,所述附加口径辐射结构包括多个第二寄生贴片,设置在所述上层基板长度方向上的任意一侧,且通过改变第二寄生贴片的尺寸及个数来调节波束倾斜的大小。
进一步地,调谐缝隙开设在上层基板上且位于拓扑结构金属贴片内。
进一步地,微带线的接口处设置有焊盘。
进一步地,多个第二寄生贴片用于控制口径场分布,产生相位滞后。
进一步地,当附加口径辐射结构位于所述上层基板长度方向上的其中一侧时,波束向左倾斜,当附加口径辐射结构位于所述上层基板长度方向上的另外一侧时,波束向右倾斜。
进一步地,每个所述列阵元均为由微带缝隙耦合馈电的微带贴片天线,其中,通过对某至少一个微带贴片天线上的贴片进行折叠以得到倾斜的口径面。 
进一步地,将所述列阵元倾斜以得到倾斜的口径面,所述倾斜的角度可调。
进一步地,每个所述列阵元为由同轴中心馈电的基片集成波导缝隙阵。
有益效果
与现有技术相比,本发明能够实现的有益效果至少如下:
1、本发明提出了一种新的扫描相控阵,通过引入具有不同方向图的单元,组成阵列,即“异构相控阵”。为得到不同的列阵元方向图,本发明采用基于多个具有不同波束倾角的列阵元类型组成相控阵。在此基础上,基于电磁场叠加原理研究了宽角扫描异构相控阵方向图优化综合方法,通过优化列阵元激励幅度相位,利用各列阵元方向图不同带来的自由度,实现波束扫描性能地进一步提升。
2、在横向平面上,平面口径列阵元的波束可根据需要可被设计成具有不同倾角。本发明采用了行波激励辐射方案,以正色散模式传播的行波沿传播方向会产生相位滞后,如果行波在传播过程中辐射,那么辐射波束就会朝向行波的传播方向。根据这一原理,通过在基本的平面口径列阵元结构上横向口径上引入梯度相位分布,在列阵元一侧增加 “附加口径辐射结构”,让表面波行波由列阵元“流向”附加口径辐射结构并同时辐射,就可实现产生倾角可控波束。
附图说明
图1是本发明实施例提供的列阵元异构示意图,其中,图(a)是列阵元结构异构的示意图,图(b)是列阵元布局异构的示意图,图(c)是列阵元结构/布局混合异构示意图。
  图2是本发明实施例提供的非倾斜波束平面口径列阵元结构分解示意图。
    图3是本发明实施例提供的非倾斜波束平面口径列阵元的俯视图。
    图4是本发明实施例提供的非倾斜波束平面口径列阵元侧视的结构分解示意图。
    图5是本发明实施例提供的非倾斜波束平面口径列阵元中底层基板的结构示意图。
    图6是本发明实施例提供的倾斜波束平面口径列阵元的结构示意图。
    图7是本发明实施例提供的倾斜波束平面口径列阵元的结构示意图,附加口径辐射结构与图6所示的位于不同一侧。
    图8是本发明实施例提供的倾斜波束平面口径列阵元的向左倾斜的方向图。
    图9是本发明实施例提供的倾斜波束平面口径列阵元的向右倾斜的方向图。
    图10是本发明实施例中非倾斜波束平面口径列单元反射系数的示意图。
    图11是本发明实施例中非倾斜波束平面口径列单元实际增益示意图。
    图12是本发明实施例中非倾斜波束平面口径列单元在29.5GHz的方向图。
    图13是本发明实施例中非倾斜波束平面口径列单元的天线效率示意图。
    图14是本发明实施例中基于阵元结构异构的毫米波宽角扫描异构阵示意图。
    图15 是本发明实施例中阵元结构异构的相控阵天线的反射系数示意图。
    图16 是本发明实施例中阵元结构异构的相控阵天线的增益示意图。
    图17 是本发明实施例中阵元结构异构的相控阵天线的天线效率示意图。
    图18是本发明实施例中阵元结构异构的相控阵天线在 29.5GHz 的扫描性能示意图。
    图19是本发明实施例中阵元结构异构的相控阵天线的各频点的扫描性能示意图。
图20是1×4同构阵控阵天线示意图。
图21是基于阵元布局异构的毫米波宽角扫描异构阵的结构示意图,其中,图(a)是俯视图,图(b)是侧视图。
图22是基于阵元结构/布局混合异构的毫米波宽角扫描异构阵的结构示意图。
