WO2018025877A1 - 両回転スクロール型圧縮機 - Google Patents
両回転スクロール型圧縮機 Download PDFInfo
- Publication number
- WO2018025877A1 WO2018025877A1 PCT/JP2017/027939 JP2017027939W WO2018025877A1 WO 2018025877 A1 WO2018025877 A1 WO 2018025877A1 JP 2017027939 W JP2017027939 W JP 2017027939W WO 2018025877 A1 WO2018025877 A1 WO 2018025877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scroll
- drive
- driven
- scroll member
- double
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/023—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/40—Electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/60—Shafts
- F04C2240/603—Shafts with internal channels for fluid distribution, e.g. hollow shaft
Definitions
- the present invention relates to a double-rotating scroll compressor.
- a double-rotation scroll compressor is known (see Patent Document 1).
- This comprises a drive-side scroll and a driven-side scroll that rotates synchronously with the drive-side scroll, and the driven shaft that supports the rotation of the driven-side scroll is divided by a turning radius relative to the drive shaft that rotates the drive-side scroll.
- the drive shaft and the driven shaft are rotated at the same angular velocity in the same direction with an offset of only.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a double-rotating scroll compressor that can be made compact.
- the double-rotating scroll compressor of the present invention employs the following means. That is, the double-rotating scroll compressor according to one aspect of the present invention includes a plurality of spiral drive side wall bodies that are rotationally driven by a drive unit and are installed at predetermined angular intervals around the center of the drive side end plate. A drive-side scroll member having a predetermined angular interval around the center of the driven side end plate, and a number of spiral driven side wall bodies corresponding to each of the drive side wall bodies. The driven scroll member that forms a compression space by being engaged with the corresponding drive side wall, and the drive scroll member and the driven scroll member rotate in the same direction at the same angular velocity.
- a synchronous drive mechanism that transmits a driving force from the drive-side scroll member to the driven-side scroll member
- a housing that houses each of the scroll members and the synchronous drive mechanism
- the housing includes each scroll member and is divided by a plane substantially orthogonal to each rotation axis of each scroll member, and a straight line connecting each rotation axis of each scroll member A fastening portion that fastens the dividing surface in a region lateral to the viewing side and around each of the scroll members.
- Each of the driving side wall bodies arranged at a predetermined angular interval around the center of the end plate of the driving side scroll member is engaged with the corresponding driven side wall body of the driven side scroll member.
- a scroll compressor having a plurality of wall bodies is configured.
- the drive side scroll member is rotationally driven by the drive unit, and the driving force transmitted to the drive side scroll member is transmitted to the driven side scroll member via the synchronous drive mechanism.
- the driven scroll member rotates and rotates with the same angular velocity in the same direction with respect to the drive scroll member.
- a double-rotation scroll compressor in which both the drive-side scroll member and the driven-side scroll member rotate is provided.
- a housing for housing both scroll members and the synchronous drive mechanism is provided.
- the housing includes a split surface that includes both scroll members and is substantially orthogonal to the rotational axes of the scroll members.
- the housing has a fastening portion for fastening the divided surfaces. Then, the fastening portion is provided on the side as seen from the straight line connecting the rotation axes of the scroll members and in a region around the scroll members.
- the center of the housing is provided between the rotation center of the driving scroll and the rotation center of the driven scroll. Therefore, when both scroll members are viewed from the rotation axis, the projected shape of both scroll members is an ellipse having a major axis in the direction connecting the rotation axes.
- the outer shape of the housing can be made as small as possible, and the double-rotation scroll compressor can be configured compactly.
- the fastening portion is provided in a region that is substantially orthogonal to a straight line that connects the rotational axes of the scroll members.
- the area that is substantially orthogonal to the straight line connecting the rotation axes of the scroll members can secure the largest space. Therefore, it is preferable to provide a fastening portion in this region.
- the fastening portion is provided inside a circumscribed circle that surrounds the drive-side scroll member and the driven-side scroll member.
- the housing can be made compact by providing a fastening portion inside the circumscribed circle surrounding both scroll members.
- the double-rotating scroll compressor includes a driving-side bearing that supports the rotation of the driving-side scroll member, and a driven-side bearing that supports the rotation of the driven-side scroll member,
- a mounting hole for mounting to the external structure is formed on the outer peripheral side of the driving side bearing and / or the driven side bearing.
- a predetermined space can be secured between the outer peripheral side of the drive side bearing and the driven side bearing and the outer shape of the housing.
- a mounting hole for mounting to an external structure such as an engine is provided.
- the mounting hole is typically used as a hole for mounting a mounting leg for mounting to an external structure.
- the mounting hole may be a through hole or a bottomed hole.
- the fastening portion is provided in the space generated in the area surrounding the scroll members on the side as viewed from the straight line connecting the rotation axes of the scroll members, the outer shape of the housing is made as small as possible.
- the double-rotation scroll compressor can be configured compactly.
- FIG. 1 is a longitudinal sectional view showing a double-rotating scroll compressor according to a first embodiment of the present invention. It is the top view which showed the drive side scroll member of FIG. It is the top view which showed the driven side scroll member of FIG. It is the side view which looked at both scroll members of Drawing 1 from the axis of rotation. It is the longitudinal cross-sectional view which showed the double-rotation scroll type compressor which concerns on 2nd Embodiment of this invention. It is the longitudinal cross-sectional view which showed the modification of FIG.
- FIG. 1 shows a double-rotating scroll compressor 1A.
- the double-rotating scroll compressor 1A can be used as a supercharger that compresses combustion air (fluid) supplied to an internal combustion engine such as a vehicle engine.
- the double-rotating scroll compressor 1 ⁇ / b> A includes a housing 3, a motor (drive unit) 5 housed on one end side of the housing 3, a drive-side scroll member 70 and a driven-side scroll member housed on the other end side of the housing 3. 90.
- the housing 3 has a substantially cylindrical shape, and includes a motor accommodating portion 3 a that accommodates the motor 5, and a scroll accommodating portion 3 b that accommodates the scroll members 70 and 90. Cooling fins 3c for cooling the motor 5 are provided on the outer periphery of the motor housing 3a. A discharge port 3d for discharging compressed air is formed at the end of the scroll accommodating portion 3b. Although not shown in FIG. 1, the housing 3 is provided with an air suction port for sucking air.
- the scroll accommodating portion 3 b of the housing 3 is divided by a dividing surface P located at a substantially central portion in the axial direction of the scroll members 70 and 90. As shown in FIG.
