WO2018025911A1 - SiCヒーター - Google Patents

SiCヒーター Download PDF

Info

Publication number
WO2018025911A1
WO2018025911A1 PCT/JP2017/028028 JP2017028028W WO2018025911A1 WO 2018025911 A1 WO2018025911 A1 WO 2018025911A1 JP 2017028028 W JP2017028028 W JP 2017028028W WO 2018025911 A1 WO2018025911 A1 WO 2018025911A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating coating
heating element
weight
silicon carbide
sintered body
Prior art date
Application number
PCT/JP2017/028028
Other languages
English (en)
French (fr)
Inventor
大朗 長友
雄貴 内川
嘉彦 村上
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to JP2018531951A priority Critical patent/JP6717379B2/ja
Priority to CN201780047519.7A priority patent/CN109565906B/zh
Priority to US16/322,425 priority patent/US10966288B2/en
Priority to KR1020197003497A priority patent/KR102246856B1/ko
Publication of WO2018025911A1 publication Critical patent/WO2018025911A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/148Silicon, e.g. silicon carbide, magnesium silicide, heating transistors or diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a SiC heater. This application claims priority on August 2, 2016 based on Japanese Patent Application No. 2016-151911 filed in Japan, the contents of which are incorporated herein by reference.
  • thermocompression bonding method As an alternative technology to replace reflow, a mounting method called a thermocompression bonding method has attracted attention and has been put into practical use in part.
  • the thermocompression bonding method is a method of mounting by heating and cooling while applying a load to each chip by a heater equipped with a heating element. It is known that by using a heater made of ceramic as a heater for realizing the thermocompression bonding method, deformation of the heater when a load is applied can be suppressed and high-precision mounting can be realized. Therefore, in the future, it is expected that the thermocompression bonding method using a ceramic heater using ceramic as a heating element will become the mainstream of mounting.
  • Patent Document 1 describes an SiC heater using silicon carbide as a heating element.
  • an insulating coating made of borosilicate glass or aluminosilicate glass is provided on the surface of a heating element made of silicon carbide.
  • the SiC heater described in Patent Document 1 When the SiC heater described in Patent Document 1 receives a heat history at a high temperature of 700 ° C. or higher, the insulating coating may become cloudy and the insulating characteristics may be significantly reduced.
  • the heating temperature of the workpiece at the time of mounting is about 450 ° C., but it is desired that the workpiece can withstand a certain high temperature in response to an unexpected excessive temperature rise.
  • the present invention has been made in view of the above-mentioned problems in conventional silicon carbide heaters, and an object thereof is to provide a SiC heater in which a decrease in insulation due to excessive temperature rise is suppressed.
  • a SiC heater includes a heating element having a thin plate-like silicon carbide sintered body and an insulating coating formed on a surface of the silicon carbide sintered body, and the heating element.
  • a heater base for holding the heating element from one side while insulating heat from the heating element, wherein the insulating coating is the heater of the silicon carbide sintered body
  • the insulating coating is the heater of the silicon carbide sintered body
  • a second additive component containing either one or both of aO is contained in an amount of 1 wt% to 35 wt%.
  • a SiC heater includes a heating element including a thin plate-like silicon carbide sintered body and an insulating coating formed on a surface of the silicon carbide sintered body, A pair of electrodes for energizing the heating element, and a heater base that holds the heating element from one side while insulating heat from the heating element, and the insulating coating is formed of the silicon carbide sintered body.
  • the insulating coating Located on the surface opposite to the heater base, the insulating coating has an electrical resistivity of 10 9 ⁇ ⁇ cm or more at room temperature, and the insulating coating has a thermal expansion coefficient of 2 ⁇ 10 ⁇ 6 / K or more.
  • the insulating coating contains 1% by weight or more and 35% by weight of the first additive component containing SiO 2 as a matrix and containing at least one of B 2 O 3 and Al 2 O 3. Contains less of MgO and CaO
  • the second additive component including at least one is contained in an amount of 1 wt% to 35 wt%.
  • the second additive component may further include BaO.
  • the second additive component may include all of BaO, MgO, and CaO.
  • the total content of MgO and CaO as the second additive component may be 1 to 2 times the content of BaO.
  • the shape of the heating element is a substantially S-shape in a plan view having two slits cut from opposite two sides of a substantially square or a substantially rectangular shape toward opposite sides, respectively.
  • One of the pair of electrodes may be connected to both ends of the substantially S-shape.
  • the insulating coating may be composed of at least one of borosilicate glass or aluminosilicate glass.
  • the ratio of the first additive component may be 1 wt% or more and 30 wt% or less with respect to the total weight of the insulating coating.
  • the silicon carbide sintered body may have a bonded body density of 2.5 g / cm 3 or more and an electrical specific resistance at 25 ° C. of 0.1 ⁇ ⁇ cm to 100 ⁇ ⁇ cm. .
  • An object of the SiC heater of the present invention is to provide an SiC heater that suppresses a decrease in insulation due to excessive temperature rise.
  • FIG. 5 is a front cross-sectional view (a cross-sectional view taken along line AA shown in FIG.
  • FIG. 5 is a side cross-sectional view (a cross-sectional view taken along line BB shown in FIG. 4) showing a state in which the semiconductor chip is bonded using the SiC heater according to the embodiment of the invention.
  • FIG. 5 is a side cross-sectional view (cross-sectional view taken along the line CC shown in FIG. 4) showing a state in which the semiconductor chip is bonded using the SiC heater according to the embodiment of the invention, as viewed from an oblique direction. It is a perspective view which shows the manufacturing state by a flip chip bonder using the SiC heater which concerns on one Embodiment of invention.
  • FIGS. 1 and 2 are a cross-sectional view and a perspective view, respectively, of the heating element 1 of the SiC heater 100 of the present embodiment.
  • 3 to 6 are a front view, a lower plan view, an upper plan view, and a side view, respectively, of the SiC heater 100 of the present embodiment.
  • the SiC heater 100 of this embodiment includes a heating element 1, a pair of electrodes 20, 20, a heater base 21, and a cooling system connection member 22.
  • the pair of electrodes 20, 20 energize the heating element 1.
  • the heater base 21 holds the heating element 1 from one side while insulating the heat from the heating element 1.
  • the cooling system connection member 22 supports the heater base 21.
  • the electrode 20 includes a lead wire 24 and a bolt 16 for fixing the lead wire 24 to the heating element 1.
  • each part is demonstrated concretely.
  • heating element 1 has a thin plate-like silicon carbide sintered body 1A and an insulating coating 1B formed on the surface of the silicon carbide sintered body.
  • the heating element 1 is a thin plate that is substantially square or substantially rectangular.
  • the substantially square or the substantially rectangle is formed by connecting the first and second sides facing each other, the first and second sides and the corners, and the third and fourth sides facing each other. It is defined as having.
  • the heating element 1 is a thin plate having a square shape with an outer shape of 22 mm and a thickness of 1 mm.
  • the heating element 1 has a suction surface 1 a located on the side opposite to the heater base 21 on the surface that sucks the chip, and a back surface 1 b located on the heater base 21 side.
  • the heating element 1 includes two slits 2 and 3 (first slit 2 and second slit) cut from two opposite sides (that is, a first side and a second side) toward opposite sides. 3)).
  • the two slits 2 and 3 are substantially parallel to each other and substantially perpendicular to the third and fourth sides.
  • the length of the slits 2 and 3 is 2/3 of the length of the third and fourth sides.
  • the heating element 1 is connected to electrodes 20 at both ends (also referred to as a start point and an end point) of a substantially S shape.
  • the slits 2 and 3 absorb the influence of thermal expansion and contraction of the heating element 1 due to temperature changes. Therefore, by providing the slits 2 and 3, the heating element 1 can be made strong against thermal stress.
  • the heating element 1 makes it possible to reduce the thickness of the heating element 1 and consequently reduce the heat capacity of the heating element 1 to enable rapid heating and cooling.
  • the heating element 1 substantially S-shaped by the slits 2 and 3, the current flows through the path, so that the heat uniformity of the heating element 1 can be improved.
  • the heating element 1 includes through holes 4 and 5 for attaching electrodes, a through hole 6 that forms a gas passage for chip adsorption, and through holes 7 and 8 and a groove 9 that form a gas passage for adsorbing a heat transfer plate. , 10, through holes 11, 12 that form an inert gas passage, and through holes 13, 14 for inserting countersunk screws 15, 15 that fix the heating element 1 to the heater base 21. ing.
  • the through holes 4 and 5 for attaching the electrodes are located at the respective substantially S-shaped tips (that is, the start point and the end point) of the heating element 1.
  • the through hole 6 is located at a substantially central portion of the heating element 1.
  • the through hole 6 is located at a substantially middle point of a straight line connecting the through hole 4 and the through hole 5.
  • the through holes 7 and 8 are located near the outer edges of the corners facing the respective substantially S-shaped tips of the heating element 1.
  • the grooves 9, 10 communicate with the through holes 7, 8 on the suction surface 1 a of the heating element 1 and are formed in a substantially L shape along the outer edge.
  • the through hole 11 is located at an intermediate position between the through hole 4 and the through hole 7.
  • the through hole 12 is located at an intermediate position between the through hole 5 and the through hole 8.
  • Silicon carbide sintered body 1A of heating element 1 is preferably silicon carbide, particularly silicon carbide having a sintered body density of 2.5 g / cm 3 or more, and more preferably a sintered body density of 3.15 / It is silicon carbide of cm 3 or more.
  • the bonding force between the silicon carbide particles can be sufficiently obtained.
  • the mechanical strength at high temperatures can be sufficiently secured.
  • the sintered body density of silicon carbide sintered body 1A in this embodiment it is preferable 2.5 g / cm 3 or more 3.21 g / cm 3 or less.
  • the silicon carbide sintered body 1A preferably has a thermal conductivity at room temperature of 100 W / m ⁇ K or more, and more preferably 180 W / m ⁇ K or more.
  • the sintered density of the silicon carbide sintered body 1A is as dense as 2.5 g / cm 3 or more, and since it can be sintered without adding a sintering aid as described later, it exists at the grain boundary. Therefore, a fine and uniform structure can be obtained, and a high thermal conductivity of 100 W / m ⁇ K or more can be obtained.
  • This silicon carbide sintered body 1A has excellent thermal uniformity, there is no defective connection at the bonding part, the product yield is high, the time required for cooling is short, the bonding process time is shortened, and the cost performance is high. In addition, there is no risk of damage due to thermal shock even during rapid temperature rise or rapid temperature drop.
  • the silicon carbide sintered body 1A preferably has an electrical resistivity at room temperature (25 ° C.) of 0.1 ⁇ ⁇ cm to 100 ⁇ ⁇ cm, and more preferably 0.2 ⁇ ⁇ cm to 10.0 ⁇ ⁇ cm. More preferred.
  • an electrical resistivity at room temperature 25 ° C.
  • the electrical resistivity of the silicon carbide sintered body 1A it is possible to suppress a large current from flowing through the silicon carbide sintered body 1A. Therefore, it is possible to suppress the stress caused by the electromagnetic induction generated in the lead wire 24 of the electrode 20 and suppress the deterioration of the position accuracy of the heater head.
  • the electrical specific resistance of the silicon carbide sintered body 1A is set to 0.1 ⁇ ⁇ cm or more, the resistance value of the silicon carbide sintered body 1A is sufficiently ensured without making the heating element 1 thin.
  • the strength can withstand the pressure during bonding (usually about 50 kg / cm 2 ).
  • the electrical resistivity of the silicon carbide sintered body 1A be 100 ⁇ ⁇ cm or less because a current can flow without applying a large voltage and a special power source is not required.
  • the insulating coating 1B of the heating element 1 is provided on at least the surface (adsorption surface 1a) opposite to the heater base 21 of the silicon carbide sintered body 1A.
  • the insulating coating 1B is made of at least one of borosilicate glass and aluminosilicate glass.
  • the insulating coating 1B is preferably formed not only on the adsorption surface 1a but also on the back surface 1b and side surfaces of the heating element 1.
  • the film thickness of the insulating coating 1B is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the insulating coating 1B is less than 10 ⁇ m, the insulation characteristics as a heater are significantly reduced.
  • the thickness exceeds 100 ⁇ m, the insulating coating 1B is easily peeled off from the silicon carbide sintered body 1A due to internal strain with the SiC heater. This is not preferable.
  • the film thickness of the insulating coating 1B is 10 ⁇ m or more, the insulating characteristics as a heater can be ensured.
  • the heat capacity of the insulating coating 1B can be reduced, and the thermal conductivity through the insulating coating 1B from the silicon carbide sintered body 1A to the workpiece can be increased. Can increase the response speed.
  • the insulating coating 1B preferably has an electrical specific resistance at room temperature of 10 9 ⁇ ⁇ cm or more, and more preferably 10 10 ⁇ ⁇ cm or more. Thereby, the insulation with the chip
  • the electrical resistivity of the insulating coating 1B at room temperature is measured by an insulation resistance meter, and specifically, measured by applying a high voltage between the glass surface coated on the heater and the heater electrode.
  • the thermal expansion coefficient of the insulating coating 1B is preferably 2 ⁇ 10 ⁇ 6 / K or more and 6 ⁇ 10 ⁇ 6 / K or less, and more preferably 3.5 / K or more and 5.5 / K or less.
  • the heating element 1 repeats rapid temperature rise and fall many times. For this reason, the insulating coating 1B is brought close to the thermal expansion coefficient (about 4.5 ⁇ 10 ⁇ 6 / K) of the silicon carbide sintered body 1A, which is the base composition of the heating element 1, thereby providing the insulating coating 1B. It can control that 1B exfoliates from silicon carbide sintered compact 1A.