图23是基于阵元结构/布局混合异构的毫米波宽角扫描异构阵的扫描性能示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本发明的发明思路是,传统扫描相控阵由结构相同且位置并行的多个阵元构成,其各个阵元的方向图都一样,为了与提出的“异构相控阵”区分,可将其称为“同构相控阵”。同构相控阵利用方向图乘积原理分析,通过对列阵元激励相位和幅度的控制,使特定方向远区矢量场叠加或抵消,实现波束扫描或赋形。受分析方法限制,该方案要求所有阵元相同且位置规则,实际限制了实现波束扫描的设计自由度,从而限制了给定体积内扫描阵所能达到的最优性能。
针对毫米波一维扫描相控阵存在的瓶颈与挑战,本发明提出如下提升相控阵扫描性能的思想。在阵列架构方面,提出一种新的扫描相控阵,通过引入具有不同方向图的单元,组成阵列,即“异构相控阵”。异构相控阵实现提升扫描性能的本质是,利用异构产生的阵元方向图多样性提供的自由度。为得到不同的列阵元方向图,本发明可以采用基于多个具有不同波束倾角的列阵元类型组成相控阵;倾斜波束的思想是产生相位滞后,因此以下提出了三种波束倾斜思路,基于同一个列阵元类型,通过对列阵元结构改变(即附加口径辐射结构中第二寄生贴片(13)的尺寸及个数的不同)和结构倾斜设计组成相控阵;基于不同列阵元类型,同时通过对列阵元的结构改变和结构倾斜设计组成相控阵。因此,异构相控阵有三种可能的组阵方案,分别是阵元结构异构、阵元布局异构、阵元结构/布局混合异构。
本发明实施例采用4元阵列实现的三种方案如图1所示。可以理解的是,4元阵列只是本发明实施例中的具体举例,在其他实施例中,也可以根据需要将列阵元设置成其他数量。
其中,如图1(a)方案中,阵列两边的两个列阵元与中间的列阵元在一个平面上,设置有附加口径辐射结构的列阵元结构关于扫描面非中心对称,从而行波在传播过程中会产生相位滞后,由此实现单元波束倾角可控。其中,波束倾角的大小由附加口径辐射结构中第二寄生贴片的尺寸及个数决定。如图1(b)和(c)所示方案中,阵列两边的两个列阵元通过列阵元结构的倾斜,得到一个倾斜的口径面,这样也能产生相位滞后,从而实现波束倾角可控。其中,波束倾角的大小通过改变列阵元结构的倾斜程度来实现。
为研究异构相控阵的性能,先从小阵元数阵列入手,例如4元阵。建立异构相控阵天线,通过电磁仿真得到每个列阵元独立激励时的方向图。给出期望的波束指向后由相控阵的基本工作原理计算出每个列阵元的激励相位,以此为初值,通过数值优化每个列阵元的激励幅度相位,得到最优的扫描性能。
一、基于列阵元结构异构的毫米波宽角扫描异构阵
 1、列阵元的实现
(1)非倾斜波束平面口径列阵元的实现
针对毫米波异构相控阵对列阵元的全新需求,本发明利用介质板上定向传输的表面行波沿一个维度展开天线物理口径,产生均匀口径辐射场,实现宽带、高增益、低损耗的平面口径列阵元。基于该基本原理,首先设计支持表面波定向传播的传输结构,根据表面波传播模式设计相应激励结构。表面波沿传输结构传播,并在其上方形成口径场。不同表面波模式所形成的口径场极化方向可不同,且口径场分布按波长尺度将会呈现周期变化。根据口径场分布情况,在口径上放置拓扑结构的贴片,来实现对口径分布电场的调控,由此得到在扫描面宽波束、非扫描面高增益的方向图。
非倾斜波束平面口径列阵元如图2至图5所示,天线为三层PCB结构,其中上层基板1用于设计天线的辐射结构,底层基板8为天线的馈电部分,而中层基板7则是粘合层,用于黏合上层基板1和底层基板8。天线的辐射部分包括金属背腔2、拓扑结构金属贴片3、第一寄生贴片12、调谐缝隙4以及金属地板5,其中:拓扑结构金属贴片3和金属地板5分别印制在上层基板1的两面,金属背腔2金属条带和接地的金属化过孔组成。天线的辐射部分由微带线和耦合缝隙所组成的馈电结构来进行激励,耦合缝隙6位于金属地板5的中心,微带线9印制在底层基板8的底面。为了实现天线的阻抗匹配,在微带线接近耦合缝隙6的一端加载有一个调谐枝节10。在最终的设计中,为了方便测试,微带线9的接口处设置有焊盘11,用于连接测试接头。
