WO2018024014A1 - 一种Ce掺杂YAG发光陶瓷的制备方法 - Google Patents

一种Ce掺杂YAG发光陶瓷的制备方法 Download PDF

Info

Publication number
WO2018024014A1
WO2018024014A1 PCT/CN2017/084843 CN2017084843W WO2018024014A1 WO 2018024014 A1 WO2018024014 A1 WO 2018024014A1 CN 2017084843 W CN2017084843 W CN 2017084843W WO 2018024014 A1 WO2018024014 A1 WO 2018024014A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium oxide
cerium
composite powder
coated
solution
Prior art date
Application number
PCT/CN2017/084843
Other languages
English (en)
French (fr)
Inventor
陈雨叁
李乾
许颜正
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2018024014A1 publication Critical patent/WO2018024014A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof

Definitions

  • the invention relates to the technical field of YAG luminescent ceramics, in particular to a preparation method of a Ce-doped YAG luminescent ceramic based on a coated yttria-yttria composite powder.
  • Ce-doped YAG luminescent ceramics whose structural properties are the lattice positions of yttrium-substituted partial ruthenium.
  • the preparation method of Ce-doped YAG luminescent ceramics generally adopts a solid phase method.
  • the incorporation of cerium (Ce) is a key point and is generally incorporated in the form of cerium oxide. Because of the small amount of incorporation, it is difficult to uniformly disperse the mixture between the solid phases.
  • Ce-doped YAG in the solidification reaction there are many problems such as defects and incomplete reaction.
  • the key is to improve the uniformity of yttrium doping, improve the dispersion of yttrium in solid phase mixing, and improve the phase purity of luminescent ceramics.
  • An effective method is to add cesium to the raw material formulation in the form of a liquid phase.
  • the conventional coprecipitation method is to prepare a Ce-doped YAG precursor powder by mixing together the nitrates of lanthanum, cerium and aluminum in a liquid phase.
  • the preparation process is complicated, the cycle is long, and the waste acid and alkali salt solution is more, resulting in serious environmental pollution. Corrosive.
  • the invention provides a preparation method of a Ce-doped YAG luminescent ceramic based on a coated yttria-yttria composite powder, which has a simple process and requires only a small amount of an acid-base salt solution to be environmentally friendly.
  • a method for preparing a Ce-doped YAG luminescent ceramic comprising:
  • (1) preparing a cerium oxide-cerium oxide composite powder a cerium oxide nano powder and a soluble cerium salt solution are reacted in the presence of a precipitating agent to form a precursor of the coated cerium oxide-cerium oxide composite powder, which is calcined a coated cerium oxide-cerium oxide composite powder coated with cerium oxide on the surface of the cerium oxide nano powder;
  • the first scheme is carried out in the presence of a precipitating agent, and the specific steps thereof include:
  • (d) Calcination precursor The precursor of the coated cerium oxide-cerium oxide composite powder is calcined to obtain a coated cerium oxide-cerium oxide composite powder.
  • the above-mentioned cerium oxide nanopowder and the above-mentioned soluble cerium salt are disposed in accordance with the ratio (1-x)/x of the mass of the cerium to the amount of the cerium material, wherein 0 ⁇ x ⁇ 0.1.
  • the first precipitating agent is a soluble hydrogencarbonate.
  • the first precipitating agent is NH 4 HCO 3
  • the concentration of the solution is 0.01-2 mol/L.
  • the second scheme is carried out in the presence of a precipitant, the specific steps of which include:
  • sol-gel coating a second precipitating agent is added dropwise to the suspension and uniformly dispersed to obtain a mixed suspension, which is washed and dried, and then ground to obtain a coated cerium oxide-cerium oxide composite powder.
  • (d) Calcination precursor The precursor of the coated cerium oxide-cerium oxide composite powder is calcined to obtain a coated cerium oxide-cerium oxide composite powder.
  • the above-mentioned cerium oxide nanopowder and the above-mentioned soluble cerium salt are disposed in accordance with the ratio (1-x)/x of the mass of the cerium to the amount of the cerium material, wherein 0 ⁇ x ⁇ 0.1.
  • the above second precipitating agent includes hydrogen peroxide and an aqueous ammonia solution.
  • the concentration of the above hydrogen peroxide is 0.1 to 1 mol/L
  • the concentration of the aqueous ammonia solution is 0.1 to 1 mol/L.
  • the compound of the above aluminum includes at least one of alumina, aluminum hydroxide, aluminum nitrate, aluminum sulfate, and aluminum carbonate.
  • the present invention pretreats the cerium oxide powder in the YAG raw material powder by a liquid phase method, coats the cerium oxide on the surface of the cerium oxide powder, and obtains a coated cerium oxide by baking.
  • the cerium oxide composite powder material is mixed with the alumina powder, and a series of processing processes are performed to obtain a Ce-doped YAG luminescent ceramic.
  • cerium and cerium oxide can contact each other sufficiently uniformly, thereby improving the dispersion property of cerium in the solid phase mixing and improving the enthalpy of entering the cerium.
  • the reaction efficiency in the crystal lattice, thereby improving the phase purity of the luminescent ceramic, and the preparation method has the advantages of simple process, shortened production cycle, reduced cost, suitable for mass production, improved production efficiency, and only need to prepare a precipitant in proportion during the preparation process.
  • Etc. a large amount of salt solution and acid-base solution are not required, so that the environment is not polluted and the problem of corrosion equipment does not occur.
  • FIG. 1 is a schematic flow chart of a process in an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a process flow in another embodiment of the present invention.
  • the preparation method of the cerium oxide-cerium oxide composite powder adopts the overall idea of the liquid phase method.
  • the first scheme principle is that the first precipitant reacts with the cerium salt to form a precipitate, and the cerium salt precipitate adheres to the cerium oxide nano powder, and after calcination, it is decomposed into cerium oxide to achieve a coating effect.
  • the specific steps are as follows:
  • Pretreatment of cerium oxide The cerium oxide nanopowder is ultrasonically cleaned by anhydrous ethanol, ultrasonically cleaned with low concentration alkali solution, washed with deionized water several times, and dried for use. In the ultrasonic cleaning of the low concentration alkali solution, a NaOH solution or other alkali solution may be used.
  • unpretreated cerium oxide can also be used in the present invention, the inventors have noted that pretreated cerium oxide can achieve better results. This is because, by ultrasonic cleaning, especially the cleaning of NaOH solution or other alkaline solution, the oxide impurities on the surface of the cerium oxide nanopowder are removed, and the surface activity of the cerium oxide nanopowder is enhanced, regardless of the coating effect. The dispersion effect is better.
