WO2018025840A1 - 検出装置 - Google Patents

検出装置 Download PDF

Info

Publication number
WO2018025840A1
WO2018025840A1 PCT/JP2017/027830 JP2017027830W WO2018025840A1 WO 2018025840 A1 WO2018025840 A1 WO 2018025840A1 JP 2017027830 W JP2017027830 W JP 2017027830W WO 2018025840 A1 WO2018025840 A1 WO 2018025840A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
optical system
optical
imaging
test object
Prior art date
Application number
PCT/JP2017/027830
Other languages
English (en)
French (fr)
Inventor
司 松尾
昌士 岡本
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2018025840A1 publication Critical patent/WO2018025840A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording

Definitions

  • the present invention applies a digital holographic imaging technique to detect scratches or chips present on the surface of an object to be examined which is opaque or at least partially made of a transparent member, or on a bonding surface inside the object.
  • -It is related with the detection apparatus for detecting optical isomeric states, such as a dent, a protrusion, a bubble, dust, and an adhesion pollutant.
  • the optical isomeric state described above is obtained by taking an image of the plane with a camera that is focused entirely on the plane and analyzing the image. Therefore, such a detection means can be configured relatively easily.
  • the detection target using such a detection means is a search target surface having an inclination, unevenness, or curvature exceeding the depth of focus of the camera, for example, a moving mechanism for moving the camera in the optical axis direction is added. For example, it is necessary to capture and analyze a large number of images while finely changing the focus position, which causes a problem that the configuration becomes large and the imaging and analysis take time.
  • Japanese Patent Application Laid-Open No. 2007-263864 describes a measuring device that measures the diameter, position, density, and the like of minute objects such as bubbles distributed in a three-dimensional space using a digital holography imaging technique. Yes.
  • Japanese Patent Application Laid-Open No. 2016-133466 describes a water quality inspection system that uses a digital holography imaging technique to count the number of microorganisms present in a certain volume of water and to identify the type. .
  • Japanese Patent Laid-Open No. 2003-097922 uses digital holography imaging technology to obtain phase data indicating the phase of reflected light of the object to be measured at a plurality of positions in the optical axis direction or amplitude data indicating the amplitude.
  • a surface shape measuring device for obtaining data on the surface shape of an object to be measured according to the principle of the focusing method is described.
  • Japanese Patent Application Laid-Open No. 2003-098040 describes an evaluation apparatus that evaluates an optical system using a digital holography imaging technique, and numerically reproduces a light wave passing through a test optical system (lens), It is described that a light amount distribution of a light wave passing through a test optical system in a plane substantially orthogonal to an axis is obtained. Further, it describes that the beam diameter and distribution shape of the reproduced light wave are examined. Further, it is described that, in addition to the lens surface shape data, ray tracing simulation is performed using the internal refractive index distribution data of the lens together to obtain equiphase surface data.
  • the equiphase surface data obtained by the ray tracing simulation based on the lens surface shape data and the internal refractive index distribution data, and the equiphase surface data of the light wavefront reproduced based on the hologram image data Is studied to study the influence of the internal birefringence on the light wavefront of the lens. Furthermore, numerically reproduce the light wave passing through the test optical system, and obtain the light quantity distribution of the light wave passing through the test optical system in a plane substantially orthogonal to the optical axis in the optical axis direction of the light wave passing through the test optical system. Is described.
  • each lens used in the scanning optical system is examined as a whole on the influence on the light wave passing through the test optical system. Further, it is described that the influence of the birefringence of each lens used in the optical system on the light wave passing through the test optical system as a whole is described.
  • digital holography imaging means that in the original optical holography, a holographic image was reconstructed by recording hologram interference fringes on a photographic plate and illuminating it with light. Instead of taking a picture using an image sensor, a hologram interference fringe is acquired as digital data, and the optical phenomenon that would occur when light is applied to the stereoscopic image is simulated by using a computer. Is a technology to reconstruct The content of the simulation is light that has passed through a density diffraction grating, that is, a hologram that is a filter whose light transmittance changes depending on the position on the plane, that is, light that has undergone amplitude modulation depending on the position on the plane.
  • a density diffraction grating that is, a hologram that is a filter whose light transmittance changes depending on the position on the plane, that is, light that has undergone amplitude modulation depending on the position on the plane.
  • the problem to be solved by the present invention is to calculate the reconstruction of the photoelectric field in the depth direction when detecting the optical isomeric state existing on the search target surface whose shape is known in advance using the digital holography imaging technique.
  • An object of the present invention is to provide a detection device that achieves a reduction in the amount.
  • a detection apparatus is a detection apparatus for detecting an optical isomeric state belonging to a test object (Ot) and existing on a search target surface (St) whose shape is known in advance,
  • An illumination light beam generation optical system (Gi) that generates an illumination light beam (Fi) that irradiates at least a part of the test object (Ot), and the test object (Ot) acts on the illumination light beam (Fi).
  • a reference light beam generation optical system (Gr) that generates a reference light beam (Fr) that is coherent with the total output light beam (Fo) generated by the superimposing and that overlaps the total output light beam (Fo).
  • Interference image data (Df) obtained by imaging an interference image (If) generated by superimposing the reference light beam (Fr) on the total output light beam (Fo) and converting the brightness distribution of the interference image (If) into digital data.
  • Image sensor The imaging optical system (Gf) having f) and the process capable of receiving and storing the interference image data (Df) and reading the stored interference image data (Df) and performing a prescribed calculation process
  • the search target plane (St) is a plane other than the plane facing the imaging plane of the imaging device (Uf), and the processing apparatus (Up) is configured to include the search target plane (St).
  • a detector according to the present invention wherein an object on which the reference light beam (Fr) is superimposed is changed to the total output light beam (Fo) and a variable power optical system is applied to the total output light beam (Fo).
  • This is characterized in that it is a variable magnification total output light beam (Fo ′) generated in this way.
  • the processing device (Up) extracts a portion where the intensity of the reconstructed photoelectric magnetic field is locally different from that of the surrounding area to obtain the optical isomeric state. It is characterized by detecting.
  • the processing device (Up) extracts the portion where the phase of the reconstructed photoelectric magnetic field is locally different from the surroundings to obtain the optical isomeric state. It is characterized by detecting.
  • the detection apparatus includes an arrangement changing mechanism (Uxy) for changing a relative arrangement of the imaging optical system (Gf) and the test object (Ot). It is what.
  • the surface of the test object (Ot) closer to the imaging optical system (Gf) is defined as the search target surface (St), and the search target surface (St ) To detect the optical isomeric state present above.
  • At least a part of the test object (Ot) is made of a transparent member, and optical observation is performed from the imaging optical system (Gf) side through the transparent member.
  • the possible surface of the transparent member is the search target surface (St), and an optical isomeric state existing on the search target surface (St) is detected.
  • the test object (Ot) is an imaging optical element, and has a positioning table for placing the test object (Ot). At least one of the optical functional surfaces included in the object (Ot) is set as the search target surface (St), and an optical isomeric state existing on the search target surface (St) is detected. It is.
  • the detection apparatus emits the test object (Ot) and outputs the image sensor (Ot) when it is assumed that there is no optical isomeric position in the test object (Ot).
  • the illumination light beam (Fi) is formed to irradiate the test object (Ot) so that the light beam incident on the Uf) becomes a parallel light beam perpendicular to the imaging surface of the imaging device (Uf). It is what.
  • the plane facing the imaging surface of the imaging device (Uf) means “a plane in which an image of the surface is parallel to the imaging surface by an optical element existing in a light propagation path from the surface to the imaging surface”. ".
  • the “image of the surface” means that the optical element existing in the light propagation path from the surface to the imaging surface does not exist, the surface itself, if it is a plane mirror, the reflection of the surface, In the case of an imaging optical system composed of a lens, a spherical mirror, and the like, the conjugate image is indicated.
  • the surface to be searched (St) is a surface other than the plane facing the imaging surface of the imaging device (Uf)” means that the imaging surface of the imaging device (Uf) from the surface to be searched (St).
  • a surface composed of a plurality of planes such as a part of the surface of the surface or a surface including a curved surface.
  • Detection device that achieves reduction in the amount of reconstruction of the photoelectric field in the depth direction when detecting an optical isomeric state existing on the search target surface whose shape is known in advance using digital holography imaging technology Can be provided.
  • the block diagram which simplifies and shows the detection apparatus of this invention is represented.
  • the schematic diagram which simplifies and shows a part of detection apparatus of this invention is represented.
  • the schematic diagram which simplifies and shows a part of detection apparatus of this invention is represented.
  • the schematic diagram which simplifies and shows a part of detection apparatus of this invention is represented.
  • the schematic diagram which simplifies and shows a part of detection apparatus of this invention is represented.
  • the schematic diagram which simplifies and shows a part of detection apparatus of this invention is represented.
  • the schematic diagram which simplifies and shows a part of detection apparatus of this invention is represented.
  • the conceptual diagram which simplifies and shows a part of detection apparatus of this invention is represented.
  • conjugate as a general term in the field of geometric optics, for example, when A and B are conjugate, it has an imaging function such as a lens based on at least paraxial theory. It means that A is imaged on B or B is imaged on A by the action of the optical element. At this time, A and B are images, and it is a matter of course that isolated point images are included as targets, and a set of a plurality of point images and a spread image in which point images are continuously distributed are also targets. include.
  • a point image or an image point is a general term in the field of geometric optics, in which light is actually radiated from that point, the light converges toward that point, and the screen is A bright spot appears when placed, the light seems to converge toward that point (but the point is inside the optical system and the screen cannot be placed), the light is emitted from that point (But the point is inside the optical system and the screen cannot be placed), and they are not distinguished.
  • an aperture stop usually exists inside the lens, but when looking at the lens from the side where the light enters, the image of the aperture stop that can be seen through the lens is seen from the entrance pupil and the side where the light exits.
  • the image of the aperture stop that can be seen through the lens is called the chief ray when it comes to the center of the exit pupil, entrance pupil, or emerges from the center of the exit pupil (usually the meridian ray).
  • rays other than the principal ray are called peripheral rays.
  • an optical system that handles light having directivity such as a laser
  • there is often no aperture stop because there is no need to cut out a light beam by the aperture stop, and in that case, depending on the presence form of light in the optical system, They are defined.
  • the central ray of the direction distribution of light in the luminous flux from the radiation point is the principal ray, and there is an entrance pupil at the position where the principal ray incident on the optical system or its extension intersects the optical axis, and exits from the optical system.
  • the exit pupil is considered to be at a position where the principal ray or its extension intersects the optical axis.
  • the chief ray and the optical axis defined in this way do not intersect due to, for example, an adjustment error and are only in a twisted position.
  • the optical axis of the optical system is referred to as the z-axis.
  • the optical axis is bent by the reflecting mirror, the direction in which the light beam along the original z-axis is reflected and travels is also determined. It is called the z axis and does not take a new coordinate axis.
  • FIG. 1 is a block diagram showing a detection device of the present invention in a simplified manner.
  • This detection apparatus has an illumination light beam generation optical system (Gi), which generates an illumination light beam (Fi), and the entire search target surface (St) existing on the test object (Ot) or Illuminate part.
  • An optical isomeric state image light beam (Fo1) that forms an optical isomeric state image by the action of optical isomeric state portions (P1, P2,...) Existing on the search target surface (St) on the illumination light beam (Fi).
  • Fo2,... are respectively generated, and a total output light beam (Fo) composed of the set is generated.
  • the optical isomeric state refers to those optically detectable such as scratches, chips, dents, protrusions, bubbles, dust, and adherent fouling substances as described above. Yes, but not necessarily only harmful.
  • the optically isomeric state points (P1, P2,%) Act on light when light is refracted / reflected / scattered / absorbed / diffracted by the optically isomeric state points (P1, P2,). It means to do.
  • a portion having no such optical isomeric state on the search target surface (St) will also act on the illumination light beam (Fi) such as refraction, reflection, scattering, absorption, and diffraction.
  • the generated light flux is also included in the total output light flux (Fo).
  • the optical isomeric state image light beam (Fo1, Fo2,%) Is subject to disturbance by the optical isomeric state part (P1, P2,%) Of the total output light beam (Fo).
  • it refers to a component having information on the optically isomeric position (P1, P2,).
  • This detection apparatus has an imaging optical system (Gf), and the total output light beam (Fo) is irradiated onto an imaging surface of an imaging element (Uf) composed of a CCD, a CMOS image sensor, or the like. Furthermore, this detection apparatus has a reference light beam generation optical system (Gr), which generates a reference light beam (Fr) that is coherent with the total output light beam (Fo), and the reference light beam (Fr) is The imaging surface of the imaging device (Uf) is irradiated so as to overlap with the total output light beam (Fo), and as a result, an interference image (If) is formed on the imaging surface of the imaging device (Uf).
  • the imaging optical system (Gf) captures the interference image (If) and generates interference image data (Df) obtained by converting the brightness distribution of the interference image (If) into digital data. Furthermore, this detection apparatus has a processing apparatus (Up), which receives and stores the interference image data (Df) from the imaging optical system (Gf).
  • the processing device (Up) includes an interface and CPU for receiving the interference image data (Df) from the imaging optical system (Gf), the interference image data (Df), a processing program necessary for the OS and calculation.
  • the interference image data (Df) is read out, and the photoelectric magnetic field is reconstructed by calculation based on the digital holography imaging technique.
  • the calculation contents in the digital holography imaging for the reconstruction of the photoelectric magnetic field are as described above as the contents of the simulation.