非倾斜波束平面口径列阵元中,几个尺寸不同的贴片相连而成拓扑结构金属贴片3,在拓扑结构金属贴片3周围加载金属背腔2,背腔内为低损耗介质层,表面波在拓扑结构金属贴片3中沿纵向传播。通过在拓扑结构金属贴片3中间底部的金属地板5上开一个耦合缝隙6并用一开路微带馈线9去激励,可将微带线上能量耦合到拓扑结构金属贴片3上。在拓扑结构金属贴片3中间开缝,从而可以尽量减小扫描面的尺寸;通过延长非扫描面的个数及尺寸,加载拓扑结构第一寄生贴片12,控制扫描面和非扫描面的口径场分布,使得扫描面的口径分布越不均匀,非扫描面的口径分布越均匀,从而实现波束赋形。与传统的平面口径天线相比,在极小的口径上实现了波束赋形,在实现高增益的情况下仍然适用于作为毫米波相控阵的阵元。
(2)倾斜波束平面口径列阵元的实现
为满足异构阵对列阵元的特殊要求,倾斜波束平面口径的列阵元结构如图6和图7所示。在非倾斜波束平面口径列阵元的基础上,在上层基板1上增加附加口径辐射结构,所述附加口径辐射结构包括一排第二寄生贴片13,第二寄生贴片13设置在上层基板1长度方向上的两侧中的任一侧,分别实现了向左倾斜的方向图和向右倾斜的方向图,如图8和图9所示。
对于图2中行波激励的天线结构,以正色散模式传播的行波沿传播方向会产生相位滞后,如果行波在传播过程中辐射,那么辐射波束就会朝向行波的传播方向。根据这一原理,基于原本的平面口径列阵元结构,在列阵元一侧增加 “附加口径辐射结构”,让表面波行波由列阵元“流向”附加口径辐射结构并同时辐射,就可实现产生倾角可控波束,由附加口径辐射结构来控制倾角的大小,在此实施例中是通过改变第二寄生贴片13的尺寸及个数来控制波束倾斜的大小。
倾斜波束平面口径列阵元的实现思路是产生相位滞后。由于高频波长短,微调附加口径辐射结构的尺寸及个数,即可使高频发生偏移,而低频波长长,需要改变更大的量来使低频发生偏移。但这可能导致高频偏移过大,失去提升扫描性能的作用。因此,倾角的大小需要结合阵列合成的整体波束综合考虑。
本发明已对提出的非倾斜波束平面口径列阵元进行了初步仿真验证,设计了工作于24.25-29.5GHz的列阵元,实现带内阻抗匹配、高且稳定的增益。当天线尺寸为0.7×3.453×0.097 λ 3(波长对应30GHz),天线仿真效果如图10-13所示,产生横向宽波束、纵向窄波束方向图,带内增益保持在10dBi以上。
由图10可知,天线的阻抗带宽覆盖了24.25GHz - 29.5GHz,其相对带宽超过20%。图11为非倾斜波束平面口径列单元的实际增益,从仿真结果可以看到在24.25GHz - 29.5GHz频带范围内增益都保持在10dBi以上,最高增益可达11.25dBi。图12为工作在29.5GHz的E面和H面的辐射方向图,其E面的3dB波束宽度为-53deg-49.6deg。H面的主瓣和副瓣相差大于7dB。往低频波束宽度越宽,29.5GHz时波束宽度最窄。图13给出了非倾斜波束平面口径列单元在整个工作频段内的天线效率,可以看到在整个频段内的效率大于82%。仿真结果表明所提出设计思路和方法有效。
同样,本发明对提出的倾斜波束平面口径列单元进行了初步仿真验证,以非倾斜波束平面口径列单元为基础,同样实现了覆盖24.25GHz - 29.5GHz,带内增益保持在10dBi以上。天线工作在27GHz时波束倾斜角度大约为10°。因各频点的波长不同,因此各频点的波束倾斜角度略有差异。
    2、列阵元结构异构的毫米波宽角扫描异构阵
本发明中,相控阵天线包括多个具有不同方向图的列阵元,其中,通过对列阵元的波束的倾角进行调节以获得不同方向图,多个所述列阵元中包括至少一个非倾斜波束平面口径列阵元和至少一个倾斜波束平面口径列阵元,所述非倾斜波束平面口径列阵元的波束不倾斜,所述倾斜波束平面口径列阵元的波束具有倾角。
针对上述所提到的非倾斜波束平面口径列阵元和倾斜波束平面口径列阵元进行组阵,在本发明其中一个实施例中,设计了工作于24.25-29.5GHz的1×4的相控阵天线,请参阅如图1(a)、图14,提供了一个由4个列阵元组成的相控阵天线,包括位于两侧的方向图向左倾斜的倾斜波束平面口径列阵元(图中的附图标记为14)、方向图向右倾斜的倾斜波束平面口径列阵元(图中的附图标记为16)和两个位于中间的非倾斜波束平面口径列阵元(图中的附图标记为15)。其中,方向图向左倾斜的波束平面口径列阵元14中的附加口径辐射结构位于上层基板1长度方向上的左侧,方向图向右倾斜的倾斜波束平面口径列阵元16中的附加口径辐射结构位于上层基板1长度方向上的右侧。