  • Preparing a suspension weigh a predetermined amount of NH 4 HCO 3 into deionized water, prepare a solution of NH 4 HCO 3 with a concentration of 0.01-2 mol/L, and then add a predetermined amount of cerium oxide nanopowder to the machine. After stirring for a period of time, ultrasonic dispersion is carried out for a while to obtain a uniform cerium oxide nanopowder suspension. Among them, the order of ultrasonic dispersion and mechanical agitation dispersion can be exchanged.
  • the NH 4 HCO 3 solution is used as the first precipitating agent.
  • the first precipitating agent may be other soluble bicarbonate. The first precipitant works on the principle that the bicarbonate in the first precipitant reacts with the phosphonium salt to form a bicarbonate precipitate.
  • Formulating a soluble cerium salt solution according to the chemical formula 3(1-x)/2Y 2 O 3 +2.5Al 2 O 3 +3xCeO 2 ⁇ (Y 1-x Ce x ) 3 Al 5 O 12 , where 0 ⁇ x ⁇ 0.1
  • the Y/Ce molar ratio was obtained as (1-x)/x, where 0 ⁇ x ⁇ 0.1.
  • Precipitation coating pour the suspension into a round bottom flask, place it in a water bath in a constant temperature water bath (for example, thermostat 60-80 ° C, etc., preferably 60 ° C), mechanically stir at a certain speed, and use a peristaltic pump to remove the strontium salt.
  • the solution is slowly added dropwise to the suspension at a certain dropping rate. After the dropwise addition is completed, stirring is continued for a while, then the stirring is stopped, and after a certain period of time, a mixed solution is obtained.
  • the mixed solution was washed with suction and washed several times, and dried with anhydrous ethanol for several times, and then placed in an oven for drying for a certain period of time to obtain a precursor of the coated cerium oxide-cerium oxide composite powder.
  • Calcination precursor The precursor of the coated cerium oxide-cerium oxide composite powder is calcined in a muffle furnace at a certain temperature for several hours to obtain a pale yellow coated cerium oxide-cerium oxide composite powder.
  • the Ce-doped YAG luminescent ceramic can be further prepared as follows.
  • Ball milling mixture The molar amount of Al is obtained according to the molar ratio of Ce/Al or Y/Al in the above chemical formula, and the mass of the desired aluminum compound is calculated.
  • the aluminum compound may be alumina, aluminum hydroxide, aluminum nitrate, At least one of aluminum sulfate and aluminum carbonate, the aluminum compound can obtain alumina at a high temperature, for example, aluminum hydroxide can obtain alumina and water at a high temperature.
  • the compound of cerium oxide-cerium oxide composite powder and aluminum was added to a ball mill tank, and Al 2 O 3 balls or ZrO 2 balls which were several times the mass of the total powder were added, and ethanol was added thereto, followed by ball milling for several hours.
  • Preparation of ceramics ball-milled mixed powder, after sintering pretreatment and sintering, can obtain Ce-doped YAG luminescent ceramics.
  • the sintering pretreatment includes the steps of sequentially drying-calcining-granulating-sieving-pressing.
  • niobium is attached to the surface of the niobium oxide in a nanometer form, and after calcination at 900-1000 ° C, it is decomposed into cerium oxide to achieve a coating effect.
  • the solution adopts the liquid phase method to pretreat the cerium oxide in the YAG raw material, coats the cerium oxide on the surface of the cerium oxide powder, and obtains a coated cerium oxide-cerium oxide composite powder material by drying and roasting.
  • the powder material is then used in a solid phase method to prepare a Ce-doped YAG luminescent ceramic.
  • the coated yttria-yttria composite powder has sufficient and uniform contact between yttrium and yttrium oxide, which improves the reaction efficiency of ruthenium into the ruthenium lattice.
  • the uneven lattice intrusion is caused, and the lattice distribution of the crucible in the crucible is locally high, the luminescence concentration is quenched, the purity of the luminescent ceramic phase is very low, and many mesophase products are present, thereby improving the luminous efficiency of the luminescent ceramic.
  • only a small amount of precipitant is required, and a large amount of salt solution and acid-base solution are not required, so that the environment is not polluted and the problem of corrosion equipment does not occur.
  • the present invention discloses a method for preparing a cerium oxide-cerium oxide composite powder and a Ce-doped YAG luminescent ceramic thereof, and the specific steps are as follows:
  • cerium oxide nanopowder Pretreatment of cerium oxide.
  • cerium oxide nanopowder Weigh 10-50g of cerium oxide nanopowder, put it into 10-200ml of absolute ethanol for ultrasonic cleaning for 10min, remove the ethanol by centrifugation, and wash it several times, usually 3 times;
  • the ethanol-washed cerium oxide nanopowder is placed in a 0.1M-0.5M NaOH solution, and after being sonicated for 30-60 minutes, it is allowed to stand for at least 12 hours, then separated and dehydrated by a centrifugal separator, and then washed with distilled water until the supernatant is in the middle. Sex.
  • the lower layer of cerium oxide nanopowder was filtered, placed in an oven at 60 ° C, and baked for use.
  • the suspension was poured into a 250 ml round bottom flask, placed in a water bath of a constant temperature water bath at 60 ° C, mechanically stirred at a speed of 1000 r / min, and a sputum salt solution was slowly added dropwise to the suspension using a peristaltic pump.
  • the dropping speed was 10 ml/min. After the completion of the dropwise addition, stirring was continued for at least 2 hours, then the stirring was stopped, and the mixture was aged for 3-12 hours to obtain a mixed solution.
  • the mixed solution was washed with water for 3-5 times, dehydrated with anhydrous ethanol for 3-5 times, and then dried in an oven at 80 ° C for 8-12 h to obtain a precursor of the coated cerium oxide-cerium oxide composite powder.
  • This step corresponds to step (c) of claim 2.
  • the Ce-doped YAG luminescent ceramic can be further prepared as follows:
  • the molar amount of Al is obtained according to the molar ratio of Ce/Al or Y/Al in the above chemical formula, and the mass of the desired aluminum compound is calculated.
  • 7.5 g of Al 2 O 3 is weighed and cerium oxide is added.
  • cerium oxide composite powder and Al 2 O 3 was added to the ball mill jar was added 10 to 20 times the total powder mass of Al 2 O 3 ZrO 2 balls or balls, in the present embodiment, the ball was added 170gAl 2 O 3, Additional ethanol was added and ball milling was carried out for 4-8 h.
  • the ball-milled mixed powder is dried by vacuum constant temperature to obtain a dry powder, which is calcined to decompose the organic components in the powder, and sieved and granulated to obtain a high-flowing luminescent ceramic precursor powder.
  • the luminescent ceramic precursor powder is charged into a mold, pre-compressed at a predetermined pressure, and then the pre-compressed sheet is placed in a sintering furnace and sintered under an inert gas atmosphere or nitrogen hydrogen gas to obtain a Ce-doped YAG luminescent ceramic.