  • the processing device (Up) holds information on the position and shape of the search target surface (St) in the test object (Ot), and therefore the processing device (Up) stores the information. Utilizing this, it is possible to selectively set the vicinity of the search target surface (St) from the three-dimensional space where the test target object (Ot) is present as a place to be reconstructed. For this reason, it is possible to limit the region where the photoelectric field reconstruction calculation in the optical axis direction of the imaging optical system (Gf), that is, the depth direction, needs to be performed to a very narrow range. The amount can be reduced.
  • the processing device (Up) extracts the optical isomeric position (P1, P2,%) From the reconstructed image in the vicinity of the search target surface (St), thereby detecting the optical target to be detected. The isomeric state can be detected.
  • the arrangement of the test object (Ot) relative to the imaging optical system (Gf) is determined by the search target surface held by the processing device (Up) ( It must be done correctly to match the information on the position and shape of St).
  • the processing device (Up) It is preferable to install a dedicated positioning table provided with a mold so that the position and orientation of the test object (Ot) are always correctly arranged.
  • the processing device (Up) first measures the shape of the test object (Ot) and recognizes the position and orientation of the test object (Ot) after including information on the shape, Next, the position and shape of the search target surface (St) may be determined based on the recognition result of the position and orientation of the test object (Ot).
  • the processing device (Up) can measure the type, position, size, etc. of the detected optical isomeric state, send the measured / evaluated results to the outside as digital data, An interface for receiving information on the position and shape of the search target surface (St) on the inspection target (Ot), information on measurement conditions, and the like from the outside can be provided. Further, the processing device (Up) can be provided with a human interface for receiving necessary operations from an operator and displaying information as necessary.
  • the total output light beam (Fo) and the reference light beam (Fr) are drawn on the image pickup device (Uf) directly from different directions so as to be superimposed. In many cases, these are combined using a beam splitter and superimposed.
  • the total output light beam (Fo) is irradiated to the image pickup device (Uf) after being converted into a variable power total output light beam by applying a variable power optical system before irradiating the image pickup device (Uf) with the total output light beam (Fo). You may make it do.
  • the light source of the optical system (Gr) is common.
  • the reference light beam (Fr) may be generated by applying a spatial frequency filter that removes components other than the spatial direct current component to the total output light beam (Fo).
  • FIG. 2 is a schematic diagram showing a part of the apparatus in a simplified manner.
  • a light source beam (As) from a coherent light source (Us) such as a helium-neon laser is applied to an illumination beam generation optical system beam (Ai) and a reference beam generation optical system by a beam splitter (BS1) for beam splitting. It is divided into a beam (Ar).
  • the reference light beam generation optical system (Gr) includes a mirror (Mr) and a beam expander (BEr), and the reference light beam generation optical system beam (Ar) is reflected by the mirror (Mr).
  • the reference light beam (Fr) is input to the beam expander (BEr) composed of a condenser lens (Lrf) and a collimator lens (Lrc), and the beam is expanded to a required thickness. Generated. If a pinhole aperture (Ua) is installed so as to coincide with the condensing point of the condensing lens (Lrf), the beam expander (BEr) has a function of a spatial frequency filter that removes components other than spatial DC components. It is possible to combine them, thereby removing optical noise generated by dust attached to the surface of the optical element existing in the optical path leading to the pinhole opening (Ua) and purifying the reference light flux (Fr). can do.
  • the illumination beam generation optical system (Gi) includes a mirror (Mi) and a beam expander (BEi), and the illumination beam generation optical system beam (Ai) is reflected by the mirror (Mi). After that, it is input to the beam expander (BEi) composed of a condenser lens (Lif) and a collimator lens (Lic), and the illumination light beam (Fi ) Is generated.
  • the pinhole opening is omitted in both the illumination light beam generation optical system and the reference light beam generation optical system.
  • the generated illumination light beam (Fi) is first incident on the beam splitter (BS2), passes through it, and illuminates the test object (Ot).
  • a component of the illumination light beam (Fi) reflected or scattered on the search target surface of the object to be examined (Ot) and subjected to the action of the optical isomeric position is the illumination light beam (Fi).
  • Fi is reflected by the beam splitter (BS2) as a total output light beam (Fo) traveling in the opposite direction to Fi), and is applied to the imaging surface of the imaging device (Uf).
  • the optical axis of the imaging optical system (Gf) is set perpendicular to the imaging surface of the imaging element (Uf), and the optical axis of the total output light beam (Fo) coincides with the optical axis of the imaging optical system (Gf).
  • the reference light beam (Fr) passes through the beam splitter (BS2) and is irradiated onto the image pickup surface of the image pickup device (Uf) so as to overlap the total output light beam (Fo).
  • An interference image (If) is formed on the imaging surface (Uf) and is captured.
  • the optical axis of the total output light beam (Fo) is set by tilting the optical axis of the reference light beam (Fr) rather than perpendicular to the imaging surface of the image sensor (Uf). It is assumed that it is a so-called off-axis type that is not coaxial.
  • holography including digital holography imaging
  • a reconstructed image corresponding to the generation of + 1st, 0th, and ⁇ 1st order diffracted light from a sinusoidal density diffraction grating.
  • three types of normal images ie, a + 1st order image, a 0th order image (transmitted light), and a ⁇ 1st order image (conjugate image) are generated.
  • the off-axis type is not used (in-line type)
  • all of the light beams forming these three types of images are output in the same direction, resulting in superimposing disturbing noise on the normal image.
  • the purpose of the off-axis type is to avoid the problem that the directions of the light beams forming these three types of images are separated, and disturbing noise is superimposed on the normal image.
  • phase-shifting digital holography This can also be applied to the detection apparatus of the present invention.
  • the mirror (Mr) In order to shift the phase of the reference beam (Fr), for example, the mirror (Mr) is moved using a fine movement mechanism such as a piezo element. It can be realized by remodeling as possible.
  • the beam expander (BEi) and the beam expander (BEr), one on the incident side to the beam splitter (BS1). It may be considered that the number of parts can be reduced and the cost can be reduced by changing the arrangement so that the beam expander is arranged. Certainly there are such aspects, but mirrors that reflect the thick light beam after passing through the beam expander are required to have high plane accuracy, and the mirror holder with a fine angle adjustment mechanism that holds it will distort the mirror. In some cases, the cost increase for this purpose may exceed the cost reduction by reducing the number of beam expanders. Further, even if the spatial frequency filter having the pinhole opening (Ua) is installed, the length of the optical path after that is longer than that in the case of providing two beam expanders. Has the disadvantage of being diminished.
  • a part of the detection apparatus of the present invention is another configuration of the optical system including the illumination light beam generation optical system (Gi), the reference light beam generation optical system (Gr), and the imaging optical system (Gf) (part of).
  • the light source beam (As) from the coherent light source (Us) is irradiated with the beam (Ai) for the illumination beam generation optical system and the reference beam generation optics by the beam splitter (BS1) for beam splitting.
  • BS1 beam splitter
  • a reference light beam (Fr) is generated through a beam expander (BEr) as a parallel light beam in which the beam has been expanded to a required thickness.
  • the illumination light beam (Fi) is generated as a parallel light beam with the beam expanded to the required thickness via the beam expander (BEi).
  • the illumination light beam (Fi) illuminates the test object (Ot), and the illumination light beam (Fi) is refracted and phase-added on the search target surface of the test object (Ot), so that optical isomerism is achieved.
  • the transmitted light including the component that has been subjected to the action of the state portion and not received then enters the beam splitter (BS2) as a total output light beam (Fo).
  • the subsequent processing of the total output light beam (Fo) is exactly the same as that in FIG. 2, and is reflected by the beam splitter (BS2) and propagates along the z-axis of the imaging optical system (Gf).
  • an interference image (If) is formed on the imaging surface of the imaging device (Uf) by being superimposed on the reference light beam (Fr).
  • the optical of the illumination light beam (Fi) is preferably incident on the opposite side of the case where it is better not to enter the image sensor (Uf). May be good.
  • the optical isomeric state has a property of scattering light such as scratches
  • the total output light beam (Fo) is not affected by the optical isomeric state portion of the illumination light beam (Fi).
  • the angle of the illumination light beam (Fi) may be adjusted so as to exceed the NA of the optical system in the subsequent stage in accordance with the principle and structure of a dark field microscope (ultra-microscope).
  • the illumination light beam (Fi) is preferably configured to be irradiated from a plurality of directions.
  • the optical isomeric state has a property of not scattering light, such as a gentle height change or refractive index difference
  • the action of the optical isomeric state portion of the illumination light beam (Fi) is incident on the imaging element (Uf). The reason for this is that otherwise, light containing optical isomeric information will not be incident on the image sensor (Uf) at all.
  • the component of the illumination light beam (Fi) that has become the total output light beam (Fo) without being affected by the optically isomeric state is incident on the image sensor (Uf). Needs to be determined according to the nature of the optical isomeric state to be detected, and whether or not to make it incident on the imaging device (Uf) is determined by setting the illumination light beam (Fi) to the object to be examined (Ot). It is controllable by the angle at the time of hitting. However, this is not the case when the surface of the test object (Ot) is a diffusive reflecting surface, or when the test object (Ot) is a diffusive refractor.
  • the illumination light beam (Fi) is a parallel light beam
  • a divergent light beam or a convergent light beam may be used depending on the situation.
  • the angle at the time of applying the illumination light beam (Fi) to the test object (Ot) is adjusted, and the action of the optical isomeric state portion of the illumination light beam (Fi) is adjusted.
  • the principal ray of Fo2,... May be considered to be parallel to the optical axis of the imaging optical system (Gf), that is, the optical isomeric image beam (Fo1, Fo2,...) Is telecentric.
  • the angle of the illumination light beam (Fi) is adjusted in the case where the optical isomeric state has the property of scattering light as described above.
  • (Fo1, Fo2,9) Is a light beam with weak or little directivity, and therefore, the principal ray may be determined arbitrarily. In that case, it is natural to take it parallel to the optical axis of the imaging optical system (Gf). It is.
  • the imaging optical system (Gf ) Is natural to be parallel to the optical axis, and therefore the optical isomeric state image light beams (Fo1, Fo2,%) May be considered telecentric.
  • the illumination light beam (Fi) In the case where the component that has become the total output light beam (Fo) without being affected by the optical isomeric state portion is incident on the imaging device (Uf), the optical isomeric state image light beam (Fo1). , Fo2,...) Are reflected by the shape of the illumination light beam (Fi) (parallel / divergent / focusing) and the surface shape of the object (Ot) to be examined, It is necessary to consider according to the state of refraction depending on the volume shape of the test object (Ot).
  • one of the methods is to reduce the imaging resolution of the interference image (If).
  • Another method is to use an optical enlargement function, but the optical system specifically shown in FIGS. 2 and 3 so far has no such function. Giving this function inserts a variable power optical system composed of a lens or the like into the optical path portion from when the total output light beam (Fo) is generated until it is superimposed on the reference light beam (Fr). The total output light beam (Fo) can be converted into an enlarged light beam, that is, a variable power total output light beam.
  • variable power optical system causes the principal ray of the optical isomeric state image light beam (Fo1, Fo2,%) To have an inconvenient angle with respect to the optical axis of the imaging optical system (Gf). You need to be careful not to convert it to.
  • the optical isomeric state image light beam (Fo1, Fo2,%) Is telecentric, it is desirable that the telecentricity be maintained even in the variable magnification total output light beam.
  • the variable magnification optical system may be an afocal system (telephoto system).
  • the illumination light beam (Fi) In the case where the component that has become the total output light beam (Fo) without being affected by the optical isomeric state of the light is incident on the imaging device (Uf), the variable power optics according to the situation so that the principal ray of the optical isomeric state image light beam (Fo1, Fo2,...) Is converted into a light beam having a convenient angle with respect to the optical axis of the imaging optical system (Gf). It is necessary to design the system.
  • the present invention relates to a configuration of an optical system including the illumination light beam generation optical system (Gi), the reference light beam generation optical system (Gr), and the imaging optical system (Gf) (a part thereof) having an optical expansion function.
  • FIG. 4 is a schematic diagram showing a part of the detection apparatus.
  • the optical system of this figure is a variable power optical system (Lg) configured as an afocal system by confocally arranging lenses (Lg1, Lg2) having positive optical power as compared with that of FIG. Is different between the object to be examined (Ot) and the beam splitter (BS2).
  • the telecentric total output light beam (Fo) is converted into a telecentric variable magnification total output light beam (Fo ′), and the variable power total output light beam (Fo ′) and the reference light beam (Fr) Are superimposed by the beam splitter (BS2) and applied to the image sensor (Uf), and an interference image (If) is captured.
  • the image of the optical isomeric state (P1, P2,%) Reconstructed based on the interference image data (Df) acquired in this way has an improved resolution by the magnification of the zoom optical system. To do.
  • FIG. 5 is a schematic diagram showing a part of the detection device of the present invention in a simplified manner.
  • the optical system of this figure is a variable power optical system configured as an afocal system by confocally arranging lenses (Lg1 ′, Lg2 ′) having positive and negative optical powers as compared to that of FIG. The difference is that the system (Lg ′) is inserted between the test object (Ot) and the beam splitter (BS2).
  • the illumination focused beam (Fi ′) of the parallel beam from the beam expander (BEi) is reduced in thickness by the variable magnification optical system (Lg ′). Fi) and illuminates the test object (Ot) in the same manner as in FIG. 2 to generate a total output light beam (Fo) by reflection imaging.
  • the variable power optical system (Lg ′) acts on the total output light beam (Fo)
  • the telecentric total output light beam (Fo) is converted into a telecentric variable power total output light beam (Fo ′).
  • the double total output light beam (Fo ') and the reference light beam (Fr) are superimposed by the beam splitter (BS2) and applied to the image sensor (Uf), and an interference image (If) is captured.
  • variable magnification optical system As the variable magnification optical system, the variable magnification optical system (Lg) in which the two lenses (Lg1, Lg2) having positive and positive optical powers in the optical system of FIG.
  • variable magnification optical system (Lg ′) in which two lenses (Lg1 ′, Lg2 ′) having positive and negative optical powers are arranged in a confocal position is used.
  • the lens having negative optical power and the lens having the negative optical power shown in FIG. 5 may be replaced by lenses having positive and positive optical power, and may be designed according to the characteristics of each optical system.
  • FIGS. 6 and 7 are schematic views showing a part of the detection apparatus of the present invention in a simplified manner.
  • the parallel reference beam (Fr) and the telecentric variable total output beam (Fo ′) are respectively incident on the beam splitter (BS2).