通过引入波束向左倾斜的倾斜波束平面口径列阵元及波束向右倾斜的倾斜波束平面口径列阵元,使得阵列整体波束宽度得到展宽,由于高频倾斜角度更大,因此对改善高频的扫描性能更为明显,很好地解决了传统相控阵越往高频扫描性能越差的技术难题。
图15-19给出了前述4元阵列组成的相控阵天线的整体性能。由图15可知,天线的阻抗带宽覆盖了24.25GHz - 29.5GHz毫米波频段,其相对带宽超过20%。图16为天线的实际增益,实现了带内阻抗匹配、高且稳定的增益。带内增益保持在15dBi以上,最高增益可达15.3dBi。图17给出了天线在整个工作频段内的天线效率,可以看到在整个频段内的效率大于82%。 图18为工作在29.5GHz异构阵列的扫描性能,增益下降3dB,扫描角为±62.24°,主副瓣相差3dB的最大扫描角为72°,增益下降5dB。图19所示,整个频段内增益下降3dB扫描角都大于60°,最大可以扫到63°。
为方便对比,下面给出1×4同构阵进行对比,结构如图20所示,由四个非倾斜波束平面口径列阵元15组成同构相控阵。同构相控阵同样覆盖了24.25GHz-29.5GHz的带宽,带内增益保持在15dBi以上,可实现最大扫描角为58°,增益下降3dB;55°扫描覆盖25GHz-28.5GHz,高频29.5GHz只能扫到51°。仿真发现,越往高频,扫描角较小。与之前的异构阵相比较,同构阵高频扫描性能较差。因此,验证了单元波束异构思想的作用。
三、基于阵元布局异构的毫米波宽角扫描异构阵
本发明所提出的思想不只局限于上述所提到的平面口径天线,对其他类型的天线同样适用。针对图1(b)的方案提出了一种由同轴中心馈电的基片集成波导(SIW)缝隙阵,具体实施例结构如图21所示,通过直接把列阵元进行倾斜,从而得到一个倾斜的口径面,由此组阵实现阵元布局异构,从而实现波束倾角可控。在本发明其中一个实施例中,阵间距的取值范围为0.453λ-0.5λ,λ为波长。阵间距对阵列的波束宽度也有影响,从而影响扫描性能。一般阵间距越小阵列波束宽度越宽,但阵间距过小会导致单元之间的强互耦,因此在设计时需要综合考虑。本发明通过调整列阵元倾斜角度的大小(θ)及阵间距,由此来提升阵列整体的扫描性能。
由表1可知,在阵元间距为半个工作波长(18.75mm)的情况下,随倾斜角(θ)从0到50,E面最大扫描角从54.2°逐渐提高到了64.6°,最大提升幅度可达19.1%,代价是最大扫描角下的主瓣增益降低了0.66dBi。在不同的阵元间距下也都能得到类似的结论。可以看出,异构相控阵天线相对于传统同构相控阵天线,扫描性能有了很大提升。
 表1性能总结
Figure 370602dest_path_image001
四、基于阵元结构/布局混合异构的毫米波宽角扫描异构阵
针对图1(c)的方案提出了一种由微带缝隙耦合馈电的微带贴片天线,具体实施例结构如图22所示,阵列中间两个列阵元32采用传统的微带贴片天线,通过一分二,二分四的微带缝隙耦合进行馈电。阵列两边的两个列阵元(定义为第一列阵元31和第二列阵元33)由平面的传统贴片变成阶梯型贴片,多层的贴片通过金属化过孔相连,从而实现贴片的折叠。本发明所提出的折叠贴片,等效于直接把传统贴片进行倾斜,从而得到一个倾斜的口径面,由此组阵实现阵列布局异构,从而实现波束倾角可控,倾角的大小由折叠贴片的尺寸控制。在此基础上,改变列第一列阵元31和第二列阵元33的位置,由原来的中心缝隙馈电变成偏馈,从而实现阵元结构/布局混合异构。图23给出了在中心频点27.5GHz时的扫描性能,增益下降3dB,扫描角为±65°。仿真结果表明,在整个工作频带内扫描角都大于60°,最大可达75°。与传统贴片天线相比,极大提升了扫描性能。
上述三种方案通过不同的列阵元结构都验证了“异构相控阵”思想的可行性,相对于传统同构相控阵,提供了更大的设计自由度,实现了更优异的扫描性能。
本发明实施例提供的相控阵天线具备以下优点:
1、为宽角扫描相控阵设计提供了更大的自由度。提出一种新的扫描相控阵,通过引入具有不同方向图的单元,组成阵列,即“异构相控阵”。通过阵元波束异构,使各个阵元具有不同方向图,为相控阵提供更大的设计自由度,从而实现更优异的扫描性能。本发明虽然以一维异构相控阵的研究和验证为主,但相关理论与方法也可扩展至二维异构相控阵。
