WO2018025063A1 - Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue - Google Patents

Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue Download PDF

Info

Publication number
WO2018025063A1
WO2018025063A1 PCT/IB2016/054686 IB2016054686W WO2018025063A1 WO 2018025063 A1 WO2018025063 A1 WO 2018025063A1 IB 2016054686 W IB2016054686 W IB 2016054686W WO 2018025063 A1 WO2018025063 A1 WO 2018025063A1
Authority
WO
WIPO (PCT)
Prior art keywords
traces
molten metal
metal
support
zat
Prior art date
Application number
PCT/IB2016/054686
Other languages
English (en)
Inventor
Pierre-Olivier Santacreu
Aurélien BUTERI
Jérôme BRIDEL
Original Assignee
Aperam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aperam filed Critical Aperam
Priority to PCT/IB2016/054686 priority Critical patent/WO2018025063A1/fr
Priority to CA3032268A priority patent/CA3032268A1/fr
Priority to CN201680088331.2A priority patent/CN109563602A/zh
Priority to JP2019505413A priority patent/JP2019532816A/ja
Priority to MX2019001258A priority patent/MX2019001258A/es
Priority to RU2019102734A priority patent/RU2019102734A/ru
Priority to KR1020197003535A priority patent/KR20190034222A/ko
Priority to BR112019001807-7A priority patent/BR112019001807A2/pt
Priority to EP16757349.2A priority patent/EP3494242A1/fr
Priority to US16/321,741 priority patent/US20190160602A1/en
Publication of WO2018025063A1 publication Critical patent/WO2018025063A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0288Welding studs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to metallurgy, and more specifically the manufacture of stainless steel volume parts from sheets, and to have localized additions of material, deposited after the possible shaping of the sheets, such as reinforcing elements.
  • the object of the invention is to propose a method for manufacturing a final part comprising a support part and added parts by means of a process for adding molten metal, for example reinforcing elements, which makes it possible to eliminate or at least strongly limit the risks of occurrence of the problems mentioned above.
  • the subject of the invention is a process for manufacturing a final steel part comprising a support part and at least one part formed by a process for adding a filler metal, in the form of molten metal. on a portion of the surface of the support member, forming a thermally affected zone (ZAT) on the support member and a fused zone between the ZAT and the portion formed by the addition of molten metal, characterized in that:
  • the support piece is made of a martensitic microstructure chromium steel at 70-100%, preferably 90-100%, in the quenched or tempered state, the remainder of the microstructure being composed of ferrite, austenite and carbides and / or carbonitrides, the composition of which, in percentages by weight, consists of:
  • composition of the filler metal before its use consists of:
  • the hardness of the HAZ is not more than 20% lower than that of the remaining parts of the support piece, and that the martensite content of the HAZ is greater than or equal to 70%;
  • the melted zone has a dilution ratio (% Ni (molten metal) -% Ni (support metal)) / (% Ni (filler metal) -% Ni (support metal)) from 50 to 95 % by weight, preferably 75 to 85% by weight.
  • the process for adding molten metal may consist of adding molten metal powder by means of a laser beam or an electron beam.
  • the process for adding molten metal may consist of adding a molten metal from a wire whose fusion is caused by the establishment of an electric arc between the wire and the support piece, or by a laser or by an electron beam.
  • the invention also relates to a final steel piece characterized in that it was manufactured by the preceding method, and in that at least one of the parts formed by a method of adding molten metal is a reinforcing element for the support piece.
  • the invention consists in combining the production of the support part in a martensitic steel with a high Cr content (5.0-16.5%, so it is not necessarily a steel stainless) and of determined composition, and the production of the added parts by addition of molten metal with a metal consisting of a stainless steel of initial composition (before its use as powder, wire, tape or other in the method of the invention) also well determined, and which is, surprisingly, very different from that of the metal constituting the support piece.
  • the added molten metal is here, obligatorily, a stainless steel to
  • the invention is therefore based above all on a particular choice of the pair of materials used, which will be seen in what is advantageous in the context of the manufacture of a final piece by direct deposition of molten metal on a support piece.
  • FIG. 1 which schematically represents the principle of a process for supplying molten metal in the form of a powder rendered liquid by a laser beam;
  • FIG. 2 which shows schematically the principle of a method of supplying molten metal in the form of a wire whose fusion is performed by a welding torch;
  • Figure 3 which shows a clamp for fixing a tube, provided with stiffeners formed on the circular portion of the flange and its collar by the method according to the invention
  • Figure 4 which shows in cross section along IV-IV one of these stiffeners and its contact area with the circular portion of the flange
  • Figure 5 shows the results of Vickers HV1 hardness measurements (standard NF EN ISO 6507 2006, 1 designating the load kgf) made on the section of the flange and one of its stiffeners;
  • Figure 6 shows a micrograph of the connection area between the flange and the stiffener
  • Figure 7 which shows a micrograph of a part of this same connection area, highlighting the ZAT and the melted zone;
  • FIG. 8 which shows a micrograph of the connection zone between the flange and the stiffener, on which are reported the results of Vickers HV0,1 hardness measurements;
  • FIG. 9 which shows a micrograph of the connection zone between the flange and the stiffener, on which points have been indicated where measurements of dilution of the material of the stiffener in the material of the flange have been made;
  • FIG 10 which shows a cut and stamped suspension arm, on which were added stiffeners by the method according to the invention.
  • FIG. 1 generally represents the principle of 3D printing on a metal support piece 1 by adding molten metal, more precisely by melting a metal powder 2 by means of a laser.
  • the support part 1 that is to say the initial part on which the deposit must take place, is fixed. It is projected on its surface, by conventional means not shown, a metal powder jet 2 which is intended to constitute the filler metal which will form the deposit 3 after its solidification.
  • the supply source of the powder 2 is scrolled relative to the surface of the support part 1, in the figure plane and from left to right in the example shown.
  • a laser beam 4 is also projected on the surface of the support part 1, also moving in order to accompany the scrolling of the powder jet 2, and to achieve a melting of the powder 2 deposited on the support metal in the zone d impact of the laser beam 4, so as to form a liquid well 5.
  • the laser also causes a partial and very superficial melting of the metal 1.
  • the liquid well solidifying when it is no longer in the field of the laser beam 4 which has moved, forms the deposit 3 whose composition corresponds to that of the powder 2 or drifting closely. This point will be examined in detail later.
  • a Thermally Affected Area (ZAT) 6 Under this deposit 3 is, in the vicinity of the surface of the support part 1 and a thickness of the order of 300 ⁇ , a Thermally Affected Area (ZAT) 6 whose microstructure has been influenced by the contact with the laser beam 4 and the liquid well 5, in a manner comparable to that which occurs during a material-fed welding, with a morphology in successive layers also very close, qualitatively, of what is observed during a welding by contribution of material.
  • FIG. 2 generally represents the principle of 3D printing on a metal support piece 1 by adding molten metal by means of a welding wire 7 or the like (ribbon for example) which is unwound in the direction of the support piece 1 through a welding torch 8, which is itself scrolled relative to the workpiece support 1 in the figure plane and from left to right in the example shown.
  • a power supply 9 is connected on the one hand to the support part and on the other hand to the welding wire 7 via the torch 8, the inner space 10 is supplied by a protective gas flowing towards the support piece 1.
  • the invention is based on a particularly advantageous choice of the pair formed by the compositions of the support part 1 on the one hand, and the filler metal on the other hand, that it is initially in the form of a powder 2, of wire 7 ribbon or whatever.
  • this composition of the filler metal is that which exists before it is deposited and melted on the support part 1, and therefore does not take account of the modifications at least the composition could be subjected to during the operation, such as oxygen uptake, resulting in oxidized inclusions and possibly a decarburization, and a recovery of nitrogen. These modifications can occur in particular if the operation does not take place in an atmosphere perfectly inert with respect to the deposited liquid metal.
  • the metal constituting the support part 1 it must have a high proportion of martensite in its structure at the time of implementation of the method. This proportion is at least 70%, and preferably between 90 and 100%. Indeed, this strongly or very predominantly martensitic structure provides the support part 1 with high mechanical characteristics, which means that most of the part can be made of a relatively thin material, and that it is only locally that its reinforcement by stiffeners is necessary.
  • the rest of the microstructure, if it is not 100% martensitic, is composed of ferrite, austenite and carbides and / or carbonitrides.
  • martensitic transformation start temperature Ms must be less than or equal to 500 ° C. and the increase in the volume of the metal of the support part 1 during this transformation, at a speed of 30 ° C./s or more, must be between 2 and 6%.
  • This temperature Ms and the associated volume change are insensitive to the cooling rate up to 2 ° C / s and the metal 1 is therefore described as self-tempering.
  • FIG. 3 represents a flange 13 for fixing a tube made by the method according to the invention. It consists of a sheet preformed by stamping to give it a generally circular shape 14, and is provided with a collar 15 surrounding a central orifice 16. The circular portion 14 and the collar 15 are made in one piece during Formatting.
  • the collar 15 is, as is known, reinforced by stiffeners 17 (also called “reinforcing elements”) approximately in the shape of a right-angled triangle which bear on the outer wall of the collar and on the upper face of the circular portion 14 of the flange 13.
  • stiffeners 17 also called “reinforcing elements”
  • the hypotenuses 18 of the right triangles forming the stiffeners 17 may have, in fact, a concave shape, having a constant or variable curvature.
  • this characteristic is conventional for such flanges 13 and does not fall within the scope of the invention.
  • the flange 13 has a thickness of 3 mm
  • its circular portion 14 has a diameter of 145 mm
  • the orifice 16 has an outside diameter of 62 mm
  • the collar 5 has a thickness of 15 mm
  • the stiffeners 17 have a length of 22 mm and a thickness of 0.7 to 1 mm
  • the radius of curvature of their hypotenuses is 150 mm.
  • FIG. 4 shows, in cross-section along the line IV-IV of FIG. 3, one of the stiffeners 17 and its zone of contact with the circular portion 14 of the flange 13.
  • a "melted zone” 21 which results from the dilution of a portion of the molten metal 5, 12 in the metal 1 of the circular portion 14 of the flange 13, and therefore has on average a composition intermediate between those of these metals;
  • a ZAT 6 whose nominal composition is that of the metal of the support piece, but within which there may possibly be localized changes related to the possible privileged diffusion of certain elements inside the support piece due to heating during the deposition of molten metal, or, in its upper part, residual diffusion of the molten metal; also, the metallurgical structure is modified more or less substantially compared to what it was before the molten metal deposition, due to warming related to this deposit;
  • the steel of the support part 1 must have the following composition, expressed in percentages by weight, coupled with a microstructure at least strongly martensitic (from 70 to 100% of martensite, better still, 90% by weight). at 100% martensite):
  • composition must satisfy the following two relations A and B:
  • the satisfaction of the relation A is favorable to the accomplishment of the martensitic transformation
  • the satisfaction of the condition B in particular the influence of Si and Mo, is favorable to a good resistance to softening.
  • composition of the martensitic steel used for the support 1 according to the invention is justified as follows.
  • Its C content is between 0.01% and 1.5%.
  • the minimum content of 0.01% is justified by the need to obtain austenitization when the metal is brought to a temperature above 700 ° C and high mechanical properties for martensite. Above 1, 5%, the implementation by conventional methods would be limited, and especially the resilience of the support would become insufficient.
  • Mn content is between 0.2 and 1.2%. A minimum of 0.2% is required to achieve austenitization. Above 1, 2% of the oxidation problems are to be feared during the deposit if it is not carried out under a neutral or reducing atmosphere.
  • Si content is between 0.2% and 1.2%.
  • a minimum quantity of 0.2% is necessary because the silicon is a limiting element softening the support 1 when it is affected thermally. Beyond 1, 2%, it is considered that it excessively promotes the formation of ferrite and thus makes it more difficult to austenitize and obtain a steel of predominantly martensitic structure. In quantities greater than 1, 2%, it also weakens the support.
  • Its Cr content is between 5.0 and 16.5%.
  • the minimum content of 5.0% is justified to ensure a self-tempering character for the metal of the support 1.
  • a content greater than 16.5% would make it difficult to austenitize and obtain a predominantly martensitic structure.
  • Ni content is between traces and 3.5%.