  • the beam splitter (BS2) In the optical system of FIGS.
  • variable magnification total output light beam (Fo ') is generated. That is, the lens (Lr) and the lens (Lc) as a collimator lens are disposed confocally to form a beam expander to generate the reference light beam (Fr). Further, the magnifying negative lens ( Lgs) and the lens (Lc) are confocally arranged to form an afocal variable magnification optical system, and the total output light beam (Fo) from the object to be examined (Ot) is input thereto. A variable magnification total output light beam (Fo ′) is generated.
  • the lens system (Lpi) composed of the lenses (Li1, Li2) generates a focused light beam (Fi ′) for illumination that thickens the light beam once and collects it in front.
  • the collimating arrangement of the lens system (Lpi) and the magnifying negative lens (Lgs) generates a parallel luminous flux (Fi).
  • the lens system (Lpi) is not a beam expander, but it is possible to provide a pinhole opening at the condensing point of the lens (Li1) to provide a function of a spatial frequency filter.
  • a prism type beam splitter (BS2 ′) through which the reference beam (Fr ′) that is not a parallel beam and the illumination focused beam (Fi ′) pass.
  • BS2 ′ a prism type beam splitter functions in the same way as a parallel plate perpendicular to the optical axis in both transmission and reflection, and astigmatism does not occur.
  • a thick parallel plate is inserted, narrow spherical aberration is generated, so that aberration correction should be performed as necessary.
  • the parallel flat plate is parallel to the optical axis during transmission. Since it is inserted with an inclination of 45 degrees, astigmatism may occur.
  • the reference beam (Fr) that is a parallel beam is used as the transmitted beam. This avoids the problem of aberration.
  • variable magnification optical system is a magnifying optical system
  • the object to be examined (Ot) is too large to be imaged by the imaging element (Uf)
  • the variable magnification optical system may be a reduction optical system, and the concept of the optical system design in that case is expanded from the concept described above. It can be applied in the same way by changing from to reduction.
  • the processing device sets the optical isomeric position (P1, P2,%) As a detection target by extracting the optical isomeric state location (P1, P2,. Although it has been described that the optical isomeric state is detected, the point of extraction will be described here.
  • the photoelectric field is reconstructed, most of the scratches, chips, dents, protrusions, bubbles, dust, attached fouling substances, etc. listed above as examples of optical isomeric states cause changes in the intensity of the photoelectric field. .
  • the illumination light beam (Fi) The optical isomeric state is determined depending on whether the component that has become the total output light beam (Fo) without being affected by the optical isomeric state portion is not incident on the image sensor (Uf) or not.
  • the intensity of the reconstructed photoelectric magnetic field at the location of ## EQU2 ## tends to increase locally in the former case and tends to decrease locally in the latter case. The reason is that the enumerated optical isomeric states can scatter light, the former reconstructs scattered light and the latter reconstructs unscattered light.
  • the optical isomeric state is an adhering fouling substance and absorbs light, it decreases in the former case, but it does not increase or decrease in the latter case, and it does not scatter or absorb in either case. But it doesn't increase or decrease. Therefore, when trying to extract the optically isomeric position (P1, P2,%), First, an attempt is made to extract a place where the intensity of the reconstructed photoelectric field is locally different from the surroundings. It is preferable to do.
  • a gentle height change or optical isomeric state such as a refractive index difference, such as the attached fouling material that does not scatter or absorb as described above, does not change the intensity of the reconstructed photoelectric field, but may change the phase. There is. Therefore, it should be tried to extract a portion where the phase of the reconstructed photoelectric magnetic field is locally different from the surroundings.
  • the component including the component that becomes the total output light beam (Fo) without being affected by the optically isomeric portion of the illumination light beam (Fi) is incident on the imaging element (Uf) and interferes therewith. It is necessary to acquire image data, and after reconstructing the photoelectric field and before trying to extract the optical isomeric state, high-pass filtering of the spatial frequency is used to remove the gentle phase distribution change. It is suitable to keep.
  • the imaging element (Uf) since a commercially available product is usually selected and used, the size of the imaging surface is limited, but the size of the object to be measured (Ot) to be measured. Therefore, it is desirable that the detection apparatus can accept as large a test object as possible.
  • the magnifying optical system may be applied to the total output light beam (Fo)
  • the interference image (If) relating to one object (Ot) to be examined may be captured once. Therefore, it is necessary to consider in advance so that it is possible to perform imaging divided into a plurality of times. This can be realized by providing an arrangement change mechanism (Uxy) for changing the relative arrangement of the imaging optical system (Gf) and the test object (Ot) in the optical system of the detection apparatus. it can.
  • the relative position with the test object (Ot) can be freely moved. Therefore, as described with a two-dot chain line in FIG. 5, as the arrangement changing mechanism (Uxy), a rotation or / and translation table capable of precise positioning is provided, and the object to be examined (Ot) is provided thereon. It is preferable to adopt a configuration in which a mount mechanism for holding the lens is installed.
  • the arrangement changing mechanism (Uxy) is provided with a rotation or / and translation table capable of precise positioning, and an image pickup device (Uf) is installed thereon. Is preferred.
  • the illumination light beam (Fi) needs to be a wavefront of a specific condition matched with the shape of the test object (Ot) is, for example, as described later, the test object (Ot ) Is a lens, and the illumination light beam (Fi) must be a light beam having a focal point of the lens as a wave source.
  • the imaging by the arrangement change mechanism (Uxy) at the time of imaging so that the processing device (Up) can reconstruct the photoelectric magnetic field using the information on the shape of the search target surface (St).
  • the processing device (Up) needs to be able to acquire information related to the arrangement state of the test object (Ot) relative to the element (Uf).
  • the present detection apparatus is configured such that a positioning signal for controlling the arrangement changing mechanism (Uxy) is generated by the processing apparatus (Up) and sent to the arrangement changing mechanism (Uxy). It is.
  • the control device in the present detection device sends a positioning signal for controlling the arrangement change mechanism (Uxy) to the arrangement change mechanism (Uxy), and the test object relative to the imaging element (Uf). Information regarding the arrangement state of the object (Ot) may be sent to the processing device (Up).
  • FIG. 1 depicts a case where the search target surface (St) is a surface of the test target object (Ot) facing the imaging optical system (Gf).
  • the test target object (Ot) may be opaque or transparent.
  • the test object (Ot) is opaque, it is necessary to irradiate the illumination light beam (Fi) from the imaging optical system (Gf) side as depicted in the figure.
  • the illumination light beam (Fi) is transmitted from the imaging optical system (Gf) side or from the side opposite to the imaging optical system (Gf). (St) can be irradiated.
  • FIG. 8 shows that the search target surface (St) where the optically isomeric position (P1, P2,...) Exists is on the opposite side of the imaging optical system (Gf) of the test object (Ot).
  • the test object (Ot) needs to be formed of a transparent member that is transparent (at least partly), and the imaging optical system (Gf) includes the test object (
  • information on the shape of the search target surface (St) is obtained by refraction of the refraction target by the test target (Ot). The effect, that is, the lens effect must be anticipated.
  • the illumination light beam (Fi) can be applied to the search target surface (St) from the imaging optical system (Gf) side or from the side opposite to the imaging optical system (Gf).
  • the imaging optical system (Gf) side if there is an opaque part on the object to be examined (Ot), the optical existing in the part of the search target surface (St) where the shadow is formed The autoisomeric state cannot be detected. Further, when there is an opaque part in the test object (Ot), the optical isomeric state present in the part of the search target surface (St) hidden by the object cannot be detected.
  • the test object (Ot) is composed of a member (Ot1) that is transparent (at least partly) and a transparent or opaque member (Ot2).
  • the search target surface (St) is on the surface of the member (Ot1) opposite to the imaging optical system (Gf) is depicted. That is, in this case, the search target surface (St) is a joint surface of another member existing inside the test target object (Ot).
  • the imaging optical system (Gf) performs imaging related to the search target surface (St) through the transparent portion of the member (Ot1).
  • the search target surface (St) The information on the shape must be based on the effect of refraction by the member (Ot1), that is, the lens effect. If the member (Ot2) is not opaque, the illumination light beam (Fi) is transmitted from the imaging optical system (Gf) side or from the side opposite to the imaging optical system (Gf) to the search target surface (St). Can be irradiated. However, when irradiating from the imaging optical system (Gf) side, if there is an opaque part on the member (Ot1), the optical isomeric state present in the part of the search target surface (St) where the shadow is formed Cannot be detected.
  • the optical isomeric state present in the portion of the search target surface (St) hidden by the member cannot be detected.
  • the optical isomeric state present in the part of the search target surface (St) where the shadow is formed Cannot be detected.
  • the illumination light beam (Fi) needs to be irradiated onto the search target surface (St) from the imaging optical system (Gf) side.
  • the member corresponding to the member (Ot1) in FIG. 8b is composed of two members, the member (Ot1 ′) and the member (Ot1 ′′), or more as shown in FIG. 8c.
  • the plurality of members may be joined together.
  • the member corresponding to the member (Ot2) in FIG. 8b may be configured by joining a plurality of members.
  • the detection apparatus of the present invention is an inspection apparatus that uses an object to be examined (Ot) as an imaging optical element and detects optical isomeric states such as scratches, dents, dust, and dirt.
  • the imaging optical element refers to a lens or mirror, or a combination thereof. Therefore, as an imaging optical element that is an object to be examined, a single lens, a concave or convex mirror, as a matter of course, a plurality of single lenses are bonded.
  • Optically functional surfaces included in these imaging optical elements can be targeted for bonded optical lenses or combined optical parts assembled by housing multiple lenses or mirrors in a metal frame or the like. Can be detected.
  • the optical functional surface refers to a refractive surface or a reflective surface, and thus can be applied to the air glass interface or the bonded surface of a single lens or a bonded lens, or the reflective surface of a mirror.
  • a positioning table is installed so that the position and orientation of the imaging optical element are always correctly arranged.
  • the positioning table for example, if the test imaging optical element is the combination optical component, a V block for positioning the metal frame, and if the test imaging optical element is a lens or a mirror, the test imaging optical element A curved centering mechanism is provided on the bottom surface of a cylindrical hole that fits the cylindrical portion of the side surface, and the test imaging optical element is dropped into this, or the test imaging optical element is sandwiched between the two curved centering mechanisms Things can be adopted.
  • the curved centering mechanism refers to a circular hole or a three-point support structure in which the curved surface automatically fits in the correct position.
  • the positioning table can be installed on the arrangement changing mechanism (Uxy) described above.
  • the angle at which the illumination light beam (Fi) is applied to the object to be examined (Ot) is adjusted to receive the effect of the optical isomeric state of the illumination light beam (Fi).
  • the photoelectric magnetic field is reconfigured so that the component that has become the total output light beam (Fo) is not incident on the image sensor (Uf), However, in other locations, the light intensity becomes almost zero, and detection of the optically isomeric state is facilitated.
  • the phase in the field of view is uniform except for the optical isomeric part.
  • the detection of the optically isomeric state portion is facilitated in the same manner. This is because the light beam emitted from the test object (Ot) and incident on the image sensor (Uf) is converted into the image sensor (Uf). This corresponds to the situation where the parallel light beam is perpendicular to the imaging surface.
  • the test object (Ot) is the imaging optical element, this can be realized at any time.
  • the test object (Ot) when the variable magnification optical system exists, the test object (Ot) ) And the variable-power optical system, the light beam emitted from the point light source located at the input-side focal point of the test object (Ot) when the variable-magnification optical system is not present at the input-side focal point of the variable optical system, What is necessary is just to comprise so that the said test subject (Ot) may be irradiated as illumination light beam (Fi). Needless to say, when the input-side focal point just described is at infinity, a parallel light beam parallel to the optical axis may be irradiated.
  • the configuration of the optical system of the detection apparatus of the present invention will be supplemented slightly.
  • the illuminance of the total output light beam (Fo) and the variable power total output light beam (Fo ′) on the imaging surface of the image sensor (Uf) It is desirable that the illuminance of the reference light beam (Fr) is substantially equal, and accordingly, the balance of the intensity of the reference light beam generation optical system beam (Ar) and the illumination light beam generation optical system beam (Ai) depending on conditions. It is preferable to provide an optical attenuator or the like for dimming the other with respect to one.
  • the beam splitter (BS2 ′) for combining the reference light beam (Fr), the total output light beam (Fo), and the variable magnification total output light beam (Fo ′) is a polarization beam splitter. This makes it possible to increase the light utilization efficiency and stray light by making the plane of polarization different by 90 degrees between the light beam to be transmitted and the light beam to be reflected, and suppressing the reflection of the light beam to be transmitted and the transmission of the light beam to be reflected. For this purpose, it is preferable to use a half-wave plate or a quarter-wave plate.
  • the illumination beam generation optical system beam (Ai) generated by separating the light source beam (As) by the beam splitter (BS1) and the reference beam generation optical system beam (Ar).
  • BS1 beam splitter
  • Ar reference beam generation optical system beam
  • the light from the light source guided into the optical fiber is separated into illumination light and reference light by a directional coupler, and the illumination light beam generation optical system (Gi) and the reference are separated by an optical fiber. It may be guided to a light beam generation optical system (Gr).
  • the present invention is a detection method for detecting optical isomeric states such as scratches, chips, dents, protrusions, bubbles, dust, and adherent fouling substances present on the surface of an object to be examined or on a bonding surface inside the object. It can be used in industries that design and manufacture equipment.
  • Ai beam for illumination beam generation optical system Ar beam for reference beam generation optical system
  • As light source beam BEi beam expander BEr beam expander BS1 beam splitter BS2 beam splitter BS2 ′ beam splitter Df interference image data Fi illumination beam Fi ′ focused beam for illumination Fo Total output light beam Fo ′ Variable magnification total output light beam Fo1
  • Optical isomeric state image light beam Fo2 Optical isomeric state image light beam Fr Reference light beam Fr ′ Reference light beam
  • Gf Imaging optical system Gi Illumination light beam generation optical system
  • Gr Reference light beam generation optical system If interference image Lc lens Lg variable magnification optical system Lg ′ variable magnification optical system Lg1 lens Lg1 ′ lens Lg2 lens Lg2 ′ lens Lgs magnification negative lens Li1 lens Li2 lens Lic collimator lens Li condenser lens Lpi lens system Lr lens Lrc Collimator lens Lrf Condensing lens Mi Mirror Mr Mirror Ot Object to be examined Ot1 Member