  • the second embodiment of the present invention is based on the principle that a mixture of cerium oxide and cerium salt suspension, H 2 O 2 and an aqueous ammonia solution is mixed to obtain a gel, and cerium hydroxide in a nanometer form is attached to the surface of the cerium oxide and is calcined. After that, it is decomposed into cerium oxide to achieve a coating effect.
  • the specific steps are as follows:
  • cerium oxide nanopowder is ultrasonically cleaned by anhydrous ethanol, ultrasonically cleaned with low concentration alkali solution, washed with deionized water several times, and dried for use.
  • a NaOH solution or other alkali solution may be used.
  • untreated cerium oxide can also be used in the present invention, however, the inventors have noted that pretreated cerium oxide can achieve better results, both in coating and dispersion.
  • cerium salt solution the ratio of cerium to cerium is determined by the chemical formula 3(1-x)/2Y 2 O 3 +2.5Al 2 O 3 +3xCeO 2 ⁇ (Y 1-x Ce x ) 3 Al 5 O 12 Obtained, where 0 ⁇ x ⁇ 0.1. Weigh a certain amount of soluble strontium salt into deionized water, and mechanically stir it evenly to prepare a strontium salt solution with a concentration of 0.01M-2M.
  • the suspension is prepared by adding a certain amount of the pretreated cerium oxide nanopowder to the strontium salt solution, placing it in a high-speed disperser, mechanically stirring at a predetermined rotation speed for a certain period of time, and then ultrasonically dispersing for a predetermined time to obtain a suspension.
  • the order in which the ultrasonic dispersion and the mechanical agitation are dispersed can be exchanged.
  • Sol-gel coating A quantitative amount of H 2 O 2 solution was slowly added dropwise to the suspension and continuously stirred using a magnetic stirrer. Further, a predetermined concentration of the aqueous ammonia solution is titrated to the suspension to which the H 2 O 2 solution has been added at a constant rate, the pH is adjusted, and after sufficient reaction for a while, a mixed suspension is obtained. The mixed suspension is washed several times with deionized water, and the precipitate obtained by washing is dispersed with ethanol or ethylene glycol, thoroughly stirred, and washed again several times with a vacuum pump, and the washed precipitate is placed in a constant temperature. Dry in a dry box for a certain period of time. After drying, the precipitate was taken out and ground in an agate mill to obtain a precursor of the coated cerium oxide-cerium oxide composite powder.
  • the precursor is calcined to obtain a cerium oxide-cerium oxide composite powder.
  • the precursor of the coated cerium oxide-cerium oxide composite powder is calcined in a muffle furnace at a certain temperature for several hours to obtain a coated cerium oxide-cerium oxide composite powder.
  • the Ce-doped YAG luminescent ceramic can be further prepared in the same manner as the first embodiment.
  • ruthenium is attached to the surface of the ruthenium oxide in a nanometer form, and after calcination at 400 ° C, it is decomposed into ruthenium oxide to achieve a coating effect.
  • the solution adopts the liquid phase method to pretreat the cerium oxide in the YAG raw material, coats the cerium oxide on the surface of the cerium oxide powder, and obtains a coated cerium oxide-cerium oxide composite powder material by drying and roasting.
  • the powder material is then used in a solid phase method to prepare a Ce-doped YAG luminescent ceramic.
  • the present invention discloses a method for preparing a cerium oxide-cerium oxide composite powder and a Ce-doped YAG luminescent ceramic thereof, and the specific steps are as follows:
  • cerium oxide nanopowder Pretreatment of cerium oxide.
  • cerium oxide nanopowder Weigh 10-50g of cerium oxide nanopowder, put it into 10-200ml of absolute ethanol for ultrasonic cleaning for 10min, remove the ethanol by centrifugation, and wash it several times, usually 3 times;
  • the ethanol-washed cerium oxide nanopowder is placed in a 0.1M-0.5M NaOH solution, and after being sonicated for 30-60 minutes, it is allowed to stand for at least 12 hours, then separated and dehydrated by a centrifugal separator, and then washed with distilled water until the supernatant is in the middle. Sex.
  • the lower layer of cerium oxide nanopowder was filtered, placed in an oven at 60 ° C, and baked for use.
  • the sol gel was coated, and 100-500 ml of a 0.1-1 M H 2 O 2 solution was slowly added dropwise to the suspension, and continuously stirred using a magnetic stirrer. Then, the aqueous solution of 0.1-1 mol/concentration is titrated to the suspension to which the H 2 O 2 solution has been added at a rate of 1-3 mL/min, and the pH is adjusted to 8-11. After fully reacting for 2-4 hours, a suspension is obtained. Liquid. The mixed suspension is washed 3-5 times with deionized water, and the precipitate obtained by washing is dispersed with ethanol or ethylene glycol, thoroughly stirred, and washed again 3-5 times with a vacuum pump to precipitate after washing. The material was dried in a constant temperature oven at 70 ° C for 12-24 hours. After drying, the precipitate was taken out and ground in an agate mill to obtain a precursor of the coated cerium oxide-cerium oxide composite powder.
  • calcining the precursor to obtain a cerium oxide-cerium oxide composite powder The precursor of the coated cerium oxide-cerium oxide composite powder was placed in a muffle furnace at 400 ° C for 2-4 hours to obtain a coated cerium oxide-cerium oxide composite powder.
  • the Ce-doped YAG luminescent ceramic can be further prepared as follows:
  • the molar amount of Al is obtained in accordance with the molar ratio of Ce/Al or Y/Al in the above chemical formula, and the mass of the desired aluminum compound is calculated.
  • 566 g of Al 2 O 3 is weighed, and the yttria-yttria composite powder and Al 2 O 3 are added to the ball mill tank, and 10-20 times of the total powder mass of Al 2 O 3 is added.
  • Preparing ceramics The ball-milled mixed powder is dried by vacuum constant temperature to obtain a dry powder, which is calcined to decompose the organic components in the powder, and sieved and granulated to obtain a high-flowing luminescent ceramic precursor powder.
  • the luminescent ceramic precursor powder is charged into a mold, pre-compressed at a predetermined pressure, and then the pre-compressed sheet is placed in a sintering furnace and sintered under an inert gas atmosphere or nitrogen hydrogen gas to obtain a Ce-doped YAG luminescent ceramic.
  • the Ce-doped YAG luminescent ceramic obtained by the present invention can be applied to the fields of illumination and display.
  • it can be applied to a car headlight (especially a laser headlight) as its light-emitting component; it can also be applied to a fluorescent color wheel of a projector or a fixed laser fluorescent light-emitting component.
  • the Ce-doped YAG luminescent ceramic of the invention can withstand high-power laser irradiation, greatly improving luminous efficiency and illuminating brightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种Ce掺杂YAG发光陶瓷的制备方法,包括:氧化钇纳米粉体与可溶性铈盐溶液在沉淀剂的存在下,反应生成包覆型的氧化钇-氧化铈复合粉体的前驱体,经焙烧得到氧化铈包覆在氧化钇纳米粉体表面的包覆型的氧化钇-氧化铈复合粉体;将氧化钇-氧化铈复合粉体与铝的化合物进行混料后,预处理烧结和烧结,得到Ce掺杂YAG发光陶瓷。