  • Ni is not essential to the invention.
  • the presence of Ni within the prescribed maximum limit of 3.5% may, however, be advantageous for promoting austenitization. Exceeding the 3.5% limit would, however, lead to an excessive presence of residual austenite and an insufficient presence of martensite in the microstructure after cooling. It would also pose cost problems.
  • Mo or W is not essential and Mo may be present only in the form of traces resulting from the elaboration. However Mo limits the softening of the martensite of the ZAT during the deposit. Mo and W are favorable for good corrosion resistance. Above 2.0%, austenitization would be hampered and the cost of steel unnecessarily increased.
  • Cu content is between traces and 3.0%, preferably between traces and 0.5%.
  • Ti + Nb + Zr + V + Ta content is between traces and 2%.
  • Ti is a deoxidizer, like Al and Si, but its cost and its lower efficiency than that of Al, with equal added quantity, makes its use in general not very interesting from this point of view. It may be of interest in that the formation of Ti nitrides and carbonitrides can limit grain growth and favorably influence certain mechanical properties and weldability. However, this formation may be a disadvantage in the case of the process according to the invention, since Ti tends to hinder the austenitization due to the formation of carbides, and the TiN degrade the resilience. A maximum content of 0.5% is therefore not to be exceeded.
  • V and Zr are also elements capable of forming nitrides degrading the resilience.
  • Zr like Ti, hinders austenitization and is also a reason to limit its presence.
  • Nb and Ta are important elements for obtaining good resilience
  • Al is used as a deoxidizer during processing. It is not necessary that after the deoxidation it remains in the steel an amount exceeding 0.1%, because there would be a risk of having difficulties in obtaining the martensitic microstructure.
  • N content is between 0.01% and 0.2%. It is an element that helps austenitize from 0.01%, but beyond 0.2% it would limit the quenchability. And, as we have seen and for the reasons that have been said, relations A and B must also be satisfied.
  • the composition of the filler metal 2, 7, called to constitute the molten metal 5, 12 and then the deposits 3 forming the reinforcing element or elements 17, must have the following composition:
  • the filler metal 2, 7 in solid form (wire, ribbon %) or pulverulent before its melting and its deposition on the support part 1.
  • This composition must first lead the reinforcing element 17 to fulfill its role correctly when using the final part. It must, for this, have a good ductility resulting in an elongation at break of at least 15%, preferably between 30 and 40%, and a fine metallurgical structure consisting essentially of austenite (at least 80%), the rest being ferrite and / or carbonitrides, with a grain size of less than 300 ⁇ , a good fatigue strength greater than 200 MPa and a good resistance K1 c> 50 MPa.m 1/2 to crack propagation between -40 ° C and + 80 ° C (according to ISO 12135).
  • the composition just mentioned would also be suitable, but it is preferable that the C content be between 0.01 and 0.05% for uses at low temperatures, in order to have a stable austenite and a good ductility of the martensite hardening possibly present.
  • C levels are preferred from 0.04 to 0.1% to improve heat resistance.
  • AISI 321 steel and AISI 304H steel may be recommended, and for low temperatures AISI 316L steel, AISI 305 steel and AISI 304L steel, at least steels falling within these ranges. classes of nuances and which have, moreover, their precise compositions within the limits mentioned above.
  • this composition must guarantee, in conjunction with the choice of support metal 1, that the dilution of the filler metal 2 or 7 in the support metal 1 can take place under conditions giving access to the results targeted by the invention.
  • the composition according to the invention meets these criteria.
  • Molten zone 21 is an area where both metals have been subjected to a dilution process.
  • the filler metal 2 or 7 must represent from 50 to 95% by weight, preferably 75 to 85% by weight.
  • the dilution ratio is calculated by the following formula:
  • % Dilution (% Ni (molten metal 21) -% Ni (Metal support 1)) / (% Ni (solder 2 or 7) -% Ni (carrier metal 1))
  • this fused zone 21 extends over a depth of approximately 200 ⁇ to the right of the stiffener 17 in the example shown.
  • the choice of the composition of the filler metal 2, 7 and the percentage of dilution thereof in the metal of the support part 1, which can be controlled in particular by the conditions under which the deposition of metal takes place fused with the particular characteristics of the installation used and determined by means of simple models and experiments, ensures that the solidification takes place under good conditions and with a good result, namely a mostly austenitic microstructure but may contain ferrite and / or martensite in less ( ⁇ 20%), thus resilient, which ensures that the stiffener 17 (generally, the deposit 3) can be effective and will not present excessive fragility at the level its junction with the circular portion 14 of the flange 13 (and, in general, with the support part 1).
  • This lower hardness of the ZAT 6 relative to the remainder of the support part 1 is due to warming undergone by the ZAT 6 during the deposition of molten metal in contact with the liquid well 5, 12.
  • the temperature in the ZAT 6 exceeds 800 ° C about, part of the martensite can turn into austenite, and so we have a softening of the microstructure. It would be very detrimental to the mechanical properties of the ZAT 6 that this softening persists, and it is therefore necessary that during the cooling of the ZAT 6, a predominantly martensitic structure is restored (at least 70% of martensite), this percentage of martensite being, preferably, higher in the ZAT 6 than in the remainder of the support part 1 to obtain a relatively high compressive residual stress state in the ZAT 6.
  • stiffeners 17 or any other form of reinforcing elements
  • molten metal deposition generally makes it possible, advantageously, to leave these reinforcing elements substantially free from solidification, without a machining operation or subsequent surfacing is necessary.
  • the good satisfaction of this characteristic depends largely on the precision with which the depositing operation is controlled by the control members. But the known devices for depositing molten metal which have been described above are already quite capable of obtaining this precision, and the implementation of the invention does not pose more problems than those already encountered and solved by the skilled person in the prior art.
  • Figure 5 shows the results of hardness measurements made on the section of the flange 13 and a stiffener 17 of Figures 3 and 4, as shown in Figure 4.
  • the materials used are as follows.
  • the microstructure is 100% martensitic.
  • the composition of the metal is the following, the rest being iron and impurities resulting from the preparation:
  • the particle size of the initial powder is between 45 and 90 ⁇ .
  • the method of forming the stiffener 17 which has been used is the deposition of powder fused by laser beam.
  • a 600 W YAG laser with an argon gas shield was used.
  • the deposition rate is 500 mm / min.
  • the metal constituting the stiffener 17 has a relatively homogeneous hardness, between 158 and 192 Hv1, the highest value being measured towards the base of the stiffener.
  • the hardness measured in the melted zone 21 is 208 Hv1, thus slightly greater than the hardness of the stiffener 17, which tends to confirm that the melted zone 21 results from the diffusion of the filler metal into the metal of the support piece , and that the proportion of the filler metal is predominant, in this case even very large as is preferred for a good connection of the stiffener 17 and the circular portion 14 of the flange 13.
  • Figures 6 and 7 (the latter being an enlarged portion of Figure 6) show a micrograph of the lower portion of the stiffener 17 and its connection area with the circular portion 14 of the flange 13, after a chemical attack.
  • the stiffener 17 is composed of a superposition of initially molten metal layers, approximately 300-400 ⁇ thick, which interpenetrate over approximately 50% of their thickness. This strong interpenetration ensures that the stiffener 17 will not be particularly subject to breakage at an interface between layers. Note that in the case where one would not use a formation of the stiffener 17 by deposition of powder melted by laser, but by a method of supplying molten metal with a wire 7 or a ribbon and a torch 8, there would be found such superposition of layers, but on a thickness that may be larger, of the order of 1 mm.
  • the melted zone 21 and the ZAT 6 the thickness of which is approximately 350 ⁇ , which surrounds the melted zone 21 over the entire periphery thereof, including up to the surface of the circular portion 14 of FIG. the flange 13.
  • FIG. 8 is another enlargement of a portion of FIG. 6, and shows the results of measurements of the hardness Hv 0.1 (and not of the hardness Hv1 as in FIG. 5, as the measurement points are, here , closer together and that in this case, in accordance with the ISO 6705 standard, the imposed load is reduced), performed on the longitudinal axis of the stiffener 17 in its extreme lower part, and, in the extension of this axis, on the zone melted 21, the ZAT 6 of the circular portion 14 of the flange 13 and a portion of the circular portion 14 of the flange 13 not affected by the heat generated during the deposition of the metal of the stiffener 17.
  • the measuring points are distant 100 ⁇ .
  • FIG. 6 shows the locations where quantitative analyzes of chemical composition by scanning electron microscopy were performed.
  • the points called “spectrum 9, 10, 1 1” are located on the stiffener 17 and are representative of its nominal composition.
  • the so-called spectrum points 15, 16, 17 are located in the circular portion 14 of the flange 13, and in an area not chemically and thermally affected by the addition of molten metal, and are representative of the nominal composition of the 13.
  • the points "spectrum 12, 13, 14" are located at the lower end of the melted zone 21, and it is possible to deduce the dilution of the materials in one another by comparing the measurements therein. made with the nominal compositions of the flange 13 and the stiffener 17 determined by the 0 other measurements, by applying for this purpose the formula seen above.
  • the dilution of Ni as defined above is taken as a reference because the Ni content is always quite different in the two metals involved, is 78%.
  • the dilutions of the other elements are, in fact, not very different from that of the Ni, which therefore appears to be quite representative of the phenomenon of dilution in general.
  • stiffener 17 the composition and structure of the powder are identical and the conditions of deposition similar to that described for the test according to the invention.
  • the hardness in the ZAT 6 drops from 32% to 325Hv1, ie a drop greater than the maximum of 20% which is typical of the invention, the microstructure is no longer sufficiently martensitic (60%) and has softened by formation of bainite / ferrite / pearlite.
  • the martensitic transformation did not compensate for the withdrawal of the melted zone.
  • the melted zone is predominantly austenitic with a little martensite and shows a dilution of Ni very close to 80%, which proves that the condition of a dilution of Ni of 50 to 95% is not a sufficient condition for the obtaining good representative results of the invention.
  • the ZAT thus has a mechanical resistance that is too low due to insufficient compression of the base of the stiffener 17.
  • the martensite of the melted zone is of a fragile type because it is rich in C and there is the possibility of solidification in the primary austenitic phase of the melted zone, hence the risk of hot cracking.
  • FIG. 10 shows a suspension arm 22 produced from a cut and stamped preform 23, and to which stiffeners 24, 25, 26 (and others not referenced in FIG. 10) have been added by the method according to FIG. 'invention.
  • the invention can find application in the field of the manufacture of structural parts, in particular in land vehicles and aircraft, because it is easily possible, thanks to it, to produce parts of different strength properties and optimized by weight from the same support piece, only by modulating the morphology of reinforcement elements added by the method according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Procédé de fabrication d'une pièce d'acier comportant une pièce support (1) et une partie (17) formée par un métal d'apport (2; 7), sous forme de métal fondu (5; 12), sur la pièce support (1), en formant une zone affectée thermiquement (ZAT) (6) et une zone fondue (21) entre la ZAT (6) et la partie (17) formée par addition de métal fondu (5; 2). La pièce support (1) est en un acier à microstructure martensitique à 70-100%, dont la composition consiste en : 0,01% ≤ C ≤ 1.5%; 0,01% ≤ N ≤ 0.2%; 0,2% ≤ Mn ≤ 1,2%; 0.2 ≤ Si ≤ 1,2%; traces ≤ Al ≤ 0,1%; traces ≤ S + P ≤ 0,05%; 5,0% ≤ Cr ≤ 16,5%; traces ≤ Ni ≤ 3,5%; traces ≤ Mo + W ≤ 2,0%; traces ≤ Cu ≤ 3,0%; traces ≤ Ti + Nb + Zr + V + Ta ≤ 2%; traces ≤ Co ≤ 0,5%; traces ≤ Sn + Pb ≤ 0.04%; traces ≤ B ≤0.01%; le reste étant du fer; et répond aux conditions : A= %Mn + %Ni + %Cu + 30*(%C + %N) - 3*(%Ti + %Nb) ≥ 1.5%; B= %Cr + %Mo + 5*%V + %W + %Si + %Al ≥ 9%. La composition du métal d'apport (2; 7) avant son utilisation consiste en : 0,01% ≤ C ≤ 0.1%; 0,01% ≤ N ≤ 0.2%; 0,2% ≤ Mn ≤ 2,0%; 0.2 ≤ Si ≤ 1,2%; 15,0% ≤ Cr ≤ 19,0%; 6,0% ≤ Ni ≤ 13,0%; traces ≤ Mo + W ≤ 3,0%; traces ≤ Cu ≤ 3,0%; traces ≤ Co ≤ 0,5%; traces ≤ B ≤ 0,01%; traces ≤ S + P ≤ 0,05%; traces ≤ Ti + Nb + Zr + V + Ta ≤ 2%; traces ≤ Sn + Pb ≤ 0.04%; le reste étant du fer. La dureté de la ZAT (6) n'est pas inférieure de plus de 20% à celle du reste de la pièce support (1), et la teneur en martensite de la ZAT (6) est supérieure ou égale à 70%. La zone fondue (21) présente un taux de dilution de 50 à 95% en poids, de préférence de 75 à 85% en poids. Pièce d'acier finale ainsi fabriquée, au moins une des parties formées par un procédé d'addition de métal fondu (5; 12) étant un élément de renforcement (17; 24, 25, 26) pour la pièce support (1; 22).

