WO2018021427A1 - 高圧エヤ発生装置 - Google Patents

高圧エヤ発生装置 Download PDF

Info

Publication number
WO2018021427A1
WO2018021427A1 PCT/JP2017/027092 JP2017027092W WO2018021427A1 WO 2018021427 A1 WO2018021427 A1 WO 2018021427A1 JP 2017027092 W JP2017027092 W JP 2017027092W WO 2018021427 A1 WO2018021427 A1 WO 2018021427A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
clutch
blower
electric motor
pressure air
Prior art date
Application number
PCT/JP2017/027092
Other languages
English (en)
French (fr)
Inventor
光利 武部
政人 永島
Original Assignee
株式会社コーク
光利 武部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コーク, 光利 武部 filed Critical 株式会社コーク
Priority to JP2018530365A priority Critical patent/JP6958840B2/ja
Publication of WO2018021427A1 publication Critical patent/WO2018021427A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/18Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation

Definitions

  • the present invention relates to a high-pressure air generating device that performs air ejection or suction.
  • a high-pressure air generator that ejects or sucks air and includes a blower and an electric motor that drives the blower is known (for example, see Patent Document 1).
  • the high pressure air generating apparatus of the above document can generate a high pressure air without providing an air tank like an ordinary compressor, so that the configuration can be simplified, while driving and stopping of driving are frequently repeated. In this case, the amount of power consumption increases due to the current (starting current) flowing through the drive motor when the electric motor is driven.
  • An object of the present invention is to provide a high-pressure air generating device that ejects or sucks air, and that can reduce the current flowing to the drive motor when the blower is driven and can keep power consumption low. Let it be an issue.
  • a high-pressure air generating device that blows out or sucks air, a blower, an electric motor, a clutch that intermittently transmits power transmitted from the electric motor to the blower, a drive and a clutch of the electric motor And a control unit that controls the intermittent operation of the clutch, wherein when the blower is driven, the control unit operates to connect the clutch on condition that the drive motor is driven.
  • the controller when driving the blower in a state where the drive motor is stopped and the clutch is disconnected, drives the electric motor in a state where the clutch is disconnected, and then the clutch is operated.
  • the connection may be activated.
  • the operation detection means for detecting the operation of ejection or suction, the preparation preparation detection means for detecting the preparation that is inevitably performed prior to the operation, and the controller is prepared by the preparation preparation means.
  • the motor is detected, the electric motor is driven, and when the operation detection unit detects the ejection or suction operation, the clutch may be engaged.
  • the pre-preparation detection means may be a storage state detection means for detecting whether or not a ventilator for jetting or sucking air is stored.
  • the pre-preparation detection means may be power on / off detection means for detecting power on / off.
  • the controller When the controller receives a command to drive the blower, the controller drives the electric motor with the clutch disengaged, and then, on the condition that a predetermined time has elapsed by a timer, The connection may be activated.
  • the control unit When the blower is intermittently driven, the control unit first switches the blower from the drive state to the drive stop state by disengaging the clutch while holding the electric motor in the drive state.
  • the blower may be switched from the drive stop state to the drive state by connecting and operating the clutch while holding the motor in the drive state.
  • the blower may be a roots blower.
  • the clutch When the blower is driven, the clutch is engaged on the condition that the drive motor is driven, so that the drive of the electric motor is prevented from being started in a high load state.
  • the current flowing through the motor is reduced, and the power consumption can be kept low.
  • FIG. 1 It is a plane sectional view of a high pressure air generating device to which the present invention is applied. It is a sectional side view of the high pressure air generator to which this invention is applied. It is a circuit diagram which shows the air flow control structure of this high voltage
  • the high-pressure air generator shown in these drawings includes a housing 1 that is formed in a rectangular parallelepiped shape and whose upper part is opened and closed.
  • Various devices are installed in the housing 1 to constitute the apparatus main body 2.
  • high pressure means higher atmospheric pressure than atmospheric pressure.
  • the apparatus body 2 includes a base 4 which is a horizontal plate raised from the bottom surface of the housing 1 by a plurality of spacers 3, a roots blower (blower, air pump) 6 installed on the upper surface side of the base 4, Connected to the strainer (filter) 7 installed on the intake port 6a side of the Roots blower 6, the intake pipe 8 for sucking air from the outside of the casing 1, and the end of the intake pipe 8 inside the casing 1
  • the roots blower 6 is arranged on one side in the longitudinal direction (vertical direction) in the housing 1, and the intake side muffler 9 and the exhaust side muffler 12 are arranged on the other side.
  • the intake pipe 8 and the intake side muffler 9 are disposed on one side in the short axis direction (lateral direction) of the casing 1, and the exhaust pipe 11 and the exhaust side muffler 12 are disposed on the other lateral side of the casing 1.
  • the above-described electric motor 14 is disposed laterally immediately below the intake-side muffler 9 and the exhaust-side muffler 12.
  • the Roots blower 6 has its own intake port 6a facing the side near the air outflow portion 9a of the intake-side muffler 9, and its exhaust port 6b is facing away from the intake-side muffler 9 and the exhaust-side muffler 12. It is installed in the body 1.
  • a pair of strainers 7 formed in a columnar shape extending in the vertical direction are arranged on the front side in the air outflow direction of the air outflow portion 9a of the intake side muffler 9 in a state of protruding upward from the intake port 6a of the Roots blower 6.
  • the transmission mechanism 16 is directly connected to the output shaft 17 of the electric motor 14 and rotates integrally with the output shaft 17, a driven pulley 19 rotatably supported on the Roots blower 6, the main driving pulley 18 and the driven pulley.
  • An annular transmission belt 21 wound around 19, a tension pulley 22 that applies tension to the transmission belt 21, and the rotational power on the driven pulley 19 side are intermittently transmitted to the roots blower 6 to turn the roots blower 6 on and off. It has a clutch 23 (see FIG. 3 and FIG. 6) to perform.
  • the transmission belt 21 employs a polydrive belt in this example.
  • the clutch 23 employs a dry single-plate electromagnetic clutch.
  • the clutch 23 is provided between the driven pulley 19 and the passive shaft 24 that inputs power to the roots blower 6, and intermittently switches the power transmission between the driven pulley 19 and the passive shaft 24.
  • the intermittent switching of power to the roots blower 6 by the clutch 23 can be performed while the electric motor 14 is being driven.
  • the clutch 23 is provided with a synchronizing means for synchronizing the rotational speeds of the driven pulley 19 and the passive shaft 24.
  • FIG. 3 is a circuit diagram showing the air flow control configuration of the high-pressure air generator.
  • the air sucked into the housing 1 from the intake pipe 8 through the suction-side muffler 9 flows out into the housing 1 from the air outlet portion 9a of the suction-side muffler 9.
  • the outflowed air flows through the strainer 7 into the input side flow path P1 formed in the intake port 6a.
  • the air in the intake-side flow path P1 is increased in pressure by the roots blower 6 to become a high-pressure air and flows out to the output-side flow path P2.
  • the flow of the air that continues to the intake pipe 8, the intake side muffler 9, the strainer 7 and the input side flow path P ⁇ b> 1 is generated by the suction force of the roots blower 6. 7 may be provided in or near the entrance.
  • the intake fan 26 may be driven by the power of the electric motor 14 described above, or may be driven by an actuator such as an electric motor provided separately.
  • the high-pressure air exhausted to the output side flow path P2 passes through the heat accumulator 27 and stores heat in the heat accumulator 27, and then reaches the branch flow path P3.
  • the air in the branch flow path P3 flows into at least one of the exhaust side flow path P4 and the reduction flow path P5 via the switching valve 28 formed of an electromagnetic proportional control valve.