Description

一种Ce掺杂YAG发光陶瓷的制备方法 技术领域
本发明涉及YAG发光陶瓷技术领域,尤其涉及一种基于包覆型氧化钇-氧化铈复合粉体的Ce掺杂YAG发光陶瓷的制备方法。
背景技术
随着半导体光源行业的飞速发展,具有大功率、小光斑和超高亮度的光源的应用越来越广泛,而采用硅胶来封装荧光粉材料受激发光,已经很难承受其激发光的高功率密度。目前,最常用的是采用透明的玻璃材料作为粘结剂来封装荧光粉,但是,大功率带来的高热量的积累,使得荧光粉出现热饱和现象,长期使用的亮度衰减较为明显,其主要原因是玻璃的导热性能较差,散热效果一般。
针对这一原因,人们致力于研究Ce掺杂YAG发光陶瓷,该陶瓷的结构特性是铈取代部分钇的晶格位置。Ce掺杂YAG发光陶瓷的制备方法通常采用固相法。在固相法中,铈(Ce)的掺入是关键点,一般是以氧化铈的形式掺入其中。由于其掺入量较少,固相之间混料很难均匀分散,在固固反应的Ce掺杂YAG制备中,会存在很多缺陷和反应不完全等问题。体现在:一方面造成铈在钇的晶格分布不均匀,局部区域铈含量偏高,造成发光浓度淬灭;另一方面造成发光陶瓷的相纯度很低,存在很多中间相产物。而上述问题均会直接影响发光陶瓷的发光效率。
要提升Ce掺杂YAG发光陶瓷的荧光效率,关键在于改善铈掺杂均匀性,提升铈在固相法混料中的分散性能,提高发光陶瓷的相纯度。有效的方法是铈以液相的形式加到原料配方中,传统的共沉淀法是将铈、钇和铝三者的硝酸盐在液相下混合共同沉淀在一起制备Ce掺杂YAG前驱体粉体,该方法虽然解决了混料不均匀的问题,但是需要配置大量的盐溶液和酸碱溶液,制备工艺复杂、周期长,废弃的酸碱盐溶液较多,造成环境污染较严重,对设备的腐蚀性较强。
发明内容
本发明提供一种基于包覆型氧化钇-氧化铈复合粉体的Ce掺杂YAG发光陶瓷的制备方法,该方法工艺简单,只需使用少量酸碱盐溶液,对环境无污染。
本发明通过如下技术方案实现:
一种Ce掺杂YAG发光陶瓷的制备方法,包括:
(1)制备氧化钇-氧化铈复合粉体:氧化钇纳米粉体与可溶性铈盐溶液在沉淀剂的存在下,反应生成包覆型的氧化钇-氧化铈复合粉体的前驱体,经焙烧得到氧化铈包覆在氧化钇纳米粉体表面的包覆型的氧化钇-氧化铈复合粉体;
(2)制备Ce掺杂YAG发光陶瓷:将上述氧化钇-氧化铈复合粉体与铝的化合物进行混料后,经过烧结预处理和烧结,得到Ce掺杂YAG发光陶瓷。
其中,第一种方案在沉淀剂的存在下进行,其具体步骤包括:
(a)配制氧化钇纳米粉体悬浊液:将经过预处理的氧化钇纳米粉体加入到上述第一沉淀剂的溶液中并分散均匀,得到均匀的悬浊液;
(b)配制可溶性铈盐溶液:取预定量的可溶性铈盐加入到水中得到可溶性铈盐溶液;
(c)沉淀包覆:将上述铈盐溶液缓慢滴加入上述悬浊液中,搅拌陈化,得到混合溶液,将上述混合溶液水洗并干燥,得到包覆型的氧化钇-氧化铈复合粉体的前驱体;
(d)焙烧前驱体:将包覆型的氧化钇-氧化铈复合粉体的前驱体焙烧,得到包覆型的氧化钇-氧化铈复合粉体。
进一步地,按照钇的物质量与铈的物质的量的比值(1-x)/x,其中0<x<0.1,配置上述氧化钇纳米粉体和上述可溶性铈盐。
进一步地,上述第一沉淀剂为可溶性碳酸氢盐。
进一步地,上述第一沉淀剂为NH4HCO3,其溶液的浓度为0.01-2mol/L。
进一步地,上述铈盐溶液缓慢滴加入上述悬浊液中的过程在水浴加热条件下进行。
第二种方案在沉淀剂的存在下进行,其具体步骤包括:
(a)配制可溶性铈盐溶液:取预定量的可溶性铈盐加入到水中得到铈盐溶液;
(b)配制悬浊液:将经过预处理的氧化钇纳米粉体加入到上述铈盐溶液中,得到悬浊液;
(c)溶胶凝胶包覆:向上述悬浊液中滴加第二沉淀剂并分散均匀,得到混合悬浊液,洗涤干燥后进行研磨,得到包覆型的氧化钇-氧化铈复合粉体的前驱体;
(d)焙烧前驱体:将包覆型的氧化钇-氧化铈复合粉体的前驱体焙烧,得到包覆型的氧化钇-氧化铈复合粉体。
进一步地,按照钇的物质量与铈的物质的量的比值(1-x)/x,其中0<x<0.1,配置上述氧化钇纳米粉体和上述可溶性铈盐。
进一步地,上述第二沉淀剂包括双氧水和氨水溶液。
进一步地,上述双氧水的浓度为0.1-1mol/L,上述氨水溶液的浓度为0.1-1mol/L。
进一步地,上述铝的化合物包括氧化铝、氢氧化铝、硝酸铝、硫酸铝、碳酸铝中的至少一种。
与现有技术相比较,本发明采用液相法预处理YAG原料粉中的氧化钇粉,将氧化铈包覆在氧化钇粉体的表面,通过焙烧后得到一种包覆型的氧化钇-氧化铈复合粉体材料,再将该粉体材料与氧化铝粉体进行混合,经过一系列的加工工艺后得到Ce掺杂YAG发光陶瓷。使用本发明的制备方法得到的包覆型氧化钇-氧化铈复合粉体中,铈与氧化钇能够充分均匀地相互接触,提升铈在固相法混料中的分散性能,提高了铈进入钇晶格中的反应效率,从而提高发光陶瓷的相纯度,而该制备方法工艺简单,生产周期缩短,降低成本,适合批量生产,能提高生产效率,同时制备过程中只需要按比例配制的沉淀剂等,不需要大量的盐溶液和酸碱溶液,因而不会对环境造成污染环境以及不会出现腐蚀设备的问题。
附图说明
图1为本发明的一种实施例中的工艺流程示意图;
图2为本发明的另一种实施例中的工艺流程示意图。
具体实施方式
本发明中,氧化钇-氧化铈复合粉体的制备方法采用了液相法的整体思路。
其中,第一种方案原理是第一沉淀剂与铈盐反应生成沉淀,铈盐沉淀附着在氧化钇纳米粉体上,经焙烧后,分解为氧化铈,实现包覆效果。在本发明的一个具体实施例中,具体步骤如下:
预处理氧化钇:将氧化钇纳米粉体依次经过无水乙醇超声清洗、低浓度碱溶液超声清洗、去离子水多次清洗后,烘干待用。在低浓度碱溶液超声清洗中,可用NaOH溶液或其他碱溶液。虽然未经预处理的氧化钇也可以用于本发明中,然而发明人注意到经预处理的氧化钇能取得更好的效果。这是由于,通过超声清洗,尤其是NaOH溶液或其他碱性溶液的清洗,氧化钇纳米粉体表面的氧化物杂质被清除,增强了氧化钇纳米粉体的表面活性,无论是包覆效果还是分散效果都更好。
配制悬浊液:称取预定量的NH4HCO3溶入去离子水中,配制成浓度为0.01-2mol/L的NH4HCO3溶液,再向其中加入预定量的氧化钇纳米粉体,机械搅拌一段时间后,再超声分散一段时间,得到均匀的氧化钇纳米粉体悬着液。其中,超声分散和机械搅拌分散的顺序可以调换。NH4HCO3溶液作为第一沉淀剂使用,其他实施例中,第一沉淀剂可以是其他可溶性碳酸氢盐。第一沉淀剂的作用原理是,第一沉淀剂中的碳酸氢根与铈盐反应生成碳酸氢铈沉淀。
配制可溶性铈盐溶液:根据化学式3(1-x)/2Y2O3+2.5Al2O3+3xCeO2→(Y1-xCex)3Al5O12,其中0<x<0.1中得到Y/Ce摩尔比为(1-x)/x,其中0<x<0.1。按照Y/Ce摩尔比称取一定量的Ce(NO3)3·6H2O溶入去离子水中的溶液,机械搅拌均匀至Ce(NO3)·6H2O完全溶解,得到可溶性 铈盐溶液。在其他实施例中,可以使用其他可溶性铈盐代替Ce(NO3)4,比如Ce2(SO4)3·8H2O、CeX3·6H2O(X=F、Cl、Br、I)、Ce2(SO4)3·8H2O、CeX3·6H2O(X=F、Cl、Br、I)等。
沉淀包覆:将悬浊液倒入圆底烧瓶中,置于恒温水浴的水槽(例如恒温60-80℃等,优选60℃),在一定的转速下机械搅拌,同时采用蠕动泵将铈盐溶液以一定的滴速缓慢滴加到悬浊液中,滴加完毕后,继续搅拌一段时间,然后停止搅拌,待陈化一定时间后,便得到混合溶液。将混合溶液进行抽滤水洗若干次,无水乙醇脱水若干次后,置于烘箱干燥一定时间,得到包覆型氧化钇-氧化铈复合粉体的前驱体。
焙烧前驱体:将包覆型氧化钇-氧化铈复合粉体的前驱体放入一定温度的马弗炉中焙烧若干小时,得到淡黄色的包覆型氧化钇-氧化铈复合粉体。
得到氧化钇-氧化铈复合粉体后,可继续制备Ce掺杂YAG发光陶瓷,步骤如下。
球磨混料:按照上述的化学式中Ce/Al或Y/Al的摩尔比得到Al的摩尔量,计算所需的铝的化合物的质量,铝的化合物可以是氧化铝、氢氧化铝、硝酸铝、硫酸铝、碳酸铝中的至少一种,该铝的化合物可以在高温下得到氧化铝,例如氢氧化铝在高温下得到氧化铝和水。将氧化钇-氧化铈复合粉体与铝的化合物加入到球磨罐中,加入为总粉体质量若干倍的Al2O3球或ZrO2球,再加入乙醇,进行球磨若干小时。
制备陶瓷:球磨混好的粉体,经过烧结预处理和烧结后可得到Ce掺杂YAG发光陶瓷。其中烧结预处理包括依次经过干燥-煅烧-造粒-过筛-压片的步骤。
在本方案中,焙烧前,铈是以纳米形式的碳酸氢铈附着在氧化钇表面,经900-1000℃焙烧后,分解为氧化铈,实现包覆效果。
本方案采用液相法预处理YAG原料中的氧化钇,将氧化铈包覆在氧化钇粉体的表面,通过烘干和焙烧后得到一种包覆型氧化钇-氧化铈复合粉体材料,再将该粉体材料用于固相法制备Ce掺杂YAG发光陶瓷。采用该方法制备得到的 包覆型氧化钇-氧化铈复合粉体中铈与氧化钇充分且均匀接触,提高了铈进入钇晶格中的反应效率。从而解决因铈掺入不均匀,造成铈在钇的晶格分布局部偏高,造成发光浓度淬灭以及发光陶瓷相纯度很低,并存在很多中间相产物等问题,从而提高发光陶瓷的发光效率。同时,只需要少量沉淀剂,而不需要大量盐溶液和酸碱溶液,因而不会对环境造成污染环境以及不会出现腐蚀设备的问题。
下面通过具体实施例结合附图对上述第一种方案作进一步详细说明。
实施例一
请参见图1,本发明公开了一种氧化钇-氧化铈复合粉体及其应用的Ce掺杂YAG发光陶瓷的制备方法,具体步骤如下:
101、预处理氧化钇。称取10-50g的氧化钇纳米粉体,放入10-200ml的无水乙醇中进行超声清洗10min,用离心分离脱去乙醇,如此反复清洗若干次,通常为3次;再次将经无水乙醇清洗过的氧化钇纳米粉体放入0.1M-0.5M的NaOH溶液中,超声30-60min后静置至少12h,然后用离心分离机分离脱水,再用蒸馏水水洗,直至上层清液呈中性。将下层的氧化钇纳米粉体过滤后,置于60℃的烘箱中,烘烤干燥待用。
102、配制悬浊液。称取0.79g的NH4HCO3固体溶入少量的去离子水中,在然后将上述溶液倒入容量瓶中定容100ml,得到0.1M的NH4HCO3溶液,再向其中加入10g经过预处理的纳米氧化钇粉,置于高速分散机,以3000r/min的转速机械搅拌30-120min;接着超声分散30-120min,得到悬浊液。该步骤对应权利要求2中的步骤(a)。
103、配制铈盐溶液。本实施例中铈与钇的配比关系是由化学式3(1-x)/2Y2O3+2.5Al2O3+3xCeO2→(Y1-xCex)3Al5O12中得到,本实施例中取x=0.03。称取0.1157g的Ce(NO3)4·6H2O溶入去离子水,再稀释至100ml,机械搅拌均匀至Ce(NO3)·6H2O完全溶解,即得到铈盐溶液。该步骤对应权利要求2中的步骤(b)。