Description

Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue
La présente invention concerne la métallurgie, et plus précisément la fabrication de pièces volumiques en acier inoxydable à partir de tôles, et devant présenter des ajouts de matière localisés, déposés postérieurement à la mise en forme éventuelle des tôles, tels que des éléments de renforcement.
La fabrication de pièces en acier par un formage à chaud ou à froid (forgeage, moulage, estampage, emboutissage...) peut conduire à l'obtention de pièces de formes plus ou moins complexes. Il peut arriver, et on en verra des exemples dans la description qui suit, que ces pièces aient, après leur mise en forme, une géométrie qui leur font présenter des zones où leurs caractéristiques mécaniques seraient insuffisantes pour une application envisagée donnée. Elles auraient besoin, à cet effet, d'être renforcées par la présence localisée de surépaisseurs, ou de nervures, ou d'autres types de configurations de fonction similaire.
On pourrait envisager d'introduire de telles surépaisseurs ou éléments de renforcement lors de la mise en forme de la pièce elle-même, de sorte à réaliser celle-ci en un seul morceau. Cependant, cela n'est pas toujours possible pour des pièces de formes relativement complexes et de dimensions très précises, ou alors au prix de complications dans le processus de fabrication (multiplication des étapes de mise en forme, et/ou nécessité de procéder à un usinage final important pour obtenir la configuration et les cotes précises désirées) qui rendraient le coût de production insupportable pour des pièces de grande série.
Pourtant, il est hautement désirable de disposer de telles pièces qui ne sont renforcées que là où cela est nécessaire, car on peut ainsi leur conférer des épaisseurs relativement faibles sur la majeure partie de leur volume et réaliser ainsi des économies de matière, donc de coût et de poids, qui sont avantageuses, par exemple pour des pièces d'automobiles : éléments de structure, bras de suspension... Cela peut également permettre d'élargir les possibilités de choix du matériau principal de la pièce, en ce que compte tenu des configurations relativement simples de la pièce initiale (que l'on appellera « pièce support » dans la suite du texte) non encore renforcée localement que permettrait ce procédé, les propriétés mécaniques du matériau en utilisation seraient le critère principal de ce choix, et que l'aptitude du matériau à être mis en forme de façon complexe pourrait ne plus être un critère de choix impératif.
On a donc déjà imaginé de réaliser ces éléments de renforcement, ajoutés localement, par un dépôt direct de métal fondu sur une pièce support initialement mise en forme. Ce dépôt peut être effectué, typiquement et notamment, à l'aide d'un laser, d'un faisceau d'électrons ou d'un arc électrique, qui sont des procédés qui réalisent la fusion du matériau d'apport juste avant ou au moment de son contact avec le métal support. Celui-ci est initialement sous forme de poudre, de fil ou de ruban. Les figures 1 et 2 qui seront commentées ci-après montrent les principes généraux de deux tels procédés (jet de poudre fondu par laser et fil fondu par arc électrique). Ils s'apparentent, à certains points de vue, à la réalisation d'un soudage par un procédé avec apport de matière de par les mécanismes métallurgiques qui sont mis en jeu, notamment pour la solidarisation de la pièce support et de l'élément de renforcement, et, à d'autres points de vue, à une impression 3D, avec apport de matière métallique de par le fait que l'on vise à conférer aux éléments de renforcement des formes et dimensions précises.
Il est ainsi possible de ne conférer à la plus grande partie de la pièce support qu'une épaisseur minimale nécessaire, conjuguée à un procédé de fabrication aussi simple que possible (un emboutissage, par exemple). On ne complète qu'a posteriori cette pièce support par des éléments de renforcement rapportés, eux-mêmes formés par un procédé de dépôt relativement économique et dimensionnés pour ne conférer à la pièce support qu'un alourdissement minimal. Typiquement, l'addition d'éléments de renforcement sous forme de nervures ou, de façon générale, de raidisseurs, de l'ordre de 1 mm d'épaisseur est possible, ce que ne permettraient pas, ou pas aisément, des procédés de formage monobloc de la pièce finale tels que le forgeage ou le moulage.
Cependant, il faut savoir que comme tout procédé thermique, l'ajout de métal fondu sur la pièce support affecte thermiquement une portion de l'épaisseur de la pièce support au voisinage de sa surface, dans les zones de dépôt du métal fondu. Cette Zone Affectée Thermiquement (ZAT), comme cela se rencontre dans les procédés de soudage avec apport de matière, est modifiée de deux façons :
Il y a création d'une zone de diffusion du métal d'apport dans la pièce support (et réciproquement), et il faut maîtriser cette diffusion pour qu'elle n'ait pas de conséquences négatives sur les propriétés de la pièce finale ;
Dans et au voisinage de cette zone de diffusion, il y a une modification de la microstructure de la pièce support, qui peut elle aussi avoir des conséquences néfastes sur les propriétés de la pièce finale.
Précisément, dans le cas où on applique ce procédé d'ajout de métal fondu sur une pièce support en un acier à hautes caractéristiques mécaniques obtenues par une forte présence de martensite, on observe une dégradation significative de leurs caractéristiques mécaniques dans la ZAT, sous forme principalement d'une perte de dureté, due à un adoucissement de la microstructure. Cet adoucissement est lié à un grossissement du grain et/ou à une transformation métallurgique consistant en une transformation de la martensite de la pièce support en ferrite et carbures. On parle alors de réversion de la martensite. De plus il peut s'établir des contraintes résiduelles importantes dans la partie ayant subi le traitement, du fait des caractéristiques de dilatation différentes des diverses zones et matériaux qui sont en jeu.
Un problème de fragilité des éléments raidisseurs ainsi ajoutés se pose aussi fréquemment. Lorsque la pièce est sollicitée en flexion ou en torsion, ce sont les parties qui subissent les plus fortes contraintes. Une ténacité minimale pour le métal déposé est nécessaire, ce qui n'est pas toujours le cas avec les structures de solidification obtenues lors de l'utilisation des procédés par addition de métal fondu.
Le but de l'invention est de proposer un procédé de fabrication d'une pièce finale comportant une pièce support et des parties ajoutées au moyen d'un procédé d'addition de métal fondu, par exemple des éléments de renforcement, qui permette de supprimer ou au moins fortement limiter les risques de survenance des problèmes précédemment cités.
A cet effet l'invention a pour objet un procédé de fabrication d'une pièce d'acier finale comportant une pièce support et au moins une partie formée par un procédé d'addition d'un métal d'apport, sous forme de métal fondu, sur une portion de la surface de la pièce support, en formant une zone affectée thermiquement (ZAT) sur la pièce support et une zone fondue entre la ZAT et la partie formée par addition de métal fondu, caractérisé en ce que :
- la pièce support est en un acier au chrome à microstructure martensitique à 70- 100%, de préférence à 90-100%, à l'état trempée ou revenue, le restant de la microstructure étant composé de ferrite, d'austénite et de carbures et/ou carbonitrures, dont la composition, en pourcentages pondéraux, consiste en :
* 0,01 %≤C≤ 1 .5% ;
* 0,01 %≤N≤0.2% ;
* 0,2%≤ Mn≤ 1 ,2% ;
* 0.2≤ Si≤ 1 ,2% ;
* traces≤ Al≤ 0,1 %
* traces≤ S + P≤ 0,05% ;
* 5,0%≤Cr≤ 16,5% ;
* traces≤ Ni≤ 3,5% ;
* traces≤ Mo + W≤ 2,0% ;
* traces≤ Cu≤ 3,0% ;
* traces≤ Ti + Nb + Zr + V + Ta≤ 2% ; * traces≤ Co≤ 0,5% ;
* traces≤ Sn + Pb≤ 0.04%
* traces≤ B≤0.01 % ;
* le reste étant du fer et des impuretés résultant de l'élaboration ;
et répond aux conditions :
A= %Mn + %Ni + %Cu + 30*(%C + %N) - 3*(%Ti + %Nb)≥ 1 .5%
B= %Cr + %Mo + 5*%V + %W + %Si + %AI≥ 9% ;
- en ce que la composition du métal d'apport avant son utilisation consiste en :
* 0,01 %≤C≤ 0.1 % ;
* 0,01 %≤N≤0.2% ;
* 0,2%≤ Mn≤ 2,0% ;
* 0.2≤ Si≤ 1 ,2% ;
* 15,0%≤Cr≤ 19,0% ;
* 6,0%≤ Ni≤ 13,0% ;
* traces≤ Mo + W≤ 3,0% ;
* traces≤ Cu≤ 3,0% ;
* traces≤ Co≤ 0,5% ;
* traces≤ B≤ 0,01 % ;
* traces≤ S + P≤ 0,05% ;
* traces≤ Ti + Nb + Zr + V + Ta≤ 2% ; de préférence traces≤ Ti + Nb + Zr + V +
Ta≤ 1 ,0% ;
* traces≤ Sn + Pb≤ 0.04% ;
* le reste étant du fer et des impuretés résultant de l'élaboration ;
- en ce que la dureté de la ZAT n'est pas inférieure de plus de 20% à celle des parties restantes de la pièce support, et que la teneur en martensite de la ZAT est supérieure ou égale à 70% ;
- et en ce que la zone fondue présente un taux de dilution (%Ni (métal fondu) - %Ni (métal support)) / (%Ni (métal d'apport) - %Ni (métal support)) de 50 à 95% en poids, de préférence de 75 à 85% en poids.
Le procédé d'addition de métal fondu peut consister en une addition de poudre métallique fondue au moyen d'un rayon laser ou d'un faisceau d'électrons.
Le procédé d'addition de métal fondu peut consister en une addition d'un métal fondu issu d'un fil dont la fusion est causée par l'établissement d'un arc électrique entre le fil et la pièce support, ou par un laser ou par un faisceau d'électrons.
L'invention a également pour objet une pièce d'acier finale caractérisée en ce qu'elle a été fabriquée par le procédé précédent, et en ce qu'au moins une des parties formées par un procédé d'addition de métal fondu est un élément de renforcement pour la pièce support.
Comme on l'aura compris, l'invention consiste à combiner la réalisation de la pièce support en un acier martensitique à teneur élevée en Cr (5,0-16,5% ; donc il ne s'agit pas forcément d'un acier inoxydable) et de composition déterminée, et la réalisation des parties ajoutées par addition de métal fondu à l'aide d'un métal consistant en un acier inoxydable de composition initiale (avant son utilisation sous forme de poudre, fil, ruban ou autre dans le procédé de l'invention) également bien déterminée, et qui est, de façon surprenante, très différente de celle du métal constituant la pièce support.
En effet, le métal fondu ajouté est ici, obligatoirement, un acier inoxydable à
15,0-19,0% de Cr, qui contient donc le plus souvent plus de Cr que le métal de la pièce support. Et il contient aussi entre 6,0 et 13,0% de Ni, donc toujours nettement plus que le métal de la pièce support.
Les teneurs en autres éléments que Cr et Ni que doivent avoir les deux aciers utilisés sont également bien définies.
L'invention repose donc avant tout sur un choix particulier du couple de matériaux utilisés, dont on verra en quoi il est avantageux dans le contexte de la fabrication d'une pièce finale par dépôt direct de métal fondu sur une pièce support..
L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes :
La figure 1 qui représente schématiquement le principe d'un procédé d'apport de métal fondu sous forme d'une poudre rendue liquide par un faisceau laser ;
La figure 2 qui représente schématiquement le principe d'un procédé d'apport de métal fondu sous forme d'un fil dont la fusion est réalisée par une torche de soudage ;
La figure 3 qui représente une bride de fixation d'un tube, pourvue de raidisseurs ménagés sur la partie circulaire de la bride et son collet par le procédé selon l'invention ;
La figure 4 qui montre en section transversale selon IV-IV un de ces raidisseurs et sa zone de contact avec la partie circulaire de la bride ;
La figure 5 qui montre les résultats de mesures de dureté Vickers HV1 (norme NF EN ISO 6507 2006, 1 désignant la charge en kgf) effectuées sur la section de la bride et d'un de ses raidisseurs ;