Abstract

本発明は、ディジタル・ホログラフィ・イメージング技術を用いて、予め形状が既知の探索対象面上に存在する光学的異性状態を検出するに際し、奥行き方向の光電磁界の再構成計算量を削減する検出装置を提供することを課題とする。 本発明の検出装置は、照明光束に被検対象物が作用することによって生成された総合出力光束に対し、参照光束を重畳することによって生じる干渉像を撮像して干渉像の明るさ分布をディジタルデータ化した干渉像データを生成する撮像光学系を有し、処理装置は、探索対象面の形状に関する情報を保有し、干渉像データに基づくディジタル・ホログラフィ・イメージング技術に基づく計算による光電磁界の再構成を行うに際し、探索対象面の形状に関する情報を利用して、再構成を行う場所を、被検対象物が存在する3次元的な空間のなかから探索対象面の近傍を選択し、光学的異性状態を検出することを特徴とする。

Description

検出装置
 本発明は、ディジタル・ホログラフィ・イメージング技術を応用して、不透明、または少なくとも一部が透明部材から構成された被検対象物の表面、もしくはその内部にある貼り合わせ面に存在する、キズ・欠け・凹み・突起・泡・塵・付着汚損物質などの光学的異性状態を検出するための検出装置に関する。
 前記した光学的異性状態が存在する面が平面の場合は、例えば、その平面に全体にピントを合わせたカメラによってその平面の画像を撮像し、その画像を解析することによって前記した光学的異性状態を検出すればよいから、そのような検出手段は比較的容易に構成できる。
 しかし、このような検出手段を用いた検出対象がカメラの焦点深度を超える傾きや凹凸、曲がりを有する探索対象面である場合は、例えば、カメラを光軸方向に移動するための移動機構を追加するなどして、ピント位置を細かく変えながら、多数枚の画像を撮像して解析しなければならず、構成が大掛かりになり、撮像や解析に時間が掛かる問題がある。
 このような状況に対しては、ピントという概念が撮像時には存在せず、撮像後の再構成の段階において、奥行き方向の任意の場所における光電磁界を調べることが可能な、ディジタル・ホログラフィ・イメージング技術に有用性がある。
 例えば、特開2007-263864号公報には、ディジタル・ホログラフィ・イメージング技術を用いて、3次元空間内に分布する気泡などの微小物の径・位置・密度などを計測する計測装置が記載されている。
 また、特開2016-133466号公報には、ディジタル・ホログラフィ・イメージング技術を用いて、ある体積の水中に存在する微生物の個数を数えたり、種類を同定したりする水質検査システムが記載されている。
 さらに、特開2003-097922号公報には、ディジタル・ホログラフィ・イメージング技術を用いて、光軸方向の複数位置における被測定物の反射光の位相を示す位相データ、または振幅を示す振幅データを求め、合焦法の原理により、被測定物の表面形状のデータ求める表面形状測定装置が記載されている。
 さらに、特開2003-098040号公報には、ディジタル・ホログラフィ・イメージング技術により光学系の評価を行う評価装置が記載されており、被検光学系(レンズ)通過光波を数値的に再生し、光軸と略直交する平面での被検光学系通過光波の光量分布を求めることが記載されている。
 また、再生した光波のビーム径および分布形状などを調べることが記載されている。
 さらに、レンズの面形状データの他に、レンズの内部屈折率分布データを併せて用いて光線追跡シミュレーションを行って、等位相面データを求めることが記載されている。
 さらに、レンズの面形状データと内部屈折率分布データに基づいて光線追跡シミュレーションにより求めた等位相面データと、ホログラム画像データに基づいて再生した光波面の等位相面データとの差異に基づき、レンズの内部の複屈折がレンズの通過光波面に与える影響を調べることが記載されている。
 さらに、被検光学系通過光波を数値的に再生し、また被検光学系通過光波の光軸方向において、その光軸と略直交する平面での被検光学系通過光波の光量分布を求めことが記載されている。
 さらに、走査光学系で使用されるレンズそれぞれの内部不均一性が、全体として、被検光学系通過光波に与える影響を調べることが記載されている。
 さらに、光学系で使用されるレンズそれぞれの複屈折が、全体として、被検光学系通過光波に与える影響を調べることが記載されている。
 ここでディジタル・ホログラフィ・イメージングとは、元々の光学的ホログラフィにおいては、写真乾板にホログラム干渉縞を記録し、それに光を当てて照明することにより立体像を再構成していたものを、写真乾板の代わりに、撮像素子を用いて撮像することによって、ディジタルデータとしてホログラム干渉縞を取得し、それに光を当てた場合に生ずるであろう光学現象を、コンピュータを用いてシミュレーションを行うことによって立体像を再構成する技術である。
 シミュレーションの内容は、濃度型回折格子、すなわち光透過率が平面上の位置に依存して変化するフィルタであるホログラム、を透過した光、すなわち平面上の位置に依存して振幅変調を受けた光が、波として空間中を伝播して実像または虚像を形成する光学現象であり、これは、伝播距離条件によってフレネル回折、あるいはフラウンホーファー回折と呼ばれる回折現象であり、キルヒホッフ・ホンゲンスの回折積分公式と呼ばれるものに、可能な近似を適用して計算を行う。
 なお、歴史を含め、ディジタル・ホログラフィ・イメージングの方法に関しては、WO2008/123408号公報に説明がある。
 ところが、いま述べた従来技術は、検出すべき対象を、3次元空間全体の中から見出したり、表面形状そのものを測定するものであるため、視野角方向のみならず、奥行き方向についても、網羅的に位置を設定して光電磁界の再構成計算を行っており、膨大な計算量が必要になってしまう問題がある。
特開2007-263864号公報 特開2016-133466号公報 特開2003-097922号公報 特開2003-098040号公報 WO2008/123408号公報
 本発明が解決しようとする課題は、ディジタル・ホログラフィ・イメージング技術を用いて、予め形状が既知の探索対象面上に存在する光学的異性状態を検出するに際し、奥行き方向の光電磁界の再構成計算量を削減することを達成した検出装置を提供することにある。
 本発明における第1の発明の検出装置は、被検対象物(Ot)に属する、予め形状が既知の探索対象面(St)上に存在する光学的異性状態を検出する検出装置であって、前記被検対象物(Ot)の少なくとも一部に照射する照明光束(Fi)を生成する照明光束生成光学系(Gi)と、前記照明光束(Fi)に前記被検対象物(Ot)が作用することによって生成された総合出力光束(Fo)に対し、これと可干渉であり、かつ該総合出力光束(Fo)と重畳する参照光束(Fr)を生成する参照光束生成光学系(Gr)と、前記参照光束(Fr)を前記総合出力光束(Fo)と重畳することによって生じる干渉像(If)を撮像して該干渉像(If)の明るさ分布をディジタルデータ化した干渉像データ(Df)を生成する撮像素子(Uf)を有する撮像光学系(Gf)と、前記干渉像データ(Df)を受信して記憶するとともに、記憶した前記干渉像データ(Df)を読出して規定の計算処理を行うことが可能な処理装置(Up)とを有し、前記探索対象面(St)は前記撮像素子(Uf)の撮像面に対向する平面以外の面であり、該処理装置(Up)は、前記探索対象面(St)の形状に関する情報を保有し、前記干渉像データ(Df)に基づくディジタル・ホログラフィ・イメージング技術に基づく計算による光電磁界の再構成を行うに際し、前記した前記探索対象面(St)の形状に関する情報を利用して、再構成を行う場所を、前記被検対象物(Ot)が存在する3次元的な空間のなかから前記探索対象面(St)の近傍を選択し、前記光学的異性状態を検出することを特徴とするものである。
 本発明における第2の発明の検出装置は、前記参照光束(Fr)が重畳する対象を、前記総合出力光束(Fo)に替えて、前記総合出力光束(Fo)に変倍光学系を作用させて生成した変倍総合出力光束(Fo’)としたことを特徴とするものである。
 本発明における第3の発明の検出装置は、前記処理装置(Up)は、再構成した光電磁界の強度が、周囲に比して局所的に相違する箇所を抽出して前記光学的異性状態を検出することを特徴とするものである。
 本発明における第4の発明の検出装置は、前記処理装置(Up)は、再構成した光電磁界の位相が、周囲に比して局所的に相違する箇所を抽出して前記光学的異性状態を検出することを特徴とするものである。
 本発明における第5の発明の検出装置は、前記撮像光学系(Gf)と前記被検対象物(Ot)との相対的な配置を変化させるための配置変化機構(Uxy)を有することを特徴とするものである。
 本発明における第6の発明の検出装置は、前記被検対象物(Ot)の、前記撮像光学系(Gf)に近い側の表面を前記探索対象面(St)とし、該探索対象面(St)上に存在する光学的異性状態を検出することを特徴とするものである。
 本発明における第7の発明の検出装置は、前記被検対象物(Ot)の少なくとも一部が透明部材から構成されており、前記透明部材を通して前記撮像光学系(Gf)の側から光学的観察可能である前記透明部材の表面を前記探索対象面(St)とし、該探索対象面(St)上に存在する光学的異性状態を検出することを特徴とするものである。
 本発明における第8の発明の検出装置は、前記被検対象物(Ot)が結像光学素子であり、該被検対象物(Ot)を配置するための位置決め台を有し、前記被検対象物(Ot)に含まれる光学的機能面の少なくとも一つを前記探索対象面(St)とし、該探索対象面(St)上に存在する光学的異性状態を検出することを特徴とするものである。
 本発明における第9の発明の検出装置は、前記被検対象物(Ot)に光学的異性状態箇所が存在しないと仮定した場合に、前記被検対象物(Ot)を発して前記撮像素子(Uf)に入射する光束が、前記撮像素子(Uf)の撮像面に垂直な平行光束となるよう、前記照明光束(Fi)を形成して前記被検対象物(Ot)に照射することを特徴とするものである。
 上で述べた事項につき、若干補足しておく。
 「前記撮像素子(Uf)の撮像面に対向する平面」とは、「その面から前記撮像面までの光伝播経路に存在する光学素子による、その面の像が前記撮像面と平行である平面」を指す。
 ここで、「その面の像」とは、その面から前記撮像面までの光伝播経路に存在する光学素子が、存在しない場合はその面そのもの、平面ミラーである場合はその面の鏡映、レンズや球面ミラーなどから成る結像光学系の場合はその共役像を指す。
 したがって、「前記探索対象面(St)は前記撮像素子(Uf)の撮像面に対向する平面以外の面である」とは、前記探索対象面(St)から前記撮像素子(Uf)の撮像面までの光伝播経路に存在する光学素子、例えば前記変倍光学系や後述するビームスプリッタ(BS2)などによる前記探索対象面(St)の像が、前記撮像面に対して傾いた平面、または多面体の表面の一部のような複数の平面から構成される面、あるいは曲面を含む面などである事を指す。
 ディジタル・ホログラフィ・イメージング技術を用いて、予め形状が既知の探索対象面上に存在する光学的異性状態を検出するに際し、奥行き方向の光電磁界の再構成計算量を削減することを達成した検出装置を提供することができる。
本発明の検出装置を簡略化して示すブロック図を表す。 本発明の検出装置の一部を簡略化して示す模式図を表す。 本発明の検出装置の一部を簡略化して示す模式図を表す。 本発明の検出装置の一部を簡略化して示す模式図を表す。 本発明の検出装置の一部を簡略化して示す模式図を表す。 本発明の検出装置の一部を簡略化して示す模式図を表す。 本発明の検出装置の一部を簡略化して示す模式図を表す。 本発明の検出装置の一部を簡略化して示す概念図を表す。
 本発明に関する説明において、共役という用語に関しては、幾何光学分野における一般用語として、例えば、AとBとは共役である、と言うとき、少なくとも近軸理論に基づき、レンズ等の結像機能を有する光学素子の作用によってAがBに、またはBがAに結像されることを意味する。
 このとき、A,Bは像であって、孤立した点像が対象として含まれることは当然として、複数の点像からなる集合や、点像が連続的に分布した拡がりのある像も対象として含める。
 ここで、点像あるいは像点(すなわち像)とは、幾何光学分野における一般用語として、実際に光がその点から放射されているもの、光がその点に向かって収束して行ってスクリーンを置くと明るい点が映るもの、光がその点に向かって収束して行くように見える(が、その点は光学系の内部にあってスクリーンを置けない)もの、光がその点から放射されているように見える(が、その点は光学系の内部にあってスクリーンを置けない)もの、の何れをも含み、区別しない。
 一般のカメラレンズを例にとると、通常は開口絞りがレンズの内部に存在するが、光が入る側からレンズを見ときに、レンズを通して見える開口絞りの像を入射瞳、光が出る側からレンズを見ときに、レンズを通して見える開口絞りの像を射出瞳、入射瞳の中心に向かう、または射出瞳の中心から出て来る光線(通常は子午光線)を主光線と呼ぶ。
 また広義には、主光線以外の光線は周辺光線と呼ばれる。
 ただし、レーザのような指向性を有する光を扱う光学系では、開口絞りによって光束を切り出す必要が無いために開口絞りが存在しない場合が多く、その場合は、光学系における光の存在形態によって、それらが定義される。
 通常は、放射点からの放射光束における、光の方向分布の中心光線を主光線とし、光学系に入射する主光線またはその延長線が光軸と交わる位置に入射瞳があり、光学系から射出する主光線またはその延長線が光軸と交わる位置に射出瞳があると考える。
 ただし、厳密な話をすると、このように定義した主光線と光軸とが、例えば調整誤差のために交わらず、ねじれの位置にあるに過ぎない場合も考えられる。
 しかし、このような現象は本質とは無関係であり、また議論しても不毛であるため、以下においては、このような現象は生じないと見なす、あるいは、主光線と光軸とが最接近する位置において交わっていると見なすことにする。