  • the air in the exhaust side flow path P4 is exhausted to the outside through the connection pipe 13 and the exhaust side muffler 12, while the air in the reduction flow path P5 is returned to the input side flow path P1.
  • the switching valve 28 has an “exhaust state” in which the air on the branch flow path P3 side flows only to the exhaust side flow path P4, and a “reduction state” in which the air on the branch flow path P3 side flows only to the reduction flow path P5, A “branch state” in which the air on the branch flow path P3 side flows into both the exhaust side flow path P4 and the reduction flow path P5. Switching to either of the above.
  • the air When switching to the branching state, the air can be exhausted in the same manner as when switching to the exhausting state. However, the air can be reduced to the input side of the roots blower 6 by a predetermined amount along with the exhausting. It becomes possible. Incidentally, when the circulating air reaches a predetermined pressure and temperature, no further circulation is necessary, so switching from the reduced state to the exhausted state or the branched state, or from the branched state to the exhausted state is performed.
  • the switching valve 28 is a proportional control valve, the opening degree to the exhaust side flow path P4 can be changed, and the amount of the high-pressure air to be exhausted can be appropriately adjusted by the configuration.
  • the output side flow path P2, the heat accumulator 27, the switching valve 28, and the exhaust side flow path P4 may be provided on the exhaust port 6b side of the Roots blower 6, but due to space problems, the output side flow path P2 and the exhaust side flow path P4 may be provided. A part of the side flow path P4, the heat accumulator 27, and the switching valve 28 may be provided outside the outlet 6b of the Roots blower 6.
  • the heat can be heated by using the heat accumulator 27, and the heat generated from the electric motor 14 can be used together.
  • the electric motor 14 is configured such that air flows between the plurality of radiating fins 29 projecting radially around the entire circumferential surface and the adjacent radiating fins 29.
  • a cooling fan 31 that removes heat from the radiating fins 29 is provided.
  • a part of the air flowing out from the air outflow portion 9 a of the intake side muffler 9 passes between a pair of strainers 7, 7 arranged in the horizontal direction and is on the wall surface side of the housing 1.
  • the air that has reached the electric motor 14 is caused to flow from one end side to the other end side of the electric motor 14 by the cooling fan 31, and in this process, heat is taken from the radiating fins 29 and heated.
  • the air thus heated flows from the strainer 7 into the roots blower 6.
  • C1 and a flow path C2 for flowing the air blown by the cooling fan 31 and heated by the electric motor 31 to the strainer 7 side (roots blower 6 side) are formed in the housing 1.
  • FIG. 4 is a cross-sectional view of the Roots blower, and (A), (B) and (C) show the intake state, compression state and exhaust state of one rotor, respectively.
  • the roots blower 6 a two-leaf roots blower, a three-leaf roots blower, a vane roots blower, or the like can be used. In this example, a two-leaf roots blower is used.
  • Roots blower 6 has a pair of rotors 32 and 33 and a casing 34 that houses the pair of rotors 32 and 33.
  • the rotors 32 and 33 are made of a lightweight and hard heat-resistant synthetic resin material, and hollow portions 32a and 33a are formed in the rotor for the purpose of further weight reduction.
  • the pair of rotors 32 and 33 are rotationally driven in opposite directions so that the phases are always shifted from each other by a quarter cycle.
  • the casing 34 is made of a metallic member.
  • the casing 34 is formed with an inlet port 34a and an exhaust port 34b so as to face each other.
  • the gap between the pair of rotors 32 and 33 is always kept minute and the gap between the pair of rotors 32 and 33 and the inner wall surface of the casing 34. Is always kept minute.
  • One rotor 32 is in an intake state (see FIG. 4 (A)) for sucking air from the intake port 34a every quarter cycle, and a compressed state (FIG. 4 (B)) for compressing the sucked air. And the exhaust state (see FIG. 4C) in which the compressed air is exhausted are repeated in this order. Further, the other one rotor 33 is shifted from the one rotor 32 by a quarter cycle, and the intake state, the compressed state, and the exhaust state are repeated in the same order.
  • a filter 36 for removing impurities and the like may be provided at the intake port 34a and the exhaust port 34b.
  • the filter 36 is provided at the intake port 34a of the casing 34 as indicated by a virtual line. Yes.
  • FIGS. 5A and 5B are a side view and a front view showing a switching configuration between the storage state and the use state of the injection nozzle.
  • an injection nozzle (ventilator) 37 for injecting air is connected to the tip of the exhaust pipe 11.
  • the injection nozzle 37 includes a device body 38 formed into a cylindrical shape, a nozzle 39 that is formed to project further from the tip of the device body 38, and a middle portion of the device body 38. It has a gripping portion 41 projecting in a direction intersecting (specifically, orthogonal) with the apparatus main body 3.
  • the distal end portion of the exhaust pipe 11 described above is connected to the end portion (base end portion) side opposite to the distal end portion where the nozzle 39 of the exhaust pipe 11 projects.
  • the gripper 41 is provided with a momentary type operation button (operation detection means) 42 that can be pushed.
  • operation detection means operation detection means
  • the injection nozzle 37 is used by the operator in this manner, while being in the unused state (stored state).
  • This storage state will be described in detail.
  • a fixing tool 44 is externally fixed to a support column 43 extending in the vertical direction so as to be adjustable in the axial direction, and a cylindrical support tool 46 extending in the vertical direction is fixedly attached to the fixing tool 44.
  • the outer peripheral surface of the injection nozzle 37 (more specifically, the apparatus main body 38) in which the grip portion 41 is inserted on the inner peripheral surface side of the support 46 is a pair of clamping plates 47, 47.
  • it is elastically pinched and locked from below.
  • the lower half of the pair of sandwiching plates 47, 47 is fixed to the left and right side surfaces of the support 46, and the upper part of each sandwiching body 47 Projecting upward from the support 46.
  • a detection switch (storage state detection means) 48 for detecting whether or not the injection nozzle 37 is stored is provided on the support 46. Specifically, in the outer peripheral surface of the support 46, either one of the surface near the tip of the injection nozzle 37 in the retracted state (front surface) or the surface near the base end (back surface) (in the illustrated example). The above-described detection switch 48 is installed on the front side.
  • the detection switch 48 includes a detection body 48a and a switch body 48b that supports the detection body 48a in a swingable manner.
  • the detection body 48a is elastically urged to a swinging position (initial position) overlapping with the injection nozzle 37 (device main body 38) in the axial direction view (front view) of the injection nozzle 37 in the retracted state.
  • the detection body 48a In the retracted state, the detection body 48a is swung to a position (detection position) where the detection body 48a is not overlapped with the ejection nozzle 37 in a front view by contact with the outer peripheral surface of the apparatus main body 38.
  • the detection switch 48 is switched from ON to OFF (or OFF to ON) by the swing of the detection body 48a from the initial position to the detection position, and detects that the storage body 48 is in the retracted state.
  • the detection switch 48 is switched from OFF to ON (or from ON to FF) by the swing of the detection body 48a from the detection position to the initial position, and detects that it is no longer in the retracted state.
  • the control unit 49 configured by a microcomputer, a control circuit, and the like detects the presence / absence of an operation by the operation button 42 and the storage state by the detection switch 48. Based on the presence / absence detection or the like, on / off control of driving of the electric motor 14, on / off control of the clutch 23, and switching control of the switching valve 28 are performed.
  • FIG. 6 is a block diagram showing the configuration of the control unit.
  • a power on / off detecting means 51 for detecting ON / OFF (on / off) of the power of the high pressure air generating device, and the inside of the high pressure air generating device