2、实现了单元波束的倾斜。在列阵元方面,本发明提出波束倾角可设计的宽带、高增益、低损耗的平面口径列阵元,通过在列阵元横向口径上引入梯度相位分布实现波束倾角控制。
本发明实施例提供的相控阵天线具备以下关键点和欲保护点:
1、“异构相控阵”的思想
具体的,本发明提出了一种新的提升相控阵扫描性能的思想。在阵列架构方面,提出一种新的扫描相控阵,通过引入具有不同方向图的单元,组成阵列,即“异构相控阵”。异构相控阵实现提升扫描性能的本质是,利用异构产生的阵元方向图多样性提供的自由度。为得到不同的列阵元方向图,本发明可以采用基于多个具有不同波束倾角的列阵元类型组成相控阵;基于同一个列阵元类型,通过对列阵元的结构改变和结构倾斜设计组成相控阵;基于不同列阵元类型,同时通过对列阵元的结构改变和结构倾斜设计组成相控阵。因此,异构相控阵有三种可能的组阵方案,分别是阵元结构异构、阵元布局异构、阵元结构/布局混合异构。
1、单元波束异构的实现方式
为满足异构阵对列阵元的特殊要求,在其横向平面上,平面口径列阵元的波束根据需要可被设计成具有不同倾角。本发明采用了行波激励辐射方案,以正色散模式传播的行波沿传播方向会产生相位滞后,如果行波在传播过程中辐射,那么辐射波束就会朝向行波的传播方向。根据这一原理,通过在基本的平面口径列阵元结构上横向口径上引入梯度相位分布,在列阵元一侧增加 “附加口径辐射结构”,让表面波行波由列阵元“流向”附加口径辐射结构并同时辐射,从而实现产生倾角可控波束。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本发明中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本发明所示的这些实施例,而是要符合与本发明所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,包括多个具有不同方向图的列阵元,其中,通过对列阵元的波束的倾角进行调节以获得不同方向图。
  2. 根据权利要求1所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,多个所述列阵元中包括至少一个非倾斜波束平面口径列阵元和至少一个倾斜波束平面口径列阵元,所述非倾斜波束平面口径列阵元的波束不倾斜,所述倾斜波束平面口径列阵元的波束具有倾角。
  3. 根据权利要求2所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,所述非倾斜波束平面口径列阵元,包括:
        上层基板(1),所述上层基板(1)上设置有辐射结构,所述辐射结构包括金属背腔(2)、拓扑结构金属贴片(3)、第一寄生贴片(12)和调谐缝隙(4),所述金属背腔(2)包括金属条带和接地的金属化过孔,所述拓扑结构金属贴片(3)包括多个依次相连的金属贴片,调谐缝隙(4)开设在上层基板(1)上;
        金属地板(5),所述金属地板(5)位于上层基板(1)的底面,所述金属地板(5)上开设有耦合缝隙(6);
        中层基板(7),所述中层基板(7)位于金属地板(5)下方;以及
    底层基板(8),所述底层基板(8)的底面上设置有与所述耦合缝隙(6)组成馈电结构的微带线(9),且所述微带线(9)上靠近耦合缝隙(6)的一侧设置有调谐枝节(10);
    其中,所述倾斜波束平面口径列阵元的结构是在所述非倾斜波束平面口径列阵结构的基础上,还包括附加口径辐射结构,所述附加口径辐射结构包括多个第二寄生贴片(13),设置在所述上层基板(1)长度方向上的任意一侧,且通过改变第二寄生贴片(13)的尺寸及个数来调节波束倾斜的大小。
  4. 根据权利要求3所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,调谐缝隙(4)开设在上层基板(1)上且位于拓扑结构金属贴片(3)内。