104、沉淀包覆。将悬浊液倒入250ml的圆底烧瓶中,置于60℃的恒温水浴的水槽,在1000r/min的转速下机械搅拌,同时采用蠕动泵将铈盐溶液缓慢滴加到悬浊液中,滴速为10ml/min,滴加完毕后,继续搅拌至少2h,然后停止搅拌,陈化3-12h,得到混合溶液。将混合溶液进行抽滤水洗3-5次,无水乙醇脱水3-5次后,置于80℃烘箱干燥8-12h,得到包覆型的氧化钇-氧化铈复合粉体的前驱体。该步骤对应权利要求2中的步骤(c)。
105、焙烧前驱体,得到氧化钇-氧化铈复合粉体。将包覆型的氧化钇-氧化铈复合粉体的前驱体放入900-1000℃马弗炉中焙烧4-6h,本实施例的温度值取900℃,焙烧时间取4h,得到淡黄色的包覆型的氧化钇-氧化铈复合粉体。该步骤对应权利要求2中的步骤(d)。
得到氧化钇-氧化铈复合粉体后,可继续制备Ce掺杂YAG发光陶瓷,步骤如下:
106、球磨混料。按照上述的化学式中Ce/Al或Y/Al的摩尔比得到Al的摩尔量,计算所需的铝的化合物的质量,本实施例中,称取7.5g的Al2O3,将氧化钇-氧化铈复合粉体与Al2O3加入到球磨罐中,加入10-20倍与总粉体质量的Al2O3球或ZrO2球,在本实施例中,加入170gAl2O3球,再加入乙醇,进行球磨4-8h。
107、制备陶瓷。球磨混好的粉体,采用真空恒温干燥获得干粉,经煅烧使得粉体中的有机成分分解,过筛造粒得到高流动性的发光陶瓷前驱体粉末。将发光陶瓷前驱体粉末装入模具,在预定压强下进行预压制,然后预压制后的片放入烧结炉内,在惰性气体气氛或氮氢气下烧结,获得Ce掺杂YAG发光陶瓷。
本发明的第二种方案的原理是混合了氧化钇和铈盐悬浊液、H2O2和氨水溶液反应,得到凝胶,铈以纳米形式的氢氧化铈附着在氧化钇表面,经焙烧后,分解为氧化铈,实现包覆效果。在本发明的一个具体实施例中,具体步骤如下:
预处理氧化钇:将氧化钇纳米粉体依次经过无水乙醇超声清洗、低浓度碱溶液超声清洗、去离子水多次清洗后,烘干待用。在低浓度碱溶液超声清洗中,可用NaOH溶液或其他碱溶液。虽然未经预处理的氧化钇也可以用于本发明中, 然而发明人注意到经预处理的氧化钇能取得更好的效果,无论是包覆效果还是分散效果都更好。
配制铈盐溶液:铈与钇的配比关系是由化学式3(1-x)/2Y2O3+2.5Al2O3+3xCeO2→(Y1-xCex)3Al5O12中得到,其中0<x<0.1。称取一定量的可溶性铈盐溶入去离子水,并机械搅拌均匀,配制成浓度为0.01M-2M的铈盐溶液。
配制悬浊液:向铈盐溶液加入一定量经过预处理的氧化钇纳米粉体,置于高速分散机中,以预定转速机械搅拌一段时间后,再超声分散预定时间,得到悬浊液。其中超声分散和机械搅拌分散的顺序可以调换。
溶胶凝胶包覆:向悬浊液缓慢滴加定量的H2O2溶液,并使用磁力搅拌器不断搅拌。再以一定速率向已加入H2O2溶液的悬浊液中滴定预定浓度的氨水溶液,调节pH值,充分反应一段时间后,得到混合悬着液。将混合悬着液用去离子水抽滤洗涤若干次,洗涤得到的沉淀物用乙醇或乙二醇分散,充分搅拌,再用真空泵对其再次洗涤若干次,将洗涤后的沉淀物放入恒温干燥箱中干燥一定时间。干燥后取出沉淀物,并放入玛瑙研磨中研磨,得到包覆型的氧化钇-氧化铈复合粉体的前驱体。
焙烧前驱体,得到氧化钇-氧化铈复合粉体。将包覆型的氧化钇-氧化铈复合粉体的前驱体放入一定温度的马弗炉中焙烧若干小时,得到包覆型的氧化钇-氧化铈复合粉体。
得到氧化钇-氧化铈复合粉体后,可继续制备Ce掺杂YAG发光陶瓷,步骤与第一种方案相同。
在本方案中,焙烧前,铈是以纳米形式的氢氧化铈附着在氧化钇表面,经400℃焙烧后,分解为氧化铈,实现包覆效果。
本方案采用液相法预处理YAG原料中的氧化钇,将氧化铈包覆在氧化钇粉体的表面,通过烘干和焙烧后得到一种包覆型氧化钇-氧化铈复合粉体材料,再将该粉体材料用于固相法制备Ce掺杂YAG发光陶瓷。
下面通过具体实施例结合附图对上述第二种方案作进一步详细说明。
实施例二
请参见图2,本发明公开了一种氧化钇-氧化铈复合粉体及其应用的Ce掺杂YAG发光陶瓷的制备方法,具体步骤如下:
201、预处理氧化钇。称取10-50g的氧化钇纳米粉体,放入10-200ml的无水乙醇中进行超声清洗10min,用离心分离脱去乙醇,如此反复清洗若干次,通常为3次;再次将经无水乙醇清洗过的氧化钇纳米粉体放入0.1M-0.5M的NaOH溶液中,超声30-60min后静置至少12h,然后用离心分离机分离脱水,再用蒸馏水水洗,直至上层清液呈中性。将下层的氧化钇纳米粉体过滤后,置于60℃的烘箱中,烘烤干燥待用。
202、配制铈盐溶液。本实施例中铈与钇的配比关系是由化学式3(1-x)/2Y2O3+2.5Al2O3+3xCeO2→(Y1-xCex)3Al5O12中得到,其中0<x<0.1。本实施例中取x=0.03。称取8.7g的Ce(NO3)4·6H2O固体溶入少量的去离子水中,再稀释为1000mL,机械搅拌均匀至Ce(NO3)4·6H2O完全溶解。
203、配制悬浊液。向铈盐溶液加入750g的经过预处理的氧化钇纳米粉体,置于高速分散机中,以3000r/min的转速机械搅拌30-60min后,再超声分散30-60min,得到悬浊液。