  • a pressure detecting means 52 for detecting the pressure of the predetermined portion of the high pressure air generator and a temperature detecting means 53 for detecting the temperature of the predetermined portion in the high pressure air generating device are connected.
  • the above-described electric motor 14, clutch 23, and switching valve 28 are connected to the output side of the control unit 49.
  • the controller 49 switches the state by the switching valve 28 in accordance with the pressure and temperature in the high-pressure air generator.
  • the control unit 49 determines that the heat accumulating to the heat accumulator 27 is sufficient, and the switching valve 28 To switch from the reduction state to the branch state or the exhaust state, or from the branch state to the exhaust state.
  • control unit 49 uses the pressure detection means 52 to indicate that the pressure in the input side flow path P1, the output side flow path P2, the heat accumulator 27, or the branch flow path P3 has risen to a predetermined value or more.
  • the switching valve 28 switches from the reduction state to the branching state or the exhausting state, or switching from the branching state to the exhausting state.
  • the current (starting current) flowing through the electric motor 14 is one of the major factors for increasing the power consumption.
  • the control unit 49 disconnects the clutch 23 so that the power transmission from the electric motor 14 to the roots blower 6 is interrupted.
  • the electric motor 14 is started in the idling state (low load state or no load state), and then the clutch 23 is connected.
  • control unit 49 drives the electric motor 14 when detecting a preparation that is inevitably performed prior to the pressing operation of the operation button 42 that is an operation for performing the injection by the injection nozzle 37. (Activation) When the pressing operation of the operation button 42 is detected, the clutch 23 is switched from the disconnected state to the connected state.
  • the work for setting the injection nozzle 37 from the retracted state to the unstored state and the work for turning on the power supply of the high-pressure air generating device are the above-mentioned preparations. That is, the power on / off detection means 51 and the storage state detection means 48 described above function as preparation preparation detection means for detecting preparation.
  • control unit 49 The contents of the control unit 49 as described above will be described below along the processing procedure.
  • FIG. 7 is a processing flow diagram of the control unit.
  • the control unit 49 advances the process to step S101.
  • step S101 the above-mentioned preparation detection means 48, 51 confirms whether or not preparation is made, and if it is confirmed that preparation has been performed, the process proceeds to step S102.
  • step S101 the preparation may be confirmed only when the power ON / OFF detection unit 51 confirms that the power is turned on, or only when the detection switch 48 confirms that the power is not stored. It may be confirmed, or the preparation may be confirmed only when both confirmation of power-on and confirmation of the state that is not in the storage state are confirmed.
  • step S102 the electric motor 14 is driven, and the process proceeds to step S103.
  • step S103 if an operation for ejecting high-pressure air (pressing operation of the operation button 42) is detected by the operation button 42, the process proceeds to step S104. If not detected, the process returns to step S101.
  • step S104 the clutch 23 is brought into a connected state, the roots blower 6 is driven, and the process returns to step S101.
  • step S101 if preparation is not confirmed, the process proceeds to step S105.
  • step S105 the clutch 23 is disengaged and the process returns to step S101.
  • the starting current of the electric motor 14 is reduced by the above processing procedure, it is possible to reduce the overall current consumption, and it is also easy to perform intermittent driving that repeats high-pressure air jetting / stopping.
  • the voltage can be reduced and the starting current can be reduced by the soft starter.
  • the electric motor 14 is connected in parallel with a magnet conductor with a thermal protector (overheat protection device) to protect the electric motor 14 whose number of rotations has reached the rated rotation.
  • this high pressure air generating device may be used for a vacuum cleaner or the like by connecting an intake nozzle (vent) (not shown) to the intake pipe 8 side.
  • the configuration for detecting the storage state can be the same as that of the injection nozzle 37.
  • the state switched by the switching valve 28 described above may be only two of a reduced state and a branched state, or may be only two of a reduced state and an exhausted state, or may be branched. It is good also as only two of a state and an exhaust state.
  • the configuration may be simplified by changing the switching valve 28 from a proportional control valve to a direction switching valve.
  • an electromagnetic type that can be directly controlled by an electric control signal from the control unit 49 is used as the clutch 23.
  • the transmission belt 21 can be switched by the presence or absence of tension.
  • a tension pulley that interrupts power transmission to the roots blower 6 may be used.
  • the clutch 23 is intermittently operated by an electric motor (not shown) that can be directly controlled by the control unit 49.
  • FIG. 8 is a processing flowchart of the control unit according to another embodiment of the present invention.
  • the control unit 49 starts processing from step S201.
  • step S201 the presence / absence of an air ejection or suction command signal is confirmed. If the command is present, the process proceeds to step S202. If the command is not present, the process of step S201 is repeated.
  • step S202 the electric motor 14 is driven, and the process proceeds to step S203.
  • step S203 counting is started using a counter built in the control unit 49, and the process proceeds to step S204.
  • step S204 it is confirmed whether or not the count started in step S203 is completed. If not completed, the process of step S204 is performed again. If the count is completed, the process proceeds to step S205.
  • step S205 the clutch 23 is engaged, the roots blower 6 is driven, and the process returns to step S201.
  • the process of step S204 is repeated until a predetermined time (about 2 to 3 seconds in this example) elapses after the electric motor 14 is driven, and the clutch Since 23 is held in a disconnected state and the electric motor 14 is rotated with a low load or no load, the starting current can be reduced.
  • Such a high-pressure air generator can also be used for supplying air to an incinerator, generating bubbles in water, supplying oxygen to a culture pond, a jet bath, and the like.
  • the high-pressure air generator can be used for holding an object by suction.
  • an intake port is formed in an object holding portion formed on the distal end side of the movable arm, and the distal end portion of the intake pipe 8 is connected to the intake port.
  • control content for driving the Roots blower 6 in the state where the electric motor 14 is stopped and the clutch 23 is disconnected has been described.
  • the Roots blower 6 is intermittently driven. The contents of control will be described.
  • the roots blower 6 is switched from the drive state to the drive stop state, and then switched from the drive stop state to the drive state again.
  • high-pressure air generator A high-pressure air generator with a clutch 23
  • high-pressure air generator B high-pressure air generator according to a comparative example not provided with the clutch 23
  • the current value at the time of intermittent driving of the high-pressure air generator A (Roots blower 6) due to the intermittent connection of the clutch 23 is the value at the time of intermittent driving of the high-pressure air generator B (Roots blower) by turning on and off the driving of the electric motor 14 in the load state.
  • the current value is significantly reduced. This is presumably because the high-pressure air generator A can efficiently use the inertia of the electric motor 14.
  • Roots blower (blower, air pump) 14 Electric motor 23 Clutch 37 Injection nozzle (vent) 42 Operation buttons (operation detection means) 48 detection switch (preparation detection means, storage state detection means) 49 Control Unit 51 Power On / Off Detection Unit (Preparation Detection Unit) C1 channel C2 channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本発明は、エヤの噴出又は吸引を行う高圧エヤ発生装置であって、ブロワの駆動時に駆動モータに流れる電流を低減させ、消費電力を低く抑えることが可能な高圧エヤ発生装置を提供することを課題とする。本発明は、エヤの噴出又は吸引を行う高圧エヤ発生装置であって、ブロワ(6)と、電動モータ(14)と、電動モータ(14)からブロワ(6)に伝動される動力を断続するクラッチ(23)と、電動モータ(14)の駆動及びクラッチ(23)の断続を制御する制御部(49)とを備え、前記制御部(49)は、上記ブロワ(6)を駆動させる場合、上記駆動モータ(14)が駆動されていることを条件として、前記クラッチ(23)を接続作動させる。