 また、光学系のなかの隣接する2個の部分光学系AとBに注目し、Aの直後にBが隣接しているとしたとき、(Aの出力像がBの入力像となるのと同様に)Aの射出瞳はBの入射瞳となるし、そもそも光学系のなかに任意に定義した部分光学系の入射瞳・射出瞳は、(開口絞りが存在すれば全てそれの像であるし、存在しなくても)全て共役のはずであるから、特に区別が必要無ければ、入射瞳・射出瞳を単に瞳と呼ぶ。
 本発明の説明および図面においては、光学系の光軸をz軸と呼んでいるが、もし反射鏡によって光軸が折り曲げられた場合は、元のz軸に沿う光線が反射されて進む方向もz軸と呼び、新たな座標軸を取ることはしない。
 先ず、本発明の検出装置を簡略化して示すブロック図である図1を参照して、本発明を実施するための形態について説明する。
 本検出装置は照明光束生成光学系(Gi)を有しており、これは、照明光束(Fi)を生成して、被検対象物(Ot)に存在する探索対象面(St)の全部または一部を照明する。
 前記照明光束(Fi)に前記探索対象面(St)に存在する光学的異性状態箇所(P1,P2,…)が作用することによって光学的異性状態像を形成する光学的異性状態像光束(Fo1,Fo2,…)がそれぞれ生成され、それらの集合からなる総合出力光束(Fo)が生成される。
 本発明において、光学的異性状態とは、前記したようにキズ・欠け・凹み・突起・泡・塵・付着汚損物質など、光学的に検出可能なものを指し、普通、欠陥の類がこれに該当するが、必ずしも有害なもののみに限定されない。
 ここで、前記光学的異性状態箇所(P1,P2,…)が光に作用するとは、光が前記光学的異性状態箇所(P1,P2,…)によって屈折・反射・散乱・吸収・回折されたりなどすることを意味する。
 当然、前記探索対象面(St)上における、このような光学的異性状態の無い箇所も、前記照明光束(Fi)に屈折・反射・散乱・吸収・回折などの作用を行うであろうし、このようにして生成された光束も前記総合出力光束(Fo)には含まれる。
 別の言い方をすると、前記光学的異性状態像光束(Fo1,Fo2,…)とは、前記総合出力光束(Fo)のうち、前記光学的異性状態箇所(P1,P2,…)による擾乱を受けた、前記光学的異性状態箇所(P1,P2,…)に関する情報を有する成分を指す。
 本検出装置は撮像光学系(Gf)を有しており、これのCCDやCMOSイメージセンサ等からなる撮像素子(Uf)の撮像面に対し、前記総合出力光束(Fo)が照射される。
 さらに、本検出装置は参照光束生成光学系(Gr)を有しており、これは前記総合出力光束(Fo)と可干渉な参照光束(Fr)を生成し、該参照光束(Fr)は、前記総合出力光束(Fo)と重畳するように前記撮像素子(Uf)の撮像面に対して照射され、結果として前記撮像素子(Uf)の撮像面上に干渉像(If)が形成される。
 前記撮像光学系(Gf)は前記干渉像(If)を撮像して、該干渉像(If)の明るさ分布をディジタルデータ化した干渉像データ(Df)を生成する。
 さらに、本検出装置は処理装置(Up)を有しており、これは前記撮像光学系(Gf)から前記干渉像データ(Df)を受信して記憶する。
 前記処理装置(Up)は、前記撮像光学系(Gf)から前記干渉像データ(Df)を受信するためのインターフェイスやCPU、前記干渉像データ(Df)を始め、OSや計算に必要な処理プログラム等を記憶する不揮発性メモリ、前記したOSや計算に必要な処理プログラム等がロードされ、処理計算の遂行に必要なデータを記憶する揮発性メモリなどを備えたコンピュータによって実現することができ、記憶した前記干渉像データ(Df)を読出して、ディジタル・ホログラフィ・イメージング技術に基づく計算によって光電磁界の再構成を行う。
 なお、光電磁界の再構成のためのディジタル・ホログラフィ・イメージングにおける計算内容については、先にシミュレーションの内容として説明した通りである。
 ここで前記処理装置(Up)は、前記被検対象物(Ot)における前記探索対象面(St)の位置および形状に関する情報を保有しており、したがって前記処理装置(Up)は、該情報を利用して、再構成を行う場所を、前記被検対象物(Ot)が存在する3次元的な空間のなかから前記探索対象面(St)の近傍を選択的に設定することができる。
 そのため、前記撮像光学系(Gf)の光軸方向、すなわち奥行き方向における光電磁界の再構成計算を行う必要のある領域を極めて狭い範囲に制限することが可能となるから、再構成のための計算量を削減することができる。
 そして前記処理装置(Up)は、再構成された前記探索対象面(St)の近傍の像から前記光学的異性状態箇所(P1,P2,…)を抽出することによって、検出対象とする光学的異性状態を検出することができる。
 ただし、この検出工程が正しく遂行できるためには、前記撮像光学系(Gf)と相対的な前記被検対象物(Ot)の配置は、前記処理装置(Up)が保持する前記探索対象面(St)の位置および形状に関する情報に合致するように、正しく行われる必要がある。
 そのためには、例えば、前記被検対象物(Ot)の位置と向きが必ず正しく配置されるよう、型枠を設けた専用の位置決め台を設置するとよい。
 あるいは、前記した前記探索対象面(St)の位置および形状に関する情報が、前記被検対象物(Ot)の形状に対して相対的に記述されているとともに、前記被検対象物(Ot)の形状に関する情報も含むようにした上で、前記処理装置(Up)は、先ず前記被検対象物(Ot)の形状を測定して前記被検対象物(Ot)の位置と向きを認識し、次に前記被検対象物(Ot)の位置と向きの認識結果に基づき、前記探索対象面(St)の位置および形状を割り出すようにしてもよい。
 補足すると、前記処理装置(Up)は、検出した光学的異性状態の種類、位置、大きさ等の測定を行うことができ、測定・評価した結果をディジタルデータとして外部に送信したり、前記被検対象物(Ot)における前記探索対象面(St)の位置および形状に関する情報や、測定条件等に関する情報等を外部から受信したりするためのインターフェイスを備えることができる。
 さらに前記処理装置(Up)は、必要に応じ、オペレータからの必要な操作を受付け、情報表示を行うヒューマンインターフェイスを備えることができる。
 図1に関し、若干補足しておく。ここでは、前記撮像素子(Uf)に対して、前記総合出力光束(Fo)と前記参照光束(Fr)とが、異なる方向から直接的に照射されて重畳されるように描いてあるが、普通はビームスプリッタを使用してこれらを合波し、重畳することが多い。
 また前記総合出力光束(Fo)については、これを前記撮像素子(Uf)に照射する前に変倍光学系を作用させ、変倍総合出力光束に変換したものを前記撮像素子(Uf)に照射するようにしてもよい。
 前記照明光束生成光学系(Gi)と前記参照光束生成光学系(Gr)とが独立のものであるように描いてあるが、前記照明光束生成光学系(Gi)から生成される前記総合出力光束(Fo)と、前記参照光束生成光学系(Gr)から生成される前記参照光束(Fr)とは可干渉でなければならないから、普通は前記照明光束生成光学系(Gi)と前記参照光束生成光学系(Gr)の光源は共通である。
 また前記参照光束(Fr)は、前記総合出力光束(Fo)に対して空間的直流成分以外を除去する空間周波数フィルタを作用させて生成してもよい。
 次に、前記照明光束生成光学系(Gi)および前記参照光束生成光学系(Gr)、前記撮像光学系(Gf)(の一部)からなる光学系の具体的な構成について、本発明の検出装置の一部を簡略化して示す模式図である図2を参照して説明する。
 ヘリウム-ネオンレーザ等の可干渉光源(Us)からの光源ビーム(As)は、ビーム分割のためのビームスプリッタ(BS1)によって、照明光束生成光学系用ビーム(Ai)と参照光束生成光学系用ビーム(Ar)とに分割される。
 前記参照光束生成光学系(Gr)はミラー(Mr)およびビームエキスパンダ(BEr)から構成されており、前記参照光束生成光学系用ビーム(Ar)は、前記ミラー(Mr)によって反射された後、集光レンズ(Lrf)とコリメータレンズ(Lrc)とから構成される前記ビームエキスパンダ(BEr)に入力され、必要な太さになるようビームが拡大された平行光束として参照光束(Fr)が生成される。
 なお、前記集光レンズ(Lrf)の集光点に一致するようピンホール開口(Ua)を設置すれば、前記ビームエキスパンダ(BEr)に空間的直流成分以外を除去する空間周波数フィルタの機能を兼ね備えさせることができ、これにより、前記ピンホール開口(Ua)に至るまでの光路に存在する光学素子の表面に付着した塵などが生む光ノイズを除去して、前記参照光束(Fr)を浄化することができる。
 一方、前記照明光束生成光学系(Gi)はミラー(Mi)およびビームエキスパンダ(BEi)から構成されており、前記照明光束生成光学系用ビーム(Ai)は、前記ミラー(Mi)によって反射された後、集光レンズ(Lif)とコリメータレンズ(Lic)とから構成される前記ビームエキスパンダ(BEi)に入力され、必要な太さになるようビームが拡大された平行光束として照明光束(Fi)が生成される。
 なお、前記ビームエキスパンダ(BEi)に対しても前記ピンホール開口(Ua)と同様のピンホール開口を設置するとよいが、本図においては省略してある。
 また、これ以降に示す図においては、照明光束生成光学系および参照光束生成光学系とも、ピンホール開口を省略してある。
 生成された前記照明光束(Fi)は,先ずビームスプリッタ(BS2)に入射され、それを透過して、被検対象物(Ot)を照明する。
 前記照明光束(Fi)の、前記被検対象物(Ot)の前記探索対象面において反射、散乱などされ、光学的異性状態箇所の作用を受けた、および受けなかった成分が、前記照明光束(Fi)と逆方向に進む総合出力光束(Fo)としてビームスプリッタ(BS2)で反射され、撮像素子(Uf)の撮像面に照射される。
 撮像光学系(Gf)の光軸は前記撮像素子(Uf)の撮像面に垂直に設定するとして、前記総合出力光束(Fo)の光軸が前記撮像光学系(Gf)の光軸に一致するように前記ビームスプリッタ(BS2)の角度を設定することが好適である。
 一方、前記参照光束(Fr)は、前記ビームスプリッタ(BS2)を透過して、同じく撮像素子(Uf)の撮像面に対し、前記総合出力光束(Fo)と重畳して照射され、前記撮像素子(Uf)の撮像面に干渉像(If)が形成されてそれが撮像される。
 ただし、本図の場合、前記参照光束(Fr)の光軸を、撮像素子(Uf)の撮像面に対して垂直ではなく、傾けて設定することにより、前記総合出力光束(Fo)の光軸と同軸にしない、いわゆるオフアクシス型とするものを想定している。
 正弦波的な濃度型回折格子からは、+1次,0次,-1次の回折光が発生することに対応して、(ディジタル・ホログラフィ・イメージングを含む)ホログラフィにおいては、再構成される像も、正規像である+1次像,0次像(透過光),-1次像(共役像)の3種類が発生する。
 オフアクシス型にしない場合(インライン型の場合)は、これら3種類の像を形成する光束が全て同じ方向に出力され、正規像に対して邪魔なノイズが重畳される結果となる。
 オフアクシス型にする目的は、そのようにすることによって、これら3種類の像を形成する光束の方向が分離され、正規像に対して邪魔なノイズが重畳される問題を回避することにある。
 ただし、オフアクシス型にすると干渉像(If)の干渉縞が細かくなるため、撮像素子(Uf)として、画素寸法が微細で大画素数のものを使う必要が生じ、計算処理も重くなる欠点がある。
 この問題を回避したい場合は、インライン型とした上で、前記した正規像に対して邪魔なノイズが重畳される問題を回避することが必要であるが、これに関しては従来より多種類の提案が行われている。
 例えば、一例を挙げれば、前記参照光束(Fr)の位相をシフトさせた、複数枚の前記干渉像(If)を撮像し、そのデータを用いた計算によって像を再構成する方法がある。(OPTICS LETTERS, Vol.22, No.16, Aug.15, 1997 p1268-1270, Yamaguchi I. et al: "Phase-shifting digital holography")
 本発明の検出装置においても、これを適用することが可能であり、前記参照光束(Fr)の位相をシフトさせるために、例えば、ピエゾ素子等による微動機構を用いて前記ミラー(Mr)を移動可能なように改造することにより実現できる。
 ここで、図2の光学系に関して補足しておく。
 本図の光学系には、前記ビームエキスパンダ(BEi)および前記ビームエキスパンダ(BEr)なる2個のビームエキスパンダが存在するが、これを前記ビームスプリッタ(BS1)への入射側に1個のビームエキスパンダを配置するように変更することにより、部品点数を減らし、コスト低減を図れると考えるかも知れない。
 確かにそういう側面もあるが、ビームエキスパンダを通過後の太い光束を反射するミラーには高い平面精度が要求されるし、それを保持する角度微調整機構付きのミラーホルダは、ミラーを歪ませないように構成したものでなければならず、場合によっては、そのためのコスト増加分が、ビームエキスパンダの数を減らしたことによるコスト低減分を超える可能性もある。
 また、前記した前記ピンホール開口(Ua)による空間周波数フィルタを設置しても、それより後の光路の長さが、2個のビームエキスパンダを設ける場合よりも長くなるため、光束浄化の効果が減殺されてしまう欠点もある。
 前記照明光束生成光学系(Gi)および前記参照光束生成光学系(Gr)、前記撮像光学系(Gf)(の一部)からなる光学系の他の構成について、本発明の検出装置の一部を簡略化して示す模式図である図3を参照して説明する。
 図2のものと同様に、可干渉光源(Us)からの光源ビーム(As)は、ビーム分割のためのビームスプリッタ(BS1)によって、照明光束生成光学系用ビーム(Ai)と参照光束生成光学系用ビーム(Ar)とに分割された上で、ビームエキスパンダ(BEr)を介して、必要な太さになるようビームが拡大された平行光束として参照光束(Fr)が生成される。
 照明光束(Fi)についても、同様にビームエキスパンダ(BEi)を介して、必要な太さになるようビームが拡大された平行光束として生成されるが、図2のものと相違して、先ず前記照明光束(Fi)が被検対象物(Ot)を照明し、前記照明光束(Fi)の、前記被検対象物(Ot)の前記探索対象面において屈折、位相付加などされ、光学的異性状態箇所の作用を受けた、および受けなかった成分を含む透過光が、次に総合出力光束(Fo)としてビームスプリッタ(BS2)に入射する。