La figure 6 qui montre une micrographie de la zone de raccordement entre la bride et le raidisseur ; La figure 7 qui montre une micrographie d'une partie de cette même zone de raccordement, mettant en évidence la ZAT et la zone fondue ;
La figure 8 qui montre une micrographie de la zone de raccordement entre la bride et le raidisseur, sur laquelle sont reportées les résultats de mesures de dureté Vickers HV0,1 ;
La figure 9 qui montre une micrographie de la zone de raccordement entre la bride et le raidisseur, sur laquelle on a indiqué des points où on a effectué des mesures de dilution du matériau du raidisseur dans le matériau de la bride ;
La figure 10 qui représente un bras de suspension découpé et embouti, sur lequel ont été ajoutés des raidisseurs par le procédé selon l'invention.
La figure 1 représente de façon générale le principe d'une impression 3D sur une pièce support métallique 1 par apport de métal fondu, plus précisément par fusion d'une poudre métallique 2 au moyen d'un laser.
La pièce support 1 , c'est-à-dire la pièce initiale sur laquelle le dépôt doit avoir lieu, est fixe. On projette sur sa surface, par des moyens classiques non représentés, un jet de poudre métallique 2 qui est destinée à constituer le métal d'apport qui formera le dépôt 3 après sa solidification. La source d'alimentation de la poudre 2 est en défilement par rapport à la surface de la pièce support 1 , dans le plan de figure et de la gauche vers la droite dans l'exemple représenté. On projette également sur la surface de la pièce support 1 un rayon laser 4, lui aussi en défilement de façon à accompagner le défilement du jet de poudre 2, et à réaliser une fusion de la poudre 2 déposée sur le métal support dans la zone d'impact du rayon laser 4, de façon à former un puits liquide 5. Le laser provoque aussi une fusion partielle et très superficielle du métal 1 . Le puits liquide, en se solidifiant lorsqu'il n'est plus dans le champ du rayon laser 4 qui s'est déplacé, forme le dépôt 3 dont la composition correspond à celle de la poudre 2 ou en dérive étroitement. Ce point sera examiné en détail plus loin. Sous ce dépôt 3 se trouve, au voisinage de la surface de la pièce support 1 et sur une épaisseur de l'ordre de 300μηι, une Zone Affectée Thermiquement (ZAT) 6 dont la microstructure a été influencée par le contact avec le rayon laser 4 et le puits liquide 5, de façon comparable à ce qui se produit lors d'un soudage par apport de matière, avec une morphologie en couches successives également très proche, qualitativement, de ce qu'on observe lors d'un soudage par apport de matière.
La figure 2 représente de façon générale le principe d'une impression 3D sur une pièce support métallique 1 par apport de métal fondu au moyen d'un fil de soudure 7 ou analogue (ruban par exemple) qui est déroulé en direction de la pièce support 1 à travers une torche de soudage 8, qui est elle-même mise en défilement par rapport à la pièce support 1 dans le plan de figure et de la gauche vers la droite dans l'exemple représenté. Classiquement, une alimentation en courant électrique 9 est reliée d'une part à la pièce support et d'autre part au fil de soudure 7 par l'intermédiaire de la torche 8, dont l'espace intérieur 10 est alimenté par un gaz de protection s'écoulant en direction de la pièce support 1 . Il en résulte la formation d'un arc électrique entre l'extrémité du fil 7 et la pièce support 1 , de sorte que le fil de soudure se liquéfie à son extrémité inférieure 1 1 , et les gouttes de liquide se déposent, en couches superposées (correspondant aux gouttes de liquide se détachant du fil 7 sur la pièce support 1 pour former un puits liquide 12. Celui-ci se solidifie lorsqu'il sort du champ d'action de l'arc électrique et forme, comme dans l'exemple précédent, un dépôt 3 ayant essentiellement la composition du fil de soudure 7. Là encore, le voisinage de la surface de la pièce support 1 présente une ZAT 6 sous le dépôt 3.
En variante, il serait aussi possible d'assurer la fusion du fil de soudure 7, ou d'un ruban de même composition, par un rayon laser ou un faisceau d'électrons.
II est, bien entendu très souhaitable, voire indispensable, que toutes ces opérations soient automatisées au maximum, en particulier pour ce qui concerne la vitesse de défilement des outils en mouvement et le débit massique de leur alimentation en métal d'apport, poudre, fil, ruban ou autre, qui vont déterminer la forme que prendront les éléments de renforcement.
Sur les figures 1 et 2, on a représenté une couche de métal d'apport d'épaisseur constante, mais ce n'est bien sûr pas une généralité, comme on le verra sur d'autres figures.
Ces procédés d'ajout de métal sur une pièce support sont connus dans l'art antérieur, et ne sont exposés ici que pour rappel. En particulier, l'automatisation de des opérations est une pratique habituelle dans la mise en œuvre de ce type de procédés, et la présente invention l'utilise de façon semblable à ce qui est habituellement pratiqué.
D'autres procédés, par exemple faisant usage d'un faisceau d'électrons pour obtenir la fusion du métal d'apport, sont aussi connus à cet effet ou imaginables, et l'invention est indépendante, dans son principe, du choix précis du procédé utilisé.
L'invention repose sur un choix particulièrement avantageux du couple formé par les compositions de la pièce support 1 d'une part, et du métal d'apport d'autre part, que celui-ci soit initialement sous forme de poudre 2, de fil 7 de ruban ou autre.
Il doit être entendu que cette composition du métal d'apport, telle qu'on la définit dans l'invention, est celle qui existe avant son dépôt et sa fusion sur la pièce support 1 , et ne tient donc pas compte des modifications au moins locales que cette composition pourrait subir lors de l'opération, telles qu'une reprise d'oxygène, entraînant la formation d'inclusions oxydées et éventuellement une décarburation, et une reprise d'azote. Ces modifications peuvent se produire en particulier si l'opération n'a pas lieu dans une atmosphère parfaitement inerte vis-à-vis du métal liquide déposé.
Concernant le métal constituant la pièce support 1 , il doit avoir une forte proportion de martensite dans sa structure au moment de la mise en œuvre du procédé. Cette proportion est d'au moins 70%, et de préférence entre 90 et 100%. En effet, cette structure fortement, voire très majoritairement, martensitique, procure à la pièce support 1 des caractéristiques mécaniques élevées, qui font que l'essentiel de la pièce peut être réalisé en un matériau relativement mince, et que ce n'est que localement que son renforcement par des raidisseurs est nécessaire. Le reste de la microstructure, si celle-ci n'est pas 100% martensitique, se compose de ferrite, d'austénite et de carbures et/ou carbonitrures.
De plus, sa température Ms de début de transformation martensitique doit être inférieure ou égale à 500°C et l'augmentation de volume du métal de la pièce support 1 durant cette transformation, à une vitesse de 30°C/s ou davantage, doit être comprise entre 2 et 6%. Cette température Ms et le changement de volume associé sont peu sensibles à la vitesse de refroidissement jusqu'à 2°C/s et le métal 1 est donc qualifié d'autotrempant.
Cette caractéristique est originale en ce que de telles dilatations relativement élevées se produisant lors de la transformation martensitique sont loin d'être une généralité pour les aciers qui auraient été susceptibles d'être utilisés pour la réalisation d'une pièce à hautes caractéristiques mécaniques. Cette forte dilatation est rendue nécessaire, dans le cadre de l'invention, pour compenser la contraction que subira le puits liquide 5, 12 de métal d'apport lors de sa solidification, de façon à assurer la bonne continuité de la matière formant le dépôt 3. La température Ms et la variation de volume associée sont déterminées, de préférence, de façon expérimentale, par exemple par des mesures dilatométriques comme cela est bien connu et décrit dans le Précis de métallurgie de J.Barralis et G.Maeder, AFNOR Nathan ISBN 2-09-194017-8.
L'acier formant la pièce support 1 doit également présenter une forte résistance à l'adoucissement, se traduisant par une faible diffusion des éléments carburigènes et du carbone. Concrètement, la dureté de la ZAT 6 ne sera pas inférieure de plus de 20% à celle des parties restantes de la pièce support 1 qui n'ont pas été influencées par l'apport de métal fondu. On obtient ainsi une homogénéité satisfaisante des propriétés mécaniques, qui ne sont pas trop dégradées dans la ZAT 6 par rapport aux propriétés nominales de la pièce support 1 . La figure 3 représente une bride 13 de fixation d'un tube réalisée par le procédé selon l'invention. Elle se compose d'une tôle préformée par emboutissage pour lui conférer une forme générale circulaire 14, et est pourvue d'un collet 15 entourant un orifice central 16. La partie circulaire 14 et le collet 15 sont réalisés d'une seule pièce lors de la mise en forme.
Le collet 15 est, comme il est connu, renforcé par des raidisseurs 17 (dits aussi « éléments de renforcement ») approximativement en forme de triangle rectangle qui prennent appui sur la paroi externe du collet et sur la face supérieure de la partie circulaire 14 de la bride 13. Comme dans l'exemple représenté, les hypoténuses 18 des triangles rectangles formant les raidisseurs 17 peuvent avoir, en fait, une forme concave, présentant une courbure constante ou variable. Là encore, cette caractéristique est classique pour de telles brides 13 et ne relève pas en elle-même de l'invention.
A titre d'exemple non limitatif, la bride 13 a une épaisseur de 3 mm, sa partie circulaire 14 a un diamètre de 145 mm, l'orifice 16 a un diamètre extérieur de 62 mm, le collet 5 a une épaisseur de 15 mm, les raidisseurs 17 ont une longueur de 22 mm et une épaisseur de 0,7 à 1 mm, et le rayon de courbure de leurs hypoténuses est de 150 mm.
Sur la figure 4, on voit, en section transversale selon la ligne IV-IV de la figure 3, un des raidisseurs 17 et sa zone de contact avec la partie circulaire 14 de la bride 13. Suite à l'apport en métal fondu qui a conduit à la formation du raidisseur 17, on trouve sur ladite partie circulaire 14, en allant de la surface supérieure 19 où se trouve le raidisseur 17 à la surface inférieure 20 et au droit du raidisseur 17 :
Une « zone fondue » 21 qui résulte de la dilution d'une partie du métal fondu 5, 12 dans le métal 1 de la partie circulaire 14 de la bride 13, et présente donc en moyenne une composition intermédiaire entre celles de ces métaux ; - Une ZAT 6 dont la composition nominale est celle du métal de la pièce support, mais à l'intérieur de laquelle on peut éventuellement noter des changements localisés liés à la possible diffusion privilégiée de certains éléments à l'intérieur de la pièce support due à réchauffement subi lors du dépôt de métal fondu, voire, dans sa partie supérieure, à une diffusion résiduelle du métal fondu ; également, la structure métallurgique est modifiée plus ou moins sensiblement par rapport à ce qu'elle était avant le dépôt de métal fondu, du fait de réchauffement lié à ce dépôt ;
Et une zone 22 correspondant au restant de la partie circulaire 14 de la bride 13, qui n'a pas été sensiblement affectée thermiquement et chimiquement par l'opération de dépôt du métal fondu, et a conservé sa composition et sa structure métallurgique initiales. Les inventeurs ont trouvé que selon l'invention, l'acier de la pièce support 1 doit présenter la composition suivante, exprimée en pourcentages pondéraux, couplée à une microstructure au moins fortement martensitique (de 70 à 100% de martensite, mieux, de 90 à 100% de martensite) :
* 0,01 %≤C≤ 1 .5%
* 0,01 %≤N≤0.2%
* 0,2%≤ Mn≤ 1 ,2% ;
* 0.2≤ Si≤ 1 ,2% ;
* traces≤ Al≤ 0,1 %
* traces≤ S + P≤ 0,05% ;
* 5,0%≤ Cr≤ 16,5% ;
* traces≤ Ni≤ 3,5% ;
* traces≤ Mo+W≤ 2,0% ;
* traces≤ Cu ≤ 3,0% ;
* traces≤ Ti + Nb + Zr + V+Ta≤ 2% ;
* traces≤ Co≤ 0,5% ;