Description

高圧エヤ発生装置
 本発明は、エヤの噴出又は吸引を行う高圧エヤ発生装置に関する。
 エヤの噴出又は吸引を行う高圧エヤ発生装置であって、ブロワと、該ブロワを駆動させる電動モータとを備えた高圧エヤ発生装置が公知になっている(例えば、特許文献1を参照。)。
特開2012-198004号公報。
 上記文献の高圧エヤ発生装置は、通常のコンプレッサのようにエヤタンクを設けることなく、高圧エヤを発生させることが可能であるため、構成を簡略化できる一方で、駆動と駆動停止とを頻繁に繰返した場合、電動モータの駆動時に該駆動モータに流れる電流(起動電流)に起因して電力消費量が多くなる。
 本発明は、エヤの噴出又は吸引を行う高圧エヤ発生装置であって、ブロワの駆動時に駆動モータに流れる電流を低減させ、消費電力を低く抑えることが可能な高圧エヤ発生装置を提供することを課題とする。
 上記課題を解決するため、エヤの噴出又は吸引を行う高圧エヤ発生装置であって、ブロワと、電動モータと、電動モータからブロワに伝動される動力を断続するクラッチと、電動モータの駆動及びクラッチの断続を制御する制御部とを備え、前記制御部は、上記ブロワを駆動させる場合、上記駆動モータが駆動されていることを条件として、前記クラッチを接続作動させることを特徴とする。
 前記制御部は、上記駆動モータが駆動停止し且つ上記クラッチが切断されている状態で、前記ブロワを駆動させる場合、前記クラッチを切断させた状態で上記電動モータを駆動させ、その後に該クラッチを接続作動させるものとしてもよい。
 上記噴出又は吸引の操作を検出する操作検出手段と、該操作の前に先立って必然的に行われる前準備を検出する前準備検出手段と、前記制御部は、上記前準備検出手段によって前準備が検出された場合、前記電動モータを駆動させ、上記操作検出手段によって上記噴出又は吸引の操作が検出された場合、クラッチを接続作動させるものとしてもよい。
 前記前準備検出手段は、エヤを噴出又は吸引する通気具の格納の有無を検出する格納状態検出手段であるものとしてもよい。
 前記前準備検出手段は、電源の入切を検出する電源入切検出手段であるものとしてもよい。
 前記制御部は、上記ブロワを駆動させる指令を受取った場合、前記クラッチを切断させた状態で上記電動モータを駆動させ、その後、タイマーによって所定時間の経過を確認したことを条件として、上記クラッチを接続作動させるものとしてもよい。
 前記制御部は、上記ブロワを間欠駆動させるにあたり、上記電動モータを駆動状態で保持したまま、前記クラッチを切断作動させることにより、まず前記ブロワを駆動状態から駆動停止状態に切換え、その後、上記電動モータを駆動状態で保持したまま、前記クラッチを接続作動させることにより、前記ブロワを駆動停止状態から駆動状態に切換えるものとしてもよい。
 前記ブロワはルーツブロワであるものとしてもよい。
 前記電動モータを冷却する冷却ファンと、前記冷却ファン側へのエヤの流路と、前記冷却ファンから送風され且つ電動モータを冷却した後の高温のエヤを上記ブロワ側に流動させる流路とを備えたものとしてもよい。
 ブロワを駆動させる場合、上記駆動モータが駆動されていることを条件として、前記クラッチを接続作動させるため、高負荷な状態で電動モータの駆動が開始されることが防止され、ブロワの駆動時に電動モータに流れる電流が低下し、消費電力を低く抑えることが可能になる。
本発明を適用した高圧エヤ発生装置の平断面図である。 本発明を適用した高圧エヤ発生装置の側断面図である。 本高圧エヤ発生装置のエヤの流動制御構成を示す回路図である。 ルーツブロワの断面図であって、(A),(B)及び(C)は一のロータの吸気状態、圧縮状態及び排気状態をそれぞれ示している。 (A),(B)は噴射ノズルの格納状態と使用状態との切換構成を示す側面図及び正面図である。 制御部の構成を示すブロック図である。 制御部の処理フロー図である。 本発明の別実施形態に係る制御部の処理フロー図である。
 図1,図2は、本発明を適用した高圧エヤ発生装置の平断面図及び側断面図である。これらの図面に示された高圧エヤ発生装置は、直方体状に成形されて上部が開閉される筐体1を備えている。この筐体1内には、各種機器が設置されて装置本体2を構成している。ちなみに、ここでは、高圧は大気圧と比較して高い気圧を意味するものとする。
 この装置本体2は、筐体1の底面から複数のスペーサ3によって底上げされた水平板であるベース4と、該ベース4の上面側に設置された設置されたルーツブロワ(ブロワ,エヤポンプ)6と、該ルーツブロワ6の吸気口6a側に設置されるストレーナ(フィルタ)7と、筐体1の外部から内部にエヤの吸気する吸気管8と、該吸気管8における筐体1内側の端部に接続された吸気側マフラー9と、筐体1の内部から外部にエヤを排気する排気菅11と、該排気管11における筐体1内側の端部に接続された排気側マフラー12と、該排気側マフラー12の排気管11を接続させる側とは反対側の端部と前記ルーツブロワ6の排気口6bとを接続させる接続管13と、直流式又は交流式の電動モータ14と、該電動モータ14から出力される動力をルーツブロワ6に伝動する伝動機構16とを備えている。
 筐体1内の長手方向(縦方向)一方側にルーツブロワ6が配置され、他方側に吸気側マフラー9及び排気側マフラー12が配置されている。吸気管8及び吸気側マフラー9は筐体1の短軸方向(横方向)一方側に配置され、排気管11及び排気側マフラー12は筐体1の横方向他方側に配置されている。この吸気側マフラー9及び排気側マフラー12の直下には、上述の電動モータ14が横向きに配置されている。
 ルーツブロワ6は、自身の吸気口6aが吸気側マフラー9のエヤ流出部9aに近い側を向くとともに自身の排気口6bが吸気側マフラー9及び排気側マフラー12から遠い側を向いた状態で、筐体1内に設置されている。上下方向に延びる円柱状に成形された一対のストレーナ7は、ルーツブロワ6の吸気口6aから上方突出した状態で、吸気側マフラー9のエヤ流出部9aのエヤ流出方向正面側に配置される。
 伝動機構16は、電動モータ14の出力軸17に直結され且つ該出力軸17と一体回転する主動プーリ18と、ルーツブロワ6側に回転可能に支持された従動プーリ19と、主動プーリ18及び従動プーリ19に掛け回される環状の伝動ベルト21と、伝動ベルト21にテンションを付与するテンションプーリ22と、従動プーリ19側の回転動力をルーツブロワ6に断続伝動して該ルーツブロワ6の駆動の入切を行うクラッチ23(図3、図6参照)とを有している。