- the housing 3 is provided with a flange portion (fastening portion) 30 that protrudes outward at a predetermined position in the circumferential direction.
- the split surface P is fastened by fixing the flange portion 30 through bolts 32 as fastening means.
- the motor 5 is driven by power supplied from a power supply source (not shown).
- the rotation control of the motor 5 is performed by a command from a control unit (not shown).
- the stator 5 a of the motor 5 is fixed to the inner peripheral side of the housing 3.
- the rotor 5b of the motor 5 rotates around the drive rotation axis CL1.
- a drive shaft 6 extending on the drive rotation axis CL1 is connected to the rotor 5b.
- the drive shaft 6 is connected to the drive side drive shaft 7 c of the drive side scroll member 70.
- the drive-side scroll member 70 includes a first drive-side scroll portion 71 on the motor 5 side and a second drive-side scroll portion 72 on the discharge port 3d side.
- the first drive side scroll portion 71 includes a first drive side end plate 71a and a first drive side wall 71b.
- the first drive side end plate 71a is connected to a drive side shaft portion 7c connected to the drive shaft 6, and extends in a direction orthogonal to the drive side rotation axis CL1.
- the drive side shaft portion 7c is provided to be rotatable with respect to the housing 3 via a drive side bearing 11 which is a ball bearing.
- the first drive side end plate 71a has a substantially disc shape when viewed in plan.
- the three first drive side wall bodies 71b are arranged at equal intervals around the drive side rotation axis CL1.
- the winding end portions 71e of the first drive side wall 71b are not fixed to other wall portions, but are independent. That is, the wall part which connects and reinforces each winding end part 71e is not provided.
- the second drive side scroll part 72 includes a second drive side end plate 72a and a second drive side wall 72b.
- the second drive side wall 72b has three strips, similar to the first drive side wall 71b (see FIG. 2) described above.
- a second drive side shaft portion 72c extending in the direction of the drive side rotation axis CL1 is connected to the second drive side end plate 72a.
- the second drive side shaft portion 72c is provided rotatably with respect to the housing 3 via the second drive side bearing 14 which is a ball bearing.
- a discharge port 72d is formed in the second drive side shaft portion 72c along the drive side rotation axis CL1.
- the first drive side scroll part 71 and the second drive side scroll part 72 are fixed in a state where the tips (free ends) of the wall bodies 71b and 72b face each other.
- the first drive-side scroll portion 71 and the second drive-side scroll portion 72 are fixed by bolts (wall body fixing) fastened to flange portions 73 provided at a plurality of locations in the circumferential direction so as to protrude outward in the radial direction. Part) 31.
- the driven scroll member 90 has a driven side end plate 90a provided substantially at the center in the axial direction (horizontal direction in the figure).
- a through hole 90h is formed at the center of the driven side end plate 90a so that the compressed air flows to the discharge port 72d.
- Driven side wall bodies 91b and 92b are provided on both sides of the driven side end plate 90a, respectively.
- the first driven side wall body 91b installed on the motor 5 side from the driven side end plate 90a is meshed with the first driving side wall body 71b of the first driving side scroll portion 71, and from the driven side end plate 90a to the discharge port 3d side.
- the installed second driven side wall 92 b is engaged with the second drive side wall 72 b of the second drive side scroll portion 72.
- three first driven side wall bodies 91b that is, three strips are provided.
- the three driven side wall bodies 9b are arranged at equal intervals around the driven side rotation axis CL2.
- a first support member 33 and a second support member 35 are provided at both ends in the axial direction (horizontal direction in the drawing) of the driven scroll member 90.
- the first support member 33 is disposed on the motor 5 side, and the second support member 35 is disposed on the discharge port 3d side.
- the first support member 33 is fixed to the tip (free end) of the first driven side wall 91b by a fastening member 25a such as a pin or a bolt
- the second support member 35 is a fastening member such as a pin or a bolt.
- 25b is fixed to the tip (free end) of the second driven side wall 92b.
- a shaft portion 33 a is provided on the center shaft side of the first support member 33, and the shaft portion 33 a is fixed to the housing 3 via a first support member bearing 37.
- a shaft portion 35 a is provided on the center shaft side of the second support member 35, and the shaft portion 35 a is fixed to the housing 3 via a second support member bearing 38. Accordingly, the driven scroll member 90 rotates about the second central axis CL2 via the support members 33 and 35.
- the pin ring mechanism 15 is provided between the first support member 33 and the first drive side end plate 71a. That is, the ring member 15 a is provided on the first drive side end plate 71 a, and the pin member 15 b is provided on the first support member 33.
- a pin ring mechanism 15 is provided between the second support member 35 and the second drive side end plate 72a. That is, the ring member 15 a is provided on the second drive side end plate 72 a, and the pin member 15 b is provided on the second support member 35.
- FIG. 4 shows a state in which the scroll members 70 and 90 are viewed from the directions of the rotation axes CL1 and CL2.
- the drive side rotation axis CL1 and the driven side rotation axis CL2 are offset by the turning radius when the scroll members 70 and 90 rotate at the same angular velocity.
- a flange portion 30 is provided in a region on the side of the straight line L1 connecting the rotation axes CL1 and CL2 and around the scroll members 70 and 90.
- a split surface P of the housing 3 (see FIG. 1) by bolts. ) Is concluded. More specifically, the flange portion 30 is provided in a region passing through the rotation axes CL1 and CL2 and orthogonal to the straight line L1. Further, the flange portion 30 is provided on the inner side of the circumscribed circle C1 surrounding both the scroll members 70 and 90.
- the double-rotating scroll compressor 1C having the above-described configuration operates as follows.
- the drive shaft 6 is rotated around the drive-side rotation axis CL1 by the motor 5
- the drive-side shaft portion 7c connected to the drive shaft 6 also rotates, whereby the drive-side scroll member 70 is rotated around the drive-side rotation axis CL1.
- the driving scroll member 70 rotates
- the driving force is transmitted from the support members 33 and 35 to the driven scroll member 90 via the pin ring mechanism 15, and the driven scroll member 90 rotates about the driven rotation axis CL2.
- the pin member 15b of the pin ring mechanism 15 moves while being in contact with the ring member 15a, so that both scroll members 70 and 90 rotate in the same direction at the same angular velocity.
- both scroll members 70 and 90 rotate, the air sucked from the suction port of the housing 3 is sucked from the outer peripheral side of both scroll members 70 and 90 and enters the compression chamber formed by both scroll members 70 and 90. It is captured.