* traces≤ Sn + Pb≤0.04% ;
* traces≤ B≤ 0.01 % ;
* le reste étant du fer et des impuretés résultant de l'élaboration.
De plus, cette composition doit répondre aux deux relations A et B suivantes :
A= %Mn + %Ni + %Cu + 30*(%C + %N) - 3*(%Ti + %Nb)≥1.5%
B= %Cr + %Mo + 5*%V + %W + %Si + %AI≥ 9%.
En effet, la satisfaction de la relation A est favorable à l'accomplissement de la transformation martensitique, et la satisfaction de la condition B, de par notamment l'influence de Si et Mo, est favorable à une bonne résistance à l'adoucissement.
La composition de l'acier martensitique utilisé pour le support 1 selon l'invention est justifiée comme suit.
Sa teneur en C est comprise entre 0,01 % et 1 ,5%.
La teneur minimale de 0,01 % est justifiée par la nécessité d'obtenir une austénitisation lorsque le métal est porté à une température au delà de 700°C et des propriétés mécaniques élevées pour la martensite. Au-dessus de 1 ,5%, la mise en œuvre par des procédés classiques serait limitée, et surtout la résilience du support deviendrait insuffisante.
Sa teneur en Mn est comprise entre 0,2 et 1 ,2%. Un minimum de 0,2% est requis pour obtenir l'austénitisation. Au-dessus de 1 ,2% des problèmes d'oxydation sont à craindre lors du dépôt s'il n'est pas effectué sous atmosphère neutre ou réductrice.
Sa teneur en Si est comprise entre 0.2% et 1 ,2%.
Si peut être utilisé comme désoxydant lors de l'élaboration, tout comme Al, auquel il peut s'ajouter ou se substituer. Une quantité minimale de 0,2% est nécessaire car le silicium est un élément limitant l'adoucissement du support 1 lors qu'il est affecté thermiquement. Au-delà de 1 ,2%, on considère qu'il favorise excessivement la formation de ferrite et rend donc plus difficile l'austénitisation et l'obtention d'un acier de structure majoritairement martensitique. En quantité supérieure à 1 ,2%, il fragilise aussi le support.
Sa teneur en S + P est comprise entre des traces et 0,05%, afin de garantir une faible contamination de la zone fondue 5, 12 et donc éviter une fragilité de la zone fondue 5, 12.
Sa teneur en Cr est comprise entre 5,0 et 16,5%. La teneur minimale de 5,0% se justifie pour assurer un caractère autotrempant pour le métal du support 1 . Une teneur supérieure à 16,5% rendrait difficile l'austénitisation et l'obtention d'une structure majoritairement martensitique.
Sa teneur en Ni est comprise entre des traces et 3,5%.
Un ajout de Ni n'est pas indispensable à l'invention. La présence de Ni dans la limite prescrite de 3,5% au maximum peut, cependant, être avantageuse pour favoriser l'austénitisation. Un dépassement de la limite de 3,5% conduirait cependant à une présence trop importante d'austénite résiduelle et à une présence insuffisante de martensite dans la microstructure après le refroidissement. Elle poserait aussi des problèmes de coût.
Sa teneur en Mo + W est comprise entre des traces et 2,0%.
La présence de Mo ou W n'est pas indispensable et Mo peut n'être présent que sous forme de traces résultant de l'élaboration. Cependant Mo limite l'adoucissement de la martensite de la ZAT lors du dépôt. Mo et W sont favorables à une bonne tenue à la corrosion. Au-dessus de 2,0%, l'austénitisation serait gênée et le coût de l'acier inutilement augmenté.
Sa teneur en Cu est comprise entre des traces et 3,0%, de préférence entre des traces et 0,5%.
Ces exigences sur Cu sont classiques pour ce type d'aciers. Dans la pratique, cela veut dire qu'un ajout de Cu n'est pas indispensable et que la présence de cet élément peut n'être due qu'aux matières premières utilisées. Une teneur supérieure à 0,5%, qui correspondrait à un ajout volontaire, peut cependant aider à l'austénitisation. Au delà de 3% des problèmes de fissuration dans la zone fondue peuvent survenir.
Sa teneur en Ti + Nb + Zr + V + Ta est comprise entre des traces et 2%.
Ti est un désoxydant, comme Al et Si, mais son coût et sa moindre efficacité que celle de Al, à quantité ajoutée égale, rend son emploi en général peu intéressant de ce point de vue. Il peut avoir un intérêt en ce que la formation de nitrures et carbonitrures de Ti peut limiter la croissance des grains et influer favorablement sur certaines propriétés mécaniques et la soudabilité. Toutefois, cette formation peut être un inconvénient dans le cas du procédé selon l'invention, car Ti tend à gêner l'austénitisation du fait de la formation de carbures, et les TiN dégradent la résilience. Une teneur maximale de 0,5% est donc à ne pas dépasser.
V et Zr sont aussi des éléments susceptibles de former des nitrures dégradant la résilience. Zr, comme Ti, gêne l'austénitisation et c'est aussi une raison pour limiter sa présence.
Nb et Ta sont des éléments importants pour l'obtention d'une bonne résilience, et
Ta améliore la résistance à la corrosion par piqûre. Mais comme ils peuvent gêner l'austénitisation, ils ne doivent pas être présents dans des quantités dépassant ce que l'on vient de prescrire.
La condition Ti + Nb + Zr + V + Ta comprise entre des traces et 2% est la résultante de toutes ces considérations.
Sa teneur en Al est comprise entre des traces et 0,1 %.
Al est utilisé comme désoxydant lors de l'élaboration. Il ne faut pas qu'après la désoxydation il en subsiste dans l'acier une quantité dépassant 0,1 %, car il y aurait un risque d'avoir des difficultés à obtenir la microstructure martensitique.
Sa teneur en Co est comprise entre des traces et 0,5%. Cet élément est, comme
Cu, susceptible d'aider à l'austénitisation. Mais il est inutile d'en mettre davantage que 0,5%, car l'austénitisation peut être assistée par des moyens moins coûteux.
Sa teneur en Sn + Pb est comprise entre des traces et 0,04%. Ces éléments ne sont pas désirés car ils sont néfastes pour la solidification de la zone fondue.
Sa teneur en B est comprise entre des traces et 0,01 %.
B n'est pas obligatoire, mais sa présence est avantageuse pour la trempabilité. Son addition au-dessus de 0,01 % n'apporte pas d'amélioration supplémentaire significative.
Sa teneur en N est comprise entre 0,01 % et 0,2%. C'est un élément qui aide à l'austénitisation à partir de 0,01 %, mais au-delà de 0,2 % il limiterait la trempabilité. Et, comme on l'a vu et pour les raisons qui ont été dites, les relations A et B doivent aussi être satisfaites.
La satisfaction des conditions sur Ms, la dilatation pendant la transformation martensitique et la dureté de la ZAT 6, dont on a vu qu'elles étaient des éléments importants pour la réussite du procédé selon l'invention, résultent automatiquement du couplage entre la composition et la microstructure telles qu'on les a définies.
Selon l'invention, la composition du métal d'apport 2, 7, appelé à constituer le métal fondu 5, 12 puis les dépôts 3 formant le ou les éléments de renforcement 17, doit répondre à la composition suivante :
* 0,01 %≤C≤ 0.1 % ;
* 0,01 %≤N≤0.2%
* 0,2%≤ Mn≤ 2,0% ;
* 0.2≤ Si≤ 1 ,2% ;
* 15,0%≤Cr≤ 19,0% ;
* 6,0%≤ Ni≤ 13,0% ;
* traces≤ Mo +W≤ 3,0% ;
* traces≤ Cu ≤ 3,0% ;
* traces≤ Co≤ 0,5% ;
* traces≤ B≤ 0,01 % ;
* traces≤ S + P≤ 0,05% ;
* traces≤ Ti + Nb + Zr + V + Ta≤ 2% ; de préférence traces≤ Ti + Nb + Zr + V + Ta≤ 1 ,0% ;
* traces≤ Sn + Pb≤ 0,04% ;
* le reste étant du fer et des impuretés résultant de l'élaboration.
Comme on l'a dit, il s'agit de la composition du métal d'apport 2, 7 sous forme solide (fil, ruban...) ou pulvérulente avant sa fusion et son dépôt sur la pièce support 1 .
Il s'agit d'un acier inoxydable de structure au moins majoritairement austénitique. La condition préférée sur la somme Ti + Nb + Zr + V + Ta aide à garantir qu'on aura cette structure majoritairement austénitique.
Cette composition doit d'abord conduire l'élément de renforcement 17 à remplir correctement son rôle lors de l'utilisation de la pièce finale. Il doit, pour cela, présenter une bonne ductilité se traduisant par un allongement à la rupture d'au moins 15%, de préférence entre 30 et 40%, et une structure métallurgique fine composée essentiellement d'austénite (au moins 80%), le reste étant de la ferrite et/ou des carbonitrures, avec une taille des grains inférieure à 300 μηι, une bonne tenue à la fatigue supérieure à 200 MPa et une bonne résistance K1 c > 50 MPa.m1/2 à la propagation des fissures entre -40°C et +80°C (selon la norme ISO 12135).
Pour des utilisations à des températures plus hautes ou plus basses que ces limites, la composition que l'on vient de citer serait aussi convenable, mais il est préférable que la teneur en C soit comprise entre 0,01 et 0,05% pour les utilisations à basses températures, afin d'avoir une austénite stable et une bonne ductilité de la martensite d'écrouissage éventuellement présente. Pour les utilisations à hautes températures, on privilégie les teneurs en C de 0,04 à 0,1 % pour améliorer la tenue à chaud. Pour les hautes températures, on peut recommander l'acier AISI 321 et l'acier AISI 304H, et pour les basses températures l'acier AISI 316L, l'acier AISI 305 et l'acier AISI 304L, du moins les aciers relevant de ces classes de nuances et qui ont, de plus, leurs compositions précises dans les limites précédemment citées.
De plus, cette composition doit garantir, en conjonction avec le choix du métal support 1 , que la dilution du métal d'apport 2 ou 7 dans le métal support 1 puisse s'effectuer dans des conditions donnant accès aux résultats visés par l'invention, en combinaison avec la structure majoritairement austénitique (au moins 80%) de la zone fondue 21 , La composition selon l'invention répond à ces critères.
La zone fondue 21 , comme on l'a dit, est une zone où les deux métaux ont été soumis à un processus de dilution. Le métal d'apport 2 ou 7 doit y représenter de 50 à 95% en poids, de préférence 75 à 85% en poids.
Le taux de dilution est calculé par la formule suivante :
% Dilution = (%Ni (métal fondu 21 ) - %Ni (Métal support 1 ) ) / (%Ni (métal d'apport 2 ou 7) - %Ni (métal support 1 ))
Typiquement, cette zone fondue 21 s'étend sur une profondeur de 200 μηι environ au droit du raidisseur 17 dans l'exemple représenté.
Le choix de la composition du métal d'apport 2, 7 et du pourcentage de dilution de celui-ci dans le métal de la pièce support 1 , que l'on peut maîtriser notamment par les conditions dans lesquelles s'effectue le dépôt de métal fondu couplées aux caractéristiques particulières de l'installation utilisée et déterminer à l'aide de modèles et d'expériences simples, permet de garantir que la solidification s'effectue dans de bonnes conditions et avec un bon résultat, à savoir une microstructure majoritairement austénitique mais pouvant contenir de la ferrite et/ou de la martensite en moindre quantité (< 20%), donc résiliente, qui garantit que le raidisseur 17 (de manière générale, le dépôt 3) pourra être efficace et ne présentera pas une fragilité excessive au niveau de sa jonction avec la partie circulaire 14 de la bride 13 (et, de manière générale, avec la pièce support 1 ). On ne trouvera ainsi pas de gros grains ferritiques fragiles, pas de fissuration à chaud, pas de phase sigma, et la dureté au niveau de cette jonction est de fait inférieure ou égale à 350 HV1 . Sous cette zone fondue 21 , on trouve la ZAT 6 d'une profondeur de 300μηι dont on a parlé précédemment. Sa composition est nominalement celle de la pièce support 1 avec les réserves que l'on a dites sur une possible diffusion de certains éléments comme le carbone ou l'azote, qui peut entraîner de petites variations locales de composition. Sa dureté Hv1 est cependant généralement diminuée par rapport à la dureté Hv1 du restant de la pièce support 1 , d'un maximum de 20%, mieux d'un maximum de 10%. Ces limites se retrouveraient également si on utilisait d'autres méthodes de mesure de la dureté.