 伝動ベルト21は本例ではポリドライブベルトを採用している。クラッチ23は本例では乾式単板電磁クラッチを採用している。このクラッチ23は、従動プーリ19と、ルーツブロワ6に動力を入力する受動軸24との間に設けられ、従動プーリ19と受動軸24の間の動力伝動を断続切換させる。ちなみに、クラッチ23によるルーツブロワ6への動力の断続切換は、電動モータ14を駆動させている最中も実行可能である。言換えると、このクラッチ23には、従動プーリ19と受動軸24との回転数を同期させる同期手段が設けられている。
 図3は、本高圧エヤ発生装置のエヤの流動制御構成を示す回路図である。吸気管8から吸気側マフラー9を介して筐体1内に吸気されたエヤは、該吸気側マフラー9のエヤ流出部9aから筐体1内に流出される。この流出されたエヤは、ストレーナ7を介して、吸気口6aに形成された入力側流路P1内に流入する。
 吸気側流路P1内のエヤは、ルーツブロワ6によって高圧化されて高圧エヤとなり、出力側流路P2へ流出される。ちなみに、吸気管8、吸気側マフラー9、ストレーナ7及び入力側流路P1と続く、エヤの流動は、ルーツブロワ6の吸引力によって発生させるが、このルーツブロワ6とは別に、吸気ファン26を、ストレーナ7内又はその入口付近に設けてもよい。ちなみに、この吸気ファン26は、上述した電動モータ14の動力によって駆動させてもよいし、或は、別途設けた電動モータ等のアクチュエータによって駆動させてもよい。
 出力側流路P2に排気された高圧のエヤは、蓄熱器27を通過して該蓄熱器27への蓄熱を行った後、分岐流路P3に達する。この分岐流路P3内のエヤは、電磁比例制御弁からなる切換バルブ28を介して、排気側流路P4と、還元流路P5との少なくとも何れか一方に流動される。
 排気側流路P4のエヤは接続管13及び排気側マフラー12を介して外部に排気される一方で、還元流路P5のエヤは入力側流路P1に戻される。
 切換バルブ28は、分岐流路P3側のエヤを排気側流路P4のみに流動させる「排気状態」と、分岐流路P3側のエヤを還元流路P5のみに流動させる「還元状態」と、分岐流路P3側のエヤを排気側流路P4と及び還元流路P5との両方に流動させる「分岐状態」
との何れへの切換を行う。
 排気状態への切換を行った場合、ルーツブロワ6から排出された高圧エヤが排気管8からダイレクトに排気される。
 還元状態又は分岐状態への切換を行った場合、少なくとも一部のエヤは、出力側流路P2→還元流路P5→入力側流路P1→ルーツブロワ6→出力側流路P2→・・・と循環する。この循環の過程で、エヤの圧力上昇による昇温が行われ、この熱を蓄熱器27に蓄熱することにより、エヤの加熱をヒータレス状態で実現できる。
 分岐状態への切換を行った場合、排気状態への切換時と同様に、エヤの排気が可能になるが、その排気に併せて、所定量だけルーツブロワ6の入力側にエヤを還元することが可能になる。ちなみに、循環するエヤが所定の圧力及び温度に達した場合には、それ以上の循環は不要であるため、還元状態から排気状態又は分岐状態、或は分岐状態から排気状態への切換を行う。
 さらに、切換バルブ28は、比例制御弁であるため、排気側流路P4への開度を変更可能であり、該構成によって、排気する高圧エヤの量は適宜調整可能である。なお、還元流路P5側への開度も調整可能に構成してもよい。
 ちなみに、出力側流路P2、蓄熱器27、切換バルブ28及び排気側流路P4は、ルーツブロワ6の排気口6b側に設けてもよいが、スペース上の問題から、出力側流路P2及び排気側流路P4の一部と、蓄熱器27及び切換バルブ28とをルーツブロワ6の排出口6b外に設けてもよい。
 このようなエヤの流動制御によれば、蓄熱器27を利用して、ヒータレスによりエヤを加熱可能になるが、これと併せて、電動モータ14から発生する熱を利用することが可能である。
 具体的には、図2に示すように、電動モータ14には、周面に全周に亘り放射状に突出した複数の放熱フィン29と、隣接する放熱フィン29の間にエヤを流動させて該放熱フィン29から熱を奪う冷却ファン31とが設けられている。
 そして、図1に示すように、吸気側マフラー9のエヤ流出部9aから流出したエヤの一部は、横方向に並べられた一対のストレーナ7,7の間を通り抜けて筐体1の壁面側を流動し電動モータ14側に達する。電動モータ14側に達したエヤは冷却ファン31によって電動モータ14の一方端側から他方端側に流動され、この過程で放熱フィン29から熱を奪って加熱される。このように加熱されたエヤはストレーナ7からルーツブロワ6内に流入される。
 言換えると、隙間の調整や、ストレーナ7の位置の調整や、冷却ファン31の送風方向や配置の調整によって、吸引側マフラー9のエヤ流出部9aから冷却ファン31側にエヤを流動させる流路C1と、冷却ファン31によって送風され且つ電動モータ31によって加熱された後のエヤをストレーナ7側(ルーツブロワ6側)まで流動させる流路C2とが筐体1内に形成されている。
 図4はルーツブロワの断面図であって、(A),(B)及び(C)は一のロータの吸気状態、圧縮状態及び排気状態をそれぞれ示している。ルーツブロワ6は、2葉ルーツブロワや、3葉ルーツブロワや、ベーン式ルーツブロワ等を用いることが可能であるが、本例では、2葉ルーツブロワを用いている。
 ルーツブロワ6は、一対のロータ32,33と、該一対のロータ32,33を収容するケーシング34とを有している。
 各ロータ32,33は軽量且つ硬質な耐熱性の合成樹脂製材料によって構成され、その内部にはさらなる軽量化を目的として空洞部32a,33aが形成されている。一対のロータ32,33は、位相が互いに常時4分の1周期ずれるようにして、反対方向に回転駆動される。
 ケーシング34は、金属性部材によって構成されている。このケーシング34には、互いに対向するように吸気口34a及び排気口34bがそれぞれ開口形成されている。
 各ロータ32,33が回転駆動している最中、この一対のロータ32,33の間の隙間は常時微小に保持されるとともに、該一対のロータ32,33とケーシング34の内壁面との隙間も常時微小に保持される。
 そして、一のロータ32は4分の1周期毎に、吸気口34aからエヤを吸気する吸気状態(図4(A)参照)と、該吸気したエヤを圧縮する圧縮状態(図4(B)参照)と、該圧縮したエヤを排気する排気状態(図4(C)参照)とをこの順番で繰返す。さらに、その他の一のロータ33は、前記一のロータ32から4分の1周期ずれて、この吸気状態と圧縮状態と排気状態とを同様の順番で繰返す。
 なお、吸気口34aや排気口34bに不純物等を除去するフィルタ36を設けてもよく、図4に示す例では、仮想線で示すように、フィルタ36がケーシング34の吸気口34aに設けられている。