- the compression chamber formed by the first drive side wall 71b and the first driven side wall 91b and the compression chamber formed by the second drive side wall 72b and the second driven side wall 92b are separately compressed. The Each compression chamber decreases in volume as it moves toward the center, and air is compressed accordingly.
- the air compressed by the first drive side wall 71b and the first driven side wall 91b passes through the through-hole 90h formed in the driven side end plate 90a, and the second drive side wall 72b, the second driven side wall 92b, The compressed air is merged, and the merged air passes through the discharge port 72d and is discharged from the discharge port 3d of the housing 3 to the outside.
- the discharged compressed air is guided to an internal combustion engine (not shown) and used as combustion air.
- the rotation axes CL1 and CL2 of the scroll members 70 and 90 are offset and provided in parallel by a distance that can form the compression chamber. Therefore, when both scroll members 70 and 90 are viewed from the rotation axis (see FIG. 4), the projected shape of both scroll members 70 and 90 is an oval shape having a long axis in the direction connecting the rotation axes CL1 and CL2. It becomes. Therefore, a space is generated in the side area when viewed from the straight line L1 connecting the rotation axes CL1 and CL2 of the scroll members 70 and 90 and in the area around the scroll members 70 and 90.
- the flange portion 30 is provided in this region and the dividing surface P is fastened, the outer shape of the housing 3 can be made as small as possible, and the double-rotating scroll compressor 1A can be configured compactly. Moreover, as shown in FIG. 4, since the flange part 30 is provided inside the circumscribed circle C1 surrounding both the scroll members 70 and 90, the housing 3 can be comprised compactly. In the present embodiment, two flange portions 30 are provided. However, the present invention is not limited to this, and may be three or more. Further, the installation position of the flange portion 30 is provided in a region that passes through the rotation axes CL1 and CL2 and is orthogonal to the straight line L1 in FIG. 4, but is not limited to this region. You may provide in the area
- FIG. 5 shows a compressor similar to the double scroll type compression 1A of the first embodiment, and the position of the mounting hole 80 formed in the housing 3 is added.
- the mounting hole 80 is used to connect the double-rotating scroll compressor 1A to an external structure such as an engine. Specifically, it is used as a hole for attaching a mounting leg for mounting to an external structure.
- mounting holes 80 are formed on the outer peripheral side of the drive side bearing 11 and the first support member bearing 37 and on the outer peripheral side of the second drive side shaft 14 and the second support member bearing 38. Is formed.
- the attachment hole 80 is a through hole.
- a predetermined space can be secured between the outer periphery of the bearings 11, 14, 37, and 38 and the outer shape of the housing 3.
- the mounting hole 80 can be formed without enlarging the outer shape of the housing 3, so that the double-rotating scroll compressor 1A can be configured compactly.
- a mounting hole 80 as a bottomed hole may be provided on the outer peripheral side of the bearings 11, 14, 37, and 38.
- the double-rotating scroll type compressor is used as the supercharger.
- the present invention is not limited to this, and can be widely used as long as it compresses fluid.