 これ以降の前記総合出力光束(Fo)の扱いは、図2のものと全く同様であり、前記ビームスプリッタ(BS2)で反射されて、前記撮像光学系(Gf)のz軸に沿って伝播し、前記参照光束(Fr)と重畳されて撮像素子(Uf)の撮像面上に干渉像(If)を形成する。
 ここで図2および図3の光学系における前記照明光束(Fi)についての補足を述べる。
 前記被検対象物(Ot)の表面が拡散的でない反射面であるとき、または前記被検対象物(Ot)が拡散的でない屈折体であるときに、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分については、これが前記撮像素子(Uf)に入射しないようにするのが良い場合と、逆に入射するようにするのが良い場合がある。
 例えばキズなどのように、光学的異性状態が光を散乱する性質を有するものの場合は、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分が、前記撮像素子(Uf)に入射しないようにするのが良いことが多い。
 その理由は、このようにして撮像した干渉像データの光電磁界の再構成を行うと、光学的異性状態箇所では光強度が存在するが、それ以外の箇所では光強度がほぼゼロになり、光学的異性状態箇所の検出が容易になるからである。
 因みに、これを実現するには、暗視野顕微鏡(限外顕微鏡)の原理や構造に習って、前記照明光束(Fi)の角度を、後段の光学系のNAを超えるように調整すれば良い。
 また前記照明光束(Fi)は、複数の方向から照射するように構成することが望ましい。
 一方、例えばなだらかな高さ変化や屈折率差などのように、光学的異性状態が、光を散乱しない性質を有するものの場合は、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分も含めて、前記撮像素子(Uf)に入射するようにするのが良い。
 その理由は、そのようにしないと、光学的異性状態の情報を含む光が前記撮像素子(Uf)に全く入射されなくなるからである。
 このように、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分を、前記撮像素子(Uf)に入射させるか否かについては、検出すべき光学的異性状態の性質に応じて決める必要があり、前記撮像素子(Uf)に入射させるか否かの設定は、前記照明光束(Fi)を前記被検対象物(Ot)に当てる際の角度によって制御可能である。
 ただし、前記被検対象物(Ot)の表面が拡散的な反射面であるとき、または前記被検対象物(Ot)が拡散的な屈折体であるときは、その限りではない。
 なお、図2および図3の光学系では、前記照明光束(Fi)が平行光束とする場合について説明したが、状況に応じて発散的光束または集束的光束とすることも可能である。
 ところで、いま述べたように、前記照明光束(Fi)を前記被検対象物(Ot)に当てる際の角度を調整して、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分を、前記撮像素子(Uf)に入射させないようにした場合、前記総合出力光束(Fo)のうちの前記光学的異性状態像光束(Fo1,Fo2,…)の主光線は、前記撮像光学系(Gf)の光軸に平行、すなわち前記光学的異性状態像光束(Fo1,Fo2,…)はテレセントリックであると考えてよい。
 その理由は、このように前記照明光束(Fi)の角度を調整するのは、前記したように光学的異性状態が光を散乱する性質を有する場合であるから、前記光学的異性状態像光束(Fo1,Fo2,…)は指向性の弱い、もしくはほとんど無い光束となり、よって主光線を勝手に決めてよく、それであれば、前記撮像光学系(Gf)の光軸に平行にとることが自然だからである。
 また、前記被検対象物(Ot)の表面が拡散的な反射面であるとき、または前記被検対象物(Ot)が拡散的な屈折体であるときも同様に、前記撮像光学系(Gf)の光軸に平行にとることが自然であり、よって前記光学的異性状態像光束(Fo1,Fo2,…)はテレセントリックであると考えてよい。
 一方、前記した前記被検対象物(Ot)の表面が拡散的でない反射面であるとき、または前記被検対象物(Ot)が拡散的でない屈折体であるときで、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分が前記撮像素子(Uf)に入射するようにする場合は、前記光学的異性状態像光束(Fo1,Fo2,…)の主光線は、前記照明光束(Fi)の形状(平行・発散的・集束的)と、前記被検対象物(Ot)の表面形状に依存する反射の様子、または前記被検対象物(Ot)の体積的形状に依存する屈折の様子に従って考える必要がある。
 前記被検対象物(Ot)の前記探索対象面(St)近傍における光電磁界の再構成の分解能を向上させようとする場合、その方法の一つは、前記干渉像(If)の撮像分解能を上げることであり、そのためには、前記したインライン型ディジタル・ホログラフィ・イメージングとしたり、前記撮像素子(Uf)として画素寸法の小さいものを選択する必要がある。
 他の方法は、光学的な拡大機能を利用することであるが、ここまで図2および図3によって具体的に構成を示した光学系は、その機能を有していなかった。
 この機能を付与することは、前記総合出力光束(Fo)が生成されてから、前記参照光束(Fr)と重畳されるまでの光路部分に対し、レンズ等から構成される変倍光学系を挿入して、前記総合出力光束(Fo)を拡大された光束、すなわち変倍総合出力光束に変換することにより実現することが可能である。
 ただし、その際、挿入した変倍光学系によって、前記光学的異性状態像光束(Fo1,Fo2,…)の主光線が前記撮像光学系(Gf)の光軸に対して不都合な角度を有する光線に変換されないように注意する必要がある。
 前記光学的異性状態像光束(Fo1,Fo2,…)がテレセントリックである場合、前記変倍総合出力光束においてもテレセントリック性が維持されるようにすることが望ましく、それを実現するためには、挿入する変倍光学系をアフォーカル系(望遠系)とすればよいことが容易に理解できる。
 一方、前記した前記被検対象物(Ot)の表面が拡散的でない反射面であるとき、または前記被検対象物(Ot)が拡散的でない屈折体であるときで、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分が前記撮像素子(Uf)に入射するようにする場合は、挿入した変倍光学系によって、前記光学的異性状態像光束(Fo1,Fo2,…)の主光線が前記撮像光学系(Gf)の光軸に対して好都合な角度を有する光線に変換されるよう、状況に応じて前記変倍光学系を設計する必要がある。
 前記照明光束生成光学系(Gi)および前記参照光束生成光学系(Gr)、前記撮像光学系(Gf)(の一部)からなる光学系で、光学的拡大機能を有するものの構成について、本発明の検出装置の一部を簡略化して示す模式図である図4を参照して説明する。
 本図の光学系は、図3のものに比して、正の光学的パワーを有するレンズ(Lg1,Lg2)を共焦点配置することによって、アフォーカル系として構成した変倍光学系(Lg)を、被検対象物(Ot)とビームスプリッタ(BS2)との間に挿入してある点が相違している。
 このように構成することにより、テレセントリックの前記総合出力光束(Fo)がテレセントリックの変倍総合出力光束(Fo’)に変換され、該変倍総合出力光束(Fo’)と参照光束(Fr)とがビームスプリッタ(BS2)によって重畳されて撮像素子(Uf)に照射され、干渉像(If)が撮像される。
 当然、このようにして取得した干渉像データ(Df)に基づいて再構成された光学的異性状態箇所(P1,P2,…)の像は、分解能が前記変倍光学系の倍率の分だけ向上する。
 前記照明光束生成光学系(Gi)および前記参照光束生成光学系(Gr)、前記撮像光学系(Gf)(の一部)からなる光学系で、光学的拡大機能を有するものの、他の構成について、本発明の検出装置の一部を簡略化して示す模式図である図5を参照して説明する。
 本図の光学系は、図2のものに比して、正と負の光学的パワーを有するレンズ(Lg1’,Lg2’)を共焦点配置することによって、アフォーカル系として構成した変倍光学系(Lg’)を、被検対象物(Ot)とビームスプリッタ(BS2)との間に挿入してある点が相違している。
 このように構成することにより、ビームエキスパンダ(BEi)からの平行光束の照明用集束光束(Fi’)が前記変倍光学系(Lg’)によって太さが縮小された平行光束の照明光束(Fi)となって図2のものと同様に前記被検対象物(Ot)を照明し、反射結像による総合出力光束(Fo)を生成する。
 前記変倍光学系(Lg’)が前記総合出力光束(Fo)に作用することにより、テレセントリックの前記総合出力光束(Fo)がテレセントリックの変倍総合出力光束(Fo’)に変換され、該変倍総合出力光束(Fo’)と参照光束(Fr)とがビームスプリッタ(BS2)によって重畳されて撮像素子(Uf)に照射され、干渉像(If)が撮像される。
 なお、変倍光学系として、図4の光学系では正と正の光学的パワーを有する2個の前記レンズ(Lg1,Lg2)を共焦点配置した前記変倍光学系(Lg)を、図5の光学系では正と負の光学的パワーを有する2個の前記レンズ(Lg1’,Lg2’)を共焦点配置した前記変倍光学系(Lg’)を使用したが、図4のものを正と負の光学的パワーを有するレンズによるもの、図5のものを正と正の光学的パワーを有するレンズによるものとしても構わず、それぞれの光学系の特徴に合わせて設計すればよい。
 前記照明光束生成光学系(Gi)および前記参照光束生成光学系(Gr)、前記撮像光学系(Gf)(の一部)からなる光学系で、光学的拡大機能を有するものの、さらなる構成について、本発明の検出装置の一部を簡略化して示す模式図である図6および図7を参照して説明する。
 図4および図5の光学系では、平行光束の前記参照光束(Fr)と、テレセントリックの前記変倍総合出力光束(Fo’)とを、それぞれ前記ビームスプリッタ(BS2)に入射させたが、図6および図7の光学系では、ビームスプリッタ(BS2’)と撮像素子(Uf)との間に挿入した共通のレンズ(Lc)を経ることによって、平行光束の参照光束(Fr)と、テレセントリックの変倍総合出力光束(Fo’)とが、それぞれ生成されるようにしてある。
 すなわち、レンズ(Lr)とコリメータレンズとしての前記レンズ(Lc)とを共焦点配置することによってビームエキスパンダが形成されて前記参照光束(Fr)が生成されており、また、拡大用負レンズ(Lgs)と前記レンズ(Lc)とを共焦点配置することによってアフォーカル系の変倍光学系が形成され、これに被検対象物(Ot)からの総合出力光束(Fo)を入力することにより、変倍総合出力光束(Fo’)が生成されるのである。
 ただし、図7の光学系では、レンズ(Li1,Li2)から構成されるレンズ系(Lpi)は、光束を一旦太くして前方で集光する照明用集束光束(Fi’)を生成するもので、前記レンズ系(Lpi)と前記拡大用負レンズ(Lgs)とを共焦点配置することによって、平行光束の照明光束(Fi)を生成している。
 このとき前記レンズ系(Lpi)はビームエキスパンダではないが、前記レンズ(Li1)の集光点にピンホール開口を設け、空間周波数フィルタの機能を付与することが可能である。
 なお、平行光束でない参照光用光束(Fr’)や前記照明用集束光束(Fi’)が透過するビームスプリッタ(BS2’)は、プリズム型のものを使用することが望ましい。
 その理由は、プリズム型ビームスプリッタであれば、透過・反射両方に際して、光軸に垂直な平行平板と同じ働きをするため、非点収差的な収差が発生しないからである。
 ただし、厚い平行平板が挿入される訳であるから、狭義球面収差は発生するため、必要に応じて収差補正をすべきである。
 一方、図3、図2、図4、図5に記載したハーフミラー型の前記ビームスプリッタ(BS2)の場合、反射に際しては収差は発生しないものの、透過に際しては、平行平板が光軸に対して45度傾いて挿入されているため、非点収差的な収差が発生する可能性があるが、これらの図の光学系では、透過させるものを、平行光束である前記参照光束(Fr)とすることによって収差の問題を回避している。
 以上においては、前記変倍光学系が拡大光学系である場合について述べたが、例えば前記被検対象物(Ot)が大き過ぎて前記撮像素子(Uf)による撮像が困難で、逆に前記総合出力光束(Fo)を縮小したい場合には、前記変倍光学系を縮小光学系とすればよく、その場合の光学系の設計の指針は、これまでに述べた指針に対して、概念を拡大から縮小に変更して同様に適用可能である。
 先に、前記処理装置(Up)は、再構成された前記探索対象面(St)の近傍の像から前記光学的異性状態箇所(P1,P2,…)を抽出することによって、検出対象とする光学的異性状態を検出する旨を述べたが、ここでは、その抽出の要領について説明する。
 光電磁界の再構成を行った際、光学的異性状態の例として先に列挙したキズ・欠け・凹み・突起・泡・塵・付着汚損物質などの大部分は、光電磁界の強度の変化をもたらす。
 前記した、前記被検対象物(Ot)の表面が拡散的でない反射面であるとき、または前記被検対象物(Ot)が拡散的でない屈折体であるときで、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分が前記撮像素子(Uf)に入射しないようにする場合と、そうでない場合とでは、光学的異性状態の箇所における再構成した光電磁界の、周囲に比した強度は、前者の場合は局所的に増加する傾向があり、後者の場合は局所的に減少する傾向がある。
 その理由は、列挙した光学的異性状態は光を散乱する可能性があり、前者の場合は散乱光を再構成し、後者の場合は散乱しなかった光を再構成するからである。
 ただし、光学的異性状態が付着汚損物質で、光を吸収するもののときは、前者の場合は減少するが、後者の場合は増加も減少もせず、散乱も吸収もしないもののときは、何れの場合でも増加も減少もしない。
 したがって、前記光学的異性状態箇所(P1,P2,…)を抽出しようとする際は、先ず再構成した光電磁界の強度が、周囲に比して局所的に相違する箇所を抽出することを試行することが好適である。