  • the thermal expansion coefficient of the insulating coating 1B is measured by a laser interferometer.
  • the insulating coating 1B uses SiO 2 as a matrix.
  • the insulating coating 1B can ensure sufficient insulation having the above-described electrical resistivity by using SiO 2 as a matrix.
  • “using SiO 2 as a matrix” means that SiO 2 is a main component in the insulating coating 1B.
  • SiO 2 is preferably 30% by weight or more and 98% by weight or less, and more preferably 46% by weight or more and 57% by weight or less with respect to the total weight of the insulating coating 1B.
  • the insulating coating 1B contains a first additive component containing at least one of B 2 O 3 and Al 2 O 3 in an amount of 1% by weight to 35% by weight with respect to the total weight of the insulating coating 1B, and 15% by weight or more. It is preferable to contain 33% by weight or less.
  • the insulating film 1B is B 2 O 3 and comprises at least one of Al 2 O 3, at least one fraction contained a B 2 O 3 and Al 2 O 3 is based on the total weight of the insulating coating 1B It is preferably contained in an amount of 1 to 35% by weight, preferably 15 to 33% by weight.
  • the ratio of B 2 O 3 contained in the insulating coating 1B is preferably 2% by weight to 15% by weight, and more preferably 4% by weight to 13% by weight with respect to the total weight of the insulating coating 1B.
  • the proportion of Al 2 O 3 contained in the insulating coating 1B is preferably 8% by weight to 25% by weight and more preferably 10% by weight to 22% by weight with respect to the total weight of the insulating coating 1B. If necessary, the amount of Al 2 O 3 is preferably larger than the amount of B 2 O 3 .
  • the insulating coating 1B contains 1% by weight or more of the first additive component, which is at least one of B 2 O 3 and Al 2 O 3 , based on the total weight of the insulating coating 1B. Can be increased.
  • the content of the first additive component exceeds 30% by weight with respect to the total weight of the insulating coating 1B, the toughness of the insulating coating 1B is impaired and becomes brittle. Therefore, the content of the first additive component is preferably 30% by weight or less.
  • the insulating coating 1B contains the second additive component, which is at least one of MgO and CaO, in an amount of 1% by weight to 35% by weight, and 10% by weight to 33% by weight with respect to the total weight of the insulating coating 1B. Is preferred. In other words, the insulating coating 1B contains at least one of MgO and CaO, and the ratio of containing at least one of MgO and CaO is 1 wt% or more and 35 wt% or less with respect to the total weight of the insulating coating 1B. It is preferably contained in an amount of from 33% to 33% by weight.
  • the second additive component is preferably at least one of MgO and CaO, and further BaO.
  • the total ratio of at least one of MgO and CaO contained in the insulating coating 1B and BaO is 1% by weight to 35% by weight, and 10% by weight to 33% by weight with respect to the total weight of the insulating coating 1B.
  • the following is preferable.
  • the second additive component is more preferably BaO, MgO and CaO.
  • the total ratio of BaO, MgO and CaO contained in the insulating coating 1B is 1% by weight to 35% by weight, and 10% by weight to 33% by weight with respect to the total weight of the insulating coating 1B. Is preferred.
  • the proportion of MgO contained in the insulating coating 1B is preferably 2% by weight to 15% by weight, and more preferably 3% by weight to 12% by weight, as necessary.
  • the proportion of CaO contained in the insulating coating 1B is preferably 1% by weight to 15% by weight, and more preferably 3% by weight to 12% by weight, as necessary.
  • the proportion of BaO contained in the insulating coating 1B is preferably 3% by weight or more and 23% by weight or less, if necessary, and is 4% by weight or more and 13% by weight or less. Is more preferable.
  • both MgO and CaO are included in the insulating coating 1B, it is also preferable that the amount of CaO is equal to or greater than the amount of MgO, if necessary.
  • the amount of BaO is large if necessary.
  • both CaO and BaO are included in the insulating coating 1B, it is also preferable that the amount of BaO is large if necessary.
  • BaO, MgO, and CaO constituting the second additive component are included in the insulating coating 1B, thereby increasing the thermal expansion coefficient of the insulating coating 1B.
  • Insulating coating 1B made of at least one of borosilicate glass and aluminosilicate glass with SiO as a matrix is lower than the thermal expansion coefficient of silicon carbide sintered body 1A.
  • the thermal expansion coefficient of the insulating coating 1B can be brought close to the thermal expansion coefficient of the silicon carbide sintered body 1A. Become. That is, the second additive component functions as a thermal expansion coefficient adjusting component.
  • Insulating coating 1B contains the second additive component in an amount of 1% by weight to 35% by weight with respect to the total weight of insulating coating 1B, so that the thermal expansion coefficient of insulating coating 1B is the thermal expansion coefficient of silicon carbide sintered body 1A. It becomes possible to approach.
  • the thermal expansion coefficient of the insulating coating 1B is less than 2 ⁇ 10 ⁇ 6 / K, and 35% by weight.
  • the thermal expansion coefficient of the insulating coating 1B exceeds 6 ⁇ 10 ⁇ 6 / K.
  • MgO and CaO have an effect of sufficiently increasing the melting point of the insulating coating 1B. Therefore, by including at least one of MgO and CaO in the insulating coating 1B as the second additive component, the melting point of the insulating coating 1B can be increased and the heat resistance temperature of the heating element 1 can be further increased. Therefore, it is possible to suppress a decrease in insulation even when the heating element 1 is excessively heated. Further, by increasing the heat-resistant temperature of the heating element 1, when the workpiece (heating target) is heated by the heating element 1, the temperature of the heating element 1 can be sufficiently increased from the target temperature of the heating target. Thereby, it becomes possible to heat a heating object still more rapidly.
  • BaO is not sufficiently effective in increasing the melting point of the insulating coating 1B. Therefore, when only BaO is included in the insulating coating 1B without including at least one of MgO and CaO, the effect of sufficiently increasing the heat resistance temperature of the heating element 1 is not sufficiently achieved. However, BaO has an effect of exerting stickiness as the insulating coating 1B as compared with MgO and CaO. Therefore, in addition to at least one of MgO and CaO as the second additive component, BaO is further added to form insulating coating 1B in which peeling from silicon carbide sintered body 1A is effectively suppressed. Can do.
  • the heat resistance as the insulating film can be increased, and the adhesion of the insulating film 1B to the silicon carbide sintered body 1A can be increased. it can.
  • the total content of MgO and CaO is preferably 1 to 2 times the content of BaO.
  • the electrode 20 has a lead wire 24 and a bolt 16.
  • the bolts 16 are inserted through the through holes 4 and 5 located at the respective substantially S-shaped tips of the heating element 1 to fix the lead wires 24 to the heating element 1.
  • the electrode 20 fixed to the heating element 1 is preferably arranged so that the current flows more uniformly over the entire range of the heating element 1 according to the shape of the heating element 1.
  • the heater base 21 is located between the cooling system connection member 22 and the heating element 1.
  • the heater base 21 holds the heating element 1 with the surface on the chip suction side (surface on the groove engraving side) facing the lower end.
  • the heater base 21 holds the heating element 1 using countersunk screws 15 and 15 that are inserted into the through holes 13 and 14 of the heating element 1, respectively.
  • the heater base 21 is made of an insulating ceramic having high heat insulation and excellent thermal shock resistance.
  • the ceramic used for the heater base 21 include silicon nitride (Si 3 N 4 ), calcium silicate (CaO ⁇ SiO 2 ), and sialon.
  • the heater base 21 holds the heating element 1 from one side, heat escape through the heater base 21 can be suppressed when the heating element 1 is heated. As a result, the heating element 1 can be rapidly heated with a small input power. In addition, since the heat escape to the cooling system connection member 22 to which the heater base 21 is attached is reduced, the displacement of the heater due to the thermal expansion of the cooling system connection member 22 can be suppressed. In addition, since the heater base 21 mechanically reinforces the heating element 1 from one direction, the heating element 1 can be prevented from being damaged by a load during bonding.
  • a counterbore part (also referred to as a recess) 21 a is provided on the surface of the heater base 21 that is in contact with the heating element 1.
  • the counterbore part 21a is provided in addition to the part which needs heat insulation between the heat generating body 1 and the heater base 21. That is, by providing the counterbore part 21a, the heat generating body 1 and the heater base 21 are not in contact with each other except a part that requires heat insulation. Further, the counterbore part 21a functions as a cooling gas passage in the gap formed by the counterbore part 21a.
  • the cooling system connection member 22 supports the heating element 1 via the heater base 21.
  • the cooling system connection member 22 is fixed to the heater base 21 by a pair of bolts 23 and 23.
  • the surface (upper surface 22a) opposite to the heater base 21 of the cooling system connection member 22 is formed as a flat surface.
  • the SiC heater 100 is fixed to a heater mounting portion on the bonding apparatus side such as a flip chip bonder via the upper surface 22a.
  • a heater mounting portion on the bonding apparatus side such as a flip chip bonder via the upper surface 22a.
  • four through holes 28,..., 28 for screwing to the heater mounting portion are provided.
  • FIG. 7 to 9 are views showing a state in which semiconductor chips are bonded using a SiC heater.
  • FIG. 7 is a cross-sectional view taken along line AA of FIG. 4, showing a state in which semiconductor chips are bonded using the SiC heater according to one embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line BB of FIG. 4, showing a state in which semiconductor chips are bonded using the SiC heater according to one embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along the line CC of FIG. 4, showing a state in which semiconductor chips are bonded using the SiC heater according to one embodiment of the present invention.
  • the cooling system connection member 22 and the heater base 21 have through-holes (chip suction through-holes that penetrate the heater base 21 and the cooling system connection member 22 concentrically with the through-holes 6 of the heating element 1. ) 31 is provided.
  • a negative pressure generator (not shown) is connected to the through hole 31, and the chip is adsorbed in the through hole 6 of the heating element 1.
  • the cooling system connection member 22 and the heater base 21 are provided with through holes (various gas supplies) that pass through the heater base 21 and the cooling system connection member 22 concentrically with the through holes 11 and 12 of the heating element 1.
  • Through-holes 32, 33 are provided.
  • the through holes 32 and 33 serve as passages for various gases such as nitrogen gas to be supplied when bonding using the SiC heater 100 is performed in an inert gas atmosphere.
  • the cooling system connection member 22 and the heater base 21 have through holes (on the groove side) that penetrate the heater base 21 and the cooling system connection member 22 concentrically with the through holes 7 and 8 of the heating element 1.
  • Heat transfer plate adsorption through-holes) 35, 36 are provided.
  • the cooling system connection member 22 is provided with a pair of grooves 26.
  • the through holes 35 and 36 are opened upward in the pair of grooves 26.
  • the through holes 35 and 36 form a gas passage for heat transfer plate adsorption.
  • the cooling system connection member 22 and the heater base 21 are provided with through holes 37 and 38 penetrating the heater base 21 and the cooling system connection member 22 at a position communicating with the counterbore portion 21 a of the heater base 21. It has been. Further, as shown in FIG. 5, the cooling system connection member 22 is provided with a pair of grooves 27. Further, the through holes 37 and 38 open upward in the pair of grooves 27. The through holes 37 and 38 form an air supply path for supplying a cooling gas for rapidly cooling the heating element 1 to the counterbore part 21a.
  • the cooling gas supplied from the through holes 37 and 38 passes through a counterbore portion 21 a formed on the surface of the heater base 21 on the side of the heating element 1, cools the back surface of the heating element 1, and then from the side surface of the heater base 21. Go outside. Further, the cooling gas supplied from the through holes 37 and 38 passes through the slits 2 and 3 through the counterbore portion 21 a, cools the heating element 1, and then escapes from the lateral surface of the heating element 1.
  • the counterbore part 21a can increase the area where the gap between the heating element 1 and the heater base 21 is in contact with the cooling gas, thereby increasing the cooling efficiency.
  • the slits 2 and 3 of the heating element 1 communicate with the counterbore portion 21a, the cooling gas can pass through the slits 2 and 3 and the cooling rate can be increased, thereby enabling rapid cooling.
  • the heating element 1 of the present embodiment includes a silicon carbide sintered body 1A having a sintered body density of 2.5 g / cm 3 or more and an electric specific resistance of 0.1 to 100 ⁇ ⁇ cm.
  • a silicon carbide sintered body 1A is obtained by mixing a first silicon carbide powder having an average particle diameter of 0.1 to 10 ⁇ m and a second silicon carbide powder having an average particle size of 0.1 ⁇ m or less and sintering the mixture. can get. According to this method, it is easy to obtain silicon carbide having an electrical resistivity in the range of 0.1 to 100 ⁇ ⁇ cm.
  • a method of manufacturing such a silicon carbide sintered body 1A is disclosed in Japanese Patent Application Laid-Open No. 4-65361.
  • a method having a large electrical specific resistance of 0.1 to 100 ⁇ ⁇ cm is used. It is desirable.
  • a first silicon carbide powder having an average particle size of 0.1 to 10 ⁇ m and a second silicon carbide having an average particle size of 0.1 ⁇ m or less prepare silicon fine powder.
  • the average particle size of the first and second silicon carbide powders is determined by a laser diffraction type particle size distribution measuring device.
  • a 1st silicon carbide powder what is generally used may be used, for example, what was manufactured by methods, such as a silica reduction method and an Atchison method, is used.
  • the crystalline phase of the first silicon carbide powder may be any of amorphous, ⁇ -type, and ⁇ -type, but the ⁇ -type is used because of the ease of adjusting the electrical resistivity to 0.1 to 100 ⁇ ⁇ cm. Are preferred.