Cette moindre dureté de la ZAT 6 par rapport au restant de la pièce support 1 est due à réchauffement subi par la ZAT 6 lors du dépôt de métal fondu au contact du puits liquide 5, 12. Lorsque la température dans la ZAT 6 dépasse 800°C environ, une partie de la martensite peut se transformer en austénite, et on a donc un adoucissement de la microstructure. Il serait très préjudiciable aux propriétés mécaniques de la ZAT 6 que cet adoucissement persiste, et il faut donc que lors du refroidissement de la ZAT 6, une structure majoritairement martensitique soit restaurée (au moins 70% de martensite), ce pourcentage de martensite étant, de préférence, plus élevé dans la ZAT 6 que dans le restant de la pièce support 1 pour obtenir un état de contraintes résiduelles compressif relativement élevé dans la ZAT 6. Cela peut se faire si la température Ms de début de transformation martensitique du métal de la pièce support 1 est inférieure ou égale à 500°C et supérieure à 100°C. Le résultat est que la ZAT 6 présente effectivement un état de contraintes résiduelles compressif, ce qui est plus favorable aux propriétés mécaniques de l'ensemble bride 13-raidisseur 17.
Le choix d'une nuance austénitique pour constituer le ou les raidisseurs 17, en lien avec la nuance martensitique de la pièce support 1 , est motivé par la présence de la zone fondue 21 où a lieu une diffusion d'un métal dans l'autre. Le fait que l'apport d'un métal liquide se solidifiant en austénite soit réalisé sur un support solide à structure martensitique limite les possibilités de diffusion et garantit que la zone fondue 21 ne sera ni trop étendue, ni trop fragile.
Le procédé de formation des raidisseurs 17 (ou de tout autre forme d'éléments de renforcement) par dépôt de métal fondu permet généralement, de façon avantageuse, de laisser ces éléments de renforcement bruts de solidification, sans qu'une opération d'usinage ou de surfaçage ultérieure soit nécessaire. La bonne satisfaction de cette caractéristique dépend largement de la précision avec laquelle l'opération de dépôt est pilotée par les organes de commande. Mais les appareils connus de dépôt de métal fondu qui ont été décrits précédemment sont déjà tout à fait aptes à obtenir cette précision, et la mise en œuvre de l'invention ne pose pas davantage de problèmes que ceux déjà rencontrés et résolus par l'homme du métier dans l'art antérieur.
La figure 5 montre les résultats de mesures de dureté effectuées sur la section de la bride 13 et d'un raidisseur 17 des figures 3 et 4, telle qu'elle est représentée sur la figure 4. Les matériaux utilisés sont les suivants.
Pour la bride 13, la composition du métal est la suivante :
Figure imgf000018_0001
Figure imgf000018_0002
Avec A = 3,958 et B = 12,923, le reste étant du fer et des impuretés résultant de l'élaboration. La microstructure est 100% martensitique.
Pour le raidisseur 17, la composition du métal est la suivante, le reste étant du fer et des impuretés résultant de l'élaboration :
Figure imgf000018_0003
Figure imgf000018_0004
Sa structure est austénitique à plus de 90%, typiquement 98%, le reste étant de la ferrite delta. La granulométrie de la poudre initiale est comprise entre 45 et 90 μηι.
Le procédé de formation du raidisseur 17 qui a été utilisé est le dépôt de poudre fondue par faisceau laser. Un laser YAG de 600 W avec une protection gazeuse par argon a été utilisé. La vitesse de dépôt est de 500 mm/min.
On a effectué des mesures de la dureté Hv1 à différents endroits, distants de 0.2 mm et répartis sur l'axe de la section longitudinale du raidisseur 17, sur la hauteur de la partie circulaire 14 de la bride 13 dans le prolongement de l'axe du raidisseur 17, et jusqu'à 2 mm sous la surface de la partie circulaire 14 de la bride 13 de part et d'autre du raidisseur 17, dont une dans la zone fondue 21 et trois dans la ZAT 6. On a aussi effectué des mesures sur l'épaisseur de la bride, au voisinage de sa périphérie. La figure 5 montre les lieux de mesure de la dureté Hv1 et les duretés qui y ont été mesurées. Il s'avère que le métal constituant la partie circulaire 14 de la bride 13 présente une dureté moyenne de 386 Hv1 . Cette dureté peut présenter une certaine dispersion, comme il est habituel. La dureté mesurée dans la ZAT 6 n'est qu'un peu en-dessous de cette moyenne.
Le métal constituant le raidisseur 17 présente une dureté relativement homogène, entre 158 et 192 Hv1 , la valeur la plus élevée étant mesurée vers la base du raidisseur.
La dureté mesurée dans la zone fondue 21 est de 208 Hv1 , donc un peu supérieure à la dureté du raidisseur 17, ce qui tend à confirmer que la zone fondue 21 résulte de la diffusion du métal d'apport dans le métal de la pièce support, et que la proportion du métal d'apport y est majoritaire, dans le cas présent même très majoritaire comme cela est préféré pour une bonne solidarisation du raidisseur 17 et de la partie circulaire 14 de la bride 13.
Les figures 6 et 7 (celle-ci étant une partie grossie de la figure 6) présentent une micrographie de la partie inférieure du raidisseur 17 et de sa zone de raccordement avec la partie circulaire 14 de la bride 13, après une attaque chimique.
On y distingue que le raidisseur 17 est composé d'une superposition de couches de métal initialement fondu, d'épaisseur de 300-400 μηι environ chacune, et qui s'interpénétrent sur environ 50% de leur épaisseur. Cette interpénétration forte garantit que le raidisseur 17 ne sera pas particulièrement sujet à une rupture au niveau d'une interface entre couches. A noter que dans le cas où on utiliserait non pas une formation du raidisseur 17 par dépôt de poudre fondue par laser, mais par un procédé d'apport de métal fondu par un fil 7 ou un ruban et une torche 8, on retrouverait une telle superposition de couches, mais sur une épaisseur pouvant être plus importante, de l'ordre de 1 mm.
On distingue également bien la zone fondue 21 et la ZAT 6 dont l'épaisseur est de 350 μηι environ et qui entoure la zone fondue 21 sur toute la périphérie de celle-ci, y compris jusqu'à la surface de la partie circulaire 14 de la bride 13.
La figure 8 est un autre agrandissement d'une portion de la figure 6, et montre les résultats de mesures de la dureté Hv 0,1 (et non de la dureté Hv1 comme sur la figure 5, comme les points de mesure sont, ici, plus rapprochés et que dans ce cas, conformément à la norme ISO 6705, on diminue la charge imposée), effectuées sur l'axe longitudinal du raidisseur 17 dans son extrême partie inférieure, et, dans le prolongement de cet axe, sur la zone fondue 21 , la ZAT 6 de la partie circulaire 14 de la bride 13 et une portion de la partie circulaire 14 de la bride 13 non affectée par la chaleur dégagée lors du dépôt du métal du raidisseur 17. Les points de mesure sont distants de 100 μηι. On observe des résultats qui, qualitativement, confirment ceux de la figure 5 en les affinant. On voit qu'à l'extrémité basse de la zone fondue, on a une dureté de 250 Hv0,1 , contre environ 200 Hv0,1 dans le raidisseur 17 et la partie haute de la zone fondue, suite à la dilution du métal d'apport dans la pièce support. Puis, lorsqu'on traverse 5 la ZAT où il n'y a pas eu de dilution significative du métal d'apport dans le métal de la bride 13, la dureté augmente progressivement, mais il s'avère que la dureté de la ZAT n'est pas inférieure de plus de 20% à la dureté la plus élevée mesurée dans la partie circulaire 14 de la bride 13, à des profondeurs situées hors de la ZAT.
La dilution des matériaux l'un dans l'autre a également été mesurée dans ce 0 même exemple de mise en œuvre de l'invention. La figure 6 montre les lieux où des analyses quantitatives de la composition chimique par microscopie électronique à balayage ont été effectuées. Les points dits « spectre 9, 10, 1 1 » sont situés sur le raidisseur 17 et sont représentatifs de sa composition nominale. Les points dits « spectre 15, 16, 17 sont situés dans la partie circulaire 14 de la bride 13, et dans une zone non 5 affectée chimiquement et thermiquement par l'addition de métal fondu, et ils sont représentatifs de la composition nominale de la bride 13. Les points dits « spectre 12, 13, 14 » sont situés à l'extrémité inférieure de la zone fondue 21 , et on peut en déduire la dilution des matériaux l'un dans l'autre en comparant les mesures qui y sont réalisées avec les compositions nominales de la bride 13 et du raidisseur 17 déterminées par les 0 autres mesures, en appliquant à cet effet la formule vue précédemment.
Les résultats de ces analyses sont reportés dans le tableau 1 suivant. On n'y a reporté que les teneurs en éléments principaux des éléments Cr, Ni et Mo pour apprécier la variation de la composition chimique dans les différentes zones du matériau de la bride 13 jusqu'au matériau du raidisseur 17.
5 La dilution du Ni telle que définie plus haut est prise comme référence du fait que la teneur en Ni est toujours franchement différente dans les deux métaux en jeu, est de 78%. Les dilutions des autres éléments ne sont d'ailleurs, en fait, pas très différentes de celle du Ni, qui apparaît donc comme tout à fait représentative du phénomène de dilution en général.
0
Raidisseur Zone fondue Bride
Spectre Spectre Spectre Moyenne Spectre Spectre Spectre Moyenne Spectre Spectre Spectre Moyenne Dilution 9 10 11 12 13 14 15 16 17
Cr% 16,77 1 ,54 17,90 17,40 16,94 17,09 15,71 16,58 11,65 11 ,23 11 ,66 11 ,51 86%
Ni% 12,34 12,72 13,64 12,90 10,21 10,08 10,32 10,20 0,11 0,56 0,60 0,42 78%
Mo% 2,55 2,67 2,37 2,53 1 ,88 2,13 1 ,96 1 ,99 0,14 0,62 traces 0,25 76% Tableau 1 : compositions du métal mesurées sur le raidisseur et la bride selon la figure 9, et dilution de la bride dans le raidisseur
On va à présent décrire un essai de référence, dans lequel on a utilisé pour c la partie circulaire 14 de la bride 13 un acier de la composition suivante, non conforme à l'invention :
Figure imgf000021_0001
Figure imgf000021_0002
Le métal est de structure martensitique à 100% d'une dureté 475 HV1 mais ne respecte pas la condition B puisque A = 8,1 % et B = 0,5%.
Pour le raidisseur 17 : la composition et la structure de la poudre sont identiques et les conditions de dépôts similaires à ce qui a été décrit pour l'essai selon l'invention.
La dureté dans la ZAT 6 chute de 32% à 325Hv1 soit une chute supérieure au maximum de 20% qui est typique de l'invention, la microstructure n'est plus suffisamment martensitique (60%) et s'est adoucie par formation de bainite/ferrite/perlite. La transformation martensitique n'a pas compensé le retrait de la zone fondue. La zone fondue est majoritairement austénitique avec un peu de martensite et montre une dilution du Ni très proche de 80%, ce qui prouve que la condition d'une dilution du Ni de 50 à 95% n'est pas une condition suffisante pour l'obtention des bons résultats représentatifs de l'invention. La ZAT présente donc une résistance mécanique trop faible du fait d'une mise en compression insuffisante de la base du raidisseur 17. Par ailleurs, la martensite de la zone fondue est d'un type fragile car riche en C et il y a la possibilité d'une solidification en phase austénitique primaire de la zone fondue, d'où des risques de fissuration à chaud.
L'exemple de mise en œuvre de l'invention qui a été présenté, relatif à une bride de fixation d'un tube n'est qu'un exemple simple et non limitatif. La figure 10 représente un bras de suspension 22 fabriqué à partir d'une préforme découpée et emboutie 23, et auquel on a jouté des raidisseurs 24, 25, 26 (et d'autres non référencés sur la figure 10) par le procédé selon l'invention.
De manière générale, l'invention peut trouver une application dans le domaine de la fabrication de pièces de structure, notamment dans des véhicules terrestres et des aéronefs, du fait qu'il est facilement possible, grâce à elle, de réaliser des pièces de différentes propriétés de résistance et optimisées en poids à partir d'une même pièce support, rien qu'en modulant la morphologie des éléments de renforcement ajoutés par le procédé selon l'invention.