  5. 根据权利要求3所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,微带线(9)的接口处设置有焊盘(11)。
  6. 根据权利要求3所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,多个第二寄生贴片(13)用于控制口径场分布,产生相位滞后。
  7. 根据权利要求3-6任一所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,当附加口径辐射结构位于所述上层基板(1)长度方向上的其中一侧时,波束向左倾斜,当附加口径辐射结构位于所述上层基板(1)长度方向上的另外一侧时,波束向右倾斜。
  8. 根据权利要求1所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,每个所述列阵元均为由微带缝隙耦合馈电的微带贴片天线,其中,通过对至少一个微带贴片天线上的贴片进行折叠以得到倾斜的口径面。
  9. 根据权利要求1所述的基于单元波束异构的毫米波宽角扫描相控阵天线,  其特征在于,将所述列阵元倾斜以得到倾斜的口径面,所述倾斜的角度可调。
  10. 根据权利要求9所述的基于单元波束异构的毫米波宽角扫描相控阵天线,其特征在于,每个所述列阵元为由同轴中心馈电的基片集成波导缝隙阵。
PCT/CN2022/092091 2021-06-29 2022-05-11 基于单元波束异构的毫米波宽角扫描相控阵天线 WO2023273624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110732633.1A CN113506988B (zh) 2021-06-29 2021-06-29 基于单元波束异构的毫米波宽角扫描相控阵天线
CN202110732633.1 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023273624A1 true WO2023273624A1 (zh) 2023-01-05

Family

ID=78011411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092091 WO2023273624A1 (zh) 2021-06-29 2022-05-11 基于单元波束异构的毫米波宽角扫描相控阵天线

Country Status (2)

Country Link
CN (1) CN113506988B (zh)
WO (1) WO2023273624A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117634115A (zh) * 2024-01-26 2024-03-01 安徽大学 一种小型化天线阵列方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506988B (zh) * 2021-06-29 2022-09-20 华南理工大学 基于单元波束异构的毫米波宽角扫描相控阵天线
CN117855812A (zh) * 2024-01-29 2024-04-09 中国科学院上海微系统与信息技术研究所 一种波导天线阵及通信模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534829A (zh) * 2003-03-27 2004-10-06 3 具有偶极元件且束宽及扫描方位角可调的天线
CN104051867A (zh) * 2013-03-13 2014-09-17 英特尔公司 具有交错子阵列的单封装相控阵模块
CN109541551A (zh) * 2018-12-21 2019-03-29 深圳迈睿智能科技有限公司 多波束同频微波探测天线及其制造方法和检测方法
CN109643839A (zh) * 2016-09-07 2019-04-16 康普技术有限责任公司 适合用于蜂窝和其它通信系统的多频带多波束透镜式天线