 図5(A),(B)は噴射ノズルの格納状態と使用状態との切換構成を示す側面図及び正面図である。図示する例では、排気管11の先端部にエヤを噴射する噴射ノズル(通気具)37を接続している。噴射ノズル37は、筒状に成形された装置本体38と、該装置本体38の先端部からさらにその先に延長されるように突出形成されたノズル39と、装置本体38の中途部からから該装置本体3と交差(具体的には直交)する方向に突設された把持部41とを有している。ちなみに、排気管11のノズル39が突設された先端部とは反対側の端部(基端部)側には、上述した排気管11の先端部が接続される。
 把持部41には、押し操作可能なモーメンタリ式の操作ボタン(操作検出手段)42が設置されている。作業者が把持部41を把持し、ノズル39を対象部に向け、操作ボタン42を押し操作すると、ルーツブロワ6によって高圧化されたエヤがノズル39の先端側から前記対象部に噴射され、該対象部にある埃等の異物を吹飛ばす。
 この噴射ノズル37は、このようにして作業者に利用される一方で、未使用の状態では、格納された状態(格納状態)になる。この格納状態を具体的に説明すると、上下方向に延びる支柱43に軸方向に調整可能に固定具44が外装固定され、この固定具44には上下方向に延びる筒状の支持具46が取付固定されている。噴射ノズル37の格納状態時、この支持具46の内周面側に把持部41が挿入された噴射ノズル37(さらに具体的には装置本体38)の外周面が、一対の挟持板47,47によって、下側から弾力的に挟持して係止される。
 格納状態の噴射ノズル37が向いた方向を前後方向とした場合、一対の挟持板47,47の下側半部は、前記支持具46の左右の側面にそれぞれ固定され、各挟持体47の上部は支持具46から上方に突出した状態になる。
 この噴射ノズル37の格納状態の有無を検出する検出スイッチ(格納状態検出手段)48が前記支持具46に設けられている。具体的には、支持具46の外周面中、格納状態とした噴射ノズル37の先端に近い側の面(正面)又は基端に近い側の面(背面)の何れか一方(図示する例では正面)側に、上述の検出スイッチ48が設置されている。
 検出スイッチ48は、検出体48aと、該検出体48aを揺動自在に支持するスイッチ本体48bとを有している。この検出体48aは、格納状態の噴射ノズル37の軸方向視(正面視)で、噴射ノズル37(装置本体38)と重複する揺動位置(初期位置)に弾性付勢され、噴射ノズル37を格納状態とした場合、装置本体38の外周面との接当によって、この検出体48aが、正面視で、該噴射ノズル37と非ラップとなる位置(検出位置)まで揺動される。
 検出スイッチ48は、この検出体48aの初期位置から検出位置への揺動によって、ONからOFF(或はOFFからON)に切換えられ、格納状態になったことを検出する。一方、検出スイッチ48は、この検出体48aの検出位置から初期位置への揺動によって、OFFからON(或はONからFF)に切換えられ、格納状態ではなくなったことを検出する。
 以上のような機械構成の高圧エヤ発生装置では、マイコンや制御回路等から構成された制御部49(図6参照)が、操作ボタン42による操作の有無の検出や、検出スイッチ48による格納状態の有無の検出等に基づいて、電動モータ14の駆動の入切制御と、クラッチ23の断続制御と、切換バルブ28の切換制御とを行う。
 図6は、制御部の構成を示すブロック図である。制御部49の入力側には、上述した操作ボタン42及び検出スイッチ48と、高圧エヤ発生装置の電源のON・OFF(入切)を検出する電源入切検出手段51と、高圧エヤ発生装置内の所定部分の圧力を検出する圧力検出手段52と、高圧エヤ発生装置内の所定部分の温度を検出する温度検出手段53とが接続されている。一方、制御部49の出力側には、上述した電動モータ14、クラッチ23及び切換バルブ28が接続されている。
 この制御部49は、高圧エヤ発生装置内の圧力や温度に応じて、切換バルブ28による状態切換を行う。
 例えば、制御部49は、蓄熱器27の温度が予め定めた所定値以上に上昇したことを温度検出手段53によって検出した場合、蓄熱器27への蓄熱が十分であると判断し、切換バルブ28によって、還元状態から分岐状態又は排気状態への切換、或は分岐状態から排気状態への切換を行う。
 また、制御部49は、入力側流路P1内、出力側流路P2内、蓄熱器27内又は分岐流路P3内の圧力が予め定めた所定値以上に上昇したことを圧力検出手段52によって検出した場合、その圧力を下降させるため、切換バルブ28によって、還元状態から分岐状態又は排気状態への切換、或は分岐状態から排気状態への切換を行う。
 ところで、電動モータ14のOFF状態からON状態への切換(起動)を行う際、該電動モータ14に流れる電流(起動電流)は、電力消費増大の大きな要因の1つになる。
 この起動電流を低減させるため、ルーツブロワ6を駆動させるにあたり、前記制御部49は、クラッチ23を切断させて電動モータ14からルーツブロワ6への動力伝動が遮断させた状態で、該電動モータ14への電力供給を開始させることにより、空回り状態(低負荷状態又は無負荷状態)で電動モータ14を起動し、その後、クラッチ23を接続させる。
 具体的には、制御部49は、噴射ノズル37による噴射を行うための操作である操作ボタン42の押し操作の前に先立って必然的に行われる前準備を検出した場合、電動モータ14を駆動(起動)させ、操作ボタン42の押し操作を検出した場合、クラッチ23を切断状態から接続状態に切換える。
 ちなみに、本例では、噴射ノズル37を格納状態から格納されていない状態とする作業や、本高圧エヤ発生装置の電源をONとする作業が上述した前準備となる。すなわち、上述した電源入切検出手段51及び格納状態検出手段48は、それぞれ前準備を検出する前準備検出手段として機能する。
 以上のような制御部49の内容を処理手順に沿って以下に説明する。
 図7は、制御部の処理フロー図である。制御部49は、処理を開始すると、ステップS101に処理を進める。ステップS101では、上述した前準備検出手段48,51によって前準備出の有無を確認し、前準備が行われたことが確認された場合にはステップS102に進む。
 なお、ステップS101において、電源入切検出手段51によって電源ONが確認された場合のみ、前準備が確認されたとしてもよいし、検出スイッチ48によって格納状態でないと確認された場合のみ、前準備が確認されたとしてもよいし、或は、電源ONの確認と格納状態でない状態の確認の両方が確認された場合のみ、前準備が確認されたとしてもよい。
 ステップS102では、電動モータ14を駆動させ、ステップS103に進む。ステップS103では、操作ボタン42によって高圧エヤの噴出のための操作(操作ボタン42の押し操作)が検出された場合、ステップS104に進む一方で、検出されない場合にはステップS101に処理を戻す。ステップS104では、クラッチ23を接続状態とし、ルーツブロワ6を駆動させ、ステップS101に処理を戻す。