 前記した散乱も吸収もしない付着汚損物質のような、なだらかな高さ変化や屈折率差の類の光学的異性状態は、再構成した光電磁界の強度は変化させないが、位相を変化させる可能性がある。
 したがって、再構成した光電磁界の位相が、周囲に比して局所的に相違する箇所を抽出することも試行するべきである。
 因みに、この場合、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分を含めて前記撮像素子(Uf)に入射させて干渉像データを取得することが必要で、光電磁界の再構成を行った後、光学的異性状態の抽出を試行する前に、空間周波数のハイパスフィルタ処理を用いて、位相分布のなだらかな変化を除いておくことが好適である。
 前記撮像素子(Uf)としては、通常、市販品を選択して使用するため、撮像面の寸法の大きさには限度があるが、被測定対象の前記被検対象物(Ot)の大きさは様々であるため、検出装置としては、可及的大きい被検対象物を受容できることが望ましい。
 その上、前記総合出力光束(Fo)に対して拡大光学系を適用することもあるため、前記被検対象物(Ot)1個に関する前記干渉像(If)の撮像を1回で済ませることが出来ず、よって複数回に分割した撮像を行うことが可能なように、予め考慮しておく必要がある。
 このことは、前記撮像光学系(Gf)と前記被検対象物(Ot)との相対的な配置を変化させる配置変化機構(Uxy)を本検出装置の光学系に設けることにより実現することができる。
 前記照明光束(Fi)が、前記被検対象物(Ot)の形状と整合した特定条件の波面である必要が無い場合は、前記被検対象物(Ot)との相対位置を自由に移動できるため、図5に2点鎖線で記載したように、前記配置変化機構(Uxy)として、精密な位置決めが可能な、回転または/および平行移動台を設けて、それに前記被検対象物(Ot)を保持するマウント機構を設置する構成をとることが好適である。
 一方、前記照明光束(Fi)が、前記被検対象物(Ot)の形状と整合した特定条件の波面である必要がある場合は、前記照明光束(Fi)と前記被検対象物(Ot)との相対位置を自由に移動できないため、前記配置変化機構(Uxy)として、精密な位置決めが可能な、回転または/および平行移動台を設けて、それに撮像素子(Uf)を設置する構成をとることが好適である。
 ここで、前記照明光束(Fi)が、前記被検対象物(Ot)の形状と整合した特定条件の波面である必要がある場合とは、例えば後述するように、前記被検対象物(Ot)がレンズであって、前記照明光束(Fi)が、前記レンズの焦点を波源とする光束でなければならない場合などである。
 当然ながら、前記処理装置(Up)が、前記した、前記探索対象面(St)の形状に関する情報を利用した光電磁界の再構成を行えるよう、撮像時点における前記配置変化機構(Uxy)による前記撮像素子(Uf)と相対的な前記被検対象物(Ot)の配置状態に関する情報を、前記処理装置(Up)が取得できる必要がある。
 そのためには、前記配置変化機構(Uxy)を制御する位置決め信号を、前記処理装置(Up)自身が発生して前記配置変化機構(Uxy)に送出するよう、本検出装置を構成することが好適である。
 あるいは、本検出装置内の制御装置が、前記配置変化機構(Uxy)を制御する位置決め信号を前記配置変化機構(Uxy)に送出するとともに、前記撮像素子(Uf)と相対的な前記被検対象物(Ot)の配置状態に関する情報を前記処理装置(Up)に送出するようにしてもよい。
 ここで、前記探索対象面(St)について説明しておく。
 図1には、前記探索対象面(St)が、前記被検対象物(Ot)の前記撮像光学系(Gf)に対向する表面である場合を描いてあり、この場合、前記被検対象物(Ot)は不透明であっても透明であっても構わない。
 前記被検対象物(Ot)が不透明の場合は、前記照明光束(Fi)は、本図に描いたように前記撮像光学系(Gf)の側から照射する必要がある。
 前記被検対象物(Ot)が透明の場合は、前記照明光束(Fi)は、前記撮像光学系(Gf)の側から、または前記撮像光学系(Gf)と反対の側から前記探索対象面(St)に照射することができる。
 ただし、前記撮像光学系(Gf)と反対の側から照射する場合、前記被検対象物(Ot)に不透明な部分があるときは、その影ができる前記探索対象面(St)の部分に存在する光学的異性状態は検出できない。
 一方、図8のaは、光学的異性状態箇所(P1,P2,…)が存在する探索対象面(St)が、前記被検対象物(Ot)の前記撮像光学系(Gf)と反対側の表面にある場合を描いたものである。
 この場合は、前記被検対象物(Ot)は、(少なくとも一部が)透明である透明部材から構成されている必要があって、前記撮像光学系(Gf)は、前記被検対象物(Ot)の透明な部分を通して前記探索対象面(St)に関する撮像を行うことになり、したがってこの場合、前記探索対象面(St)の形状に関する情報は、前記被検対象物(Ot)による屈折の効果、すなわちレンズ効果を見込んだものでなければならない。
 前記照明光束(Fi)は、前記撮像光学系(Gf)の側から、または前記撮像光学系(Gf)と反対の側から前記探索対象面(St)に照射することができる。
 ただし、前記撮像光学系(Gf)の側から照射する場合、前記被検対象物(Ot)に不透明な部分があるときは、その影ができる前記探索対象面(St)の部分に存在する光学的異性状態は検出できない。
 また、前記被検対象物(Ot)に不透明な部分があるときは、それに隠される前記探索対象面(St)の部分に存在する光学的異性状態は検出できない。
 さらに図8のbは、前記被検対象物(Ot)が、(少なくとも一部が)透明である部材(Ot1)と、透明または不透明の部材(Ot2)とから構成されており、図8のaと同様に、探索対象面(St)が、前記部材(Ot1)の前記撮像光学系(Gf)と反対側の表面にある場合を描いたものである。
 つまりこの場合、前記探索対象面(St)は、前記被検対象物(Ot)の内部に存在する、別部材の接合面である。
 また同様に、前記撮像光学系(Gf)は、前記部材(Ot1)の透明な部分を通して前記探索対象面(St)に関する撮像を行うことになり、したがってこの場合、前記探索対象面(St)の形状に関する情報は、前記部材(Ot1)による屈折の効果、すなわちレンズ効果を見込んだものでなければならない。
 前記部材(Ot2)が不透明でなければ、前記照明光束(Fi)は、前記撮像光学系(Gf)の側から、または前記撮像光学系(Gf)と反対の側から前記探索対象面(St)に照射することができる。
 ただし、前記撮像光学系(Gf)の側から照射する場合、前記部材(Ot1)に不透明な部分があるときは、その影ができる前記探索対象面(St)の部分に存在する光学的異性状態は検出できない。
 また、前記部材(Ot1)に不透明な部分があるときは、それに隠される前記探索対象面(St)の部分に存在する光学的異性状態は検出できない。
 前記撮像光学系(Gf)と反対の側から照射する場合、前記部材(Ot2)に不透明な部分があるときは、その影ができる前記探索対象面(St)の部分に存在する光学的異性状態は検出できない。
 当然、前記部材(Ot2)が不透明の場合は、前記照明光束(Fi)は、前記撮像光学系(Gf)の側から前記探索対象面(St)に照射する必要がある。
 当然ながら、図8のbの前記部材(Ot1)に相当するものが、図8のcに示したように、部材(Ot1’)と部材(Ot1”)の2個の部材を、あるいはそれ以上の個数の複数の部材を接合して構成されていても構わない。
 同様に、図8のbの前記部材(Ot2)に相当するものが、複数の部材を接合して構成されていても構わない。
 このように、前記探索対象面(St)が前記被検対象物(Ot)の内部に存在する場合、前記撮像光学系(Gf)の側から見て前記探索対象面(St)の手前側または向う側が空間(空気)であっても構わないし、当然ながら、光学的異性状態を検出する探索対象面を複数設定しても構わない。
 本発明の検出装置の応用例の一つに、被検対象物(Ot)を結像光学素子とし、キズ・凹み・塵・汚れなどの光学的異性状態を検出する検査装置を挙げることができる。
 ここで結像光学素子とは、レンズまたはミラー、それらの組合せ体を指し、したがって被検対象物たる結像光学素子として、単レンズや凹または凸面ミラーは当然として、複数枚の単レンズを接着した貼り合わせレンズ、あるいは複数枚のレンズやミラーを金枠等に収納して組立てた組合せ光学部品を対象とすることができ、これら結像光学素子に含まれる光学的機能面の光学的異性状態を検出することができる。
 ここで光学的機能面とは、屈折面または反射面を指し、したがって単レンズや貼り合わせレンズの空気ガラス界面または貼り合わせ面、ミラーの反射面を対象とすることができる。
 このとき本検出装置には、前記結像光学素子の位置と向きが必ず正しく配置されるよう、位置決め台を設置する。
 位置決め台としては、例えば被検結像光学素子が前記組合せ光学部品であれば、その金枠を位置決めするVブロック、被検結像光学素子がレンズやミラーであれば、被検結像光学素子の側面の円柱部に適合した円筒形穴の底面に曲面芯出し機構を設け、これに被検結像光学素子を落とし込むものや、2個の曲面芯出し機構で被検結像光学素子を挟むものを採用することができる。
 ここで曲面芯出し機構とは、曲面が自動的に正しい位置に収まるようにした円形穴または3点支持構造などを指す。
 当然、被検結像光学素子が大きい場合は、先に説明した配置変化機構(Uxy)の上に前記位置決め台を設置することができる。
 先に述べたように、前記照明光束(Fi)を前記被検対象物(Ot)に当てる際の角度を調整して、前記照明光束(Fi)のうちの光学的異性状態箇所の作用を受けずに前記総合出力光束(Fo)となった成分を、前記撮像素子(Uf)に入射させないように構成することによって、光電磁界の再構成を行った際に、光学的異性状態箇所では光強度が存在するが、それ以外の箇所では光強度がほぼゼロになり、光学的異性状態箇所の検出が容易になる。
 一方、再構成した光電磁界の位相が、周囲に比して局所的に相違する箇所を抽出する検出方法の場合は、光学的異性状態箇所以外では、視野内の位相が一様になるようにすることで、同様に光学的異性状態箇所の検出が容易になるが、これは、前記被検対象物(Ot)を発して前記撮像素子(Uf)に入射する光束が、前記撮像素子(Uf)の撮像面に垂直な平行光束となる状況に対応する。
 前記被検対象物(Ot)が前記結像光学素子の場合は、何時でもこれを実現することができ、具体的には、前記変倍光学系が存在する場合は前記被検対象物(Ot)と前記変倍光学系との合成光学系の入力側焦点に、前記変倍光学系が存在しない場合は前記被検対象物(Ot)の入力側焦点に位置する点光源から発する光束を、照明光束(Fi)として前記被検対象物(Ot)に照射するように構成すればよい。
 言うまでもないが、いま述べた入力側焦点が無限遠の場合は、光軸に平行な平行光束を照射するようにすればよい。
 本発明の検出装置の特に光学系の構成につき、若干補足しておく。
 前記撮像素子(Uf)のダイナミックレンジを有効に利用するためには、前記撮像素子(Uf)の撮像面における、前記総合出力光束(Fo)や前記変倍総合出力光束(Fo’)の照度と、前記参照光束(Fr)の照度とは概ね等しいことが望ましく、よって、条件に応じて前記参照光束生成光学系用ビーム(Ar)と前記照明光束生成光学系用ビーム(Ai)の強度のバランスを変化させることができるよう、一方に対し他方を減光させる光減衰器などを設けるとよい。
 前記参照光束(Fr)と前記総合出力光束(Fo)や前記変倍総合出力光束(Fo’)とを合波するための前記ビームスプリッタ(BS2’)等については、これを偏光ビームスプリッタとすることによって、透過させたい光束と反射させたい光束とで偏波面を90度相違させ、透過させたい光束の反射や、反射させたい光束の透過を抑えることにより、光の利用効率を高めたり、迷光を防止したりすることができ、そのために2分の1波長板や4分の1波長板を利用するとよい。
 図示した光学系においては、前記光源ビーム(As)を前記ビームスプリッタ(BS1)で分離して生成した前記照明光束生成光学系用ビーム(Ai)と前記参照光束生成光学系用ビーム(Ar)とを、空中を飛ばすことによって、前記照明光束生成光学系(Gi)と前記参照光束生成光学系(Gr)とに導くものを例示したが、例えば光ファイバを使用した光回路技術を利用して、光ファイバ中に導かれた光源からの光に対し、方向性結合器によって照明光用の光と参照光用の光とに分離し、光ファイバによって前記照明光束生成光学系(Gi)と前記参照光束生成光学系(Gr)とに導くようにしてもよい。
 その際に用いる光ファイバの種類としては、偏波保存型シングルモードファイバを選択することが好適である。
 本発明は、被検対象物の表面、もしくはその内部にある貼り合わせ面に存在する、キズ・欠け・凹み・突起・泡・塵・付着汚損物質などの光学的異性状態を検出するための検出装置を設計・製造する産業において利用可能である。
Ai   照明光束生成光学系用ビーム
Ar   参照光束生成光学系用ビーム
As   光源ビーム
BEi  ビームエキスパンダ
BEr  ビームエキスパンダ
BS1  ビームスプリッタ
BS2  ビームスプリッタ
BS2’ ビームスプリッタ
Df   干渉像データ
Fi   照明光束
Fi’  照明用集束光束
Fo   総合出力光束
Fo’  変倍総合出力光束
Fo1  光学的異性状態像光束
Fo2  光学的異性状態像光束
Fr   参照光束
Fr’  参照光用光束
Gf   撮像光学系
Gi   照明光束生成光学系
Gr   参照光束生成光学系
If   干渉像
Lc   レンズ
Lg   変倍光学系
Lg’  変倍光学系
Lg1  レンズ
Lg1’ レンズ
Lg2  レンズ
Lg2’ レンズ
Lgs  拡大用負レンズ
Li1  レンズ
Li2  レンズ
Lic  コリメータレンズ
Lif  集光レンズ
Lpi  レンズ系
Lr   レンズ
Lrc  コリメータレンズ
Lrf  集光レンズ
Mi   ミラー
Mr   ミラー
Ot   被検対象物
Ot1  部材
Ot1’ 部材
Ot1” 部材
Ot2  部材
P1   光学的異性状態箇所
P2   光学的異性状態箇所
St   探索対象面
Ua   ピンホール開口
Uf   撮像素子
Up   処理装置
Us   可干渉光源
Uxy  配置変化機構