204、溶胶凝胶包覆,向悬浊液缓慢滴加0.1-1M的H2O2溶液100-500ml,并使用磁力搅拌器不断搅拌。再以1-3mL/min的速率向已加入H2O2溶液的悬浊液中滴定0.1-1mol/浓度的氨水溶液,调节pH值为8-11,充分反应2-4h后,得到混合悬着液。将混合悬着液用去离子水抽滤洗涤3-5次,洗涤得到的沉淀物用乙醇或乙二醇分散,充分搅拌,再用真空泵对其再次洗涤3-5次,将洗涤后的沉淀物放入70℃的恒温干燥箱中干燥12-24h。干燥后取出沉淀物,并放入玛瑙研磨中研磨,得到包覆型的氧化钇-氧化铈复合粉体的前驱体。
205、焙烧前驱体,得到氧化钇-氧化铈复合粉体。将包覆型的氧化钇-氧化铈复合粉体的前驱体放入400℃马弗炉中焙烧2-4h,得到包覆型的氧化钇-氧化铈复合粉体。
得到氧化钇-氧化铈复合粉体后,可继续制备Ce掺杂YAG发光陶瓷,步骤如下:
206、球磨混料。按照上述的化学式中Ce/Al或Y/Al的摩尔比得到Al的摩尔量,计算所需的铝的化合物的质量。在本实施例中,称取566g的Al2O3,将氧化钇-氧化铈复合粉体与Al2O3加入到球磨罐中,加入10-20倍与总粉体质量的Al2O3球或ZrO2球,在本实施例中,加入13KgAl2O3球,再加入乙醇,进行球磨4-8h。
207、制备陶瓷。球磨混好的粉体,采用真空恒温干燥获得干粉,经煅烧使得粉体中的有机成分分解,过筛造粒得到高流动性的发光陶瓷前驱体粉末。将发光陶瓷前驱体粉末装入模具,在预定压强下进行预压制,然后预压制后的片放入烧结炉内,在惰性气体气氛或氮氢气下烧结,获得Ce掺杂YAG发光陶瓷。
本发明得到的Ce掺杂YAG发光陶瓷可以应用于照明和显示领域。例如,可以应用于汽车大灯(特别是激光汽车大灯),作为其发光组件;也可以应用与投影机的荧光色轮或固定式的激光荧光发光部件上。本发明的Ce掺杂YAG发光陶瓷能够承受高功率的激光照射,大大提高了发光效率和发光亮度。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种Ce掺杂YAG发光陶瓷的制备方法,其特征在于,所述方法包括:
    (1)制备氧化钇-氧化铈复合粉体:氧化钇纳米粉体与可溶性铈盐溶液在沉淀剂的存在下,反应生成包覆型的氧化钇-氧化铈复合粉体的前驱体,经焙烧得到氧化铈包覆在氧化钇纳米粉体表面的包覆型的氧化钇-氧化铈复合粉体;
    (2)制备Ce掺杂YAG发光陶瓷:将所述氧化钇-氧化铈复合粉体与铝的化合物进行混料后,经过烧结预处理和烧结,得到Ce掺杂YAG发光陶瓷。
  2. 根据权利要求1所述的制备方法,其特征在于,所述制备氧化钇-氧化铈复合粉体的步骤包括:
    (a)配制氧化钇纳米粉体悬浊液:将经过预处理的氧化钇纳米粉体加入到所述第一沉淀剂的溶液中并分散均匀,得到均匀的悬浊液;
    (b)配制可溶性铈盐溶液:取预定量的可溶性铈盐加入到水中得到可溶性铈盐溶液;
    (c)沉淀包覆:将所述铈盐溶液缓慢滴加入所述悬浊液中,搅拌陈化,得到混合溶液,将所述混合溶液水洗并干燥,得到包覆型的氧化钇-氧化铈复合粉体的前驱体;
    (d)焙烧前驱体:将包覆型的氧化钇-氧化铈复合粉体的前驱体焙烧,得到包覆型的氧化钇-氧化铈复合粉体。
  3. 根据权利要求2所述的制备方法,其特征在于,按照钇的物质的量与铈的物质的量的比值(1-x)/x,其中0<x<0.1,配置所述氧化钇纳米粉体和所述可溶性铈盐。
  4. 根据权利要求2所述的制备方法,其特征在于,所述第一沉淀剂为可溶性碳酸氢盐。
  5. 根据权利要求2所述的制备方法,其特征在于,所述第一沉淀剂为NH4HCO3,其溶液的浓度为0.01-2mol/L。
  6. 根据权利要求1所述的制备方法,其特征在于,所述制备氧化钇-氧化铈复合粉体的步骤包括:
    (a)配制可溶性铈盐溶液:取预定量的可溶性铈盐加入到水中得到铈盐溶液;
    (b)配制悬浊液:将经过预处理的氧化钇纳米粉体加入到所述铈盐溶液中,得到悬浊液;
    (c)溶胶凝胶包覆:向所述悬浊液中滴加第二沉淀剂并分散均匀,得到混合悬浊液,洗涤干燥后进行研磨,得到包覆型的氧化钇-氧化铈复合粉体的前驱体;
    (d)焙烧前驱体:将包覆型的氧化钇-氧化铈复合粉体的前驱体焙烧,得到包覆型的氧化钇-氧化铈复合粉体。
  7. 根据权利要求6所述的制备方法,其特征在于,按照钇的物质量与铈的物质的量的比值(1-x)/x,其中0<x<0.1,配置所述氧化钇纳米粉体和所述可溶性铈盐。
  8. 根据权利要求6所述的制备方法,其特征在于,所述第二沉淀剂包括双氧水和氨水溶液。
  9. 根据权利要求8所述的制备方法,其特征在于,所述双氧水的浓度为0.1-1mol/L,所述氨水溶液的浓度为0.1-1mol/L。
  10. 根据权利要求1-9任一项所述的制备方法,其特征在于,所述铝的化合物包括氧化铝、氢氧化铝、硝酸铝、硫酸铝、碳酸铝中的至少一种。
PCT/CN2017/084843 2016-08-03 2017-05-18 一种Ce掺杂YAG发光陶瓷的制备方法 WO2018024014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610629810.2A CN107686345B (zh) 2016-08-03 2016-08-03 一种Ce掺杂YAG发光陶瓷的制备方法
CN201610629810.2 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018024014A1 true WO2018024014A1 (zh) 2018-02-08

