WO2018113143A1 - 一种光伏反射膜及其应用 - Google Patents

一种光伏反射膜及其应用 Download PDF

Info

Publication number
WO2018113143A1
WO2018113143A1 PCT/CN2017/080244 CN2017080244W WO2018113143A1 WO 2018113143 A1 WO2018113143 A1 WO 2018113143A1 CN 2017080244 W CN2017080244 W CN 2017080244W WO 2018113143 A1 WO2018113143 A1 WO 2018113143A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photovoltaic
reflective film
pyramid
substrate
Prior art date
Application number
PCT/CN2017/080244
Other languages
English (en)
French (fr)
Inventor
高瑞
丁晶
Original Assignee
苏州高德辰光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611201825.5A external-priority patent/CN106449842A/zh
Priority claimed from CN201611201822.1A external-priority patent/CN106449840B/zh
Priority claimed from CN201611201823.6A external-priority patent/CN106449841B/zh
Application filed by 苏州高德辰光电科技有限公司 filed Critical 苏州高德辰光电科技有限公司
Priority to JP2019531998A priority Critical patent/JP2020502800A/ja
Priority to US16/470,906 priority patent/US20190326462A1/en
Publication of WO2018113143A1 publication Critical patent/WO2018113143A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a reflective film, and more particularly to a photovoltaic reflective film for use in a photovoltaic module.
  • the photovoltaic welding strip is applied to the connection between the photovoltaic module cells, and plays an important role in conducting electricity.
  • the surface of the welding strip is coated with a tin layer.
  • the tin layer will directly reflect the sunlight, and this part of the sunlight cannot It is used by the battery board, causing waste of light energy.
  • Some strips have a stripe structure on the body to reflect light, but the strip substrate is made of copper.
  • the stripe structure is difficult to be micro-structured during processing, the reflection effect is not ideal, and the thickness of the surface tin layer is uneven. It is easy to cause fragmentation of the battery sheet and affect production efficiency.
  • a photovoltaic reflective film comprising a substrate, a microstructured reflective layer, the microstructured reflective layer being disposed on an upper surface of the substrate, the microstructured reflective layer comprising a microstructured layer, a reflective layer, and the reflective layer coated On the surface of the microstructure layer, the microstructure layer is composed of a plurality of polygonal pyramids, micro triangular prisms or microprisms.
  • the reflective microstructure can reflect the incident light in multiple directions and be reabsorbed by the battery sheet, thereby effectively increasing the area of the reflective surface and also allowing the reflected light to reach the surface of the larger area of the battery. Reuse, improve the utilization of light energy and increase the output power of photovoltaic modules.
  • a fixing glue layer or a backing layer is disposed, and the fixing glue layer or the backing layer is disposed on the lower surface of the substrate.
  • the polygonal pyramid of the microstructure layer is preferably a pyramid pyramid.
  • the pyramid structure uniformly reflects the incident light to the surface of the cell sheet in four directions, and the light utilization rate is high, and the structure is also the most stable.
  • the bottom edge of the pyramid quadrangular pyramid is disposed at an angle of 45° to the longitudinal direction of the substrate.
  • the length direction of the soldering strip of the photovoltaic module is consistent with the direction of the main grid line of the cell, and the bottom edge of the pyramid pyramid is set at an angle of 45°, so that the reflected light can be diverged in four directions instead of being reflected.
  • the reflective film on the surface of the ribbon is consistent with the direction of the main grid line of the cell, and the bottom edge of the pyramid pyramid is set at an angle of 45°, so that the reflected light can be diverged in four directions instead of being reflected.
  • the pyramid quadrangular pyramid has a multi-slope structure, and the inclination angle of the ridge line becomes smaller from bottom to top.
  • the height of the pyramid pyramid is reduced, space is saved, the reflection area is increased, and the efficiency of the photovoltaic module is improved.
  • the pyramid quadrangular pyramid has an apex angle of 50°-75°.
  • the structural stability is ensured while increasing the area of the reflective film.
  • the pyramid quadrangular pyramid has a bottom side length of 50 ⁇ m.
  • the microstructure can be refined under the guarantee of the mold making ability, and the reflected light can be reused better.
  • a photovoltaic reflective film comprising a substrate, a microstructured reflective layer, a fixed adhesive layer, the microstructured reflective layer being disposed on an upper surface of the substrate, the microstructured reflective layer comprising a microstructured layer and a reflective layer, a reflective layer is disposed on the surface of the microstructure layer, the fixing glue layer is disposed on a lower surface of the substrate, and the microstructure layer is continuously arranged laterally by a plurality of micro triangular prisms, and a side of the micro triangular prism is disposed On the upper surface of the substrate, the ridgeline direction of the microtriangular prism is parallel to the longitudinal direction of the substrate.
  • the microstructure layer is arranged in a flat state of a triangular prism, which can effectively increase the area of the reflecting surface, and also allows the reflected light to reach a larger area of the surface of the battery for reuse, thereby improving light energy utilization. Rate, increase the output power of PV modules.
  • micro-triangle prism has an apex angle of 60°-150°, preferably 120°.
  • the structural stability is ensured while increasing the area of the reflective film.
  • the bottom surface of the micro triangular prism has a width of 50 ⁇ m.
  • the microstructure can be refined under the guarantee of the mold making ability, and the reflected light can be reused better.
  • the top of the micro triangular prism is cut into a multi-pointed structure with a concavity and a gap.
  • the height of the microstructure is reduced, space is saved, and the vertical reflecting surface is also strongly increased, and the incident light of a small incident angle is better utilized.
  • a photovoltaic reflective film comprising a substrate, a fixing adhesive layer, a microprism layer and a reflective layer, wherein the fixing adhesive layer is disposed on a lower surface of the substrate, and the microprism layer is a plurality of microprism arrays
  • the upper surface of the substrate, the reflective layer covers the surface of the microprism layer, and the ridgeline direction of the microprism is set at an angle of 15°-65° to the longitudinal direction of the substrate.
  • the ridge line direction of the microprism is disposed at an angle to the longitudinal direction of the substrate, which can increase the area of the reflecting surface, and also make the reflected light reach the surface of the larger area of the cell for reuse. Improve the utilization of light energy and increase the output power of photovoltaic modules.
  • the angle between the ridgeline direction of the microprism and the longitudinal direction of the substrate is preferably 45°.
  • the versatility of the reflective film is improved.
  • microprism has a prism apex angle of 60°-150°, preferably 120°.
  • the structural stability is ensured while increasing the area of the reflective film.
  • the prism bottom surface of the microprism has a width of 50 ⁇ m.
  • the microstructure can be refined under the guarantee of the mold making ability, and the reflected light can be reused better.
  • microprism has a plurality of W-shaped pointed structures on one side.
  • a W-shaped pointed structure is arranged on the main light receiving surface side of the microprism, which effectively increases the area of the reflective film and improves the utilization of light energy.
  • microprism layer is provided with a plurality of V-shaped grooves, and the bottom direction of the V-shaped grooves It is perpendicular to the bottom edge of the microprism.
  • the reflecting surface becomes a tetrahedron of the microstructure unit, and the reflecting surface is strongly increased, and the reflected light is uniformly reflected by the glass sheet and uniformly reaches the surface of the battery sheet.
  • the V-shaped groove has a width of 50 ⁇ m.
  • a photovoltaic reflective film for use in a photovoltaic module for boosting photovoltaic module power;
  • the photovoltaic assembly comprising a plurality of battery sheets, a solder strip connecting the battery sheets, the photovoltaic reflective film being disposed at The upper surface of the solder ribbon or the gap region between the battery sheets, the photovoltaic reflective film may also be disposed at the same time between the upper surface of the solder ribbon and the gap between the battery sheets; the photovoltaic reflective film
  • the longitudinal direction is provided in parallel with the longitudinal direction of the strip and the longitudinal direction of the gap region.
  • the reflective film is disposed in a spatial position in the photovoltaic module where the illumination is not utilized, and the surface of the solar cell is reflected and converted into electric energy, thereby increasing the power generation of the photovoltaic module.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a pyramid quadrangular pyramid having a multi-slope structure according to the present invention
  • FIG. 3 is a schematic structural view of another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a micro-triangular multi-corner structure of the present invention.
  • Figure 5 is a schematic structural view of another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a W-shaped pointed structure of a microprism according to the present invention.
  • Figure 7 is a schematic view showing the structure of a microprism V-shaped groove of the present invention.
  • Figure 8 is a schematic structural view of a photovoltaic module
  • Figure 9 is a schematic illustration of the principle of reflecting light in a photovoltaic module of the present invention.
  • an embodiment of the present invention is: a photovoltaic reflective film comprising a substrate 1, a microstructured reflective layer 2, a fixed adhesive layer 3, and a fixed adhesive layer 3
  • the microstructure reflective layer 2 is disposed on the upper surface of the substrate 1, and the microstructure reflective layer 2 includes a microstructure layer and a reflective layer.
  • the reflective layer is coated on the surface of the microstructure layer, and the microstructure layer is composed of a plurality of layers.
  • the pyramid is formed, and the bottom surface of the polygonal pyramid is provided on the surface of the substrate 1.
  • the microstructure layer is a polygonal pyramid, which can reflect the incident light in multiple directions and be reabsorbed by the battery sheet, thereby effectively increasing the area of the reflective surface and also allowing the reflected light to reach a larger area.
  • the surface of the cell is reused to improve the utilization of light energy and increase the output power of the photovoltaic module.
  • the polygonal pyramid of the microstructured layer is preferably a pyramidal pyramid for the purpose of better improving light utilization.
  • the beneficial effect of the above technical solution is that the pyramid structure uniformly reflects the incident light to the surface of the cell sheet in four directions, and the light utilization rate is high, and the structure is also the most stable.
  • the bottom edge of the pyramid pyramid is disposed at an angle of 45 to the length of the substrate for the purpose of improving the light reflecting path.
  • the technical solution has the beneficial effects that the length direction of the soldering strip of the photovoltaic module is consistent with the direction of the main grid line of the cell, and the bottom edge of the pyramid pyramid is set at an angle of 45°, so that the reflected light can be diverged in four directions instead of Reflected onto the reflective film on the surface of the ribbon.
  • the pyramid quadrangular pyramid in order to achieve space saving, has a multi-slope structure, and the inclination angle of the ridge line becomes smaller from bottom to top, and the ridge in the figure The inclination angle of the line ⁇ > ⁇ > ⁇ .
  • the beneficial effects of using the above technical solution are: reducing the height of the pyramid pyramid, saving space, increasing the reflection area, and improving the efficiency of the photovoltaic module.
  • the pyramidal pyramid has an apex angle of from 50[deg.] to 75[deg.] for the purpose of improving microstructure stability.
  • the beneficial effects of using the above technical solution are: ensuring structural stability while increasing the area of the reflective film.
  • the pyramidal pyramid has a bottom side length of 50 [mu]m for the purpose of refining the microstructure.
  • the beneficial effect of adopting the above technical solution is that, under the guarantee of the mold making ability, the microstructure is refined, and the reflected light can be reused better.
  • an embodiment of the present invention is: a photovoltaic reflective film comprising a substrate 1, a microstructured reflective layer, a fixed adhesive layer 3, and a microstructured reflective layer 2
  • the microstructure reflective layer comprises a microstructure layer 21, a reflective layer 22, the reflective layer 22 is coated on the surface of the microstructure layer 21, the fixing glue layer 3 is disposed on the lower surface of the substrate 1, and the microstructure layer 21 is composed of A plurality of micro triangular prisms are arranged side by side, and one side of the micro triangular prism is disposed on the upper surface of the substrate 1, and the ridgeline direction of the micro triangular prism is parallel to the longitudinal direction of the substrate 1.
  • the microstructure layer is arranged in a flat state of the triangular prism, which can effectively increase the area of the reflecting surface, and also make the reflected light reach the surface of the larger area of the battery for reuse, thereby improving the utilization of light energy. Rate, increase the output power of PV modules.
  • the microtriangle apex angle is from 60° to 150°, preferably 120°, for the purpose of improving the stability of the reflective structure.
  • the beneficial effects of using the above technical solution are: ensuring structural stability while increasing the area of the reflective film.
  • the width of the bottom surface of the microtriangular prism is 50 ⁇ m.
  • the top of the micro triangular prism is cut into a multi-pointed structure with a concave and convex phase, and a vertical reflecting surface. Also got a strong increase.
  • the beneficial effects of the above technical solution are: the microstructure height is reduced, space is saved, and the incident light of a small incident angle with a large illumination intensity is better utilized.
  • an embodiment of the present invention is: a photovoltaic reflective film comprising a substrate 1, a fixed adhesive layer 3, a microprism layer 23, a reflective layer 22, and a fixing adhesive.
  • the layer 3 is disposed on the lower surface of the substrate 1, and the microprism layer 23 is a plurality of microprism arrays disposed on the upper surface of the substrate 1, and the reflective layer 22 covers the surface of the microprism layer 23, and the ridgeline direction of the microprism and the substrate The length direction is set at an angle of 15°-65°.
  • the beneficial effect of the above technical solution is that the ridge line direction of the microprism is disposed at an angle to the longitudinal direction of the substrate, which can increase the area of the reflecting surface, and also make the reflected light reach the surface of the larger area of the cell for reuse. Improve the utilization of light energy and increase the output power of photovoltaic modules.
  • the angles of sunlight are different.
  • the angle of the ridgeline of the best microprism in Xinjiang and Jiangsu is different from the length of the substrate.
  • the angle of the ridge line of the microprism and the longitudinal direction of the substrate is preferably 45°.
  • the beneficial effect of adopting the above technical solution is to improve the versatility of the reflective film in combination with the geographical and illumination characteristics of the main photovoltaic use concentration, preferably 45°.
  • the prisms have an angle of apex angle of 60°-150°, preferably 120°, for the purpose of improving the structural stability of the reflective film.
  • the beneficial effects of using the above technical solution are: ensuring structural stability while increasing the area of the reflective film.
  • the prismatic bottom surface has a width of 50 [mu]m for the purpose of refining the microstructure.
  • the beneficial effects of adopting the above technical solutions are: Under the guarantee of the mold making ability, the microstructure is refined, and the incident light can be reused better.
  • a plurality of W-shaped pointed structures 231 are provided on one side of the microprism concentrated by the sunlight.
  • the beneficial effects of the above technical solution are: effectively increasing the area of the reflective film, so that the reflected light reaches the surface of the cell in a larger area, and improving the utilization of light energy.
  • the microprism layer 3 is provided with a plurality of V-shaped grooves 232, and the V-shaped groove 232 is in the bottom direction and the The bottom edge of the microprism is vertical.
  • the beneficial effect of adopting the above technical solution is that the reflecting surface becomes a tetrahedron of the microstructure unit, and the reflecting surface is strongly increased, and the reflected light is uniformly reflected by the glass sheet and uniformly reaches the surface of the battery sheet.
  • the V-groove opening width is 50 [mu]m for the purpose of constructing a uniform reflective surface.
  • the beneficial effects of the above technical solution are: consistent with the size of the prism, forming a uniform tetrahedron, ensuring uniform reflection of light.
  • a photovoltaic reflective film is applied to a photovoltaic module 4 for boosting photovoltaic module power;
  • the photovoltaic module 4 includes a plurality of battery sheets 41, and a solder strip 42 connecting the battery sheets.
  • the photovoltaic reflective film is disposed on the upper surface of the solder ribbon 42, and the photovoltaic reflective film is further disposed in the gap region 45 between the battery sheets 41, or at the same time in the above two regions; the length direction and the gap region 45 of the photovoltaic reflective film
  • the longitudinal directions are arranged in parallel, and the longitudinal direction of the photovoltaic reflective film is disposed in parallel with the longitudinal direction of the solder ribbon 42.
  • the photovoltaic reflective film is disposed in a spatial position where the illumination is not utilized in the photovoltaic component, and the light is reflected to the surface of the battery sheet to be converted into electric energy, thereby improving the power generation of the photovoltaic module.
  • the photovoltaic reflective film 43 of the present invention is applied to the surface of the solder ribbon 42, and the incident light 51 (sunlight) is incident on the reflective layer of the photovoltaic reflective film 43 via the glass sheet 44.
  • the reflection changes the path into the reflected light 52, and then the total reflection of the surface of the glass sheet 44 changes the path to the total reflected light 53 to finally reach the cell sheet 41, and the light energy is absorbed and converted into electrical energy.

Abstract

一种光伏反射膜,包括基材(1)、微结构反射层(2),该微结构反射层设置在该基材上表面,该微结构反射层包括微结构层(21)、反射层(22),该微结构层由复数个多棱锥、微三棱柱或微棱镜构成。微结构反射层可以有效增加反射面的面积,能将入射光线向多个方向反射,被更大面积的电池片表面进行吸收转化为电能,提高光能利用率,增加光伏组件的输出功率。

Description

一种光伏反射膜及其应用 技术领域
本发明涉及一种反射膜,特别是一种应用于光伏组件的光伏反射膜。
背景技术
光伏焊带应用于光伏组件电池片之间的连接,发挥导电聚电的重要作用。为了保证焊带与电池片的焊接牢靠和防止焊带腐蚀,焊带表面涂布有锡层,当太阳光直射到焊带表面时,锡层会将太阳光直接反射出去,此部分太阳光不能被电池板所利用,造成了光能的浪费。
有部分焊带本体上设有条纹结构用来反射光线,但是焊带基材为铜材,在加工时条纹结构难以做到微型结构,反射效果并不理想,而且会导致表面锡层厚度不均匀,易造成电池片的碎片,影响生产效率。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供了一种结构简单、成本低,能将光线充分利用的光伏反射膜。
为达到上述目的,本发明解决其技术问题所采用的技术方案是:
一种光伏反射膜,包括基材、微结构反射层,所述微结构反射层设置在所述基材上表面,所述微结构反射层包括微结构层、反射层,所述反射层涂覆在所述微结构层表面,所述微结构层由复数个多棱锥、微三棱柱或微棱镜构成。
本发明相较于现有技术,反射微结构能将入射光线向多个方向反射被电池片再吸收,可以有效增加反射面的面积,也使反射出的光线到达更大面积的电池片表面进行再利用,提高光能利用率,增加光伏组件的输出功率。
进一步的,还包括固定胶层或背胶层,所述固定胶层或背胶层设置在所述基材下表面。
进一步地,所述微结构层的多棱锥优选为金字塔四棱锥。
采用上述优选的方案,金字塔结构,使入射光线向四个方向均匀反射至电池片表面,光线利用率高,同时结构也最具稳定性。
进一步地,所述金字塔四棱锥底边与所述基材长度方向成45°角度设置。
采用上述优选的方案,光伏组件的焊带长度方向与电池片主栅线方向一致,金字塔四棱锥底边与之成45°角度设置,可以使反射光线向四个方向发散,而不再反射到焊带表面的反射膜上。
进一步地,所述金字塔四棱锥为多斜度结构,棱线的倾斜角由下往上依次变小。
采用上述优选的方案,降低了金字塔四棱锥的高度,节省空间,也增加了反射面积,提高光伏组件效率。
进一步地,所述金字塔四棱锥顶角角度为50°-75°。
采用上述优选的方案,在提高反射膜面积的同时保证结构稳定性。
进一步地,所述金字塔四棱锥底面边长为50μm。
采用上述优选的方案,在模具制作能力的保证下,细化微结构,能更好地将反射光线再利用。
一种光伏反射膜,包括基材、微结构反射层、固定胶层,所述微结构反射层设置在所述基材上表面,所述微结构反射层包括微结构层、反射层,所述反射层涂覆在所述微结构层表面,所述固定胶层设置在所述基材下表面,所述微结构层由复数个微三棱柱侧向连续排列,所述微三棱柱一侧面设于所述基材上表面,所述微三棱柱的棱线方向与基材长度方向平行。
本发明相较于现有技术,微结构层为三棱柱平躺状态设置,可以有效增加反射面的面积,也使反射出的光线到达更大面积的电池片表面进行再利用,提高光能利用率,增加光伏组件的输出功率。
进一步地,所述微三棱柱顶角角度为60°-150°,优选为120°。
采用上述优选的方案,在提高反射膜面积的同时保证结构稳定性。
进一步地,所述微三棱柱的底面宽度为50μm。
采用上述优选的方案,在模具制作能力的保证下,细化微结构,能更好地将反射光线再利用。
进一步地,所述微三棱柱顶部切割成凹凸相间的多尖角结构。
采用上述优选的方案,微结构高度得到减小,节省了空间,垂直向的反射面也得到有力增大,小入射角的入射光线得到更好的利用。
一种光伏反射膜,包括基材、固定胶层、微棱镜层、反射层,所述固定胶层设于所述基材下表面,所述微棱镜层为多个微棱镜阵列,设于所述基材的上表面,所述反射层覆盖于所述微棱镜层表面,所述微棱镜的棱线方向与所述基材长度方向成15°-65°角度设置。
本发明相较于现有技术,所述微棱镜的棱线方向与基材长度方向成角度设置,可以增加反射面的面积,也使反射出的光线到达更大面积的电池片表面进行再利用,提高光能利用率,增加光伏组件的输出功率。
进一步地,所述微棱镜的棱线方向与基材长度方向所成角度优选为45°。
采用上述优选的方案,结合主要光伏使用集中地的地理和光照特点,优选45°,提高反射膜的通用性。
进一步地,所述微棱镜的棱镜顶角角度为60°-150°,优选为120°。
采用上述优选的方案,在提高反射膜面积的同时保证结构稳定性。
进一步地,所述微棱镜的棱镜底面宽度为50μm。
采用上述优选的方案,在模具制作能力的保证下,细化微结构,能更好地将反射光线再利用。
进一步地,所述微棱镜的一侧面上具有多个W状尖角结构。
采用上述优选的方案,在微棱镜主要受光面一侧设有W状尖角结构,有效增加了反射膜面积,提高光能利用率。
进一步地,所述微棱镜层设有多条V形槽,所述V形槽底边方向 与所述微棱镜底边垂直。
采用上述优选的方案,反射面变为微结构单元四面体,反射面得到有力增大,反射光线经玻璃片全反射后均匀到达电池片表面。
进一步地,所述V形槽开口宽度为50μm。
采用上述优选的方案,与棱镜尺寸相一致,构成均匀的四面体,保证光线反射均一。
一种光伏反射膜的应用,所述光伏反射膜应用于光伏组件中,用以提升光伏组件功率;所述光伏组件包括多个电池片、连接电池片的焊带,所述光伏反射膜设置在所述焊带上表面或所述电池片之间的间隙区域,所述光伏反射膜也可同时设置在所述焊带上表面和所述电池片之间的间隙区域;所述光伏反射膜的长度方向与所述焊带长度方向、所述间隙区域长度方向平行设置。
采用上述优选的方案,反射膜设置到光伏组件中光照没有被利用的空间位置,将光照反射到电池片的表面转化为电能,提高了光伏组件的发电功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种实施方式的结构示意图;
图2是本发明的金字塔四棱锥成多斜度结构的结构示意图;
图3是本发明另一种实施方式的结构示意图;
图4是本发明的微三棱柱多尖角结构的结构示意图;
图5是本发明另一种实施方式的结构示意图;
图6是本发明的微棱镜W状尖角结构的结构示意图;
图7是本发明的微棱镜V形槽的结构示意图;
图8是光伏组件的结构示意图;
图9是本发明在光伏组件中反射光线原理示意图。
图中数字和字母所表示的相应部件的名称:
1-基材;2-微结构反射层;21-微结构层;211-多尖角结构;22-反射层;23-微棱镜层;231-W状尖角结构;232-V形槽;3-固定胶层;4-光伏组件;41-电池片;42-焊带;43-光伏反射膜;44-玻璃片;51-入射光线;52-反射光线;53-全反射光线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了达到本发明的目的,如图1所示,在本发明的一种实施方式为:一种光伏反射膜,包括基材1、微结构反射层2、固定胶层3,固定胶层3设置在基材1下表面,微结构反射层2设置在基材1上表面,微结构反射层2包括微结构层、反射层,反射层涂覆在微结构层表面,微结构层由复数个多棱锥构成,多棱锥底面设于基材1表面上。
采用上述技术方案的有益效果是:微结构层为多棱锥设置,能将入射光线向多个方向反射被电池片再吸收,可以有效增加反射面的面积,也使反射出的光线到达更大面积的电池片表面进行再利用,提高光能利用率,增加光伏组件的输出功率。
在本发明的另一些实施方式中,为了达到更好提高光线利用率的目的,所述微结构层的多棱锥优选为金字塔四棱锥。采用上述技术方案的有益效果是:金字塔结构,使入射光线向四个方向均匀反射至电池片表面,光线利用率高,同时结构也最具稳定性。
在本发明的另一些实施方式中,为了达到改善光线反射路径的目的,所述金字塔四棱锥底边与基材长度方向成45°角度设置。采用上 述技术方案的有益效果是:光伏组件的焊带长度方向与电池片主栅线方向一致,金字塔四棱锥底边与之成45°角度设置,可以使反射光线向四个方向发散,而不再反射到焊带表面的反射膜上。
如图2所示,在本发明的另一些实施方式中,为了达到节省空间的目的,所述金字塔四棱锥为多斜度结构,棱线的倾斜角由下往上依次变小,图中棱线的倾斜角α>β>γ。采用上述技术方案的有益效果是:降低了金字塔四棱锥的高度,节省空间,也增加了反射面积,提高光伏组件效率。
在本发明的另一些实施方式中,为了达到提高微结构稳定性的目的,所述金字塔四棱锥顶角角度为50°-75°。采用上述技术方案的有益效果是:在提高反射膜面积的同时保证结构稳定性。
在本发明的另一些实施方式中,为了达到细化微结构的目的,所述金字塔四棱锥底面边长为50μm。采用上述技术方案的有益效果是:在模具制作能力的保证下,细化微结构,能更好地将反射光线再利用。
为了达到本发明的目的,如图3所示,在本发明的一种实施方式为:一种光伏反射膜,包括基材1、微结构反射层、固定胶层3,微结构反射层2设置在基材1上表面,微结构反射层包括微结构层21、反射层22,反射层22涂覆在微结构层21表面,固定胶层3设置在基材1下表面,微结构层21由复数个微三棱柱侧向连续排列,所述微三棱柱一侧面设于基材1上表面,所述微三棱柱的棱线方向与基材1长度方向平行。
采用上述技术方案的有益效果是:微结构层为三棱柱平躺状态设置,可以有效增加反射面的面积,也使反射出的光线到达更大面积的电池片表面进行再利用,提高光能利用率,增加光伏组件的输出功率。
在本发明的另一些实施方式中,为了达到提高反射结构稳定性的目的,所述微三棱柱顶角角度为60°-150°,优选为120°。采用上述技术方案的有益效果是:在提高反射膜面积的同时保证结构稳定性。
在本发明的另一些实施方式中,为了达到细化微结构的目的,所 述微三棱柱的底面宽度为50μm。采用上述技术方案的有益效果是:在模具制作能力的保证下,细化微结构,能更好地将反射光线再利用。
如图4所示,在本发明的另一些实施方式中,为了达到节省空间,增大有效反射面积的目的,所述微三棱柱顶部切割成凹凸相间的多尖角结构,垂直向的反射面也得到有力增大。采用上述技术方案的有益效果是:微结构高度得到减小,节省了空间,光照强度大的小入射角的入射光线得到更好的利用。
为了达到本发明的目的,如图5所示,在本发明的一种实施方式为:一种光伏反射膜,包括基材1、固定胶层3、微棱镜层23、反射层22,固定胶层3设于基材1下表面,微棱镜层23为多个微棱镜阵列,设于基材1的上表面,反射层22覆盖于微棱镜层23表面,微棱镜的棱线方向与基材长度方向成15°-65°角度设置。
采用上述技术方案的有益效果是:所述微棱镜的棱线方向与基材长度方向成角度设置,可以增加反射面的面积,也使反射出的光线到达更大面积的电池片表面进行再利用,提高光能利用率,增加光伏组件的输出功率。
由于不同纬度的地区,太阳光的角度不同,例如新疆地区和江苏地区最佳的微棱镜的棱线方向与基材长度方向所成角度是不相同的,我们可以根据阳光的角度来相应作出对应的调整。在本发明的另一些实施方式中,为了达到反射膜制作通用性的目的,所述微棱镜的棱线方向与基材长度方向所成角度优选为45°。采用上述技术方案的有益效果是:结合主要光伏使用集中地的地理和光照特点,优选45°,提高反射膜的通用性。
在本发明的另一些实施方式中,为了达到提高反射膜结构稳定性的目的,所述微棱镜的棱镜顶角角度为60°-150°,优选为120°。采用上述技术方案的有益效果是:在提高反射膜面积的同时保证结构稳定性。
在本发明的另一些实施方式中,为了达到细化微结构的目的,所述微棱镜的棱镜底面宽度为50μm。采用上述技术方案的有益效果是: 在模具制作能力的保证下,细化微结构,能更好地将入射光线再利用。
如图6所示,在本发明的另一些实施方式中,为了达到更大地增加反射膜面积的目的,在太阳光照集中的微棱镜的一侧面上设有多个W状尖角结构231。采用上述技术方案的有益效果是:有效增加了反射膜面积,使反射光线到达更大区域的电池片表面,提高光能利用率。
如图7所示,在本发明的另一些实施方式中,为了达到进一步增大有效反射面的目的,微棱镜层3设有多条V形槽232,V形槽232底边方向与所述微棱镜底边垂直。采用上述技术方案的有益效果是:反射面变为微结构单元四面体,反射面得到有力增大,反射光线经玻璃片全反射后均匀到达电池片表面。
在本发明的另一些实施方式中,为了达到构建均匀反射面的目的,所述V形槽开口宽度为50μm。采用上述技术方案的有益效果是:与棱镜尺寸相一致,构成均匀的四面体,保证光线反射均一。
如图8所示,一种光伏反射膜的应用,光伏反射膜应用于光伏组件4中,用以提升光伏组件功率;光伏组件4包括多个电池片41、连接电池片的焊带42,所述光伏反射膜设置在焊带42上表面,所述光伏反射膜还设置在电池片41之间的间隙区域45,或同时设置在上述两区域;所述光伏反射膜的长度方向与间隙区域45长度方向平行设置,所述光伏反射膜的长度方向与焊带42长度方向平行设置。采用上述技术方案的有益效果是:光伏反射膜设置到光伏组件中光照没有被利用的空间位置,将光照反射到电池片的表面转化为电能,提高了光伏组件的发电功率。
下面结合图9阐述本发明在光伏组件中反射光线的原理,本发明光伏反射膜43贴付于焊带42表面,入射光线51(阳光)经玻璃片44入射到光伏反射膜43的反射层上反射改变路径成反射光线52,再经玻璃片44表面全反射改变路径成全反射光线53,最终到达电池片41,光能被吸收转化为电能。
上述实施例只为说明本发明的技术构思及特点,其目的在于让本领域普通技术人员能够了解本发明的内容并加以实施,并不能以此限 制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (11)

  1. 一种光伏反射膜,包括基材、微结构反射层,所述微结构反射层设置在所述基材上表面,所述微结构反射层包括微结构层、反射层,所述反射层涂覆在所述微结构层表面,其特征在于,所述微结构层由复数个多棱锥、微三棱柱或微棱镜构成。
  2. 根据权利要求1所述的一种光伏反射膜,其特征在于,还包括固定胶层或背胶层,所述固定胶层或背胶层设置在所述基材下表面。
  3. 根据权利要求2所述的一种光伏反射膜,其特征在于,所述微结构层的多棱锥优选为金字塔四棱锥,所述金字塔四棱锥底边与所述基材长度方向成45°角度设置。
  4. 根据权利要求2所述的一种光伏反射膜,其特征在于,所述微结构层的多棱锥优选为金字塔四棱锥,所述金字塔四棱锥为多斜度结构,棱线的倾斜角由下往上依次变小。
  5. 根据权利要求2所述的一种光伏反射膜,其特征在于,所述微三棱柱一侧面设于所述基材上表面,所述微三棱柱的棱线方向与基材长度方向平行。
  6. 根据权利要求5所述的一种光伏组件反射膜,其特征在于,所述微三棱柱顶部切割成凹凸相间的多尖角结构。
  7. 根据权利要求1所述的一种光伏反射膜,其特征在于,所述微棱镜的棱线方向与所述基材长度方向成15°-65°角度设置,优选为45°。
  8. 根据权利要求7所述的一种光伏反射膜,其特征在于,所述微棱镜的一侧面上具有多个W状尖角结构。
  9. 根据权利要求8所述的一种光伏反射膜,其特征在于,所述微棱镜层设有多条V形槽,所述V形槽底边方向与所述微棱镜底边垂直。
  10. 根据权利要求9所述的一种光伏反射膜,其特征在于,所述微棱镜的棱镜底面宽度为50μm,所述微棱镜的棱镜顶角角度为120°,所述V形槽开口宽度为50μm。
  11. 一种光伏反射膜的应用,其特征在于,权利要求1-10任一所述 的光伏反射膜应用于光伏组件中,用以提升光伏组件功率,所述光伏组件包括多个电池片、连接电池片的焊带,所述光伏反射膜设置在所述焊带上表面或所述电池片之间的间隙区域,所述光伏反射膜也可同时设置在所述焊带上表面和所述电池片之间的间隙区域,所述光伏反射膜的长度方向与所述焊带长度方向、所述间隙区域长度方向平行设置。
PCT/CN2017/080244 2016-12-22 2017-04-12 一种光伏反射膜及其应用 WO2018113143A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019531998A JP2020502800A (ja) 2016-12-22 2017-04-12 光起電力反射膜及びその用途
US16/470,906 US20190326462A1 (en) 2016-12-22 2017-04-12 Photovoltaic reflective film and application thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201611201825.5 2016-12-22
CN201611201823.6 2016-12-22
CN201611201822.1 2016-12-22
CN201611201825.5A CN106449842A (zh) 2016-12-22 2016-12-22 一种用于光伏组件焊带上的反光膜
CN201611201822.1A CN106449840B (zh) 2016-12-22 2016-12-22 一种光伏组件反射膜及光伏组件
CN201611201823.6A CN106449841B (zh) 2016-12-22 2016-12-22 一种光伏反射膜及光伏组件