Claims (9)

  1.  被検対象物(Ot)に属する、予め形状が既知の探索対象面(St)上に存在する光学的異性状態を検出する検出装置であって、前記被検対象物(Ot)の少なくとも一部に照射する照明光束(Fi)を生成する照明光束生成光学系(Gi)と、前記照明光束(Fi)に前記被検対象物(Ot)が作用することによって生成された総合出力光束(Fo)に対し、これと可干渉であり、かつ該総合出力光束(Fo)と重畳する参照光束(Fr)を生成する参照光束生成光学系(Gr)と、前記参照光束(Fr)を前記総合出力光束(Fo)と重畳することによって生じる干渉像(If)を撮像して該干渉像(If)の明るさ分布をディジタルデータ化した干渉像データ(Df)を生成する撮像素子(Uf)を有する撮像光学系(Gf)と、前記干渉像データ(Df)を受信して記憶するとともに、記憶した前記干渉像データ(Df)を読出して規定の計算処理を行うことが可能な処理装置(Up)とを有し、前記探索対象面(St)は前記撮像素子(Uf)の撮像面に対向する平面以外の面であり、該処理装置(Up)は、前記探索対象面(St)の形状に関する情報を保有し、前記干渉像データ(Df)に基づくディジタル・ホログラフィ・イメージング技術に基づく計算による光電磁界の再構成を行うに際し、前記した前記探索対象面(St)の形状に関する情報を利用して、再構成を行う場所を、前記被検対象物(Ot)が存在する3次元的な空間のなかから前記探索対象面(St)の近傍を選択し、前記光学的異性状態を検出することを特徴とする検出装置。
  2.  前記参照光束(Fr)が重畳する対象を、前記総合出力光束(Fo)に替えて、前記総合出力光束(Fo)に変倍光学系を作用させて生成した変倍総合出力光束(Fo’)としたことを特徴とする請求項1に記載の検出装置。
  3.  前記処理装置(Up)は、再構成した光電磁界の強度が、周囲に比して局所的に相違する箇所を抽出して前記光学的異性状態を検出することを特徴とする請求項1または2に記載の検出装置。
  4.  前記処理装置(Up)は、再構成した光電磁界の位相が、周囲に比して局所的に相違する箇所を抽出して前記光学的異性状態を検出することを特徴とする請求項1または2に記載の検出装置。
  5.  前記撮像光学系(Gf)と前記被検対象物(Ot)との相対的な配置を変化させるための配置変化機構(Uxy)を有することを特徴とする請求項1または2に記載の検出装置。
  6.  前記被検対象物(Ot)の、前記撮像光学系(Gf)に近い側の表面を前記探索対象面(St)とし、該探索対象面(St)上に存在する光学的異性状態を検出することを特徴とする請求項1または2に記載の検出装置。
  7.  前記被検対象物(Ot)の少なくとも一部が透明部材から構成されており、前記透明部材を通して前記撮像光学系(Gf)の側から光学的観察可能である前記透明部材の表面を前記探索対象面(St)とし、該探索対象面(St)上に存在する光学的異性状態を検出することを特徴とする請求項1または2に記載の検出装置。
  8.  前記被検対象物(Ot)が結像光学素子であり、該被検対象物(Ot)を配置するための位置決め台を有し、前記被検対象物(Ot)に含まれる光学的機能面の少なくとも一つを前記探索対象面(St)とし、該探索対象面(St)上に存在する光学的異性状態を検出することを特徴とする請求項6または7に記載の検出装置。
  9.  前記被検対象物(Ot)に光学的異性状態箇所が存在しないと仮定した場合に、前記被検対象物(Ot)を発して前記撮像素子(Uf)に入射する光束が、前記撮像素子(Uf)の撮像面に垂直な平行光束となるよう、前記照明光束(Fi)を形成して前記被検対象物(Ot)に照射することを特徴とする請求項8に記載の検出装置。
PCT/JP2017/027830 2016-08-04 2017-08-01 検出装置 WO2018025840A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016153584A JP6670476B2 (ja) 2016-08-04 2016-08-04 検出装置
JP2016-153584 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018025840A1 true WO2018025840A1 (ja) 2018-02-08

Family

ID=61074117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027830 WO2018025840A1 (ja) 2016-08-04 2017-08-01 検出装置

Country Status (2)

Country Link
JP (1) JP6670476B2 (ja)
WO (1) WO2018025840A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137560A1 (ja) * 2020-12-25 2022-06-30 大塚電子株式会社 光学測定システムおよび光学測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258999A (ja) * 1993-03-04 1994-09-16 Takashi Yabe 三次元物体の画像データ生成装置
JPH0814853A (ja) * 1994-06-28 1996-01-19 Canon Inc 計算機ホログラムを有する平板及びそれを用いた計測 方法
JPH10240108A (ja) * 1997-02-27 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> 計算機ホログラム表示方法および装置
JP2003222508A (ja) * 2002-01-31 2003-08-08 Ricoh Co Ltd 表面形状測定装置及び表面形状測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258999A (ja) * 1993-03-04 1994-09-16 Takashi Yabe 三次元物体の画像データ生成装置
JPH0814853A (ja) * 1994-06-28 1996-01-19 Canon Inc 計算機ホログラムを有する平板及びそれを用いた計測 方法
JPH10240108A (ja) * 1997-02-27 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> 計算機ホログラム表示方法および装置
JP2003222508A (ja) * 2002-01-31 2003-08-08 Ricoh Co Ltd 表面形状測定装置及び表面形状測定方法

Also Published As

Publication number Publication date
JP6670476B2 (ja) 2020-03-25
JP2018021841A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
US10422984B2 (en) Flexible mode scanning optical microscopy and inspection system
JP5690394B2 (ja) 焦点調整装置および焦点調整方法
US7564622B2 (en) Methods for implement microscopy and microscopic measurement as well as microscope and apparatus for implementing them
JP7438424B2 (ja) 粒子検出のためのシステム及び方法
JP2013513823A (ja) 高速の3次元構造化照明による顕微鏡撮像の方法およびシステム
JP2002071513A (ja) 液浸系顕微鏡対物レンズ用干渉計および液浸系顕微鏡対物レンズの評価方法
JP7329608B2 (ja) 空間的に変化する偏光回転子および偏光子を用いた高感度粒子検出
JP2007170888A (ja) 光学素子検査装置
KR101716452B1 (ko) 디지털 홀로그래피 마이크로스코프를 이용한 고단차 측정 방법
WO2018025840A1 (ja) 検出装置
WO2020161826A1 (ja) 撮像装置
CN114324245B (zh) 基于部分相干结构光照明的定量相位显微装置和方法
JP6999805B2 (ja) データ取得装置
JP7432227B2 (ja) 位相イメージング装置、位相イメージング方法
TW202232475A (zh) 光學測定系統及光學測定方法
JP2902421B2 (ja) 干渉計
JP6886124B2 (ja) 光学素子特性測定装置
JP3325095B2 (ja) 検査装置
JP2010019798A (ja) 表面検査方法および表面検査装置
WO2023042339A1 (ja) 光学測定システムおよび光学測定方法
JP3916991B2 (ja) 圧子形状測定器
JP2593493B2 (ja) レンズの調整,検査装置
JP3255589B2 (ja) レンズ評価装置
JP2018021891A (ja) 光学系の位相取得方法および光学系の評価方法
Schaller et al. Application of off-axis holography to spray investigations: aberration minimization and size determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836944

Country of ref document: EP

Kind code of ref document: A1