CN111819735A (zh) * 2018-01-05 2020-10-23 维斯普瑞公司 混合高增益天线系统、设备和方法
CN112103649A (zh) * 2020-08-30 2020-12-18 西南电子技术研究所(中国电子科技集团公司第十研究所) L波段低仰角覆盖机载前舱卫通相控阵天线
CN113506988A (zh) * 2021-06-29 2021-10-15 华南理工大学 基于单元波束异构的毫米波宽角扫描相控阵天线

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259415B1 (en) * 1996-06-03 2001-07-10 Bae Systems Advanced Systems Minimum protrusion mechanically beam steered aircraft array antenna systems
US8264410B1 (en) * 2007-07-31 2012-09-11 Wang Electro-Opto Corporation Planar broadband traveling-wave beam-scan array antennas
CN101814657B (zh) * 2010-03-26 2013-01-30 南京理工大学 有限带宽内大角度扫描的低损耗微带贴片频扫天线阵列
JP2016058790A (ja) * 2014-09-05 2016-04-21 パナソニック株式会社 アレーアンテナおよびそれを用いた装置
KR101720434B1 (ko) * 2015-11-10 2017-03-28 한국과학기술원 광 위상배열 안테나
US10854994B2 (en) * 2017-09-21 2020-12-01 Peraso Technolgies Inc. Broadband phased array antenna system with hybrid radiating elements
CN108011183B (zh) * 2017-11-15 2019-08-13 电子科技大学 基于矩形贴片tm20模式的一维宽角度扫描相控阵
CN111684658B (zh) * 2018-02-01 2021-11-23 维斯普瑞公司 可配置的相位天线阵列
US10594032B2 (en) * 2018-06-07 2020-03-17 King Abdulaziz University Beam scanning antenna and method of beam scanning
CN108987911B (zh) * 2018-06-08 2020-07-31 西安电子科技大学 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN109786937A (zh) * 2018-12-21 2019-05-21 西安电子科技大学 一种小型超宽波束背腔双层微带天线及其宽角扫描阵列
CN111684657B (zh) * 2019-06-28 2021-09-24 深圳市大疆创新科技有限公司 背馈式行波天线阵列、雷达和可移动平台
CN112117533B (zh) * 2020-08-18 2021-08-31 北京邮电大学 双频双线极化相控阵天线及天线单元

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534829A (zh) * 2003-03-27 2004-10-06 3 具有偶极元件且束宽及扫描方位角可调的天线
CN104051867A (zh) * 2013-03-13 2014-09-17 英特尔公司 具有交错子阵列的单封装相控阵模块
CN109643839A (zh) * 2016-09-07 2019-04-16 康普技术有限责任公司 适合用于蜂窝和其它通信系统的多频带多波束透镜式天线
CN111819735A (zh) * 2018-01-05 2020-10-23 维斯普瑞公司 混合高增益天线系统、设备和方法