Family

ID=61073234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084843 WO2018024014A1 (zh) 2016-08-03 2017-05-18 一种Ce掺杂YAG发光陶瓷的制备方法

Country Status (2)

Country Link
CN (1) CN107686345B (zh)
WO (1) WO2018024014A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020089207A1 (fr) * 2018-11-02 2020-05-07 Rhodia Operations Compositions a base d'yttrium, de cérium et de composé organique, ainsi que leur utilisation anti-diffusion
CN111151242A (zh) * 2020-01-16 2020-05-15 重庆三峡学院 一种铈锰金属离子改性的铝酸盐光催化剂的制备方法
CN114674908A (zh) * 2021-11-25 2022-06-28 兰州大学 一种用于替加环素检测的电化学传感器的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061027B (zh) * 2021-04-13 2022-12-13 矿冶科技集团有限公司 球形陶瓷粉末表面细粉祛除方法、球形陶瓷粉末及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740369A (zh) * 2014-01-02 2014-04-23 甘肃稀土新材料股份有限公司 一种无破碎工艺生产白光led灯用黄色荧光粉制备方法
CN103755345A (zh) * 2014-01-02 2014-04-30 甘肃稀土新材料股份有限公司 一种小颗粒钇铈氧化物固溶体的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121124A (ja) * 1997-07-02 1999-01-26 Shin Etsu Chem Co Ltd イットリア/アルミナ混合微粒子及びその製造方法
CN100543110C (zh) * 2007-10-16 2009-09-23 厦门大学 草酸非均相沉淀制备稀土掺杂钇铝石榴石荧光粉的方法
CN103058644B (zh) * 2012-12-19 2015-10-14 中国科学院合肥物质科学研究院 一种通过合成稀土掺杂y2o3纳米粉体制备稀土掺杂钇铝石榴石透明陶瓷的方法
CN103771482B (zh) * 2014-01-09 2016-01-27 大连交通大学 一种高纯钇铝石榴石纳米粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740369A (zh) * 2014-01-02 2014-04-23 甘肃稀土新材料股份有限公司 一种无破碎工艺生产白光led灯用黄色荧光粉制备方法
CN103755345A (zh) * 2014-01-02 2014-04-30 甘肃稀土新材料股份有限公司 一种小颗粒钇铈氧化物固溶体的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020089207A1 (fr) * 2018-11-02 2020-05-07 Rhodia Operations Compositions a base d'yttrium, de cérium et de composé organique, ainsi que leur utilisation anti-diffusion
CN111151242A (zh) * 2020-01-16 2020-05-15 重庆三峡学院 一种铈锰金属离子改性的铝酸盐光催化剂的制备方法
CN111151242B (zh) * 2020-01-16 2022-08-09 重庆三峡学院 一种铈锰金属离子改性的铝酸盐光催化剂的制备方法
CN114674908A (zh) * 2021-11-25 2022-06-28 兰州大学 一种用于替加环素检测的电化学传感器的制备方法
CN114674908B (zh) * 2021-11-25 2023-03-31 兰州大学 一种用于替加环素检测的电化学传感器的制备方法

Also Published As

Publication number Publication date
CN107686345A (zh) 2018-02-13
CN107686345B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2018024014A1 (zh) 一种Ce掺杂YAG发光陶瓷的制备方法
CN100336777C (zh) 一种氧化镥基透明陶瓷的制备方法
CN101113333B (zh) 铈激活的钇铝石榴石荧光粉的制备方法
CN102586873B (zh) 一种Al2O3反蛋白石结构的一步法制备方法
CN101585544B (zh) 一种制备硼酸铝纳米线的方法
CN106495200A (zh) 一种无水硫酸盐型稀土层状氢氧化物及其制备方法
CN106277021A (zh) 一种大比表面积纳米氧化钕制备方法
WO2020098446A1 (zh) 一种氟化物发光材料的表面改性方法及其制备得到的氟化物发光材料
JP2022553585A (ja) ナノ酸化ジルコニウム粉体、その調製方法及び得られる分散液、光学フィルム
CN102351434B (zh) 一种铈-铝共掺杂氧化锌薄膜的制备方法
CN105733584A (zh) 钒酸钇纳米粒子和稀土离子掺杂钒酸钇纳米粒子及其制备方法
WO2018024015A1 (zh) 一种Ce掺杂YAG发光陶瓷的制备方法
CN101538465A (zh) 稀土掺杂TiO2基质发光材料的制备方法
CN104192890A (zh) 一种制备碳掺杂氧化锌纳米柱的方法
CN105970323B (zh) 一种抗静电粉末及其制备方法
CN103332870A (zh) 一种纳米二氧化钛薄膜的制备方法
CN103224794A (zh) 一种近紫外激发型红色荧光粉及其制备方法
CN102557111B (zh) 一种雪花状ZnO的制备方法
CN102337132A (zh) 一种表面包覆黄色荧光粉的制备方法
CN105713610A (zh) 一种单芯片白光发光二极管用荧光粉的制备方法
WO2018040634A1 (zh) 一种Ce掺杂YAG发光陶瓷的制备方法及相关发光陶瓷
CN108439462A (zh) 一种烧绿石型稀土钛酸盐粉体的制备方法
CN107523298A (zh) 一种钇铈复合氧化物基上转换发光材料及其制备方法
CN109097043B (zh) 一种铒和镱双掺杂铌酸钠上转换材料及其制备方法和应用
CN106634999A (zh) 一种方片状镝掺杂氯氧铋白光荧光粉及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836198

Country of ref document: EP

Kind code of ref document: A1