 ステップS101において、前準備が確認されなかった場合、ステップS105に処理を進める。ステップS105では、クラッチ23を切断状態とし、ステップS101に処理を戻す。
 以上の処理手順によって、電動モータ14の起動電流が低減されるため、全体の消費電流も低くすることが可能になり、高圧エヤの噴出・噴出停止を繰返す間欠駆動をさせることも容易になる。
 なお、電動モータ14の電力供給開始時、ソフトスタータによって、電圧を低減させ、起動電流を低減させることも可能である。また、電動モータ14を、サーマルプロテクタ(過熱保護装置)付のマグネットコンダクターと並列接続させ、定格回転まで回転数が達した該電動モータ14の保護を行う。
 また、この高圧エヤ発生装置は、図示しない吸気ノズル(通気具)を吸気管8側に接続し、掃除機等に利用してもよい。この場合、格納状態を検出する構成等は、噴射ノズル37と同様とすることが可能である。
 また、上述の切換バルブ28によって切換えられる状態を、構造を簡略化する目的で、還元状態及び分岐状態の2つのみとしてもよし、還元状態及び排気状態の2つのみとしてもよし、或は分岐状態及び排気状態の2つのみとしてもよい。この他、この切換バルブ28を比例制御弁から方向切換弁に変更して構成を簡略化させてもよい。
 さらに、上述した例では、クラッチ23として、制御部49からの電気的な制御信号によって直接制御可能な電磁式のものを用いたが、このクラッチ23として、伝動ベルト21のテンションの有無の切換によってルーツブロワ6への動力伝動を断続させるテンションプーリを用いてもよい。この場合には、制御部49から直接制御可能な図示しない電動モータによってクラッチ23を断続作動させる。
 次に、図8に基づき、本発明の別実施形態について、上述の形態と異なる部分を説明する。
 図8は、本発明の別実施形態に係る制御部の処理フロー図である。制御部49は、ステップS201から処理を開始する。ステップS201では、エヤの噴出又は吸引の指令信号の有無を確認し、該指令がある場合にはステップS202に進む一方で、該指令がない場合にはステップS201の処理を繰返す。
 ステップS202では、電動モータ14を駆動させ、ステップS203に処理を進める。ステップS203では、制御部49に内蔵されたカウンターを利用してカウントを開始し、ステップS204に処理を進める。ステップS204では、ステップS203において開始させたカウントが終了しているか否かを確認し、終了していなければ再びステップS204の処理を行う一方で、カウントが終了していれば、ステップS205に進む。
 ステップS205では、クラッチ23を接続状態として、ルーツブロワ6を駆動させ、ステップS201に処理を戻す。このような処理手順によれば、電動モータ14を駆動させてから、予め定めた所定の時間(本例では、2~3秒程度)が経過するまでは、ステップS204の処理を繰返され、クラッチ23が切断状態で保持され、電動モータ14が低負荷又は無負荷で回転されるため、起動電流を低減させることが可能になる。
 該構成によれば、前準備を検出する必要がなく、所定時間の経過を待つことによって、起動電流を低減させることが可能になる。ちなみに、待機する時間は数秒であるため、使用感には、それ程の影響はない。
 このような高圧エヤ発生装置は、焼却炉へのエヤ供給や、水中での気泡発生や、養殖池への酸素供給や、ジェットバス等に用いることも可能である。この他、この高圧エヤ発生装置を、対象物の吸引による保持に用いることも可能である。この場合には、可動可能なアームの先端側に形成された対象物の保持部に吸気口を開口して形成し、この吸気口に吸気管8の先端部を接続する。
 次に、本発明の別実施形態について、上述の形態と異なる部分を説明する。
 上述の形態では、電動モータ14が駆動停止され且つクラッチ23が切断されている状態において、ルーツブロワ6を駆動させるための制御内容について説明したが、本実施形態では、ルーツブロワ6を間欠駆動させるための制御内容について説明する。
 具体的には、ルーツブロワ6を駆動状態から駆動停止状態に切換え、その後、再び駆動停止状態から駆動状態に切換える。
 まず、ルーツブロワ6を駆動状態から駆動停止状態に切換えるにあたり、電動モータ14は駆動状態で保持し、クラッチ23を接続状態から切断状態に切換える。
 続いて、ルーツブロワ6を駆動停止状態から駆動状態に切換えるにあたり、電動モータ14は駆動状態で保持し、クラッチ23を切断状態から切断状態に切換える。
 このような制御内容によれば、ルーツブロワ6の間欠駆動時において、クラッチ23が接続されて高負荷な状態において、電動モータ14の駆動が開始され、該電動モータ14に大量の電流が流れ、電力が大量に消費されるような事態を効率的に防止できる。このため、ルーツブロワ6の間欠駆動時の消費電力も大幅に低減させることが可能になる。
 次に、本発明を適用したクラッチ23付きの高圧エヤ発生装置(以下、「高圧エヤ発生装置A」)と、クラッチ23を設けていない比較例の高圧エヤ発生装置(以下、「高圧エヤ発生装置B」)とを比較実験を説明する。
 測定機器は「Tektronix」の「PA400 Power Analyzer」を用い、島根県産業技術センターの電気・電気技術科において、各状態における電動モータの電流値を測定した。その結果は、以下に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 上述の結果によれば、高圧エヤ発生装置Aにおける無負荷(低負荷)状態での電動モータ14の駆動開始時の電流値と、その後のクラッチ23の切断状態から接続状態への切換時(負荷作用開始時)の電流値とは、高圧エヤ発生装置Bにおける負荷状態での駆動開始時の電流値と比べて、低減されている状態が確認できた。
 さらに、クラッチ23の断続による高圧エヤ発生装置A(ルーツブロワ6)の間欠駆動時の電流値は、負荷状態時の電動モータ14の駆動の入切による高圧エヤ発生装置B(ルーツブロワ)の間欠駆動時の電流値と比べて、大幅に低減されている。これは、高圧エヤ発生装置Aでは、電動モータ14の慣性を効率的に利用できているためと考えられる。
  6 ルーツブロワ(ブロワ,エヤポンプ)
  14 電動モータ
  23 クラッチ
  37 噴射ノズル(通気具)
  42 操作ボタン(操作検出手段)
  48 検出スイッチ(前準備検出手段,格納状態検出手段)
  49 制御部
  51 電源入切検出手段(前準備検出手段)
  C1 流路
  C2 流路