- it can also be used as a refrigerant compressor used in an air conditioning machine.
- Double-rotation scroll type compressor 3 Housing 3a Motor accommodating part 3b Scroll accommodating part 3c Cooling fin 3d Discharge port 5 Motor (drive part) 5a Stator 5b Rotor 6 Drive shaft 7c Drive side shaft 11 Drive side bearing 15 Pin ring mechanism (synchronous drive mechanism) 15a Ring member 15b Pin member 25a Fastening member 25b Fastening member 30 Flange part (fastening part) 31 bolts (wall fixing part) 32 Bolt 33 First support member 33a Shaft portion 35 Second support member 35a Shaft portion 37 First support member bearing 38 Second support member bearing 70 Driving side scroll member 71 First driving side scroll portion 71a First driving side end Plate 71b First drive side wall 72 Second drive side scroll portion 72a Second drive side end plate 72b Second drive side wall 72c Second drive side shaft portion 72d Discharge port 73 Flange portion 90 Drive side scroll member 90a Drive side end plate 90h Through hole 91b First driven side wall body 92b Second driven side wall body L1 Straight line P Dividing surface
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
駆動側スクロール部材(70)と、従動側スクロール部材(90)と、両スクロール部材(70,90)を収容するハウジング(3)とを備えている。ハウジング(3)は、両スクロール部材(70,90)を含みかつ各スクロール部材の各回転軸線(CL1,CL2)に略直交する平面で分割された分割面(P)と、各スクロール部材(70,90)の各回転軸線(CL1,CL2)を結んだ直線(L1)から見て側方でかつ各スクロール部材(70,90)の周囲の領域で、分割面を締結するフランジ部(30)とを備えている。
Description
本発明は、両回転スクロール型圧縮機に関するものである。
従来より、両回転スクロール型圧縮機が知られている(特許文献1参照)。これは、駆動側スクロールと、駆動側スクロールと共に同期して回転する従動側スクロールとを備え、駆動側スクロールを回転させる駆動軸に対して、従動側スクロールの回転を支持する従動軸を旋回半径分だけオフセットして、駆動軸と従動軸とを同じ方向に同一角速度で回転させている。
特許文献1のような両回転スクロール型圧縮機においても、搭載性の向上等の理由により、コンパクト化が望まれている。
本発明は、このような事情に鑑みてなされたものであって、コンパクト化が可能な両回転スクロール型圧縮機を提供することを目的とする。
上記課題を解決するために、本発明の両回転スクロール型圧縮機は以下の手段を採用する。
すなわち、本発明の一態様にかかる両回転スクロール型圧縮機は、駆動部によって回転駆動され、駆動側端板の中心回りに所定角度間隔を有して設置された複数の渦巻状の駆動側壁体を有する駆動側スクロール部材と、従動側端板の中心回りに所定角度間隔を有して設置され、各前記駆動側壁体に対応する数の渦巻状の従動側壁体を有し、これら従動側壁体のそれぞれが対応する前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記駆動側スクロール部材から前記従動側スクロール部材に駆動力を伝達する同期駆動機構と、各前記スクロール部材及び前記同期駆動機構を収容するハウジングとを備え、前記ハウジングは、各前記スクロール部材を含みかつ各前記スクロール部材の各回転軸線に略直交する平面で分割された分割面と、各前記スクロール部材の各回転軸線を結んだ直線から見て側方でかつ各前記スクロール部材の周囲の領域で、前記分割面を締結する締結部と、を備えている。
すなわち、本発明の一態様にかかる両回転スクロール型圧縮機は、駆動部によって回転駆動され、駆動側端板の中心回りに所定角度間隔を有して設置された複数の渦巻状の駆動側壁体を有する駆動側スクロール部材と、従動側端板の中心回りに所定角度間隔を有して設置され、各前記駆動側壁体に対応する数の渦巻状の従動側壁体を有し、これら従動側壁体のそれぞれが対応する前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記駆動側スクロール部材から前記従動側スクロール部材に駆動力を伝達する同期駆動機構と、各前記スクロール部材及び前記同期駆動機構を収容するハウジングとを備え、前記ハウジングは、各前記スクロール部材を含みかつ各前記スクロール部材の各回転軸線に略直交する平面で分割された分割面と、各前記スクロール部材の各回転軸線を結んだ直線から見て側方でかつ各前記スクロール部材の周囲の領域で、前記分割面を締結する締結部と、を備えている。
駆動側スクロール部材の端板の中心周りに所定角度間隔をもって配置された駆動側壁体のそれぞれと、従動側スクロール部材の対応する従動側壁体とが噛み合わされる。これにより、1つの駆動側壁体と1つの従動側壁体とからなる対が複数設けられ、複数条とされた壁体を有するスクロール型圧縮機が構成される。駆動側スクロール部材は、駆動部によって回転駆動され、駆動側スクロール部材に伝達された駆動力は、同期駆動機構を介して従動側スクロール部材に伝達される。これにより、従動側スクロール部材は、回転するとともに駆動側スクロール部材に対して同じ方向に同一角速度で自転運動を行う。このように、駆動側スクロール部材及び従動側スクロール部材の両方が回転する両回転式のスクロール型圧縮機が提供される。
両スクロール部材と同期駆動機構を収容するハウジングを備えている。ハウジングは、両スクロール部材を含みかつ両スクロール部材の各回転軸線に略直交する分割面を有している。ハウジングは、この分割面を締結するための締結部を有している。そして、締結部を、両スクロール部材の各回転軸線を結んだ直線から見て側方でかつ両スクロール部材の周囲の領域に設けることとした。
両回転スクロール型圧縮機の場合、駆動スクロールの回転中心と従動スクロールの回転中心の間にハウジングの中心が設けられている。したがって、両スクロール部材を回転軸線から見た場合、両スクロール部材の投影形状は、各回転軸線を結んだ方向に長軸を有する長円形状となる。したがって、両スクロール部材の回転軸線を結んだ直線から見て側方でかつ両スクロール部材の周囲の領域にスペースが生じることになる。この領域に締結部を設けることで、ハウジングの外形を可及的に小さくして、両回転スクロール型圧縮機をコンパクトに構成することができる。
両スクロール部材と同期駆動機構を収容するハウジングを備えている。ハウジングは、両スクロール部材を含みかつ両スクロール部材の各回転軸線に略直交する分割面を有している。ハウジングは、この分割面を締結するための締結部を有している。そして、締結部を、両スクロール部材の各回転軸線を結んだ直線から見て側方でかつ両スクロール部材の周囲の領域に設けることとした。
両回転スクロール型圧縮機の場合、駆動スクロールの回転中心と従動スクロールの回転中心の間にハウジングの中心が設けられている。したがって、両スクロール部材を回転軸線から見た場合、両スクロール部材の投影形状は、各回転軸線を結んだ方向に長軸を有する長円形状となる。したがって、両スクロール部材の回転軸線を結んだ直線から見て側方でかつ両スクロール部材の周囲の領域にスペースが生じることになる。この領域に締結部を設けることで、ハウジングの外形を可及的に小さくして、両回転スクロール型圧縮機をコンパクトに構成することができる。
さらに、本発明の一態様にかかる両回転スクロール型圧縮機では、前記締結部は、各前記スクロール部材の各回転軸線を結んだ直線に対して略直交する領域に設けられている。
各スクロール部材の各回転軸線を結んだ直線に対して略直交する領域が、最も大きなスペースを確保できる。したがって、この領域に締結部を設けることが好ましい。
さらに、本発明の一態様にかかる両回転スクロール型圧縮機では、前記締結部は、前記駆動側スクロール部材及び前記従動側スクロール部材を包囲する外接円よりも内側に設けられている。
両スクロール部材を包囲する外接円よりも内側に締結部を設けることで、ハウジングをコンパクトに構成することができる。
さらに、本発明の一態様にかかる両回転スクロール型圧縮機では、前記駆動側スクロール部材の回転を支持する駆動側軸受と、前記従動側スクロール部材の回転を支持する従動側軸受とを備え、前記駆動側軸受及び/又は前記従動側軸受の外周側に、外部構造に取り付けるための取付穴が形成されている。
駆動側軸受や従動側軸受の外周側は、ハウジングの外形との間に所定のスペースを確保することができる。このスペースに、例えばエンジン等の外部構造に取り付けるための取付穴を設けることとした。これにより、ハウジング外形を大きくすることなく取付穴を形成できるので、両回転スクロール型圧縮機をコンパクトに構成することができる。
取付穴は、典型的には、外部構造に取り付けるための取付脚を取り付ける穴として用いられる。取付穴としては、貫通穴でも良いし、有底穴でもよい。
取付穴は、典型的には、外部構造に取り付けるための取付脚を取り付ける穴として用いられる。取付穴としては、貫通穴でも良いし、有底穴でもよい。
両スクロール部材の回転軸線を結んだ直線から見て側方でかつ両スクロール部材の周囲の領域に生じたスペースに、締結部を設けることとしたので、ハウジングの外形を可及的に小さくして、両回転スクロール型圧縮機をコンパクトに構成することができる。
以下、本発明の第1実施形態について、図1等を用いて説明する。
図1には、両回転スクロール型圧縮機1Aが示されている。両回転スクロール型圧縮機1Aは、例えば車両用エンジン等の内燃機関に供給する燃焼用空気(流体)を圧縮する過給機として用いることができる。
図1には、両回転スクロール型圧縮機1Aが示されている。両回転スクロール型圧縮機1Aは、例えば車両用エンジン等の内燃機関に供給する燃焼用空気(流体)を圧縮する過給機として用いることができる。
両回転スクロール型圧縮機1Aは、ハウジング3と、ハウジング3の一端側に収容されたモータ(駆動部)5と、ハウジング3の他端側に収容された駆動側スクロール部材70及び従動側スクロール部材90とを備えている。
ハウジング3は、略円筒形状とされており、モータ5を収容するモータ収容部3aと、スクロール部材70,90を収容するスクロール収容部3bとを備えている。
モータ収容部3aの外周には、モータ5を冷却するための冷却フィン3cが設けられている。スクロール収容部3bの端部には、圧縮後の空気を吐出するための吐出口3dが形成されている。なお、図1では示さされていないが、ハウジング3には空気を吸入する空気吸入口が設けられている。
ハウジング3のスクロール収容部3bは、スクロール部材70,90の軸線方向における略中央部に位置する分割面Pにて分割されている。ハウジング3には、後述する図4に示すように、円周方向の所定位置にて外方に突出するフランジ部(締結部)30が設けられている。このフランジ部30に締結手段としてのボルト32を通して固定することによって、分割面Pが締結される。
モータ収容部3aの外周には、モータ5を冷却するための冷却フィン3cが設けられている。スクロール収容部3bの端部には、圧縮後の空気を吐出するための吐出口3dが形成されている。なお、図1では示さされていないが、ハウジング3には空気を吸入する空気吸入口が設けられている。
ハウジング3のスクロール収容部3bは、スクロール部材70,90の軸線方向における略中央部に位置する分割面Pにて分割されている。ハウジング3には、後述する図4に示すように、円周方向の所定位置にて外方に突出するフランジ部(締結部)30が設けられている。このフランジ部30に締結手段としてのボルト32を通して固定することによって、分割面Pが締結される。
モータ5は、図示しない電力供給源から電力が供給されることによって駆動される。モータ5の回転制御は、図示しない制御部からの指令によって行われる。モータ5のステータ5aはハウジング3の内周側に固定されている。モータ5のロータ5bは、駆動回転軸線CL1回りに回転する。ロータ5bには、駆動回転軸線CL1上に延在する駆動軸6が接続されている。駆動軸6は、駆動側スクロール部材70の駆動側駆動軸7cと接続されている。
駆動側スクロール部材70は、モータ5側の第1駆動側スクロール部71と、吐出口3d側の第2駆動側スクロール部72とを備えている。
第1駆動側スクロール部71は、第1駆動側端板71aと第1駆動側壁体71bを備えている。
第1駆動側端板71aは、駆動軸6に接続された駆動側軸部7cに接続されており、駆動側回転軸線CL1に対して直交する方向に延在している。駆動側軸部7cは、玉軸受とされた駆動側軸受11を介してハウジング3に対して回動自在に設けられている。
第1駆動側スクロール部71は、第1駆動側端板71aと第1駆動側壁体71bを備えている。
第1駆動側端板71aは、駆動軸6に接続された駆動側軸部7cに接続されており、駆動側回転軸線CL1に対して直交する方向に延在している。駆動側軸部7cは、玉軸受とされた駆動側軸受11を介してハウジング3に対して回動自在に設けられている。
第1駆動側端板71aは、平面視した場合に略円板形状とされている。第1駆動側端板71a上に、図2に示すように、渦巻状とされた第1駆動側壁体71bが3つ、すなわち3条設けられている。3条とされた第1駆動側壁体71bは、駆動側回転軸線CL1回りに等間隔にて配置されている。第1駆動側壁体71bの巻き終わり部71eは、それぞれ、他の壁部に固定されておらず、独立している。すなわち、各巻き終わり部71e同士を接続して補強するような壁部は設けられていない。
図1に示したように、第2駆動側スクロール部72は、第2駆動側端板72aと第2駆動側壁体72bを備えている。第2駆動側壁体72bは、上述した第1駆動側壁体71b(図2参照)と同様に、3条とされている。
第2駆動側端板72aには、駆動側回転軸線CL1方向に延在する第2駆動側軸部72cが接続されている。第2駆動側軸部72cは、玉軸受けとされた第2駆動側軸受14を介して、ハウジング3に対して回転自在に設けられている。第2駆動側軸部72cには、駆動側回転軸線CL1に沿って吐出ポート72dが形成されている。
第2駆動側端板72aには、駆動側回転軸線CL1方向に延在する第2駆動側軸部72cが接続されている。第2駆動側軸部72cは、玉軸受けとされた第2駆動側軸受14を介して、ハウジング3に対して回転自在に設けられている。第2駆動側軸部72cには、駆動側回転軸線CL1に沿って吐出ポート72dが形成されている。
第1駆動側スクロール部71と第2駆動側スクロール部72とは、壁体71b,72bの先端(自由端)同士が向かい合った状態で固定されている。第1駆動側スクロール部71と第2駆動側スクロール部72との固定は、半径方向外側に突出するように円周方向において複数箇所設けたフランジ部73に対して締結されたボルト(壁体固定部)31によって行われる。
従動側スクロール部材90は、軸方向(図において水平方向)における略中央に設けられた従動側端板90aを有している。従動側端板90aの中央には貫通孔90hが形成されており、圧縮後の空気が吐出ポート72dへと流れるようになっている。
従動側端板90aの両側には、それぞれ、従動側壁体91b,92bが設けられている。従動側端板90aからモータ5側に設置された第1従動側壁体91bは、第1駆動側スクロール部71の第1駆動側壁体71bと噛み合わされ、従動側端板90aから吐出口3d側に設置された第2従動側壁体92bは、第2駆動側スクロール部72の第2駆動側壁体72bと噛み合わされる。
図3に示すように、第1従動側壁体91bは、3つ、すなわち3条設けられている。3条とされた従動側壁体9bは、従動側回転軸線CL2回りに等間隔にて配置されている。
従動側端板90aの両側には、それぞれ、従動側壁体91b,92bが設けられている。従動側端板90aからモータ5側に設置された第1従動側壁体91bは、第1駆動側スクロール部71の第1駆動側壁体71bと噛み合わされ、従動側端板90aから吐出口3d側に設置された第2従動側壁体92bは、第2駆動側スクロール部72の第2駆動側壁体72bと噛み合わされる。
図3に示すように、第1従動側壁体91bは、3つ、すなわち3条設けられている。3条とされた従動側壁体9bは、従動側回転軸線CL2回りに等間隔にて配置されている。
従動側スクロール部材90の軸方向(図において水平方向)における両端には、第1サポート部材33と第2サポート部材35とが設けられている。第1サポート部材33は、モータ5側に配置され、第2サポート部材35は吐出口3d側に配置されている。第1サポート部材33は、ピンやボルト等の締結部材25aによって第1従動側壁体91bの先端(自由端)に対して固定されており、第2サポート部材35は、ピンやボルト等の締結部材25bによって第2従動側壁体92bの先端(自由端)に対して固定されている。第1サポート部材33の中心軸側には、軸部33aが設けられており、この軸部33aが第1サポート部材用軸受37を介してハウジング3に対して固定されている。第2サポート部材35の中心軸側には、軸部35aが設けられており、この軸部35aが第2サポート部材用軸受38を介してハウジング3に対して固定されている。これにより、各サポート部材33,35を介して、従動側スクロール部材90は、第2中心軸線CL2回りに回転するようになっている。
第1サポート部材33と第1駆動側端板71aとの間には、ピンリング機構15が設けられている。すなわち、第1駆動側端板71aにリング部材15aが設けられ、第1サポート部材33にピン部材15bが設けられている。
第2サポート部材35と第2駆動側端板72aとの間には、ピンリング機構15が設けられている。すなわち、第2駆動側端板72aにリング部材15aが設けられ、第2サポート部材35にピン部材15bが設けられている。
図4には、スクロール部材70,90を回転軸線CL1,CL2方向から見た状態が示されている。同図に示されているように、駆動側回転軸線CL1と従動側回転軸線CL2とは、スクロール部材70,90同士が同一角速度で自転運動する際の旋回半径分だけオフセットされている。これら回転軸線CL1,CL2を結ぶ直線L1よりも側方でかつ両スクロール部材70,90の周囲の領域に、フランジ部30が設けられ、この位置でボルトによってハウジング3の分割面P(図1参照)が締結されている。より具体的には、回転軸線CL1,CL2を通り直線L1に直交する領域に、フランジ部30が設けられている。また、フランジ部30は、両スクロール部材70,90を包囲する外接円C1よりも内側に設けられている。
上記構成の両回転スクロール型圧縮機1Cは、以下のように動作する。
モータ5によって駆動軸6が駆動側回転軸線CL1回りに回転させられると、駆動軸6に接続された駆動側軸部7cも回転し、これにより駆動側スクロール部材70が駆動側回転軸線CL1回りに回転する。駆動側スクロール部材70が回転すると、駆動力がピンリング機構15を介して各サポート部材33,35から従動側スクロール部材90へと伝達され、従動側スクロール部材90が従動側回転軸線CL2回りに回転する。このとき、ピンリング機構15のピン部材15bがリング部材15aに対して接触しつつ移動することによって、両スクロール部材70,90が同じ方向に同一角速度で自転運動を行う。
両スクロール部材70,90が自転運動を行うと、ハウジング3の吸入口から吸い込まれた空気が両スクロール部材70,90の外周側から吸入され、両スクロール部材70,90によって形成された圧縮室に取り込まれる。そして、第1駆動側壁体71bと第1従動側壁体91bとによって形成された圧縮室と、第2駆動側壁体72bと第2従動側壁体92bとによって形成された圧縮室とが別々に圧縮される。それぞれの圧縮室は中心側に移動するにしたがって容積が減少し、これに伴い空気が圧縮される。第1駆動側壁体71bと第1従動側壁体91bとによって圧縮された空気は、従動側端板90aに形成された貫通孔90hを通り、第2駆動側壁体72bと第2従動側壁体92bとによって圧縮された空気と合流し、合流後の空気が吐出ポート72dを通り、ハウジング3の吐出口3dから外部へと吐出される。吐出された圧縮空気は、図示しない内燃機関へと導かれ、燃焼用空気として用いられる。
モータ5によって駆動軸6が駆動側回転軸線CL1回りに回転させられると、駆動軸6に接続された駆動側軸部7cも回転し、これにより駆動側スクロール部材70が駆動側回転軸線CL1回りに回転する。駆動側スクロール部材70が回転すると、駆動力がピンリング機構15を介して各サポート部材33,35から従動側スクロール部材90へと伝達され、従動側スクロール部材90が従動側回転軸線CL2回りに回転する。このとき、ピンリング機構15のピン部材15bがリング部材15aに対して接触しつつ移動することによって、両スクロール部材70,90が同じ方向に同一角速度で自転運動を行う。
両スクロール部材70,90が自転運動を行うと、ハウジング3の吸入口から吸い込まれた空気が両スクロール部材70,90の外周側から吸入され、両スクロール部材70,90によって形成された圧縮室に取り込まれる。そして、第1駆動側壁体71bと第1従動側壁体91bとによって形成された圧縮室と、第2駆動側壁体72bと第2従動側壁体92bとによって形成された圧縮室とが別々に圧縮される。それぞれの圧縮室は中心側に移動するにしたがって容積が減少し、これに伴い空気が圧縮される。第1駆動側壁体71bと第1従動側壁体91bとによって圧縮された空気は、従動側端板90aに形成された貫通孔90hを通り、第2駆動側壁体72bと第2従動側壁体92bとによって圧縮された空気と合流し、合流後の空気が吐出ポート72dを通り、ハウジング3の吐出口3dから外部へと吐出される。吐出された圧縮空気は、図示しない内燃機関へと導かれ、燃焼用空気として用いられる。
本実施形態によれば、以下の作用効果を奏する。
両回転スクロール型圧縮機1Aの場合、圧縮室が形成できる距離だけ各スクロール部材70,90の回転軸線CL1,CL2がオフセットされて平行に設けられている。したがって、両スクロール部材70,90を回転軸線から見た場合(図4参照)、両スクロール部材70,90の投影形状は、各回転軸線CL1,CL2を結んだ方向に長軸を有する長円形状となる。したがって、両スクロール部材70,90の回転軸線CL1,CL2を結んだ直線L1から見て側方でかつ両スクロール部材70,90の周囲の領域にスペースが生じることになる。この領域にフランジ部30を設けて分割面Pを締結することとしたので、ハウジング3の外形を可及的に小さくして、両回転スクロール型圧縮機1Aをコンパクトに構成することができる。
また、図4に示したように、フランジ部30は、両スクロール部材70,90を包囲する外接円C1よりも内側に設けられているので、ハウジング3をコンパクトに構成することができる。
なお、本実施形態では、フランジ部30を2つ設けることとしたが、本発明はこれに限定されるものではなく、3つ以上であっても良い。
また、フランジ部30の設置位置は、図4において回転軸線CL1,CL2を通り直線L1に対して直交する領域に設けることとしたが、この領域に限定されるものではなく、この位置から回転軸線CL1,CL2回りに回転させた領域に設けても良い。
両回転スクロール型圧縮機1Aの場合、圧縮室が形成できる距離だけ各スクロール部材70,90の回転軸線CL1,CL2がオフセットされて平行に設けられている。したがって、両スクロール部材70,90を回転軸線から見た場合(図4参照)、両スクロール部材70,90の投影形状は、各回転軸線CL1,CL2を結んだ方向に長軸を有する長円形状となる。したがって、両スクロール部材70,90の回転軸線CL1,CL2を結んだ直線L1から見て側方でかつ両スクロール部材70,90の周囲の領域にスペースが生じることになる。この領域にフランジ部30を設けて分割面Pを締結することとしたので、ハウジング3の外形を可及的に小さくして、両回転スクロール型圧縮機1Aをコンパクトに構成することができる。
また、図4に示したように、フランジ部30は、両スクロール部材70,90を包囲する外接円C1よりも内側に設けられているので、ハウジング3をコンパクトに構成することができる。
なお、本実施形態では、フランジ部30を2つ設けることとしたが、本発明はこれに限定されるものではなく、3つ以上であっても良い。
また、フランジ部30の設置位置は、図4において回転軸線CL1,CL2を通り直線L1に対して直交する領域に設けることとしたが、この領域に限定されるものではなく、この位置から回転軸線CL1,CL2回りに回転させた領域に設けても良い。
[第2実施形態]
次に、本発明の第2実施形態について、図5を用いて説明する。
本実施形態は、第1実施形態の両回転スクロール型圧縮機1Aに対して、取付穴80を設ける位置について説明するものである。したがって、図5には、第1実施形態の両回転スクロール型圧縮1Aと同様の圧縮機が示されており、ハウジング3に形成された取付穴80の位置が追加されている。
取付穴80は、両回転スクロール型圧縮機1Aをエンジン等の外部構造に接続するために用いられる。具体的には、外部構造に取り付けるための取付脚を取り付ける穴として用いられる。
図5に示されているように、駆動側軸受11及び第1サポート部材用軸受37の外周側と、第2駆動側軸14及び第2サポート部材用軸受38の外周側に、取付穴80が形成されている。取付穴80は、貫通孔とされている。
次に、本発明の第2実施形態について、図5を用いて説明する。
本実施形態は、第1実施形態の両回転スクロール型圧縮機1Aに対して、取付穴80を設ける位置について説明するものである。したがって、図5には、第1実施形態の両回転スクロール型圧縮1Aと同様の圧縮機が示されており、ハウジング3に形成された取付穴80の位置が追加されている。
取付穴80は、両回転スクロール型圧縮機1Aをエンジン等の外部構造に接続するために用いられる。具体的には、外部構造に取り付けるための取付脚を取り付ける穴として用いられる。
図5に示されているように、駆動側軸受11及び第1サポート部材用軸受37の外周側と、第2駆動側軸14及び第2サポート部材用軸受38の外周側に、取付穴80が形成されている。取付穴80は、貫通孔とされている。
このように、本実施形態では、軸受11,14,37,38の外周側は、ハウジング3の外形との間に所定のスペースを確保することができることに着目した。このスペースに、取付穴80を設けることにより、ハウジング3の外形を大きくすることなく取付穴80を形成できるので、両回転スクロール型圧縮機1Aをコンパクトに構成することができる。
また、図6に示すように、軸受11,14,37,38の外周側に、有底穴としての取付穴80を設けるようにしてもよい。
なお、上述した各実施形態では、過給機として両回転スクロール型圧縮機を用いることとしたが、本発明はこれに限定されるものではなく、流体を圧縮するものであれば広く利用することができ、例えば空調機械において使用される冷媒圧縮機として用いることもできる。
1A 両回転スクロール型圧縮機
3 ハウジング
3a モータ収容部
3b スクロール収容部
3c 冷却フィン
3d 吐出口
5 モータ(駆動部)
5a ステータ
5b ロータ
6 駆動軸
7c 駆動側軸部
11 駆動側軸受
15 ピンリング機構(同期駆動機構)
15a リング部材
15b ピン部材
25a 締結部材
25b 締結部材
30 フランジ部(締結部)
31 ボルト(壁体固定部)
32 ボルト
33 第1サポート部材
33a 軸部
35 第2サポート部材
35a 軸部
37 第1サポート部材用軸受
38 第2サポート部材用軸受
70 駆動側スクロール部材
71 第1駆動側スクロール部
71a 第1駆動側端板
71b 第1駆動側壁体
72 第2駆動側スクロール部
72a 第2駆動側端板
72b 第2駆動側壁体
72c 第2駆動側軸部
72d 吐出ポート
73 フランジ部
90 従動側スクロール部材
90a 従動側端板
90h 貫通孔
91b 第1従動側壁体
92b 第2従動側壁体
L1 直線
P 分割面
3 ハウジング
3a モータ収容部
3b スクロール収容部
3c 冷却フィン
3d 吐出口
5 モータ(駆動部)
5a ステータ
5b ロータ
6 駆動軸
7c 駆動側軸部
11 駆動側軸受
15 ピンリング機構(同期駆動機構)
15a リング部材
15b ピン部材
25a 締結部材
25b 締結部材
30 フランジ部(締結部)
31 ボルト(壁体固定部)
32 ボルト
33 第1サポート部材
33a 軸部
35 第2サポート部材
35a 軸部
37 第1サポート部材用軸受
38 第2サポート部材用軸受
70 駆動側スクロール部材
71 第1駆動側スクロール部
71a 第1駆動側端板
71b 第1駆動側壁体
72 第2駆動側スクロール部
72a 第2駆動側端板
72b 第2駆動側壁体
72c 第2駆動側軸部
72d 吐出ポート
73 フランジ部
90 従動側スクロール部材
90a 従動側端板
90h 貫通孔
91b 第1従動側壁体
92b 第2従動側壁体
L1 直線
P 分割面
Claims (4)
- 駆動部によって回転駆動され、駆動側端板の中心回りに所定角度間隔を有して設置された複数の渦巻状の駆動側壁体を有する駆動側スクロール部材と、
従動側端板の中心回りに所定角度間隔を有して設置され、各前記駆動側壁体に対応する数の渦巻状の従動側壁体を有し、これら従動側壁体のそれぞれが対応する前記駆動側壁体に対して噛み合わされることによって圧縮空間を形成する従動側スクロール部材と、
前記駆動側スクロール部材と前記従動側スクロール部材とが同じ方向に同一角速度で自転運動するように前記駆動側スクロール部材から前記従動側スクロール部材に駆動力を伝達する同期駆動機構と、
各前記スクロール部材及び前記同期駆動機構を収容するハウジングと、
を備え、
前記ハウジングは、各前記スクロール部材を含みかつ各前記スクロール部材の各回転軸線に略直交する平面で分割された分割面と、
各前記スクロール部材の各回転軸線を結んだ直線から見て側方でかつ各前記スクロール部材の周囲の領域で、前記分割面を締結する締結部と、を備えている両回転スクロール型圧縮機。 - 前記締結部は、各前記スクロール部材の各回転軸線を結んだ直線に対して略直交する領域に設けられている請求項1に記載の両回転スクロール型圧縮機。
- 前記締結部は、前記駆動側スクロール部材及び前記従動側スクロール部材を包囲する外接円よりも内側に設けられている請求項1又は2に記載の両回転スクロール型圧縮機。
- 前記駆動側スクロール部材の回転を支持する駆動側軸受と、
前記従動側スクロール部材の回転を支持する従動側軸受と、
を備え、
前記駆動側軸受及び/又は前記従動側軸受の外周側に、外部構造に取り付けるための取付穴が形成されている請求項1から3のいずれかに記載の両回転スクロール型圧縮機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/321,661 US20200378383A1 (en) | 2016-08-01 | 2017-08-01 | Co-rotating scroll compressor |
CN201780047356.2A CN109729720B (zh) | 2016-08-01 | 2017-08-01 | 双旋转涡旋型压缩机 |
EP17836980.7A EP3480464B1 (en) | 2016-08-01 | 2017-08-01 | Double rotating scroll-type compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-151544 | 2016-08-01 | ||
JP2016151544A JP6665055B2 (ja) | 2016-08-01 | 2016-08-01 | 両回転スクロール型圧縮機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025877A1 true WO2018025877A1 (ja) | 2018-02-08 |
Family
ID=61073490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027939 WO2018025877A1 (ja) | 2016-08-01 | 2017-08-01 | 両回転スクロール型圧縮機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200378383A1 (ja) |
EP (1) | EP3480464B1 (ja) |
JP (1) | JP6665055B2 (ja) |
CN (1) | CN109729720B (ja) |
WO (1) | WO2018025877A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6698726B2 (ja) * | 2018-03-12 | 2020-05-27 | 三菱重工業株式会社 | 両回転スクロール型圧縮機 |
JP7017256B2 (ja) * | 2019-12-17 | 2022-02-08 | 有限会社スクロール技研 | スクロール型流体機械 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62210276A (ja) * | 1986-03-07 | 1987-09-16 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
JPH0476292A (ja) * | 1990-07-16 | 1992-03-11 | Sanyo Electric Co Ltd | スクロール圧縮機 |
US5938419A (en) * | 1997-01-17 | 1999-08-17 | Anest Iwata Corporation | Scroll fluid apparatus having an intermediate seal member with a compressed fluid passage therein |
JP2000108647A (ja) * | 1998-10-05 | 2000-04-18 | Matsushita Electric Ind Co Ltd | 圧縮機およびその組立て方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02227575A (ja) * | 1989-02-28 | 1990-09-10 | Diesel Kiki Co Ltd | スクロール流体機械 |
JPH10159756A (ja) * | 1996-11-29 | 1998-06-16 | Kimie Nakamura | スクロール流体機械 |
JP5812693B2 (ja) * | 2011-05-09 | 2015-11-17 | アネスト岩田株式会社 | スクロール式流体機械 |
JP5931564B2 (ja) * | 2012-04-25 | 2016-06-08 | アネスト岩田株式会社 | 両回転型スクロール膨張機及び該膨張機を備えた発電装置 |
JP5931563B2 (ja) * | 2012-04-25 | 2016-06-08 | アネスト岩田株式会社 | スクロール膨張機 |
JP5925578B2 (ja) * | 2012-04-25 | 2016-05-25 | アネスト岩田株式会社 | スクロール膨張機 |
-
2016
- 2016-08-01 JP JP2016151544A patent/JP6665055B2/ja active Active
-
2017
- 2017-08-01 CN CN201780047356.2A patent/CN109729720B/zh not_active Expired - Fee Related
- 2017-08-01 US US16/321,661 patent/US20200378383A1/en not_active Abandoned
- 2017-08-01 WO PCT/JP2017/027939 patent/WO2018025877A1/ja unknown
- 2017-08-01 EP EP17836980.7A patent/EP3480464B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62210276A (ja) * | 1986-03-07 | 1987-09-16 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
JPH0476292A (ja) * | 1990-07-16 | 1992-03-11 | Sanyo Electric Co Ltd | スクロール圧縮機 |
US5938419A (en) * | 1997-01-17 | 1999-08-17 | Anest Iwata Corporation | Scroll fluid apparatus having an intermediate seal member with a compressed fluid passage therein |
JP2000108647A (ja) * | 1998-10-05 | 2000-04-18 | Matsushita Electric Ind Co Ltd | 圧縮機およびその組立て方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200378383A1 (en) | 2020-12-03 |
EP3480464A1 (en) | 2019-05-08 |
JP2018021464A (ja) | 2018-02-08 |
CN109729720A (zh) | 2019-05-07 |
EP3480464A4 (en) | 2019-05-08 |
JP6665055B2 (ja) | 2020-03-13 |
CN109729720B (zh) | 2020-12-29 |
EP3480464B1 (en) | 2020-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110121596B (zh) | 双旋转涡旋型压缩机 | |
WO2018025878A1 (ja) | 両回転スクロール型圧縮機及びその設計方法 | |
WO2018034296A1 (ja) | 両回転スクロール型圧縮機 | |
WO2018025879A1 (ja) | 両回転スクロール型圧縮機 | |
CN110337543B (zh) | 双旋转涡旋型压缩机 | |
WO2019150680A1 (ja) | 両回転スクロール型圧縮機およびその組立方法 | |
WO2018025877A1 (ja) | 両回転スクロール型圧縮機 | |
WO2018139538A1 (ja) | 両回転スクロール型圧縮機及びその組立方法 | |
JP6707478B2 (ja) | 両回転スクロール型圧縮機 | |
JP2018059462A (ja) | 両回転スクロール型圧縮機 | |
JP2005054667A (ja) | スクロール型電動流体機械 | |
JP2019157729A (ja) | 両回転スクロール型圧縮機 | |
WO2023188916A1 (ja) | 両回転式スクロール型圧縮機 | |
JP6451403B2 (ja) | スクロール型圧縮機 | |
WO2019171448A1 (ja) | 両回転スクロール型圧縮機 | |
JP2005139976A (ja) | スクロール式流体機械 | |
WO2018151015A1 (ja) | 両回転スクロール型圧縮機 | |
JP2009041387A (ja) | 電動コンプレッサ | |
JP2005226454A (ja) | 気体圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17836980 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017836980 Country of ref document: EP Effective date: 20190130 |