CN109541551A (zh) * 2018-12-21 2019-03-29 深圳迈睿智能科技有限公司 多波束同频微波探测天线及其制造方法和检测方法
CN112103649A (zh) * 2020-08-30 2020-12-18 西南电子技术研究所(中国电子科技集团公司第十研究所) L波段低仰角覆盖机载前舱卫通相控阵天线
CN113506988A (zh) * 2021-06-29 2021-10-15 华南理工大学 基于单元波束异构的毫米波宽角扫描相控阵天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117634115A (zh) * 2024-01-26 2024-03-01 安徽大学 一种小型化天线阵列方法
CN117634115B (zh) * 2024-01-26 2024-04-16 安徽大学 一种小型化天线阵列方法

Also Published As

Publication number Publication date
CN113506988A (zh) 2021-10-15
CN113506988B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US8462063B2 (en) Metamaterial antenna arrays with radiation pattern shaping and beam switching
WO2023273624A1 (zh) 基于单元波束异构的毫米波宽角扫描相控阵天线
CN107949954B (zh) 无源串馈式电子引导电介质行波阵列
CN108598691B (zh) 基于平板长槽天线的宽带宽角扫描相控阵天线
CN114512827B (zh) 一种超宽带斜45度极化紧耦合阵列天线
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
EP2304846B1 (en) Antenna element and method
WO2018145300A1 (zh) 一种天线阵列及通信设备
CN112736435A (zh) 基于紧耦合结构的小型化宽带宽角圆极化扫描相控阵天线
CN113851833B (zh) 基于方向图可重构子阵技术的栅瓣抑制宽角扫描相控阵
CN112952369A (zh) 宽带±45°双极化毫米波端射天线及其阵列
CN115528424A (zh) 宽波束双圆极化超表面天线单元、实现方法及相控阵天线
WO2024104087A1 (zh) 天线辐射单元和天线
CN112582808B (zh) 一种适用于毫米波5g通信的宽带蝶形贴片天线阵列
CN209169390U (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
CN113690636B (zh) 基于超表面的毫米波宽角扫描相控阵天线
CN113013639B (zh) 一种宽带宽角扫描相控阵单元及阵列结构
KR100506481B1 (ko) 혼합 급전 방식을 이용한 마이크로스트립 배열 안테나
Temga et al. 28GHz-band 2x2 patch antenna module vertically integrated with a compact 2-D BFN in broadside coupled stripline structure
CN112736458A (zh) 多元阵列宽频带解耦合网络
CN114899620B (zh) 一种紧凑型低交叉极化的毫米波宽角扫描天线阵列
CN114914674B (zh) 一种单层线极化磁电偶极子天线及天线阵列
CN220672851U (zh) 一种双极化磁电偶极子天线
Luo et al. A broadband pattern reconfigurable patch antenna for 60GHz wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE