WO2018019191A1 - 一种太阳能电池组件 - Google Patents

一种太阳能电池组件 Download PDF

Info

Publication number
WO2018019191A1
WO2018019191A1 PCT/CN2017/093951 CN2017093951W WO2018019191A1 WO 2018019191 A1 WO2018019191 A1 WO 2018019191A1 CN 2017093951 W CN2017093951 W CN 2017093951W WO 2018019191 A1 WO2018019191 A1 WO 2018019191A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
solar cell
cell module
array
module according
Prior art date
Application number
PCT/CN2017/093951
Other languages
English (en)
French (fr)
Inventor
孙翔
姚云江
姜占锋
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/320,218 priority Critical patent/US20190273170A1/en
Priority to EP17833494.2A priority patent/EP3477708A4/en
Priority to JP2019504747A priority patent/JP2019522380A/ja
Publication of WO2018019191A1 publication Critical patent/WO2018019191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to a solar cell module.
  • the crystal type solar cell (component) in the prior art is composed of an embossed ultra-white protective glass, an EVA filling material, a plurality of crystal substrates (solar cell chips) connected by wires (series, parallel), and a back protective layer.
  • the components are heat laminated to a unit with a vacuum heat laminator, and then the bezel and junction box are mounted to form a complete solar cell (assembly).
  • the thin film type battery (assembly) is formed directly on the surface of the protective glass, the transparent electrode layer, the thin film semiconductor layer and the rear electrode layer, and then the layers are cut by a laser or the like as needed, and then the parts are connected, and then EVA is used.
  • the backing material is protected by a filler material and a back protective film.
  • the sunlight is irradiated to the solar cell chip through the protective glass to produce a photovoltaic effect, and the sunlight that is irradiated to the battery chip is not all utilized, and many of the sunlight is reflected by the battery chip.
  • the prior art CN 101677112A discloses a solar cell, and in particular discloses a concentrating glass for facing a reflective concentrating pattern having a stripe shape on the entire surface of the solar cell chip, wherein the pattern has a reflective concentrating surface
  • the proportion of the area occupied is greater than or equal to 75%. Facing the entire surface of the solar cell chip (i.e., the lower surface of the glass), an array structure having a convex curved surface is formed, which increases the light receiving area, and the power of the assembly is improved.
  • the light is focused by a convex surface on the cell between the fine grid lines, and the light is fully utilized to further increase the power.
  • the type of the glass and the cell sheet are highly compatible, and at the same time, there is a deviation in the arrangement of the components in the actual production, that is, the glass convex structure Part of it needs to correspond to the non-gate line part of the battery.
  • the cell sheet matrix and the glass relief matrix are prone to misalignment.
  • the type and size of the battery sheet will have different requirements for the glass relief matrix, which makes the light not pass through the concentrating glass and does not necessarily focus on the cell between the gate lines, and does not guarantee the entire silicon wafer. It can make good use of incident light, which will have a negative impact on component power boost.
  • the present disclosure provides that the astigmatism unit does not need to correspond to the cell between the fine grid lines, and the type correspondence between the glass and the cell is not high, and the guarantee is ensured.
  • the entire silicon wafer can make good use of incident light, increase the light receiving area, and effectively increase the power of the solar cell module, and at the same time reduce the component mounting cost.
  • the present invention provides a solar cell module comprising a front plate, a front film layer, a cell sheet array, a backing film layer and a back sheet which are sequentially laminated, wherein the front plate comprises glass, and the glass faces away from the array of cells
  • the front plate comprises glass
  • the glass faces away from the array of cells
  • One or more astigmatism units are disposed on one side, and the astigmatism unit is a recessed structure in which a side of the glass facing away from the array of the cell sheets is recessed toward a side of the glass adjacent to the array of the wafer sheets.
  • the ratio of the deepest depth H 1 of the recessed structure to the thickness H of the glass is 1:100 to 1:2.
  • the deepest depth H 1 of the recessed structure is 0.03 mm to 10 mm, and the width W 1 of the recessed structure is 0.3 mm to 50 mm.
  • the relationship between the length L 1 of the recessed structure and the length L of the glass is L-60 mm ⁇ L 1 ⁇ L - 10 mm.
  • the orthographic projection of the astigmatism unit on the plane of the light receiving surface of the array of cells is rectangular.
  • the astigmatism unit is a recessed structure extending along the length of the glass.
  • the plurality of astigmatism units are arranged along the width direction of the glass, and the adjacent astigmatism units are connected by a circular arc.
  • the concave structure of the astigmatism unit and the convex structure of the circular arc transition form a wave shape extending in the width direction of the glass.
  • the plurality of astigmatism units are continuously equidistantly arranged along the width direction of the glass, and the distance D 1 of the edges of the adjacent astigmatism units is 0.03 mm to 5 mm.
  • the solar cell module further comprises a mounting frame covering the front edge of the front plate/front film layer/cell array/backing film layer/backing plate to seal the solar cell module, located at The side of the glass in the mounting frame that faces away from the array of cells is planar.
  • the bottom surface of the glass is a glossy or suede surface.
  • the solar cell module of the present disclosure includes a front plate which is provided with one or more recessed structures on a side of the glass facing away from the array of the cell sheets, and the astigmatism unit may be a recessed structure extending in the longitudinal direction of the glass.
  • the astigmatism unit may be a recessed structure extending in the longitudinal direction of the glass.
  • FIG. 1 is a schematic structural view of a front plate in a solar cell module according to an embodiment of the present disclosure
  • FIG. 2 is a top plan view of a front panel of a solar cell module according to an embodiment of the present disclosure
  • FIG. 3 is a side cutaway view of a front panel of a solar cell module according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of a solar cell module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a solar cell module according to an embodiment of the present disclosure.
  • Figures 1 - 5 include:
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited. Common to the field For the skilled person, the specific meanings of the above terms in the present disclosure can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the present disclosure provides a solar cell module comprising a front plate, a front film layer 2, a cell sheet array 3, a backing film layer 4 and a back sheet 5 which are sequentially laminated, and the front plate is generally a transparent body to enhance transmittance.
  • the maximum amount of light is transmitted through the array of cells to increase the power of the battery pack.
  • glass can be used.
  • the order from top to bottom is glass 1, front film layer 2, battery array 3, adhesive film layer 4 and back sheet 5, as shown in FIG.
  • One or more astigmatism units 11 are disposed on a side of the array 1 facing away from the array of cells 3, wherein the astigmatism unit 11 is the side of the glass 1 facing away from the array of cells 3 toward the side of the glass 1 adjacent to the array of cells 3 A concave concave structure.
  • one side of the glass refers to the side of the glass itself, not to the side of the film layer provided on the glass side.
  • the solar cell module using the present disclosure can effectively utilize the sunlight of each time of the day without using the daily system, thereby reducing the installation cost of the battery assembly.
  • H is the thickness of the glass 1 in the front plate
  • W is the width of the glass 1
  • L is the length of the glass 1
  • H 1 in the astigmatism unit 11 is the deepest depth of the concave structure
  • W1 is the width of the recessed structure
  • L1 is the length of the recessed structure.
  • the ratio of the deepest depth H 1 of the recessed structure of the astigmatism unit 11 to the thickness H of the glass is 1:100 to 1:2.
  • the deepest depth H 1 of the recessed structure of the astigmatism unit 11 is 0.03 mm to 10 mm.
  • the width W 1 of the recessed structure is 0.3 mm to 50 mm, and the relationship between the length L 1 of the recessed structure and the length L of the glass is L-60 mm ⁇ L 1 ⁇ L - 10 mm.
  • the depth of the recessed structure of the present disclosure is on the order of millimeters, the anti-reflection effect is stable in the natural environment, the self-cleaning property is better, and the surface is easy to clean.
  • the depth different from the concave structure is nanometer-scale, and the depth of the nano-scale depression is essentially a small ion corrosion pit.
  • the small corrosion pit contributes little to the light penetration and is easy to be exposed in the environment of sun, rain and sand. Gradually corroded and smoothed, thereby reducing the anti-reflection effect; impurities such as dirt accumulated in the grooves of the nanostructure are not easily removed, further affecting the utilization of light.
  • the astigmatism unit 11 is a recessed structure extending along the longitudinal direction of the glass, and the orthographic projection of the astigmatism unit 11 on the plane of the light receiving surface of the array 3 of the battery is rectangular, specifically, a plurality of astigmatism.
  • the units 11 are arranged along the width direction of the glass, and the adjacent astigmatism units 11 are connected by arcs, and the structure formed by the arc transitions is convex with respect to the plane of the glass. Further, the plurality of astigmatism units 11 are continuously equidistantly arranged along the width direction of the glass 1.
  • the distance D 1 of the edge of the adjacent astigmatism unit 11 is 0.03 mm to 5 mm, and D 1 is a circular arc-transition bulge.
  • the width of the structure 13, and further, the recessed structure and the raised structure 13 together form a wave shape extending in the width direction of the glass 1, that is, a wavy line can be seen from the cross section shown in FIG.
  • the solar cell module further includes a mounting frame 6 and a peripheral frame 6 covering the periphery of the glass 1 / front film layer 2 / the cell sheet array 3 / the backing film layer 4 / the back plate 5 to seal the solar cell module
  • the side of the glass 1 located in the mounting frame 6 facing away from the array of the cell sheets is a flat surface, and the outer frame 6 and the front plate/front film layer 2/the cell sheet array 3/the backing film layer 4/back plate 5 are mounted.
  • the connection of the peripheral edges is prior art and will not be described here.
  • a side of the front side of the glass 1 facing away from the array of cells is provided with a package edge 12 corresponding to the outer frame, and the distance D 2 from the four edges of the glass 1 is 5 mm to 30 mm.
  • the side of the glass 1 facing the cell array 3, that is, the light receiving surface facing the array 3 of cells may be smooth or textured (for example, frosted glass), and the suede is generally Refers to a surface having a certain roughness, for example, a concave-convex structure having a micrometer or a nanometer scale, which is visually observed without obvious concave or convex, and which can exhibit irregularity only under an observation instrument with an accuracy of micrometers or nanometers. uneven structure, particularly, the deepest depth of the concave and / or convex structures of the present application is far below the maximum depth of the recess structure H 1.
  • the other side, that is, the glass 1 facing away from the side of the array of cells 3 faces the sun.
  • the material of the back plate 5 may be the same as or different from the material of the front plate.
  • the solar cell array 3 When the sunlight passes through the solar cell glass 1 to illuminate one side of the solar cell array 3, the solar cell array 3 generates a photovoltaic effect, and the sunlight that is irradiated to the cell array 3 is not all utilized, and a lot of sunlight is used by the battery.
  • the sheet array 3 is reflected off, and the light reflected from the array of the cells 3 is reflected to the side of the astigmatism unit 11 of the recessed structure, and is again reflected and scattered to one side of the array of the cells 3, and participates in power generation again.
  • This process is countless. Repeatedly, it ensures that the entire silicon wafer can make good use of incident light, increase the light receiving area of the glass 1, and increase the power of the component.
  • the solar cell module using the present disclosure can effectively utilize the sunlight of each time of the day without using the daily system, thereby reducing the installation cost of the battery assembly.
  • the prior art CN 101677112A is a concentrating principle of a convex concentrating glass commonly used in the art, and the light is focused on a point through the glass.
  • the embossing of the glass and the cell between the fine grid lines are considered.
  • the width of the stripe-shaped reflective concentrating surface is 0.6 mm - 1.2 mm; on the other hand, the correspondence between the glass and the cell type should be considered to avoid the deviation of the component placement, focus the light on the grid, and then Light is reflected off, which has a negative impact on component power boost.
  • the technical solution of the present disclosure applies the principle of light scattering, the light is uniform, and the astigmatism unit disposed on the glass increases the effective reflection astigmatism surface area of the front plate on the light receiving surface, thereby improving the utilization rate of the solar energy, thereby improving the efficiency.
  • the output power of the battery assembly solves the technical problem existing in the prior art CN 101677112A, Experiments have shown that the present disclosure has an 3% increase in output power compared to the prior art CN 101677112A.
  • the solar cell module disclosed in the present disclosure can increase the output power thereof.
  • the solar cell module can be installed on the roof of a building or on the outer wall of a building, or can be installed in an open area such as a desert, and can be installed on a ship, a satellite, a spacecraft, or the like. .

Abstract

一种太阳能电池组件,包括依次层叠的前板、前胶膜层(2)、电池片阵列(3)、背胶膜层(4)和背板(5),其中,前板包括玻璃(1),玻璃的背离电池片阵列的一侧上具有一个或者一个以上的散光单元(11),散光单元为玻璃的背离电池片阵列的一侧向玻璃邻近电池片阵列的一侧内凹的凹陷结构。提供了一种散光单元无需与电池片非栅线部分对应,玻璃与电池片的类型对应性要求不高,保证了整个硅片都能很好的利用入射光线,增大了玻璃的受光面积,提升组件功率,降低了组件安装成本。

Description

一种太阳能电池组件 技术领域
本公开涉及一种太阳能电池组件。
背景技术
最近几年来,原油价格快速持续上涨,同时常规能源即石油,煤炭等的大量开采和消耗给环境带来了严重影响,为此新的清洁能源引起了人们的重视,这种情况下太阳能光伏发电得到了快速发展,其中晶体(单晶硅或多晶硅)型太阳能电池(组件)已经形成了产业化,随着技术的进步薄膜型太阳能电池组件的发电率日益得到提高,因此薄膜型电池组件也在快速发展,如何进一步提高太阳能电池(组件)的输出功率成为目前太阳能光伏发电行业迫切需要解决的重要课题。
公知技术中的晶体型太阳能电池(组件)由压花超白保护玻璃,EVA等填充材质,用导线连接(串联、并联)的若干个晶体基板(太阳能电池芯片),背面保护层组成,把这些元件用真空热层压机加热层压成整体,然后安装边框和接线盒,成为完整的太阳能电池(组件)。
薄膜型电池(组件),在保护玻璃表面上直接按顺序形成,透明电极层、薄膜半导体层和后面电极层,然后用激光等手段按需求将各层割开,再连接各部分,随后用EVA等填充材质和背面保护膜进行背面保护。
太阳光透过保护玻璃照射到太阳能电池芯片产生光伏效应,照射到电池芯片的太阳光并非全部被利用,其中不少太阳光被电池芯片反射掉。
现有技术CN 101677112A公开了一种太阳能电池,具体公开一种聚光玻璃,其用于面对太阳能电池芯片的整个表面上具有条纹状的反射聚光花纹,所述的花纹中反射聚光面部分所占面积比例大于或等于75%。面对太阳能电池芯片的整个表面(即,玻璃的下表面)制作成具有凸起结构曲面的列阵结构,增大了受光面积,组件的功率获得了提升。光线通过凸面聚焦于细栅线之间的电池片上,光线得到充分利用,进一步提高功率。但由于玻璃的凸纹需要与细栅线之间的电池片相对应才能体现上述效果,玻璃与电池片的类型对应性很强,同时实际生产中组件的铺排存在偏差,即,玻璃凸起结构部分需要与电池片非栅线部分对应,但电池片经过印刷、串联、压合等工艺后,由于存在一定操作偏差,电池片矩阵与玻璃凸纹矩阵就很容易出现错位不对应的现象。另外电池片的类型及尺寸的不一样也会对玻璃凸纹矩阵有不一样的要求,这就使得光线通过聚光玻璃后未必聚焦在栅线之间的电池片上,并不能保证整个硅片都能很好的利用入射光线,从而会对组件功率提升有负面影响。
发明内容
为解决现有技术中凸纹需要与细栅线之间的电池片相对应,玻璃与电池片的类型对应性要求高,实际生产中组件的铺排存在偏差,不能保证整个硅片都能很好的利用入射光线,对组件功率提升有负面影响的技术问题,本公开提供了一种散光单元无需与细栅线之间的电池片相对应,玻璃与电池片的类型对应性要求不高,保证了整个硅片都能很好的利用入射光线,增大了受光面积,有效提高功率的太阳能电池组件,同时降低了组件安装成本。
本公开提供的一种太阳能电池组件,包括依次层叠的前板、前胶膜层、电池片阵列、背胶膜层和背板,其中,前板包括玻璃,所述玻璃的背离电池片阵列的一侧上具有一个或者一个以上的散光单元,所述散光单元为所述玻璃的背离电池片阵列的一侧向玻璃邻近所述池片阵列的一侧内凹的凹陷结构。
优选的,凹陷结构的最深深度H1与玻璃厚度H的比为1:100-1:2。
优选的,凹陷结构的最深深度H1为0.03㎜-10㎜,凹陷结构的宽度W1为0.3㎜-50㎜。
优选的,凹陷结构的长度L1与玻璃长度L的关系为L-60㎜≤L1≤L-10㎜。
优选的,散光单元在电池片阵列受光面所在平面上的正投影为矩形。
优选的,散光单元为沿玻璃长度方向延伸的凹陷结构。
优选的,多个散光单元沿玻璃的宽度方向间隔排布,相邻的散光单元之间由圆弧过渡连接。
进一步的,散光单元的凹陷结构和圆弧过渡的凸起结构形成沿玻璃的宽度方向延伸的波浪形。
优选的,多个散光单元沿玻璃的宽度方向连续等距离排布,相邻的散光单元的边缘的距离D1为0.03㎜-5㎜。
优选的,太阳能电池组件还包括安装外框,所述安装外框包覆所述前板/前胶膜层/电池片阵列/背胶膜层/背板的四周边缘以密封太阳能电池组件,位于安装外框内的玻璃的背离电池片阵列的一侧为平面。
优选的,玻璃的底面为光面或绒面。
本公开的太阳能电池组件包括前板,是在玻璃的背离电池片阵列的一侧上设置有一个或者一个以上的凹陷结构构成的玻璃,该散光单元可以为沿玻璃长度方向延伸的凹陷结构。通过改变玻璃背离电池片阵列的一侧上的形状或者结构,增大了玻璃的受光面积,散光单元无需与电池片非栅线部分对应,各种电池片类型均可适用。光线通过凹陷结构的玻璃后散射进入电池片,充分利用太阳光,能够保证整个电池片阵列全部受光发电,有效提升了组件功率。采用本公开的太阳能电池组件不需要采用逐日系统也可有效的利用一天各个时 段的太阳光,降低了电池组件安装成本。
附图说明
图1为本公开实施例的一种太阳能电池组件中前板的结构示意图;
图2为本公开实施例的一种太阳能电池组件中前板的俯视图;
图3为本公开实施例的一种太阳能电池组件中前板的侧切图;
图4为本公开实施例的一种太阳能电池组件的结构示意图;
图5为本公开实施例的一种太阳能电池组件的结构示意图;
图1-图5中包括:
1——玻璃、2——前胶膜层、3——电池片阵列、4——后胶膜层、5——背板、6——安装边框、11——散光单元、12——封装边、13——凸起结构。
具体实施方式
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通 技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图及实施例对本公开做进一步描述。
本公开提供了一种太阳能电池组件,包括依次层叠的前板、前胶膜层2、电池片阵列3、背胶膜层4和背板5,前板一般为透明体,以便增强透射度,使得光线最大限度的透过其射入电池片阵列上,提升了电池组件功率。具体可以采用玻璃。
本实施例中具体如图4所示,从上至下的顺序依次是玻璃1、前胶膜层2、电池片阵列3、背胶膜层4和背板5,如图1所示,玻璃1的背离电池片阵列3的一侧上设有一个或者一个以上的散光单元11,其中,散光单元11为玻璃1的背离电池片阵列3的一侧向玻璃1邻近电池片阵列3的一侧内凹的凹陷结构。此处,玻璃的一侧是指玻璃自身的一侧,并非是在玻璃一侧上设有的膜层的一侧。
通过改变玻璃1的背离电池片阵列的一侧的形状或者结构,增大了玻璃1的受光面积,散光单元11无需与电池片非栅线部分对应,玻璃1与电池片的类型对应性要求不高。光线透过玻璃1的背离电池片阵列3的一侧上的凹陷结构后散射进入电池片阵列3,充分利用太阳光,能够保证整个电池片阵列3全部受光发电,有效提升了电池组件功率。采用本公开的太阳能电池组件不需要采用逐日系统也可有效的利用一天各个时段的太阳光,降低了电池组件安装成本。
如图2-图3所示,本实施例中前板中H为玻璃1的厚度,W为玻璃1的宽度,L为玻璃1的长度,散光单元11中H1为凹陷结构的最深深度,W1为凹陷结构的宽度,L1为凹陷结构的长度。本实施例中散光单元11的凹陷结构的最深深度H1与玻璃厚度H的比为1:100-1:2,进一步的,散光单元11的凹陷结构的最深深度H1为0.03㎜-10㎜,凹陷结构的宽度W1为0.3㎜-50㎜,凹陷结构的长度L1与玻璃长度L的关系为L-60㎜≤L1≤L-10㎜。
本公开凹陷结构的深度是毫米级的,自然环境中增透作用稳定,自洁性更好,表面容易清洁。区别于凹陷结构的深度是纳米级的,纳米级的凹陷深度实质上是很小的离子腐蚀坑,细小的腐蚀坑对光的增透贡献不大,容易在日晒雨淋风沙的环境中被逐渐腐蚀磨平,进而减小增透作用;纳米结构的槽中累积的污垢等杂质不容易清除,进一步影响光的利用率。
如图1-图3所示,优选,散光单元11为沿玻璃长度方向延伸的凹陷结构,散光单元 11在电池片阵列3的受光面所在平面上的正投影为矩形,具体的,多个散光单元11沿玻璃的宽度方向间隔排布,相邻的散光单元11之间由圆弧过渡连接,圆弧过渡连接形成的结构相对于玻璃所在平面是凸起的。进一步的,多个散光单元11沿玻璃1的宽度方向连续等距离排布,所述相邻的散光单元11边缘的距离D1为0.03㎜-5㎜,D1实为圆弧过渡的凸起结构13的宽度,更进一步的,凹陷结构和凸起结构共同13形成沿玻璃1的宽度方向延伸的波浪形,即从图3所示的截面可看到波浪线。
具体的,太阳能电池组件还包括安装外框6,安装外框6包覆玻璃1/前胶膜层2/电池片阵列3/背胶膜层4/背板5的四周边缘以密封太阳能电池组件,位于安装外框6内的玻璃1的背离电池片阵列的一侧为平面,安装外框6与前板/前胶膜层2/电池片阵列3/背胶膜层4/背板5的四周边缘的连接为现有技术,在此不再赘述。进一步的,前板中玻璃1的背离电池片阵列的一侧上设有对应安装外框设置的封装边12,距离玻璃1的四个边缘的距离D2为5㎜-30㎜。
如图4所示,本公开中前板中玻璃1的朝向电池片阵列3的一侧,即面对电池片阵列3的受光面可以为光面或绒面(例如毛玻璃),绒面一般是指具有一定粗糙度的表面,例如可以为具有微米或纳米级的凹凸结构,肉眼观察,并无明显的凹或者凸,其仅在精确度为微米或纳米级的观察仪器下能显示无规律的凹凸结构,具体的,凹和/或凸结构的最深深度远远低于本申请所述凹陷结构的最深深度H1。另一一侧,即,背离电池片阵列3的一侧的玻璃1朝向太阳。进一步的,背板5的材质可以与前板的材质相同或不同。
当太阳光透过太阳能电池玻璃1照射到太阳能电池片阵列3的一侧时太阳能电池片阵列3产生光伏效应,照射到电池片阵列3的太阳光并非全部被利用,其中不少太阳光被电池片阵列3反射掉,从电池片阵列3反射出来的光反射到凹陷结构的散光单元11的一侧时重新被反射散光到电池片阵列3的一侧上,再次参与发电,这种过程是无数次反复进行的,因此保证了整个硅片都能很好的利用入射光线,增大了玻璃1的受光面积,提升组件功率。采用本公开的太阳能电池组件不需要采用逐日系统也可有效的利用一天各个时段的太阳光,降低了电池组件安装成本。
现有技术CN 101677112A为本领域常用凸型聚光玻璃的聚光原理,将光线透过玻璃聚焦于一点,在实际生产中一方面要考虑玻璃的凸纹需要与细栅线之间的电池片相对应(条纹状反射聚光面的宽度为0.6毫米-1.2毫米);另一方面要考虑玻璃与电池片类型的对应性,避免组件的铺排存在偏差,将光线聚焦在栅线上,然后将光线反射掉,由此对组件功率提升有负面影响。本公开的技术方案应用的是光的散射原理,光线均匀,设置在玻璃上的散光单元使得前板在受光面上增大了有效的反射散光面面积,提高了太阳能的利用率,从而提高了电池组件的输出功率,解决了现有技术CN 101677112A存在的技术问题,同时 实验证明,本公开相较于现有技术CN 101677112A输出功率提高了3%。
本公开公开的太阳能电池组件,可提高其输出功率,太阳能电池组件可安装在建筑物屋顶上或建筑物外墙上也可安装在沙漠等空旷地区还可以安装在船舶、卫星、航天器等上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种太阳能电池组件,包括依次层叠的前板、前胶膜层、电池片阵列、背胶膜层和背板,其特征在于,所述前板包括玻璃,所述玻璃的背离电池片阵列的一侧上具有一个或者一个以上的散光单元,所述散光单元为所述玻璃的背离电池片阵列的一侧向玻璃邻近所述电池片阵列的一侧内凹的凹陷结构。
  2. 根据权利要求1所述的太阳能电池组件,其特征在于,所述凹陷结构的最深深度H1与玻璃厚度H的比为1:100-1:2。
  3. 根据权利要求1所述的太阳能电池组件,其特征在于,所述凹陷结构的最深深度H1为0.03㎜-10㎜,凹陷结构的宽度W1为0.3㎜-50㎜。
  4. 根据权利要求1所述的太阳能电池组件,其特征在于,所述凹陷结构的长度L1与玻璃长度L的关系为L-60㎜≤L1≤L-10㎜。
  5. 根据权利要求1所述的太阳能电池组件,其特征在于,所述散光单元在电池片阵列受光面所在平面上的正投影为矩形。
  6. 根据权利要求1所述的太阳能电池组件,其特征在于,所述散光单元为沿玻璃长度方向延伸的凹陷结构。
  7. 根据权利要求1所述的太阳能电池组件,其特征在于,多个所述散光单元沿玻璃的宽度方向间隔排布,相邻的所述散光单元之间圆弧过渡连接。
  8. 根据权利要求7所述的太阳能电池组件,其特征在于,所述散光单元的凹陷结构和圆弧过渡的凸起结构形成沿玻璃的宽度方向延伸的波浪形。
  9. 根据权利要求8所述的太阳能电池组件,其特征在于,多个所述散光单元沿玻璃的宽度方向连续等距离排布,相邻的所述散光单元的边缘的距离D1为0.03㎜-5㎜。
  10. 根据权利要求1所述的太阳能电池组件,其特征在于,所述太阳能电池组件还包括安装外框,所述安装外框包覆所述前板/前胶膜层/电池片阵列/背胶膜层/背板的四周边缘以密封太阳能电池组件,位于安装外框内的玻璃的背离电池片阵列的一侧为平面。
  11. 根据权利要求1所述的太阳能电池组件,其特征在于,所述玻璃的底面为光面或绒面。
PCT/CN2017/093951 2016-07-29 2017-07-21 一种太阳能电池组件 WO2018019191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/320,218 US20190273170A1 (en) 2016-07-29 2017-07-21 Solar cell assembly
EP17833494.2A EP3477708A4 (en) 2016-07-29 2017-07-21 SOLAR CELL MODULE
JP2019504747A JP2019522380A (ja) 2016-07-29 2017-07-21 太陽電池セル組立体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620817417.1U CN206022388U (zh) 2016-07-29 2016-07-29 一种太阳能电池组件
CN201620817417.1 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019191A1 true WO2018019191A1 (zh) 2018-02-01

Family

ID=58246769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093951 WO2018019191A1 (zh) 2016-07-29 2017-07-21 一种太阳能电池组件

Country Status (5)

Country Link
US (1) US20190273170A1 (zh)
EP (1) EP3477708A4 (zh)
JP (1) JP2019522380A (zh)
CN (1) CN206022388U (zh)
WO (1) WO2018019191A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600572A (zh) * 2019-09-30 2019-12-20 嘉兴龙吟光伏材料股份有限公司 一种增效型太阳能电池板
CN115810683A (zh) * 2022-12-19 2023-03-17 江苏福旭科技有限公司 一种高效吸光单晶硅片

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206022388U (zh) * 2016-07-29 2017-03-15 上海比亚迪有限公司 一种太阳能电池组件
CN107731945A (zh) * 2017-10-16 2018-02-23 江阴艾能赛瑞能源科技有限公司 一种非晶硅薄膜太阳能电池组件
CN108807578A (zh) * 2018-05-31 2018-11-13 海宁市高级技工学校 光伏组件
ES2902754T3 (es) * 2018-07-27 2022-03-29 Cnbm Bengbu Design & Res Institute For Glass Industry Co Ltd Módulo solar con placa cobertora estructurada y capa de interferencia óptica

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677112A (zh) * 2008-09-19 2010-03-24 金仁哲 太阳能电池、太阳能电池聚光玻璃及其制造方法和压花辊
CN102064223A (zh) * 2010-11-30 2011-05-18 东莞南玻太阳能玻璃有限公司 一种太阳能电池组件盖板玻璃及太阳能电池组件
CN102064222A (zh) * 2010-11-30 2011-05-18 东莞南玻太阳能玻璃有限公司 一种新型太阳能电池组件盖板玻璃及太阳能电池组件
CN201868438U (zh) * 2010-11-30 2011-06-15 东莞南玻太阳能玻璃有限公司 一种太阳能电池组件盖板玻璃
CN201904345U (zh) * 2010-11-30 2011-07-20 东莞南玻太阳能玻璃有限公司 一种新型太阳能电池组件盖板玻璃及太阳能电池组件
CN105789356A (zh) * 2016-04-14 2016-07-20 董友强 一种玻璃基体结构太阳能电池组件
CN205985018U (zh) * 2016-07-29 2017-02-22 惠州比亚迪实业有限公司 一种用于太阳能电池的玻璃和太阳能电池
CN206022388U (zh) * 2016-07-29 2017-03-15 上海比亚迪有限公司 一种太阳能电池组件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007371A (ja) * 1999-06-17 2001-01-12 Nippon Telegr & Teleph Corp <Ntt> 太陽電池モジュール
JP2001189479A (ja) * 2000-01-05 2001-07-10 Misawa Homes Co Ltd 太陽電池パネルおよびこれを備えた太陽電池付屋根
JP2003243689A (ja) * 2001-12-13 2003-08-29 Asahi Glass Co Ltd 太陽電池用カバーガラス、その製法及び該カバーガラスを使用した太陽電池モジュール
JP2003188399A (ja) * 2001-12-19 2003-07-04 Fuji Electric Co Ltd 太陽電池モジュール
US8637762B2 (en) * 2006-11-17 2014-01-28 Guardian Industries Corp. High transmission glass ground at edge portion(s) thereof for use in electronic device such as photovoltaic applications and corresponding method
JP5015889B2 (ja) * 2008-09-25 2012-08-29 大日本スクリーン製造株式会社 太陽電池パネル及び太陽光発電装置
US8048250B2 (en) * 2009-01-16 2011-11-01 Genie Lens Technologies, Llc Method of manufacturing photovoltaic (PV) enhancement films
FR2941447B1 (fr) * 2009-01-23 2012-04-06 Saint Gobain Substrat en verre transparent et procede de fabrication d'un tel substrat.
TWI479669B (zh) * 2009-04-01 2015-04-01 Ind Tech Res Inst 太陽模組高透光與光捕捉封裝結構
US20120048350A1 (en) * 2010-08-30 2012-03-01 Pedro Gonzalez Solar module protector
BE1021974B1 (fr) * 2013-09-03 2016-02-01 Agc Glass Europe Feuille de verre texturee a motifs rectilignes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677112A (zh) * 2008-09-19 2010-03-24 金仁哲 太阳能电池、太阳能电池聚光玻璃及其制造方法和压花辊
CN102064223A (zh) * 2010-11-30 2011-05-18 东莞南玻太阳能玻璃有限公司 一种太阳能电池组件盖板玻璃及太阳能电池组件
CN102064222A (zh) * 2010-11-30 2011-05-18 东莞南玻太阳能玻璃有限公司 一种新型太阳能电池组件盖板玻璃及太阳能电池组件
CN201868438U (zh) * 2010-11-30 2011-06-15 东莞南玻太阳能玻璃有限公司 一种太阳能电池组件盖板玻璃
CN201904345U (zh) * 2010-11-30 2011-07-20 东莞南玻太阳能玻璃有限公司 一种新型太阳能电池组件盖板玻璃及太阳能电池组件
CN105789356A (zh) * 2016-04-14 2016-07-20 董友强 一种玻璃基体结构太阳能电池组件
CN205985018U (zh) * 2016-07-29 2017-02-22 惠州比亚迪实业有限公司 一种用于太阳能电池的玻璃和太阳能电池
CN206022388U (zh) * 2016-07-29 2017-03-15 上海比亚迪有限公司 一种太阳能电池组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477708A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600572A (zh) * 2019-09-30 2019-12-20 嘉兴龙吟光伏材料股份有限公司 一种增效型太阳能电池板
CN115810683A (zh) * 2022-12-19 2023-03-17 江苏福旭科技有限公司 一种高效吸光单晶硅片
CN115810683B (zh) * 2022-12-19 2023-12-22 江苏福旭科技有限公司 一种高效吸光单晶硅片

Also Published As

Publication number Publication date
EP3477708A1 (en) 2019-05-01
EP3477708A4 (en) 2019-07-03
US20190273170A1 (en) 2019-09-05
JP2019522380A (ja) 2019-08-08
CN206022388U (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018019191A1 (zh) 一种太阳能电池组件
JP3670835B2 (ja) 太陽電池モジュール
JP5414516B2 (ja) 光起電力素子モジュールおよびその製造方法
CN103441175B (zh) 晶体硅光伏组件
US20070256732A1 (en) Photovoltaic module
CN102064223B (zh) 一种太阳能电池组件盖板玻璃及太阳能电池组件
WO2018113143A1 (zh) 一种光伏反射膜及其应用
JP5734382B2 (ja) 光起電力素子モジュールおよびその製造方法
CN203536455U (zh) 太阳能电池板
CN202695508U (zh) 太阳电池组件
CN114678437B (zh) 光伏组件
JP2010074057A (ja) 太陽電池裏面シートおよびそれを用いた太陽電池モジュール
JP4924724B2 (ja) 太陽電池パネル
CN205985018U (zh) 一种用于太阳能电池的玻璃和太阳能电池
KR20100071246A (ko) 태양전지 모듈
CN106601848A (zh) 晶体硅光伏组件
CN107689400B (zh) 一种用于太阳能电池的玻璃和太阳能电池
TWI556463B (zh) Solar cell panel and manufacturing method thereof
CN209515687U (zh) 光伏组件
Leiner et al. CPV membranes made by roll-to-roll printing: A feasible approach?
CN206301818U (zh) 一种用于光伏组件的反射背板
JP2003243689A (ja) 太陽電池用カバーガラス、その製法及び該カバーガラスを使用した太陽電池モジュール
CN206422076U (zh) 一种太阳能电池组件
CN201732793U (zh) 太阳能电池板
JP2008311408A (ja) 集光型太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833494

Country of ref document: EP

Effective date: 20190128