Claims (9)

  1.  エヤの噴出又は吸引を行う高圧エヤ発生装置であって、
     ブロワと、
     電動モータと、
     電動モータからブロワに伝動される動力を断続するクラッチと、
     電動モータの駆動及びクラッチの断続を制御する制御部とを備え、
     前記制御部は、上記ブロワを駆動させる場合、上記駆動モータが駆動されていることを条件として、前記クラッチを接続作動させる
     ことを特徴とする高圧エヤ発生装置。
  2.  前記制御部は、上記駆動モータが駆動停止し且つ上記クラッチが切断されている状態で、前記ブロワを駆動させる場合、前記クラッチを切断させた状態で上記電動モータを駆動させ、その後に該クラッチを接続作動させる
     請求項1に記載に高圧エヤ発生装置。
  3.  上記噴出又は吸引の操作を検出する操作検出手段と、
     該操作の前に先立って必然的に行われる前準備を検出する前準備検出手段と、
     前記制御部は、
     上記前準備検出手段によって前準備が検出された場合、前記電動モータを駆動させ、
     上記操作検出手段によって上記噴出又は吸引の操作が検出された場合、クラッチを接続作動させる
     請求項2に記載の高圧エヤ発生装置。
  4.  前記前準備検出手段は、エヤを噴出又は吸引する通気具の格納の有無を検出する格納状態検出手段である
     請求項3に記載の高圧エヤ発生装置。
  5.  前記前準備検出手段は、電源の入切を検出する電源入切検出手段である
     請求項3に記載の高圧エヤ発生装置。
  6.  前記制御部は、
     上記ブロワを駆動させる指令を受取った場合、前記クラッチを切断させた状態で上記電動モータを駆動させ、
     その後、タイマーによって所定時間の経過を確認したことを条件として、上記クラッチを接続作動させる
     請求項2に記載の高圧エヤ発生装置。
  7.  前記制御部は、上記ブロワを間欠駆動させるにあたり、上記電動モータを駆動状態で保持したまま、前記クラッチを切断作動させることにより、まず前記ブロワを駆動状態から駆動停止状態に切換え、その後、上記電動モータを駆動状態で保持したまま、前記クラッチを接続作動させることにより、前記ブロワを駆動停止状態から駆動状態に切換える
     請求項1に記載に高圧エヤ発生装置。
  8.  前記ブロワはルーツブロワである
     請求項1乃至7の何れかに記載の高圧エヤ発生装置。
  9.  前記電動モータを冷却する冷却ファンと、
     前記冷却ファン側へのエヤの流路と、
     前記冷却ファンから送風され且つ電動モータを冷却した後の高温のエヤを上記ブロワ側に流動させる流路とを備えた
     請求項1乃至8の何れかに記載の高圧エヤ発生装置。
PCT/JP2017/027092 2016-07-26 2017-07-26 高圧エヤ発生装置 WO2018021427A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018530365A JP6958840B2 (ja) 2016-07-26 2017-07-26 高圧エヤ発生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146337 2016-07-26
JP2016146337 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021427A1 true WO2018021427A1 (ja) 2018-02-01

Family

ID=61016152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027092 WO2018021427A1 (ja) 2016-07-26 2017-07-26 高圧エヤ発生装置

Country Status (2)

Country Link
JP (2) JP6958840B2 (ja)
WO (1) WO2018021427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230208A1 (ja) * 2019-05-10 2020-11-19 カーツ株式会社 刈刃付き電動作業機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008758A1 (en) * 1987-05-12 1988-11-17 B T Sales And Services Limited Device for supplying a flow of heated air
JP2003065272A (ja) * 2001-08-23 2003-03-05 Anlet Co Ltd エアーブロー用圧縮空気供給装置
JP2007092230A (ja) * 2005-09-29 2007-04-12 Toyota Kogyo Kk 多段式ルーツブロワーを用いた圧縮空気利用システム
JP2007162629A (ja) * 2005-12-15 2007-06-28 Toyota Industries Corp 電動ポンプ
JP2010024868A (ja) * 2008-07-16 2010-02-04 Panasonic Corp 密閉型ロータリ圧縮機および空気調和機
JP2012198004A (ja) * 2011-03-23 2012-10-18 Mitsutoshi Takebe 熱風発生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158845A (ja) * 1995-12-05 1997-06-17 Mitsubishi Heavy Ind Ltd 空気圧縮ユニット
JP2000283052A (ja) 1999-03-26 2000-10-10 Tokico Ltd 空気圧縮機
JP4166045B2 (ja) 2002-07-03 2008-10-15 株式会社日立製作所 空気圧縮機
JP6007570B2 (ja) 2012-04-24 2016-10-12 マックス株式会社 空気圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008758A1 (en) * 1987-05-12 1988-11-17 B T Sales And Services Limited Device for supplying a flow of heated air
JP2003065272A (ja) * 2001-08-23 2003-03-05 Anlet Co Ltd エアーブロー用圧縮空気供給装置
JP2007092230A (ja) * 2005-09-29 2007-04-12 Toyota Kogyo Kk 多段式ルーツブロワーを用いた圧縮空気利用システム
JP2007162629A (ja) * 2005-12-15 2007-06-28 Toyota Industries Corp 電動ポンプ
JP2010024868A (ja) * 2008-07-16 2010-02-04 Panasonic Corp 密閉型ロータリ圧縮機および空気調和機
JP2012198004A (ja) * 2011-03-23 2012-10-18 Mitsutoshi Takebe 熱風発生装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230208A1 (ja) * 2019-05-10 2020-11-19 カーツ株式会社 刈刃付き電動作業機
JPWO2020230208A1 (ja) * 2019-05-10 2020-11-19
CN113473841A (zh) * 2019-05-10 2021-10-01 凯姿股份有限公司 带刀片的电动作业机
TWI778288B (zh) * 2019-05-10 2022-09-21 日商凱姿股份有限公司 具有刀片的電動作業機
AU2019445992B2 (en) * 2019-05-10 2022-12-01 Kaaz Corporation Electric Work Machine with Cutting Blade
JP7184400B2 (ja) 2019-05-10 2022-12-06 カーツ株式会社 刈刃付き電動作業機

Also Published As

Publication number Publication date
JPWO2018021427A1 (ja) 2019-05-23
JP2021185312A (ja) 2021-12-09
JP7219929B2 (ja) 2023-02-09
JP6958840B2 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
KR100360252B1 (ko) 진공청소기의 유로 시스템
WO2015194426A1 (ja) 液体吐出装置
US20030014829A1 (en) Water absorbing and drying cleaner
CN109028771B (zh) 双舱真空干燥柜及使用其进行干燥的方法
JP7219929B2 (ja) 高圧エヤ発生装置
WO2018035844A1 (zh) 油烟机自动清洗装置和方法
JP2013233056A (ja) 流体装置
JP2017109091A (ja) 吸引掃除機及び吸引掃除機の動作方法
US20200291568A1 (en) Steam iron with independent air suction system
CN108221333A (zh) 一种新型安全电熨斗
EP2924163A1 (en) Household appliance for washing or drying
DK9400467U3 (da) Højtryksrenser
CN207325409U (zh) 手持式清理装置
KR20170000976U (ko) 헤어드라이어 겸용 소형 공기청정기
CN214133196U (zh) 一种玻璃瓶干燥除尘装置
KR20190041075A (ko) 배기호스가 장착되는 진공청소기
CN207699909U (zh) 一种能连续熨烫衣物的熨台
US9700184B2 (en) Floor care appliance
US10736476B2 (en) Electric vacuum cleaner and hand dryer
JP5677064B2 (ja) 電気掃除機
WO2015194425A1 (ja) 液体吐出装置
CN210962368U (zh) 管状器械清洁仪
WO2023058278A1 (ja) 回収装置に接続可能な掃除機
CN218652549U (zh) 一种环保安全型vhp空间灭菌设备
KR100789224B1 (ko) 다기능 가정용 청소기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530365

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834429

Country of ref document: EP

Kind code of ref document: A1