  • the crystal phase of the second silicon carbide powder may be amorphous, ⁇ -type, or ⁇ -type. Since the second silicon carbide powder obtained in this way is very excellent in sinterability, it can be mixed with the first silicon carbide powder and high purity without adding a sintering aid. In addition, a dense silicon carbide sintered body 1A can be obtained.
  • the first silicon carbide powder and the second silicon carbide powder are mixed to obtain a mixture.
  • the mixing ratio is obtained in advance by a preliminary experiment so that the obtained silicon carbide sintered body has a predetermined electric resistivity low resistance value (0.1 to 100 ⁇ ⁇ cm).
  • the mixture is molded into a desired shape, and the obtained molded body is sintered at a temperature of 1800 to 2400 ° C. to obtain a sintered body, which is designated as silicon carbide sintered body 1A.
  • the sintering method and the atmosphere during sintering are not limited, but examples include a sintering method using a hot press furnace in a non-oxidizing atmosphere.
  • an insulating coating 1B is formed on the surface of the silicon carbide sintered body 1A.
  • the insulating coating 1B is formed by the following method. First, the surface of the processed silicon carbide sintered body 1A is ultrasonically cleaned with acetone and then naturally dried. Thereafter, in the oxidation furnace, for example, heat treatment is performed at a temperature of 1000 ° C. for 70 hours to generate a sufficient oxide film. Next, a glass powder having a desired glass composition, first and second additive components, and screen oil are mixed to form a slurry. Specifically, the desired glass composition of the glass powder is, for example, high-purity (3N or higher) silicon oxide glass.
  • the composition ratio is 44 to 60% by weight of silicon oxide based on the total weight of the glass powder and the first and second additive components.
  • the additive component is 1 to 35% by weight, and the second additive component is 1 to 35% by weight.
  • the composition ratio is 46 to 57% by weight of silicon oxide with respect to the total weight of the glass powder and the first and second additive components.
  • the additive component is preferably 5 to 25% by weight, and the second additive component is preferably 5 to 20% by weight.
  • slurry-like glass is applied to the surface (back surface 1a) opposite to the surface (back surface 1b) in contact with the heater base of the silicon carbide sintered body 1A and the side surface, and dried in a dryer at, for example, 100 ° C. for 1 hour.
  • the glass is welded to the silicon carbide sintered body 1A to form the insulating coating 1B.
  • the surface of the formed insulating coating 1B is ground so that the parallelism of the upper and lower surfaces (suction surface 1a and back surface 1b) of the heating element 1 is, for example, 3 ⁇ m or less.
  • the parallelism of the upper and lower surfaces of the heating element 1 is calculated by measuring nine points with a dial gauge.
  • FIG. 10 is a perspective view showing a manufacturing state by a flip chip bonder using the SiC heater according to the embodiment of the invention. A semiconductor chip bonding method using the SiC heater 100 of this embodiment will be described with reference to FIG.
  • the SiC heater 100 is attached to the lower end of the movable base 210 of the flip chip bonder 200 and used for manufacturing a semiconductor mounting board.
  • the SiC heater 100 moves the movable base 210 to the position of the autoloader 230 on which the tray 220 on which the plurality of semiconductor chips 40 are placed is placed, sucks air from the through hole 6, and removes one from the tray 220.
  • the semiconductor chip 40 is adsorbed.
  • the movable base 210 is moved to a position where the substrate 50 is prepared, and the semiconductor chip 40 is placed on the conductive bonding material 60 previously placed on the substrate 50 shown in FIGS. Further, while applying pressure downward by the movable base 210, the SiC heater 100 is energized to generate heat from the heating element 1, and the semiconductor chip 40, the conductive bonding material 60, and the substrate 50 are substantially evenly distributed via the heat transfer plate 30. The temperature rises to Thereby, the conductive bonding material 60 is melted in a few seconds, and the substrate 50 and the semiconductor chip 40 are bonded by the molten conductive bonding material 60. When bonding is performed in an inert gas atmosphere, the inert gas supplied from the through holes 32 and 33 is joined while being blown out to the side where the conductive bonding material is disposed.
  • the compressed air is supplied to the counterbore part 21a through the through holes 37 and 38.
  • the compressed air flows out of the SiC heater 100 from the back surface 1 b side of the heating element 1 through the slits 2 and 3.
  • the heating element 1 is rapidly cooled by compressed air.
  • the conductive bonding material 60 is cooled and solidified, the suction of the semiconductor chip 40 is released, and the movable base 210 is moved upward. According to the cooling that supplies a high-pressure compressed gas such as compressed air, the heating element 1 can be rapidly cooled in a few seconds. Therefore, the semiconductor chip 40 and the substrate 50 are protected from overheating, and one cycle of bonding processing time. Can be shortened.
  • the movable base 210 is moved to the position of the autoloader 230 to newly suck the semiconductor chip 40, and flip chip bonding to the next substrate 50 is continuously performed.
  • the heat transfer plate 30 used for manufacturing the semiconductor chip mounting board is used for uniformly transferring the heat of the heating element 1 to the semiconductor chip 40, the conductive bonding material 60, and the substrate 50. . Therefore, the heat transfer plate 30 needs to be excellent in heat transfer, heat resistance, and thermal shock.
  • the heat transfer plate 30 is preferably made of a ceramic such as aluminum nitride (AlN).
  • AlN aluminum nitride
  • Examples of the conductive bonding material 60 include solder bumps and gold bumps. Such a bonding material has a property of melting by heating and solidifying by cooling.
  • the heating element 1 preferably has a small heat capacity in order to rapidly raise and lower the temperature. Therefore, in order to reduce the heat capacity while maintaining the mechanical strength as the heating element 1, the thickness of the heating element 1 is preferably about 0.5 to 1.5 mm, and preferably 0.8 to 1.2 mm. More preferably.
  • the semiconductor chip 40, the conductive bonding material 60, and the substrate 50 are heated and pressurized by the heat from the heating element 1 to melt the conductive bonding material 60 in a few seconds. Heating. Therefore, overheating of the semiconductor chip 40 and the substrate 50 can be suppressed.
  • the heating element of the SiC heater was manufactured as follows. First, amorphous silicon carbide ultrafine powder having an average particle diameter of 0.01 ⁇ m and a BET specific surface area of 96 m 2 / g was obtained by plasma CVD using silicon tetrachloride and ethylene as source gases. 5% by weight of this silicon carbide ultra-fine powder and 95% by weight of commercially available ⁇ -type silicon carbide powder (average particle size 0.7 ⁇ m, BET specific surface area 13 m 2 / g) are dispersed in methanol and further subjected to a ball mill for 12 hours. Mixed. The mixture was then dried, molded and hot pressed sintered.
  • the average particle diameters of the amorphous silicon carbide ultrafine powder and the ⁇ -type silicon carbide powder were measured with a laser diffraction particle size distribution analyzer SALD-2300 (manufactured by Shimadzu Corporation).
  • the BET specific surface areas of the amorphous silicon carbide ultrafine powder and the ⁇ -type silicon carbide powder were measured by a gas adsorption method using a BET specific surface area measuring device BELSORP-miniII (manufactured by Microtrack Bell).
  • the sintering conditions were 90 minutes at a sintering temperature of 2200 ° C. and a press pressure of 39.23 MPa (400 kgf / cm 2 ) under an argon atmosphere.
  • the density of the sintered body is 3.1 ⁇ 10 3 kg / m 3
  • the electrical resistivity at room temperature is 0.3 ⁇ ⁇ cm (4-terminal method)
  • the thermal conductivity at room temperature is 230 W / mK (laser flash method) )
  • the true density (d0) of the sintered body was measured by the Archimedes method
  • the ratio (d0 / dt) of the true density (d0) to the theoretical density (dt) was expressed as a percentage
  • the relative density ( %) The electrical resistivity at room temperature of the sintered body was measured by a four-terminal method using Loresta GX (manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the surface of the sintered body of the surface-ground disk was measured. Were measured radially at 45 °, 10 cm intervals.
  • the thermal conductivity of the sintered body at room temperature was measured by a laser flash method. Specifically, the sintered body was cut to ⁇ 10 ⁇ 3t, the surface was irradiated with laser light, and the temperature of the back surface was measured with a radiation thermometer. Was measured to obtain the thermal conductivity (the laser flash method specified in Japanese Industrial Standard JIS R 1611 “Measurement Method of Thermal Diffusivity, Specific Heat Capacity, and Thermal Conductivity by Flash Method of Fine Ceramics”).
  • a through hole 6 for adsorbing a semiconductor chip having a diameter of 2 mm, through holes 7 and 8 for adsorbing a heat transfer plate, and an outer edge portion A thin plate of a silicon carbide sintered body having 1 mm wide slits 2 and 3 extending inside was obtained.
  • the heater surface of the thin plate was 22 ⁇ 22 mm, and its thickness t was 1.0 mm. Further, the thin plate is formed with through holes 13 and 14 for screwing to the heater base 21 and through holes 4 and 5 for attaching electrodes.
  • the through hole 6 for semiconductor chip adsorption, the through holes 7 and 8 for heat transfer plate adsorption, and the through holes 11 and 12 for heat transfer plate separation are through holes 31 and 32 formed in the heater base 21. , 33, 35, and 36 are formed coaxially.
  • the surface treatment which forms an insulating film on the surface of the thin plate which consists of a silicon carbide sintered compact produced through the above-mentioned process was performed.
  • the formation procedure of an insulating film is demonstrated more concretely.
  • the surface of a thin plate made of a silicon carbide sintered body was ultrasonically cleaned with acetone and then naturally dried, and then heat-treated in an oxidation furnace at a temperature of 1000 ° C. for 70 hours to form a sufficient oxide film.
  • glass powder, each additive component, and screen oil were added to an agate mortar at a ratio of 3: 2 so that the composition ratios of Comparative Example 1 and Examples 1 to 7 were obtained. Add and mix well to make a slurry.
  • slurry-like glass is uniformly applied to the surface of the silicon carbide sintered body to a thickness of about 200 ⁇ m, dried at a temperature of 100 ° C. for 1 hour in a dryer, and then heated in an oxidation furnace to form silicon carbide.
  • An insulating coating was deposited on the surface of the sintered body.
  • Comparative Example 1 was heated at a temperature of 950 ° C. for 20 minutes, and Examples 1 to 7 were heated at 1050 ° C. for 20 minutes.
  • the glass surface was ground to finish the parallelism of the heating element to 3 ⁇ m or less.
  • the obtained insulating film had a thickness of 50 ⁇ m.
  • the parallelism of the glass surface was calculated by measuring nine points of the thickness of the heating element with a dial gauge.
  • a silicon nitride sintered body as the heater base 21 was stacked on the upper surface (back surface 1b) of the heating element.
  • the heater base 21 includes through holes 37 and 38 for cooling the heating element.
  • M1.4 bolts were inserted into the through holes 13 and 14 for fastening, and the heater base 21 and the heating element were screwed together.
  • an M1.4 countersunk screw is inserted into the electrode mounting hole 29, and the electrode 20 is formed by fixing the end of the lead wire with a nut near the tip of the screw.
  • Comparative Example 1 and The SiC heaters of Examples 1 to 7 were obtained.
  • the insulation resistance of each SiC heater which is a sample of Comparative Example 1 and Examples 1 to 7, was measured using a mega tester. As a result, all of the insulation resistances were 2 M ⁇ or more (DC 500 V applied). I confirmed that there was.
  • the heating element was heated from 100 ° C. to 800 ° C. for 1 second using a temperature controller, and then forcedly cooled with compressed air having an air pressure of 0.5 MPa. Then, after visually confirming that there was no abnormality in the insulating coating, the insulation resistance of the insulating coating was measured with a mega tester. The thermal history of excessive temperature rise was repeated up to 5 times, and the insulation coating was visually confirmed and the insulation resistance was measured each time. Samples with deteriorated insulation resistance were terminated at that time. The measurement results are shown in Table 2.
  • the samples of Examples 1 to 3 there was no change in the appearance of the insulating coating and no deterioration of the insulation resistance even after 5 times of overheating.
  • the melting point of the insulating coating of Example 1 was separately measured, it was 943 ° C.
  • the insulating coating at the root of the heater slit was slightly clouded. From these results, the insulating coatings of Examples 1 to 3 contain all of BaO, MgO, and CaO, so that the melting point becomes sufficiently high and the insulating property is maintained even when overheating is performed. It was confirmed that can be secured.
  • Example 6 white turbidity was observed in the insulating coating at the base of the slit of the heater after the third overheating, and a decrease in insulation resistance was observed.
  • BaO was not added to the insulating coating. For this reason, it is thought that the insulating coating is not sticky and brittle, and the adhesion of the insulating coating to the silicon carbide sintered body is low. Thereby, peeling occurred at the interface between the silicon carbide sintered body and the insulating coating, and some white turbidity was observed, and it was estimated that the insulation resistance was deteriorated after the fourth overheating.
  • the ratio of the content of MgO and CaO is small with respect to the content of BaO in the insulating coating. More specifically, the total content of MgO and CaO is not in the range of 1 to 2 times the BaO content. For this reason, the sample of Example 7 has a lower heat resistance of the insulating film as compared with Examples 1 to 3 in the above-mentioned range, and the component of the insulating film is reduced at the third overheating. Is considered to have deteriorated the insulation properties.
  • the present invention relates to a SiC heater capable of rapid temperature increase and decrease, and is particularly suitably used as a semiconductor chip bonding heater used in a semiconductor assembly process.
  • the present invention can provide a SiC heater in which a decrease in insulation due to excessive temperature rise is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

このSiCヒーターは、薄板状の炭化珪素焼結体と前記炭化珪素焼結体の表面に形成された絶縁被膜とを有する発熱体と、前記発熱体に通電するための一対の電極と、前記発熱体からの熱を断熱しつつ前記発熱体を一面側から保持するヒーターベースと、を備え、前記絶縁被膜は、前記炭化珪素焼結体の前記ヒーターベースと反対側の面に位置し、常温での電気比抵抗が10Ω・cm以上であり、熱膨張率が2×10-6/K以上6×10-6/K以下であり、SiOをマトリックスとし、BおよびAlの少なくとも1つを含む第1の添加成分を1重量%以上35重量%以下含有し、MgOおよびCaOの少なくとも1つを含む第2の添加成分を1重量%以上35重量%以下含有する。

Description

SiCヒーター
 本発明は、SiCヒーターに関するものである。
 本願は、2016年8月2日に、日本に出願された特願2016-151911号に基づき優先権を主張し、その内容をここに援用する。
 近年、スマートフォンや携帯電話、タブレット端末などを中心に2.5D、3D実装などの高集積化へ向けた開発が加速している。メモリーやアプリケーションプロセッサなどのSoC(System-on-a-Chip)の実装においては、複数のデバイスを一括で連続的に熱処理するリフローによる実装が主流である。しかしながら、リフローによる実装では、バンプのファイン化、狭ギャップ化に限界があり、さらなる高集積化が困難となっている。そこでリフローに変わる代替技術として、熱圧着工法と呼ばれる実装方式が注目され、一部では実用化されている。
 熱圧着工法とは、発熱体を備えたヒーターによりチップごとに荷重をかけながら加熱、冷却を行い実装する方式である。熱圧着工法を実現するヒーターの発熱体としてセラミックからなるものを用いることで、荷重をかけた際の発熱体の変形が抑制され高精度な実装を実現できることが知られている。このため今後は、発熱体にセラミックを用いたセラミックスヒーターによる熱圧着工法が実装の主流になっていくことが予想されている。
 セラミックヒーターとしては、発熱体に炭化珪素を用いたSiCヒーターが特許文献1に記載されている。このSiCヒーターは、炭化珪素からなる発熱体の表面に、硼珪酸ガラスまたはアルミノ珪酸ガラスからなる絶縁被膜が設けられている。
特許第3710690号公報
 特許文献1に記載のSiCヒーターは、700℃以上の高温の熱履歴を受けると絶縁被膜が白濁して絶縁特性が著しく低下する場合がある。一般的に、実装時のワークの加熱温度は450℃程度であるが、想定外の過昇温に対応してある程度の高温にも耐えるものであることが望まれている。
 本発明は、従来の炭化珪素ヒーターにおける前記問題点に鑑みて成されたものであり、過昇温による絶縁性の低下を抑制したSiCヒーターの提供を目的とする。
 上記の課題を解決するため本発明の一態様のSiCヒーターは、薄板状の炭化珪素焼結体と前記炭化珪素焼結体の表面に形成された絶縁被膜とを有する発熱体と、前記発熱体に通電するための一対の電極と、前記発熱体からの熱を断熱しつつ前記発熱体を一面側から保持するヒーターベースと、を備え、前記絶縁被膜は、前記炭化珪素焼結体の前記ヒーターベースと反対側の面に位置し、硼珪酸ガラスまたはアルミノ珪酸ガラスの少なくとも1つからなり、常温での電気比抵抗が10Ω・cm以上であり、熱膨張率が2×10-6/K以上6×10-6/K以下であり、SiOをマトリックスとし、BおよびAlのうち何れか一方又は両方を含む第1の添加成分を1重量%以上35重量%以下含有し、MgOおよびCaOのうち何れか一方又は両方を含む第2の添加成分を1重量%以上35重量%以下含有する。
 すなわち、上記の課題を解決するため本発明の一態様のSiCヒーターは、薄板状の炭化珪素焼結体と前記炭化珪素焼結体の表面に形成された絶縁被膜とを有する発熱体と、前記発熱体に通電するための一対の電極と、前記発熱体からの熱を断熱しつつ前記発熱体を一面側から保持するヒーターベースと、を備え、前記絶縁被膜は、前記炭化珪素焼結体の前記ヒーターベースと反対側の面に位置し、前記絶縁被膜は、常温での電気比抵抗が10Ω・cm以上であり、前記絶縁被膜は、熱膨張率が2×10-6/K以上6×10-6/K以下であり、前記絶縁被膜は、SiOをマトリックスとし、BおよびAlの少なくとも1つを含む第1の添加成分を1重量%以上35重量%以下含有し、MgOおよびCaOの少なくとも1つを含む第2の添加成分を1重量%以上35重量%以下含有する。
 上記のSiCヒーターにおいて、前記第2の添加成分は、さらにBaOを含む構成としてもよい。
 上記のSiCヒーターにおいて、前記第2の添加成分は、BaO、MgOおよびCaOをすべて含む構成としてもよい。
 上記のSiCヒーターにおいて、前記第2の添加成分のMgOおよびCaOの含有量の合計が、BaOの含有量に対して1倍以上2倍以下である構成としてもよい。
 上記のSiCヒーターにおいて、前記発熱体の形状は、略正方形または略長方形の互いに対向する2辺からそれぞれ反対側の辺に向けて切り込んでいる2つのスリットを有する平面視略S字形状であり、前記略S字形状の両端部それぞれに前記一対の電極の一方が接続されている構成としてもよい。
 上記のSiCヒーターにおいて、前記絶縁被膜は、硼珪酸ガラスまたはアルミノ珪酸ガラスの少なくとも1つからなる構成としてもよい。
 上記のSiCヒーターにおいて、前記第1の添加成分の割合は、前記絶縁被膜の全重量に対し、1重量%以上30重量%以下である構成としてもよい。
 上記のSiCヒーターにおいて、前記炭化珪素焼結体の結合体密度が2.5g/cm以上であり、25℃における電気比抵抗が0.1Ω・cm以上100Ω・cm以下である構成としてもよい。
 本発明のSiCヒーターによれば、過昇温による絶縁性の低下を抑制したSiCヒーターの提供を目的とする。
本発明の一実施形態に係るSiCヒーターの発熱体の断面図である。 本発明の一実施形態に係るSiCヒーターの発熱体を示す斜視図である。 本発明の一実施形態に係るSiCヒーターを示す正面図である。 本発明の一実施形態に係るSiCヒーターを示す下平面図である。 本発明の一実施形態に係るSiCヒーターを示す上平面図である。 本発明の一実施形態に係るSiCヒーターを示す側面図である。 本発明の一実施形態に係るSiCヒーターを用いて半導体チップを接合する状態を示す正面断面図(図4で示すA-A線に沿う断面図)である。 発明の一実施形態に係るSiCヒーターを用いて半導体チップを接合する状態を示す側面断面図(図4で示すB-B線に沿う断面図)である。 発明の一実施形態に係るSiCヒーターを用いて半導体チップを接合する状態を示す斜め方向から見た側面断面図(図4で示すC-C線に沿う断面図)である。 発明の一実施形態に係るSiCヒーターを用いてフリップチップボンダによる製造状態を示す斜視図である。
 以下、本発明の一実施形態を具体的に説明する。
 ただし、この実施の形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものではない。本発明の趣旨を逸脱しない範囲で、数や、位置や、大きさ等についての変更、省略、追加及びその他の変更が可能である。
〔SiCヒーター〕
 図1および図2は、それぞれ本実施形態のSiCヒーター100の発熱体1の断面図および斜視図である。また、図3~図6は、それぞれ本実施形態のSiCヒーター100の正面図、下平面図、上平面図および側面図である。
 図4に示すように、本実施形態のSiCヒーター100は、発熱体1と、一対の電極20、20と、ヒーターベース21と、冷却系接続部材22と、を備える。一対の電極20、20は、発熱体1に通電する。ヒーターベース21は、発熱体1からの熱を断熱しつつ、発熱体1を一面側から保持する。冷却系接続部材22は、ヒーターベース21を支持する。電極20は、リード線24と、リード線24を発熱体1に固定するためのボルト16とを有する。
 以下、各部について具体的に説明する。
〔発熱体〕
 図1に示すように、発熱体1は、薄板状の炭化珪素焼結体1Aと前記炭化珪素焼結体の表面に形成された絶縁被膜1Bとを有する。
 図2に示すように、発熱体1は、略正方形または略長方形である薄板である。本実施形態において、前記略正方形または略長方形は、互いに対向する第1および第2の辺、前記第1および第2の辺と角部で接続し、互いに対向する第3および第4の辺を有すると定義する。一例として、発熱体1は、外形が22mmの四角形で厚みが1mmの薄板である。発熱体1は、チップを吸着する側の面であってヒーターベース21と反対側に位置する吸着面1aと、ヒーターベース21側に位置する裏面1bと、を有する。
 発熱体1は、互いに対向する2辺(すなわち第1の辺および第2の辺)からそれぞれ反対側の辺に向けて切り込んだ2つのスリット2,3(第1のスリット2、第2のスリット3ともいう)を有する略S字形状である。2つのスリット2,3は、互いに概ね平行であり、第3および第4の辺に概ね垂直である。スリット2,3の長さは、第3および第4の辺の長さの2/3である。また、発熱体1には、略S字状の両端部(始点および終点ともいう)にそれぞれ電極20が接続されている。スリット2,3は、温度変化による発熱体1の熱膨張、熱収縮の影響を吸収する。したがって、スリット2,3を設けることにより、発熱体1を熱応力に対し強くすることが可能となる。これにより、発熱体1の板厚を薄く形成することが可能となり、結果的に発熱体1の熱容量を小さくして、急速な加熱および冷却を可能とする。加えて、発熱体1をスリット2,3によって略S字状とすることで電流がその経路を流れ発熱体1の均熱性を向上できる。
 発熱体1には、電極取り付け用の貫通孔4,5と、チップ吸着用の気体通路を形成する貫通孔6と、伝熱板吸着用の気体通路を形成する貫通孔7,8および溝9,10と、不活性ガスの通路を形成する貫通孔11,12と、発熱体1をヒーターベース21に固定する皿小ネジ15、15を挿通するための貫通孔13,14と、が設けられている。
 電極取り付け用の貫通孔4、5は、発熱体1の略S字形状の各先端部(すなわち始点および終点)に位置する。貫通孔6は、発熱体1の略中央部に位置する。言い換えれば、貫通孔6は、貫通孔4と貫通孔5を結ぶ直線の略中間点に位置する。貫通孔7、8は、発熱体1の略S字状の各先端部に対向する角部の外縁寄りに位置している。溝9、10は、発熱体1の吸着面1aにおいて貫通孔7,8にそれぞれ連通するとともに外縁に沿って略L字状に形成されている。貫通孔11は、貫通孔4と貫通孔7との中間位置に位置する。貫通孔12は、貫通孔5と貫通孔8との中間位置に位置する。
 発熱体1の炭化珪素焼結体1Aは、炭化珪素、特に焼結体密度が2.5g/cm以上の炭化珪素であることが好ましく、より好ましくは、焼結体密度が3.15/cm以上の炭化珪素である。炭化珪素焼結体1Aの焼結体密度を2.5g/cm以上とすることで、炭化珪素粒子間の結合力を充分に得ることができる。また、炭化珪素焼結体1Aの焼結体密度を2.5g/cm以上とすることで、高温での機械強度も十分に確保できる。したがって、ボンディング時の荷重により発熱体1の破損および高温時の塑性変形を抑制して、数μmの表面精度を容易に得ることができる。なお、炭化珪素の理論密度は3.21g/cmである。よって、本実施形態における炭化珪素焼結体1Aの焼結体密度は、2.5g/cm以上3.21g/cm以下であることが好ましい。
 炭化珪素焼結体1Aは、室温での熱伝導率が100W/m・K以上であることが好ましく、180W/m・K以上であることがより好ましい。上述したように炭化珪素焼結体1Aの焼結密度は、2.5g/cm以上と緻密質であり、しかも後述するように焼結助剤無添加で焼結できるので、粒界に存在する不純物が少なく、微細で均一な組織が得られ、100W/m・K以上の高い熱伝導率となる。この炭化珪素焼結体1Aは、均熱性に優れたものとなり、ボンディング部分の接続不良がなく製品歩留まりが高くなり、更に冷却に要する時間が短く1回のボンディング処理時間が短縮されコストパフォーマンスが高くなる他、急速昇温時又は急速降温時においても熱衝撃で破損する虞がない。炭化珪素焼結体1Aの室温での熱伝導率は、高いほど好ましいが、通常260W/m・K以下である。
 炭化珪素焼結体1Aは、室温(25℃)における電気比抵抗が0.1Ω・cm以上100Ω・cm以下であることが好ましく、0.2Ω・cm以上10.0Ω・cm以下であることがより好ましい。
 炭化珪素焼結体1Aの電気比抵抗を0.1Ω・cm以上とすることで、炭化珪素焼結体1Aに大電流が流れることを抑制できる。したがって、電極20のリード線24に生じる電磁誘導に起因する応力を抑制してヒーターヘッドの位置精度の低下を抑えることができる。加えて、炭化珪素焼結体1Aの電気比抵抗を0.1Ω・cm以上とすることで、炭化珪素焼結体1Aの抵抗値を、発熱体1を薄肉化することなく十分に確保することが可能となり、ボンディング時の圧力(通常50kg/cm程度)に耐えうる強度とすることができる。
 また、炭化珪素焼結体1Aの電気比抵抗を100Ω・cm以下とすることで、大電圧をかけることなく電流を流すことができ、特別の電源を必要としないため好ましい。
 発熱体1の絶縁被膜1Bは、少なくとも炭化珪素焼結体1Aのヒーターベース21と反対側の面(吸着面1a)に設けられている。絶縁被膜1Bは、硼珪酸ガラスおよびアルミノ珪酸ガラスの少なくとも1つからなる。なお、絶縁被膜1Bは、吸着面1aのみならず、発熱体1の裏面1bおよび側面にも形成されていることが好ましい。
 絶縁被膜1Bの膜厚は、10μm以上100μm以下とすることが好ましい。絶縁被膜1Bの膜厚が10μm未満の場合ヒーターとしての絶縁特性が著しく低下してしまい、100μmを超えると、SiCヒーターとの内部歪みにより、絶縁被膜1Bが炭化珪素焼結体1Aから剥離しやすくなるので好ましくない。絶縁被膜1Bの膜厚が10μm以上であると、ヒーターとしての絶縁特性を確保することができる。また、絶縁被膜1Bを100μm以下とすることで、絶縁被膜1Bの熱容量を小さくすると共に、炭化珪素焼結体1Aからワークへの絶縁被膜1Bを介した熱伝導率を高めることができるため、ヒーターの応答速度を高めることができる。
 絶縁被膜1Bは、常温での電気比抵抗が10Ω・cm以上であることが好ましく、1010Ω・cm以上であることがより好ましい。これにより、発熱体1と発熱体1によるワーク(加熱対象)であるチップとの絶縁を確実に確保することができる。
 絶縁被膜1Bは、常温での電気比抵抗は、絶縁抵抗計により測定され、具体的にはヒーターに被覆したガラス表面とヒーター電極間に高電圧を印加して測定される。
 絶縁被膜1Bの熱膨張率は、2×10-6/K以上6×10-6/K以下であることが好ましく、3.5/K以上5.5/K以下であることがより好ましい。発熱体1は、急速な昇降温を何度も繰り返す。このため、絶縁被膜1Bの熱膨張率を、発熱体1のベースの組成である炭化珪素焼結体1Aの熱膨張率(約4.5×10-6/K)に近づけることで、絶縁被膜1Bが炭化珪素焼結体1Aから剥離することを抑制できる。
 絶縁被膜1Bの熱膨張率は、レーザー干渉計により測定される。
 絶縁被膜1Bは、SiOをマトリックスとする。絶縁被膜1Bは、SiOをマトリックスとすることで、上述した電気比抵抗を有する十分な絶縁性を確保することができる。なお、SiOをマトリックスとするとは、絶縁被膜1Bにおいて、SiOが主成分であることを意味する。SiOは、絶縁被膜1Bの全重量に対し30重量%以上98重量%以下であることが好ましく、46重量%以上57重量%以下であることがより好ましい。
 絶縁被膜1Bは、BおよびAlの少なくとも1つを含む第1の添加成分を、絶縁被膜1Bの全重量に対し1重量%以上35重量%以下含有し、15重量%以上33重量%以下含有することが好ましい。言い換えれば、絶縁被膜1Bは、BおよびAlの少なくとも1つを含み、BおよびAlの少なくとも1つが含まれる割合は、絶縁被膜1Bの全重量に対し1重量%以上35重量%以下含有し、15重量%以上33重量%以下含有することが好ましい。
 なお、絶縁被膜1Bに含まれるBの割合は、絶縁被膜1Bの全重量に対し2重量%以上15重量%以下が好ましく、4重量%以上13重量%以下がより好ましい。絶縁被膜1Bに含まれるAlの割合は、絶縁被膜1Bの全重量に対し8重量%以上25重量%以下が好ましく、10重量%以上22重量%以下がより好ましい。また、必要に応じてAlの量の方がBの量より多いことが好ましい。
 絶縁被膜1Bは、BおよびAlの少なくとも1つである第1の添加成分を、絶縁被膜1Bの全重量に対し1重量%以上含むことで、耐熱衝撃性および耐摩耗性を高めることができる。一方で、第1の添加成分の含有量が絶縁被膜1Bの全重量に対し30重量%を超えると絶縁被膜1Bの靱性が損なわれ脆くなる。したがって、第1の添加成分の含有量を30重量%以下とすることが好ましい。
 絶縁被膜1Bは、MgOおよびCaOの少なくとも1つである第2の添加成分を絶縁被膜1Bの全重量に対し1重量%以上35重量%以下含有し、10重量%以上33重量%以下含有することが好ましい。言い換えれば、絶縁被膜1Bは、MgOおよびCaOの少なくとも1つを含み、MgOおよびCaOの少なくとも1つが含まれる割合は、絶縁被膜1Bの全重量に対し1重量%以上35重量%以下含有し、10重量%以上33重量%以下含有することが好ましい。また、第2の添加成分は、MgOおよびCaOの少なくとも1つと、さらにBaOであることが好ましい。この場合、絶縁被膜1Bに含まれるMgOおよびCaOの少なくとも1つとBaOとの合計の割合は、絶縁被膜1Bの全重量に対し1重量%以上35重量%以下であり、10重量%以上33重量%以下であることが好ましい。さらに、第2の添加成分は、BaO、MgOおよびCaOであることがより好ましい。この場合、絶縁被膜1Bに含まれるBaO,MgOおよびCaOの合計の割合は、絶縁被膜1Bの全重量に対し1重量%以上35重量%以下であり、10重量%以上33重量%以下であることが好ましい。
 なお、絶縁被膜1Bに含まれるMgOの割合は、必要に応じて2重量%以上15重量%以下であることも好ましく、3重量%以上12重量%以下であることがより好ましい。
 絶縁被膜1Bに含まれるCaOの割合は、必要に応じて1重量%以上15重量%以下であることも好ましく、3重量%以上12重量%以下であることがより好ましい。
 BaOが絶縁被膜1Bに含まれるとき、絶縁被膜1Bに含まれるBaOの割合は、必要に応じて3重量%以上23重量%以下であることも好ましく、4重量%以上13重量%以下であることがより好ましい。
 MgOとCaOの両方が絶縁被膜1Bに含まれるとき、必要に応じて、CaOの量は、MgOの量以上であることも好ましい。
 MgOとBaOの両方が絶縁被膜1Bに含まれるとき、必要に応じて、BaOの量は、MgOの量が大きいことも好ましい。
 CaOとBaOの両方が絶縁被膜1Bに含まれるとき、必要に応じて、BaOの量は、CaOの量が大きいことも好ましい。
 第2の添加成分を構成するBaO、MgOおよびCaOは、絶縁被膜1Bに含まれることで、絶縁被膜1Bの熱膨張率を高める。SiOをマトリックスとして硼珪酸ガラスおよびアルミノ珪酸ガラスの少なくとも1つからなる絶縁被膜1Bは、炭化珪素焼結体1Aの熱膨張率より低い。
 第2の添加成分として、BaO、MgOおよびCaOの少なくとも1つを絶縁被膜1Bに含ませることで、絶縁被膜1Bの熱膨張率を炭化珪素焼結体1Aの熱膨張率に近づけることが可能となる。すなわち、第2の添加成分は、熱膨張率調整成分として機能する。
 絶縁被膜1Bは、第2の添加成分を絶縁被膜1Bの全重量に対し1重量%以上35重量%以下含有することで、絶縁被膜1Bの熱膨張率を炭化珪素焼結体1Aの熱膨張率に近づけることが可能となる。なお、第2の添加成分の含有量が、絶縁被膜1Bの全重量に対し1重量%未満の場合には絶縁被膜1Bの熱膨張率が2×10-6/K未満となり、35重量%を超える場合には絶縁被膜1Bの熱膨張率が6×10-6/Kを超える。
 MgOおよびCaOは、絶縁被膜1Bの融点を十分に上昇させる効果を奏する。したがって、第2の添加成分として、MgOおよびCaOの少なくとも1つを絶縁被膜1Bに含ませることで、絶縁被膜1Bの融点を高めて、発熱体1の耐熱温度をさらに高くすることができる。したがって、発熱体1が想定外に過昇温された場合であっても絶縁性の低下を抑制することができる。また、発熱体1の耐熱温度を高めることで、発熱体1によりワーク(加熱対象)を加熱する際に、加熱対象の目的温度より発熱体1の温度を十分に高めることが可能となる。これにより、加熱対象を更に急速に加熱することが可能となる。
 一方で、BaOは、絶縁被膜1Bの融点を高める効果が十分ではない。したがって、MgOおよびCaOの少なくとも1つを含まず、BaOのみを絶縁被膜1Bに含ませる場合には、発熱体1の耐熱温度を十分に高めるという効果を十分に奏することがない。しかしながら、BaOは、MgOおよびCaOと比較して絶縁被膜1Bとしての粘りを出す効果がある。よって、第2の添加成分としてMgOおよびCaOの少なくとも1つに加えて、さらにBaOを添加することで、炭化珪素焼結体1Aからの剥離を効果的に抑制された絶縁被膜1Bを形成することができる。さらに、第2の添加成分にBaO、MgOおよびCaOが含まれる場合には、絶縁被膜としての耐熱性を高めることができるとともに、炭化珪素焼結体1Aに対する絶縁被膜1Bの密着性を高めることができる。
 第2の添加成分において、MgOおよびCaOの含有量の合計が、BaOの含有量に対して1倍以上2倍以下であることが好ましい。これにより、絶縁被膜1Bの耐熱性を高めつつ、炭化珪素焼結体1Aに対する絶縁被膜1Bの密着性をバランスよく向上させることができる。
〔電極〕
 電極20は、リード線24と、ボルト16とを有する。ボルト16は、発熱体1の略S字状の各先端部に位置する貫通孔4、5に挿通してリード線24を発熱体1に固定する。なお、発熱体1に固定される電極20は、発熱体1の形状に応じて、発熱体1の全範囲にわたってより均一に電流が流れるように配置されることが好ましい。
〔ヒーターベース〕
 ヒーターベース21は、冷却系接続部材22と発熱体1との間に位置する。ヒーターベース21は、チップ吸着側の面(溝刻設側の面)を下端に向けた状態で発熱体1を保持する。ヒーターベース21は、発熱体1の貫通孔13,14にそれぞれ挿通する皿小ネジ15,15を用いて発熱体1を保持する。
 ヒーターベース21は、断熱性が高く耐熱衝撃性に優れた絶縁体セラミックスからなる。ヒーターベース21に用いられるセラミックスとしては、窒化珪素(Si)、カルシウムシリケート(CaO・SiO)、サイアロン等を例示することができる。
 ヒーターベース21は、発熱体1を一面側から保持するため、発熱体1の昇温時においてヒーターベース21を介する熱逃げを抑制できる。これにより、発熱体1を小さな投入電力で急速昇温することが可能となる。また、ヒーターベース21を取り付けた冷却系接続部材22への熱逃げも少なくなるために、冷却系接続部材22の熱膨張によるヒーターの位置ずれを抑制できる。加えて、ヒーターベース21は、発熱体1を一方向から機械的に補強するため、ボンディング時の荷重により発熱体1が損傷することを抑制できる。
 図6に示すように、ヒーターベース21の発熱体1と接する側の面には、ザグリ部(凹部ともいう)21aが設けられている。ザグリ部21aは、発熱体1とヒーターベース21との間で断熱を必要とする部分以外に設けられている。すなわち、ザグリ部21aが設けられていることで、発熱体1とヒーターベース21との間で、断熱が必要な部分以外は、互いに接触しない。また、ザグリ部21aは、ザグリ部21aが形成する隙間を冷却気体の通路として機能する。
〔冷却系接続部材〕
 図3、図4および図6に示すように、冷却系接続部材22は、ヒーターベース21を介して発熱体1を支持する。冷却系接続部材22は、一対のボルト23,23によりヒーターベース21と固定されている。
 図5に示すように、冷却系接続部材22のヒーターベース21と反対側の面(上面22a)は、平坦な面として形成されている。SiCヒーター100は、上面22aを介してフリップチップボンダ等のボンディング装置側のヒーター取り付け部に固定される。上面22aには、ヒーター取り付け部にネジ止めするための4つの貫通孔28、…、28が設けられている。
 図7~図9は、SiCヒーターを用いて半導体チップを接合する状態を示す図である。図7は、本発明の一実施形態に係るSiCヒーターを用いて半導体チップを接合する状態を示す、図4のA-A線に沿う断面図である。図8は、本発明の一実施形態に係るSiCヒーターを用いて半導体チップを接合する状態を示す、図4のB-B線に沿う断面図である。図9は、本発明の一実施形態に係るSiCヒーターを用いて半導体チップを接合する状態を示す、図4のC-C線に沿う断面図である。
 図7に示すように、冷却系接続部材22およびヒーターベース21には、発熱体1の貫通孔6と同心的にヒーターベース21および冷却系接続部材22を貫通した貫通孔(チップ吸着用貫通孔)31が設けられている。貫通孔31には、負圧発生装置(図示略)が接続されており、発熱体1の貫通孔6においてチップを吸着する。
 図8に示すように、冷却系接続部材22およびヒーターベース21には、発熱体1の貫通孔11,12と同心的にヒーターベース21および冷却系接続部材22を貫通する貫通孔(各種ガス供給用貫通孔)32,33が設けられている。貫通孔32、33は、不活性ガス雰囲気で、SiCヒーター100を用いた接合を行う場合に、供給する窒素ガス等の各種ガスの通路となる。
 図9に示すように、冷却系接続部材22およびヒーターベース21には、発熱体1の貫通孔7,8と同心的にヒーターベース21および冷却系接続部材22を貫通する貫通孔(溝側の伝熱板吸着用貫通孔)35,36が設けられている。また、図5に示すように、冷却系接続部材22には、一対の溝26が設けられている。また、貫通孔35,36は、一対の溝26において上側に開口している。貫通孔35,36は、伝熱板吸着用の気体通路を形成する。
 図9に示すように、冷却系接続部材22およびヒーターベース21には、ヒーターベース21のザグリ部21aに連通する位置においてヒーターベース21および冷却系接続部材22を貫通する貫通孔37、38が設けられている。また、図5に示すように、冷却系接続部材22には、一対の溝27が設けられている。また、貫通孔37、38は、一対の溝27において上側に開口している。貫通孔37、38は、発熱体1を急速に冷却する冷却気体をザグリ部21aに供給する給気路を形成する。貫通孔37,38より供給された冷却気体は、ヒーターベース21の発熱体1側の面に形成されたザグリ部21aを通り、発熱体1の裏面を冷却した後、ヒーターベース21の横面より外部へ抜けていく。また、貫通孔37,38より供給された冷却気体は、ザグリ部21aを介してスリット2,3を通り、発熱体1を冷却したのち発熱体1の横面から抜けていく。
 このようにヒーターベース21の発熱体1側の面に、ザグリ部21aを形成して発熱体1とヒーターベース21の間に隙間を設けるとともに発熱体1にスリット2,3を形成したことにより、冷却気体で冷却を行うにあたって、ザグリ部21aによって発熱体1とヒーターベース21との間隙が冷却気体と接する面積を大きくして冷却効率を上げることができる。しかも、発熱体1のスリット2,3がザグリ部21aと連通していることにより、スリット2,3にも冷却気体が通過して冷却速度を高めることができて、急速冷却が可能となる。
〔発熱体の製造方法〕
 次に発熱体1の製造方法について説明する。
 本実施形態の発熱体1は、焼結体密度2.5g/cm以上で電気比抵抗0.1~100Ω・cmである炭化珪素焼結体1Aを有する。このような炭化珪素焼結体1Aは、平均粒径0.1~10μmの第1の炭化珪素粉末と0.1μm以下の第2の炭化珪素粉末とを混合し、これを焼結する方法により得られる。この方法によれば、0.1~100Ω・cmの範囲の電気比抵抗を示す炭化珪素を得ることが容易である。このような炭化珪素焼結体1Aの製造方法は、特開平4ー65361号公報に開示されているが、この実施の形態においては電気比抵抗が0.1~100Ω・cmと大きいものを用いることが望ましい。
 上述の特性を有する炭化珪素焼結体1Aを製造するために、まず、平均粒径が0.1~10μmの第1の炭化珪素粉末と、平均粒径が0.1μm以下の第2の炭化珪素微粉末とを用意する。第1および第2の炭化珪素粉末の平均粒径は、レーザー回折式粒度分布測定装置により求められる。
 第1の炭化珪素粉末としては、一般に使用されているものでよく、例えばシリカ還元法、アチソン法等の方法によって製造されたものが用いられる。第1の炭化珪素粉末の結晶相としては非晶質、α型、β型のいずれであってもよいが、電気比抵抗値を0.1~100Ω・cmに調整する容易さからはα型のものが好適である。
 第2の炭化珪素粉末としては、非酸化性雰囲気のプラズマ中にシラン化合物またはハロゲン化珪素と炭化水素とからなる原料ガスを導入し、反応系の圧力を1気圧未満から0.1torr(なお、1torr=133.3Pa)の範囲で制御しつつ気相反応させることによって得られたものを使用する。第2の炭化珪素粉末の結晶相としては非晶質、α型、β型のいずれであってもよい。このようにして得られた第2の炭化珪素粉末は焼結性が非常に優れているために、上記第1の炭化珪素粉末と混合するのみで、焼結助剤を添加することなく高純度かつ緻密質の炭化珪素焼結体1Aを得ることができるようになる。
 次に、上記第1の炭化珪素粉末と第2の炭化珪素粉末とを混合して混合物とする。混合比率は、得られる炭化珪素焼結体が所定の電気比低抗値(0.1~100Ω・cm)となるよう予め予備実験で求めておく。その後、上記混合物を所望の形状に成形し、得られた成形体を1800~2400℃の温度で焼結して焼結体を得て、これを炭化珪素焼結体1Aとする。焼結方法、焼結時の雰囲気はいずれも制限されないが、例えば、非酸化雰囲気におけるホットプレス炉による焼結法などが挙げられる。
 次いで、炭化珪素焼結体1Aの表面に、絶縁被膜1Bを形成する。
 絶縁被膜1Bの形成は、以下の方法で行われる。まず加工した炭化珪素焼結体1Aの表面をアセトンで超音波洗浄した後自然乾燥させる。その後、酸化炉にて、例えば、温度1000℃で70時間熱処理して十分な酸化膜を生成させる。
 次に、所望のガラス組成を有するガラス粉末と、第1および第2の添加成分と、スクリーンオイルとを混合してスラリーを形成する。ガラス粉末の所望のガラス組成とは、具体的には、例えば、高純度(3N以上)の酸化ケイ素ガラスである。ガラス粉末と第1および第2の添加成分とを混合したときの組成比は、ガラス粉末と第1および第2の添加成分の全重量に対し、酸化ケイ素が44~60重量%、第1の添加成分が1~35重量%、第2の添加成分が1~35重量%である。ガラス粉末と第1および第2の添加成分とを混合したときの組成比は、ガラス粉末と第1および第2の添加成分の全重量に対し、酸化ケイ素が46~57重量%、第1の添加成分が5~25重量%、第2の添加成分が5~20重量%であることが好ましい。
 次に、炭化珪素焼結体1Aのヒーターベースと接する面(裏面1b)と反対の面(吸着面1a)および側面にスラリー状のガラスを塗布し、乾燥器にて例えば100℃で1時間乾燥させる。
 次に、酸化炉にて、例えば、1050℃で20分間加熱してガラスを炭化珪素焼結体1Aに溶着させ絶縁被膜1Bを形成する。さらに仕上げ工程として、形成された絶縁被膜1Bの表面を研削して発熱体1の上下面(吸着面1aおよび裏面1b)の平行度をそれぞれ例えば3μm以下とする。
 発熱体1の上下面の平行度は、ダイヤルゲージにて、9点を測定することにより算出される。
〔半導体チップのボンディング方法〕
 図10は、発明の一実施形態に係るSiCヒーターを用いてフリップチップボンダによる製造状態を示す斜視図である。図10を基に本実施形態のSiCヒーター100を用いた半導体チップのボンディング方法について説明する。
 図10に示すように、SiCヒーター100は、フリップチップボンダ200の可動台210の下端部に取り付けて半導体実装ボードの製造のために使用される。
 まず、SiCヒーター100は、複数の半導体チップ40が置かれているトレイ220を載置したオートローダ230の位置まで、可動台210を移動し、貫通孔6から空気を吸引してトレイ220から1つの半導体チップ40を吸着する。
 次に、可動台210を基板50が用意されている位置まで移動して、図7~図9に示す基板50上に予め載置された導電性ボンディング材60の上に半導体チップ40を載せる。さらに、可動台210により下方に加圧力を加えつつ、SiCヒーター100に通電して発熱体1を発熱させ、伝熱板30を介して半導体チップ40、導電性ボンディング材60、基板50を略均等に昇温する。これにより、導電性ボンディング材60を数秒で溶融し、溶融した導電性ボンディング材60により基板50と半導体チップ40とを接合する。
 なお、不活性ガス雰囲気中でボンディングを行う場合には、貫通孔32,33から供給された不活性ガスを導電性ボンディング材の配設側に吹き出しながら接合する。
 基板50と半導体チップ40との接合が完了した後に、圧縮空気を、貫通孔37,38を介してザグリ部21aに供給する。圧縮空気は、発熱体1の裏面1b側からスリット2,3を介してSiCヒーター100の外部に流出する。発熱体1は、圧縮空気により急速に冷却される。導電性ボンディング材60が冷却されて固化してから、半導体チップ40の吸着を解除し、可動台210を上方に移動する。圧縮空気等の高圧の圧縮ガスを供給する冷却によれば、発熱体1を数秒で急速冷却することができるため、半導体チップ40および基板50は、過熱から保護されるとともに1サイクルのボンディング処理時間を短縮できる。
 次に、オートローダ230の位置まで可動台210を移動して新たに半導体チップ40を吸着し、次の基板50に対するフリップチップボンディングを連続して行う。
 この半導体チップ実装ボードの製造に使用される伝熱板30は、発熱体1の熱を半導体チップ40、導電性ボンディング材60、基板50に対して均一に伝熱するために用いられるものである。よって、伝熱板30は、伝熱性、耐熱性、熱衝撃性に優れていることが必要である。伝熱板30は、例えば、窒化アルミニウム(AlN)等のセラミック製であることが好ましい。
 導電性ボンディング材60としては、ハンダバンプ、金バンプ等が挙げられる。このようなボンディング材は加熱によって溶融し、冷却によって固化する性質を持っている。
 発熱体1は、急速昇降温させるため、熱容量の小さいものが好ましい。従って、発熱体1としての機械的強度を維持しながら熱容量を小さくするためには、発熱体1の厚みが約0.5~1.5mmであることが好ましく、0.8~1.2mmであることがより好ましい。
 本実施形態のSiCヒーターを用いた接合方法によれば、発熱体1からの熱により半導体チップ40、導電性ボンディング材60、基板50を加熱加圧して導電性ボンディング材60を数秒で溶融する急速加熱である。したがって、半導体チップ40と基板50の過熱を抑制できる。
 以上に、本発明の実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
 〔試料の作製〕
 SiCヒーターの発熱体を次のようにして製造した。
 まず、四塩化珪素とエチレンとを原料ガスとし、プラズマCVD法により、平均粒径0.01μm、BET比表面積96m/gの非晶質炭化珪素超微粉末を得た。
 この炭化珪素超微粉末5重量%と市販のα型炭化珪素粉末(平均粒径0.7μm、BET比表面積13m/g)95重量%とを、メタノール中に分散させ、さらにボールミルで12時間混合した。次いで、この混合物を乾燥し、成形、ホットプレス焼結した。
 なお、非晶質炭化珪素超微粉末およびα型炭化珪素粉末の平均粒径は、レーザー回折式粒度径分布測定装置SALD-2300(島津製作所社製)により測定した。
 非晶質炭化珪素超微粉末およびα型炭化珪素粉末のBET比表面積は、BET比表面積測定装置BELSORP-miniII(マイクロトラックベル社製)を用いて、ガス吸着法により測定した。
 焼結条件は、アルゴン雰囲気下で、焼結温度2200℃、プレス圧39.23MPa(400kgf/cm)で、90分間であった。焼結体の密度は3.1×10kg/m、室温での電気比抵抗は、0.3Ω・cm(4端子法)、室温での熱伝導率が230W/mK(レーザーフラッシュ法)の炭化珪素焼結体を得た。
 焼結体の密度は、焼結体の真密度(d0)をアルキメデス法により測定し、この真密度(d0)の理論密度(dt)に対する比(d0/dt)を百分率で表し、相対密度(%)とした。
 焼結体の室温での電気比抵抗は、ロレスタGX((株)三菱ケミカルアナリテック社製)を用いて4端子法により測定したが、具体的には表面研削した円板の焼結体表面を、45°、10cm間隔で、放射状に測定した。
 焼結体の室温での熱伝導率は、レーザーフラッシュ法で測定したが、具体的には、焼結体をΦ10×3tに切出し、表面にレーザー光を照射し、裏面の温度を放射温度計で測定することにより、熱伝導率を算出した(日本工業規格JIS R 1611「ファインセラミックスのフラッシュ法による熱拡散率・比熱容量・熱伝導率の測定方法」に規定されたレーザーフラッシュ法)。
 次に、前記炭化珪素焼結体を加工することにより、図2に示すような、直径2mmの半導体チップ吸着用の貫通孔6と、伝熱板吸着用の貫通孔7,8と、外縁部から内部にのびた幅1mmのスリット2,3とを有する炭化珪素焼結体の薄板を得た。薄板のヒーター面の大きさは22×22mmであり、その厚みtは1.0mmであった。さらに、この薄板は、ヒーターベース21にネジ止めするための貫通孔13,14と電極取り付け用の貫通孔4,5とが形成されている。なお、半導体チップ吸着用の貫通孔6、伝熱板吸着用の貫通孔7,8および伝熱板分離用の貫通孔11,12は、ヒーターベース21に穿設されている貫通孔31,32,33,35,36とそれぞれ同軸的に穿設される。
 次に、上述の工程を経て作製した炭化珪素焼結体からなる薄板の表面に絶縁被膜を形成する表面処理を行った。以下に、絶縁被膜の形成手順についてより具体的に説明する。
 まず、炭化珪素焼結体からなる薄板の表面をアセトンで超音波洗浄した後自然乾燥させ、その後、酸化炉に温度1000℃で70時間熱処理して十分な酸化膜を生成させた。
 次に、以下の表1に示すように、比較例1および実施例1~実施例7の組成比となるように、ガラス粉末および各添加成分とスクリーンオイルを3:2の割合でメノウ乳鉢に入れてよく混合し、スラリーを作成する。
 次に、炭化珪素焼結体の表面にスラリー状のガラスを均一に約200μmの厚みで塗布し、乾燥器にて温度100℃で1時間乾燥させた後、酸化炉にて加熱して炭化珪素焼結体の表面に絶縁被膜を溶着させた。なお、酸化炉における加熱時間および加熱温度について、比較例1については温度950℃で20分間の加熱を行い、実施例1~実施例7については1050℃で20分間の加熱を行った。
 最後に、ガラス表面を研削して発熱体の平行度を3μm以下に仕上げた。なお、得られた絶縁被膜の膜厚は50μmであった。
 ガラス表面の平行度は、ダイヤルゲージで、発熱体の厚み9点を測定し、平行度を算出した。
Figure JPOXMLDOC01-appb-T000001
 