Claims

REVENDICATIONS
1 .- Procédé de fabrication d'une pièce d'acier finale comportant une pièce d'acier support (1 ) et au moins une partie (17) formée par un procédé d'addition d'un métal d'apport (2 ; 7), sous forme de métal fondu (5 ; 12), sur une portion de la surface de la pièce support (1 ), en formant une zone affectée thermiquement (ZAT) (6) sur l'acier support (1 ) et une zone fondue (21 ) entre la ZAT (6) et la partie (17) formée par addition de métal fondu (5 ; 12), caractérisé en ce que :
- la pièce support (1 ) est en un acier au chrome à microstructure martensitique à 70-100%, de préférence à 90-100%, à l'état trempée ou revenue, le restant de la microstructure étant composé de ferrite, d'austénite et de carbures et/ou carbonitrures, dont la composition, en pourcentages pondéraux, consiste en :
* 0,01 %≤C≤ 1 .5% ;
* 0,01 %≤N≤0.2% ;
* 0,2%≤ Mn≤ 1 ,2% ;
* 0.2≤ Si≤ 1 ,2% ;
* traces≤ Al≤ 0,1 % ;
* traces≤ S + P≤ 0,05% ;
* 5,0%≤Cr≤ 16,5% ;
* traces≤ Ni≤ 3,5% ;
* traces≤ Mo + W≤ 2,0% ;
* traces≤ Cu≤ 3,0% ;
* traces≤ Ti + Nb + Zr + V + Ta≤ 2% ;
* traces≤ Co≤ 0,5% ;
* traces≤ Sn + Pb≤ 0.04% ;
* traces≤ B≤0.01 % ;
* le reste étant du fer et des impuretés résultant de l'élaboration ;
et répond aux conditions :
A= %Mn + %Ni + %Cu + 30*(%C + %N) - 3*(%Ti + %Nb)≥ 1 .5%
B= %Cr + %Mo + 5*%V + %W + %Si + %AI≥ 9% ;
- en ce que la composition du métal d'apport (2 ; 7) avant son utilisation consiste en :
* 0,01 %≤C≤ 0.1 % ;
* 0,01 %≤N≤0.2% ;
* 0,2%≤ Mn≤ 2,0% ;
* 0.2≤ Si≤ 1 ,2% ; * 15,0%≤Cr≤ 19,0% ;
* 6,0%≤ Ni≤ 13,0% ;
* traces≤ Mo + W≤ 3,0% ;
* traces≤ Cu≤ 3,0% ;
* traces≤ Co≤ 0,5% ;
* traces≤B≤0,01 % ;
* traces≤ S + P≤ 0,05% ;
* traces≤ Ti + Nb + Zr + V + Ta≤ 2% ; de préférence traces≤ Ti + Nb + Zr + V + Ta≤ 1 ,0% ;
* traces≤ Sn + Pb≤ 0.04% ;
* le reste étant du fer et des impuretés résultant de l'élaboration ;
- en ce que la dureté de la ZAT (6) n'est pas inférieure de plus de 20% à celle des parties restantes de la pièce support (1 ), et que la teneur en martensite de la ZAT (6) est supérieure ou égale à 70% ;
- et en ce que la zone fondue (21 ) présente un taux de dilution (%Ni (métal fondu 21 ) - %Ni (Métal support 1 )) / (%Ni (métal d'apport 2 ou 7) - %Ni (métal support 1 )) de 50 à 95% en poids, de préférence de 75 à 85% en poids.
2. - Procédé selon la revendication 1 , caractérisé en ce que le procédé d'addition de métal fondu (5) consiste en une addition de poudre métallique (2) fondue au moyen d'un rayon laser (4) ou d'un faisceau d'électrons.
3. - Procédé selon la revendication 1 , caractérisé en ce que le procédé d'addition de métal fondu consiste en une addition d'un métal fondu (12) issu d'un fil (7) dont la fusion est causée par l'établissement d'un arc électrique entre le fil (7) et la pièce support (1 ), ou par un laser ou par un faisceau d'électrons.
4.- Pièce d'acier finale caractérisée en ce qu'elle a été fabriquée par le procédé selon l'une des revendications 1 à 3, et en ce qu'au moins une des parties formées par un procédé d'addition de métal fondu (5 ; 12) est un élément de renforcement (17 ; 24, 25, 26) pour la pièce support (1 ; 22).
PCT/IB2016/054686 2016-08-03 2016-08-03 Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue WO2018025063A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/IB2016/054686 WO2018025063A1 (fr) 2016-08-03 2016-08-03 Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue
CA3032268A CA3032268A1 (fr) 2016-08-03 2016-08-03 Procede de fabrication d'une piece d'acier comportant l'addition d'un metal fondu sur une piece support, et piece ainsi obtenue
CN201680088331.2A CN109563602A (zh) 2016-08-03 2016-08-03 包括在支撑部上添加熔融金属的制造钢零件的方法及由此获得的零件
JP2019505413A JP2019532816A (ja) 2016-08-03 2016-08-03 支持部品上への溶融金属を追加することを含む鋼製部品の製造方法、及び、これにより得られた部品
MX2019001258A MX2019001258A (es) 2016-08-03 2016-08-03 Metodo de fabricacion de parte de acero que incluye la adicion de metal fundido a una parte de soporte y parte obtenida de esta manera.
RU2019102734A RU2019102734A (ru) 2016-08-03 2016-08-03 Способ изготовления стальной детали, включающий добавление расплавленного металла на опорную деталь, и деталь, полученная таким образом
KR1020197003535A KR20190034222A (ko) 2016-08-03 2016-08-03 지지부 상에 용탕을 첨가하는 것을 포함하는 강 부품의 제조 방법 및 그에 따라 얻어진 부품
BR112019001807-7A BR112019001807A2 (pt) 2016-08-03 2016-08-03 método para a fabricação de uma peça de aço final e peça de aço final
EP16757349.2A EP3494242A1 (fr) 2016-08-03 2016-08-03 Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue
US16/321,741 US20190160602A1 (en) 2016-08-03 2016-08-03 Method for manufacturing a steel part, including the addition of a molten metal to a supporting part, and part thus obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/054686 WO2018025063A1 (fr) 2016-08-03 2016-08-03 Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue

Publications (1)

Publication Number Publication Date
WO2018025063A1 true WO2018025063A1 (fr) 2018-02-08

Family

ID=56801651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/054686 WO2018025063A1 (fr) 2016-08-03 2016-08-03 Procédé de fabrication d'une pièce d'acier comportant l'addition d'un métal fondu sur une pièce support, et pièce ainsi obtenue

Country Status (10)

Country Link
US (1) US20190160602A1 (fr)
EP (1) EP3494242A1 (fr)
JP (1) JP2019532816A (fr)
KR (1) KR20190034222A (fr)
CN (1) CN109563602A (fr)
BR (1) BR112019001807A2 (fr)
CA (1) CA3032268A1 (fr)
MX (1) MX2019001258A (fr)
RU (1) RU2019102734A (fr)
WO (1) WO2018025063A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108356263A (zh) * 2018-04-28 2018-08-03 苏州大学 激光增材制造用新型马氏体耐热钢合金粉末及其制备方法
JP2020164882A (ja) * 2019-03-28 2020-10-08 日鉄ステンレス株式会社 金属3dプリンタによる溶着積層造形用の金属ワイヤ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017005779T5 (de) * 2016-11-16 2019-12-12 Sumitomo Electric Industries, Ltd. Litze für einen Kabelbaum und Kabelbaum
US11471943B2 (en) * 2020-12-16 2022-10-18 Mtc Powder Solutions Ab Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment
US11919086B2 (en) 2020-12-16 2024-03-05 Schlumberger Technology Corporation Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment
CN116024501B (zh) * 2022-12-15 2024-08-06 广东省科学院新材料研究所 高速钢及其制备方法和应用
CN116445824B (zh) * 2023-04-04 2024-09-06 湖南瑞华新材料有限公司 一种合金粉末及其在提高带钢夹送辊服役寿命方面的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521946A (zh) * 2013-11-02 2014-01-22 丹阳市华龙特钢有限公司 一种高强度奥氏体不锈钢埋弧焊焊丝

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550288A (ja) * 1991-08-22 1993-03-02 Nippon Steel Corp クリープ破断強度及び耐脆化性の優れたオーステナイト系ステンレス鋼溶接材料
DE4447514C2 (de) * 1994-01-14 1996-07-25 Castolin Sa Verfahren zur Herstellung eines Hilfsmittels zum thermischen Spritzen und seine Verwendung als Pulverfüllung von Fülldraht
JPH09227934A (ja) * 1996-02-20 1997-09-02 Nippon Steel Corp 低温靭性の優れたマルテンサイト系ステンレス鋼の製造方法
JPH09327721A (ja) * 1996-06-11 1997-12-22 Nkk Corp 溶接性に優れたマルテンサイト系ステンレス溶接鋼管の製造方法
JPH10156500A (ja) * 1996-11-29 1998-06-16 Nippon Steel Hardfacing Co Ltd 耐熱亀裂性連続鋳造用肉盛ロール
JPH11347761A (ja) * 1998-06-12 1999-12-21 Mitsubishi Heavy Ind Ltd レーザによる3次元造形装置
JP2000102891A (ja) * 1998-09-30 2000-04-11 Toyo Eng Corp オーステナイト系ステンレス鋼溶接材料
JP2001073036A (ja) * 1999-09-07 2001-03-21 Nkk Corp マルテンサイト系ステンレス熱延鋼板の製造方法
US8961869B2 (en) * 2005-01-24 2015-02-24 Lincoln Global, Inc. Hardfacing alloy
FR2933990B1 (fr) * 2008-07-15 2010-08-13 Aubert & Duval Sa Acier martensitique durci a teneur faible en cobalt, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
CN101704168B (zh) * 2009-09-24 2012-01-18 江苏大学 一种耐空泡腐蚀的表面堆焊焊接材料
KR101433700B1 (ko) * 2010-03-12 2014-08-25 미쉐린 러쉐르슈 에 떼크니크 에스.에이. 연속 루프 보강조립체를 가지는 구조적 지지, 비-공압 휠
JP2013244498A (ja) * 2012-05-24 2013-12-09 Toshiba Corp 溶接装置および溶接方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521946A (zh) * 2013-11-02 2014-01-22 丹阳市华龙特钢有限公司 一种高强度奥氏体不锈钢埋弧焊焊丝

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BERRETTA ET AL: "Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels", OPTICS AND LASERS IN ENGINEERING, ELSEVIER, AMSTERDAM, NL, vol. 45, no. 9, 4 July 2007 (2007-07-04), pages 960 - 966, XP022142144, ISSN: 0143-8166, DOI: 10.1016/J.OPTLASENG.2007.02.001 *
KAI G., YEMIN W., MING G., XIAOYAN Z.: "Effects of Processing Paramters on Tensile Properties of Selective Laser Melted 304 Stainless Steel", MATERIALS AND DESIGN, vol. 50, 2 September 2013 (2013-09-02), pages 581 - 586, XP002768891 *
KURT B ET AL: "The effect of austenitic interface layer on microstructure of AISI 420 martensitic stainless steel joined by keyhole PTA welding process", MATERIALS AND DESIGN, LONDON, GB, vol. 30, no. 3, 1 March 2009 (2009-03-01), pages 661 - 664, XP025761670, ISSN: 0261-3069, [retrieved on 20080522], DOI: 10.1016/J.MATDES.2008.05.027 *
RAMAZAN KAÇAR ET AL: "An investigation of microstructure/property relationships in dissimilar welds between martensitic and austenitic stainless steels", MATERIALS AND DESIGN, vol. 25, no. 4, 21 January 2004 (2004-01-21), GB, pages 317 - 329, XP055361648, ISSN: 0261-3069, DOI: 10.1016/j.matdes.2003.10.010 *
SUN ZHONGJI ET AL: "Selective laser melting of stainless steel 316L with low porosity and high build rates", MATERIALS & DESIGN, ELSEVIER, AMSTERDAM, NL, vol. 104, 13 May 2016 (2016-05-13), pages 197 - 204, XP029571258, ISSN: 0264-1275, DOI: 10.1016/J.MATDES.2016.05.035 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108356263A (zh) * 2018-04-28 2018-08-03 苏州大学 激光增材制造用新型马氏体耐热钢合金粉末及其制备方法
CN108356263B (zh) * 2018-04-28 2019-09-24 苏州大学 激光增材制造用新型马氏体耐热钢合金粉末及其制备方法
JP2020164882A (ja) * 2019-03-28 2020-10-08 日鉄ステンレス株式会社 金属3dプリンタによる溶着積層造形用の金属ワイヤ
JP7305399B2 (ja) 2019-03-28 2023-07-10 日鉄ステンレス株式会社 金属3dプリンタによる溶着積層造形用の金属ワイヤ

Also Published As

Publication number Publication date
BR112019001807A2 (pt) 2019-05-07
RU2019102734A3 (fr) 2020-07-31
MX2019001258A (es) 2019-07-04
US20190160602A1 (en) 2019-05-30
JP2019532816A (ja) 2019-11-14
EP3494242A1 (fr) 2019-06-12
CA3032268A1 (fr) 2018-02-08
RU2019102734A (ru) 2020-07-31
CN109563602A (zh) 2019-04-02
KR20190034222A (ko) 2019-04-01

Similar Documents

Publication Publication Date Title
WO2018025063A1 (fr) Procédé de fabrication d&#39;une pièce d&#39;acier comportant l&#39;addition d&#39;un métal fondu sur une pièce support, et pièce ainsi obtenue
CA2442299C (fr) Acier et tube en acier pour usage a haute temperature
CA3022115A1 (fr) Procede de fabrication d&#39;une piece en acier inoxydable martensitique a partir d&#39;une tole
EP1767659A1 (fr) Procédé de fabrication d&#39;une pièce en acier de microstructure multi-phasée
FR2896514A1 (fr) Acier martensitique inoxydable et procede de fabrication d&#39;une piece en cet acier, telle qu&#39;une soupape.
CA2572869A1 (fr) Objet comprenant une partie en acier de construction metallique, cette partie comportant une zone soudee a l&#39;aide d&#39;un faisceau a haute densite d&#39;energie et presentant une excellente tenacite dans la zone fondue ; metode de fabrication de cet objet
태욱박 et al. Changes in the mechanical properties and microstructure of high manganese steel by high heat input welding and general welding processes
EP0715922A1 (fr) Procédé de soudage par fusion de pièces de fonte à graphite sphéroidal
CN104511702A (zh) 用于焊接超级合金的焊接材料
JP4082464B2 (ja) 高強度高靭性大径溶接鋼管の製造方法
JP6690786B1 (ja) ソリッドワイヤ及び溶接継手の製造方法
EP0511040B1 (fr) Procédé de raccordement d&#39;une pièce en acier au manganèse à une autre pièce en acier au carbone et assemblage ainsi obtenu
EP2951328B1 (fr) Fil de soudure pour alliage fe-36ni
JP4513466B2 (ja) 溶接継手および溶接材料
JP6840383B2 (ja) 溶接部の改質方法
US20220063019A1 (en) Improvements in the welding of pipes
EP1885900B1 (fr) Acier pour coques de sous-marins a soudabilite renforcee
Das et al. Recent Developments in Cladding and Coating Using Cold Metal Transfer Technology
JP6201534B2 (ja) 浸炭部品用鋼
EP4237188A1 (fr) Alliage a base de nickel pour la fabrication de tubes de pipeline
EP4444489A1 (fr) Poudre métallique pour un procédé de fabrication additive sur lit de poudre
Lee et al. A Study on the Applicability of A-TIG Welding of Semi-Automatic Cold Wire Feeding Process for Cryogenic Stainless Steel Pipes
WO2023227929A1 (fr) Alliage pour la fabrication d&#39;outillages destinés à la fabrication de pièces aéronautiques réalisées en matériau composite
JP2021178995A (ja) ステンレス鋼管および溶接継手
JPH11138294A (ja) コバルト基合金溶接棒およびガス肉盛り溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3032268

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197003535

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019505413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001807

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016757349

Country of ref document: EP

Effective date: 20190304

ENP Entry into the national phase

Ref document number: 112019001807

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190129