 
 次に、図7~図9に示すように、前記発熱体の上面(裏面1b)に、ヒーターベース21としての窒化珪素焼結体を重ねた。なお、ヒーターベース21は、発熱体を冷却するための貫通孔37,38を備えたものである。さらに、締結用の貫通孔13,14にM1.4のボルトを挿通して、ヒーターベース21と発熱体とをネジ止めした。また、電極取り付け孔29にM1.4の皿小ネジを挿通し、そのネジの先端付近にリード線の端部をナットにより固定することによって電極20を形成し、その結果として、比較例1および実施例1~実施例7のSiCヒーターが得られた。
 〔評価〕
 次いで、上述の工程を経た比較例1および実施例1~実施例7の試料に対して、過昇温前後の絶縁性試験およびヒートサイクル後の密着性評価を行った。以下、その評価法について説明する。
 (過昇温の熱サイクル後の絶縁特性および膜の密着性評価)
 まず、比較例1および実施例1~実施例7の試料である各SiCヒーターの絶縁被膜を、メガテスターを用いて絶縁抵抗を測定したところ、全て2MΩ以上(DC500V印加)の十分な絶縁抵抗があることを確認した。
 次いで、各試料のSiCヒーターにおいて、温度調整計を用いて、1秒間で発熱体を100℃から800℃に加熱させた後、エア圧0.5MPaの圧縮空気により強制冷却させた。その後、目視にて絶縁被膜に異常がないか確認した後、メガテスターにより絶縁被膜の絶縁抵抗を測定した。過昇温の熱履歴を最大5回繰り返し、その度に目視による絶縁被膜の確認と絶縁抵抗を測定した。絶縁抵抗が劣化した試料についてはその時点で終了とした。これらの測定結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 
 
 〔考察〕
 比較例1の試料は、過昇温後に絶縁性が著しく低下した。比較例1の試料は、過昇温後にヒーターのスリットの根元部分の絶縁被膜が部分的に白濁していたことが確認された。
なお、比較例1の絶縁被膜の融点を別途測定したところ融点は844℃であった。これらの結果から、比較例1の試料においては、過昇温時に電流が集中して特に温度が高まった部分で絶縁被膜が融点に達して成分が変化し絶縁性が劣化したと考えられる。
 一方で、実施例1~実施例3の試料においては、5回の過昇温の後でも、絶縁被膜に外観上の変化はなく、絶縁抵抗の劣化もなかった。実施例1の絶縁被膜の融点を別途測定したところ融点は943℃であった。
 また、実施例4、5においては、5回の過昇温の後で、絶縁抵抗の劣化はみられなかったものの、ヒーターのスリットの根元部分の絶縁被膜が若干の白濁が確認された。
 これらの結果から、実施例1~実施例3の絶縁被膜においては、BaO、MgOおよびCaOをすべて含んでいることで、融点が十分に高くなり過昇温を行った場合であっても絶縁性が確保できることが確認された。
ただし、実施例4、5にみられるように、MgOまたはCaOのどちらかを含まない場合は、炭化珪素表面への絶縁被膜の密着性が若干低下するために、5回の過昇温の後に、絶縁被膜の界面での剥離が起こり、多少の白濁として観察されたものと思われる。
 実施例6、7においては、3回目以降の過昇温の後に、ヒーターのスリットの根元部分の絶縁被膜に白濁が観察され、絶縁抵抗の低下がみられた。
 実施例6の試料は、絶縁被膜にBaOが添加されていない。このため、絶縁被膜に粘りがなく脆くなっており、炭化珪素焼結体に対する絶縁被膜の密着性が低くなっていると考えられる。これにより、炭化珪素焼結体と絶縁被膜との界面で剥離が生じて多少の白濁がみられ、4回目の過昇温後には絶縁抵抗も劣化してしまったものと推測される。
 実施例7の試料は、絶縁被膜のBaOの含有量に対して、MgOおよびCaOの含有量の割合が少ない。より具体的には、MgOおよびCaOの含有量の合計が、BaOの含有量に対して1倍以上2倍以下の範囲となっていない。このため、実施例7の試料は、前記の範囲となっている実施例1~3と比較して、絶縁被膜の耐熱性が低くなっており、3回目の過昇温において、絶縁被膜の成分が変化して絶縁性が劣化したものと考えられる。
 本発明は、急速な昇温と降温が可能なSiCヒーターに関するものであり、特に半導体の組立工程において使用される半導体チップボンディング用ヒーターとして好適に使用される。本発明は、過昇温による絶縁性の低下を抑制したSiCヒーターを提供することができる。
1…発熱体
1A…炭化珪素焼結体
1B…絶縁被膜
2,3…スリット
4,5…(電極取り付け用)貫通孔
6…(チップ吸着用)貫通孔
7,8…(伝熱板吸着用)貫通孔
9,10…(伝熱板吸着用)溝
11,12…(各種ガス供給用)貫通孔
13,14…(取り付けネジ挿通用)貫通孔
15…皿小ネジ
21…ヒーターベース
21a…ザグリ部
22…冷却系接続部材
24…リード線(配線)
26,27…溝
28…貫通孔
29…電極取り付け孔
30…伝熱板
31…(チップ吸着用)貫通孔
32,33…(各種ガス供給用)貫通孔
35,36…(溝側の伝熱板吸着用)貫通孔
37,38…(冷却気体供給用)貫通孔
40…半導体チップ
50…基板
60…導電性ボンディング材
100…SiCヒーター

Claims (8)

  1.  薄板状の炭化珪素焼結体と、前記炭化珪素焼結体の表面に形成された絶縁被膜とを有する発熱体と、
     前記発熱体に通電するための一対の電極と、
     前記発熱体からの熱を断熱しつつ前記発熱体を一面側から保持するヒーターベースと、を備え、
     前記絶縁被膜は、前記炭化珪素焼結体の前記ヒーターベースと反対側の面に位置し、
     前記絶縁被膜は、常温での電気比抵抗が10Ω・cm以上であり、
     前記絶縁被膜は、熱膨張率が2×10-6/K以上6×10-6/K以下であり、
     前記絶縁被膜は、SiOをマトリックスとし、
     前記絶縁被膜は、BおよびAlの少なくとも1つを含む第1の添加成分を含有し、
    前記第1の添加成分の割合は、前記絶縁被膜の全重量に対し、1重量%以上35重量%以下であり、
     前記絶縁被膜は、MgOおよびCaOの少なくとも1つを含む第2の添加成分を含有し、
     前記第2の添加成分の割合は、前記絶縁被膜の全重量に対し、1重量%以上35重量%以下である、
    SiCヒーター。
  2.  前記第2の添加成分は、さらにBaOを含む、
    請求項1に記載のSiCヒーター。
  3.  前記第2の添加成分は、BaO、MgOおよびCaOをすべて含む、
    請求項2に記載のSiCヒーター。
  4.  前記第2の添加成分のMgOおよびCaOの含有量の合計が、BaOの含有量に対して1倍以上2倍以下である、
    請求項3に記載のSiCヒーター。
  5.  前記発熱体の形状は、平面視略正方形または略長方形の互いに対向する2辺からそれぞれ反対側の辺に向けて切り込んでいる2つのスリットを有する平面視略S字形状であり、前記略S字形状の両端部にそれぞれ前記一対の電極の一方に接続されている、
    請求項1~4の何れか一項に記載のSiCヒーター。
  6.  前記絶縁被膜は、硼珪酸ガラスまたはアルミノ珪酸ガラスの少なくとも1つからなる、
     請求項1~5のいずれか一項に記載のSiCヒーター。
  7.  前記第1の添加成分の割合は、前記絶縁被膜の全重量に対し、1重量%以上30重量%以下である、
     請求項1~6のいずれか一項に記載のSiCヒーター。
  8.  前記炭化珪素焼結体の結合体密度が2.5g/cm以上であり、25℃における電気比抵抗が0.1Ω・cm以上100Ω・cm以下である、
     請求項1~7のいずれか一項に記載のSiCヒーター。
PCT/JP2017/028028 2016-08-02 2017-08-02 SiCヒーター WO2018025911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018531951A JP6717379B2 (ja) 2016-08-02 2017-08-02 SiCヒーター
CN201780047519.7A CN109565906B (zh) 2016-08-02 2017-08-02 SiC加热器
US16/322,425 US10966288B2 (en) 2016-08-02 2017-08-02 SiC heater
KR1020197003497A KR102246856B1 (ko) 2016-08-02 2017-08-02 SiC 히터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-151911 2016-08-02
JP2016151911 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025911A1 true WO2018025911A1 (ja) 2018-02-08

Family

ID=61074181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028028 WO2018025911A1 (ja) 2016-08-02 2017-08-02 SiCヒーター

Country Status (5)

Country Link
US (1) US10966288B2 (ja)
JP (1) JP6717379B2 (ja)
KR (1) KR102246856B1 (ja)
CN (1) CN109565906B (ja)
WO (1) WO2018025911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096069A (ja) * 2018-12-12 2020-06-18 エイチアンドセオン カンパニー リミテッドH&ceon co., ltd. ヒーターアセンブリー

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143585A (ja) * 1983-12-29 1985-07-29 松下電器産業株式会社 発熱体
JPS6293884A (ja) * 1985-10-11 1987-04-30 バイエル・アクチエンゲゼルシヤフト パネル状発熱体
JPH06104072A (ja) * 1992-09-21 1994-04-15 Matsushita Electric Ind Co Ltd 発熱素子およびそれを用いた面状発熱体
JP2002025751A (ja) * 2000-07-04 2002-01-25 Sumitomo Osaka Cement Co Ltd SiCヒータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150239A1 (de) * 2001-10-11 2003-04-30 Schott Glas Bleifreie Glasrohre, deren Verwendung und Dioden
FR2997391B1 (fr) * 2012-10-30 2014-11-21 Eurokera Plaque en verre pour dispositif de cuisson par induction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143585A (ja) * 1983-12-29 1985-07-29 松下電器産業株式会社 発熱体
JPS6293884A (ja) * 1985-10-11 1987-04-30 バイエル・アクチエンゲゼルシヤフト パネル状発熱体
JPH06104072A (ja) * 1992-09-21 1994-04-15 Matsushita Electric Ind Co Ltd 発熱素子およびそれを用いた面状発熱体
JP2002025751A (ja) * 2000-07-04 2002-01-25 Sumitomo Osaka Cement Co Ltd SiCヒータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096069A (ja) * 2018-12-12 2020-06-18 エイチアンドセオン カンパニー リミテッドH&ceon co., ltd. ヒーターアセンブリー

Also Published As

Publication number Publication date
KR20190038554A (ko) 2019-04-08
JP6717379B2 (ja) 2020-07-01
CN109565906A (zh) 2019-04-02
US20190174578A1 (en) 2019-06-06
KR102246856B1 (ko) 2021-04-30
JPWO2018025911A1 (ja) 2019-07-04
CN109565906B (zh) 2021-10-08
US10966288B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
US9255747B2 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
KR102139194B1 (ko) 질화물 세라믹스 활성금속 브레이징 기판의 제조방법
WO2003007661A1 (fr) Appareil de chauffage en ceramique et article en ceramique soude
US10863587B2 (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
TWI642154B (zh) 電源模組用基板及其製造方法、電源模組
JP7306915B2 (ja) セラミックス基板、静電チャック、静電チャックの製造方法
JP2002160974A (ja) 窒化アルミニウム焼結体、窒化アルミニウム焼結体の製造方法、セラミック基板およびセラミック基板の製造方法
TW201935640A (zh) 附散熱器的功率模組用基板及附散熱器的功率模組用基板的製造方法
TW201500327A (zh) 接合材、接合構造體
JP2018006737A (ja) 保持装置および保持装置の製造方法
CN110880471A (zh) 陶瓷基板及静电卡盘
US20110005810A1 (en) Insulating substrate and method for producing the same
US11142484B2 (en) Component for semiconductor production device, and production method of component for semiconductor production device
WO2018025911A1 (ja) SiCヒーター
KR102380037B1 (ko) Ag 하지층이 형성된 파워 모듈용 기판 및 파워 모듈
EP3203514B1 (en) Substrate for power module with silver underlayer and power module
JP3255871B2 (ja) パルスヒーター及び半導体チップ実装ボードの製法
CN102709258A (zh) 一种金刚石-硅复合材料
JP2003086663A (ja) 被処理物保持体、処理装置および半導体製造装置用セラミックスサセプタ
JP3710690B2 (ja) SiCヒータ
CN102674840A (zh) 一种金刚石-硅材料的快速烧结制备方法
CN112750692A (zh) 复合烧结体及复合烧结体的制造方法
JP3186750B2 (ja) 半導体製造・検査装置用セラミック板
KR102707179B1 (ko) 복합 소결체, 반도체 제조 장치 부재 및 복합 소결체의 제조 방법
JP2002249377A (ja) 半導体製造・検査装置用セラミック基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531951

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197003497

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837013

Country of ref document: EP

Kind code of ref document: A1