Publications (1)

Publication Number Publication Date
WO2018113143A1 true WO2018113143A1 (zh) 2018-06-28

Family

ID=62624685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080244 WO2018113143A1 (zh) 2016-12-22 2017-04-12 一种光伏反射膜及其应用

Country Status (3)

Country Link
US (1) US20190326462A1 (zh)
JP (1) JP2020502800A (zh)
WO (1) WO2018113143A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085698A (zh) * 2019-05-14 2019-08-02 肇庆东洋铝业有限公司 光反射膜及光伏电池组件
CN110571297A (zh) * 2019-09-26 2019-12-13 常州斯威克新材料科技有限公司 一种网格高黏性光伏反光贴膜及其制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230144992A1 (en) * 2020-04-09 2023-05-11 Balaji Lakshmikanth Bangolae A light redirecting prism, a redirecting prismatic wall and a solar panel incorporating the same
WO2022115456A1 (en) * 2020-11-25 2022-06-02 Gamechange Solar Corp. Bifacial solar panel assembly with a reflector
CN112768541A (zh) * 2020-12-31 2021-05-07 彩虹集团新能源股份有限公司 一种光伏压延玻璃六棱锥形防眩光花纹结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269885A1 (en) * 2009-04-24 2010-10-28 Light Prescriptions Innovators, Llc Photovoltaic device
CN103413861A (zh) * 2013-07-18 2013-11-27 常州大学 一种光伏组件反光薄膜及其与焊带的固定方法
CN106449840A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种光伏组件反射膜及光伏组件
CN106449842A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种用于光伏组件焊带上的反光膜
CN106449841A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种光伏反射膜及光伏组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125415A1 (en) * 2005-12-05 2007-06-07 Massachusetts Institute Of Technology Light capture with patterned solar cell bus wires
KR101985053B1 (ko) * 2012-03-27 2019-05-31 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광 지향 매체를 포함하는 광기전 모듈 및 이를 제조하는 방법
KR102257808B1 (ko) * 2014-01-20 2021-05-28 엘지전자 주식회사 태양 전지 모듈
JP2016086154A (ja) * 2014-10-24 2016-05-19 株式会社カネカ 太陽電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269885A1 (en) * 2009-04-24 2010-10-28 Light Prescriptions Innovators, Llc Photovoltaic device
CN103413861A (zh) * 2013-07-18 2013-11-27 常州大学 一种光伏组件反光薄膜及其与焊带的固定方法
CN106449840A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种光伏组件反射膜及光伏组件
CN106449842A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种用于光伏组件焊带上的反光膜
CN106449841A (zh) * 2016-12-22 2017-02-22 苏州高德辰光电科技有限公司 一种光伏反射膜及光伏组件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085698A (zh) * 2019-05-14 2019-08-02 肇庆东洋铝业有限公司 光反射膜及光伏电池组件
CN110571297A (zh) * 2019-09-26 2019-12-13 常州斯威克新材料科技有限公司 一种网格高黏性光伏反光贴膜及其制作方法
CN110571297B (zh) * 2019-09-26 2024-05-07 常州斯威克新材料科技有限公司 一种网格高黏性光伏反光贴膜及其制作方法

Also Published As

Publication number Publication date
US20190326462A1 (en) 2019-10-24
JP2020502800A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2018113143A1 (zh) 一种光伏反射膜及其应用
CN106449840B (zh) 一种光伏组件反射膜及光伏组件
CN106449842A (zh) 一种用于光伏组件焊带上的反光膜
WO2018019191A1 (zh) 一种太阳能电池组件
WO2021103410A1 (zh) 一种折板形光伏组件与其使用的正面玻璃以及光伏系统
WO2018107999A1 (zh) 光伏组件
CN113644156A (zh) 一种双面反光光伏焊带及光伏组件
CN105207605A (zh) 一种反光光伏组件
CN114156359A (zh) 一种应用于光伏电池组件的间隙膜及光伏电池组件
CN106960890A (zh) 一种反射膜及其应用
JP2010074057A (ja) 太陽電池裏面シートおよびそれを用いた太陽電池モジュール
CN206301822U (zh) 一种用于光伏组件焊带上的反光膜
CN106531830A (zh) 一种用于光伏组件的反射背板
CN206301821U (zh) 一种光伏组件反射膜及光伏组件
CN209515687U (zh) 光伏组件
CN206789555U (zh) 一种反射膜
CN208257760U (zh) 一种光伏组件反射膜及光伏组件
CN107689400B (zh) 一种用于太阳能电池的玻璃和太阳能电池
CN207690814U (zh) 一种光伏组件用的光全反射膜
CN107833934B (zh) 一种用于光伏组件的膜及光伏组件和制备方法
CN206301816U (zh) 一种用于光伏组件的反射背板
CN205609537U (zh) 一种太阳能组件中的电池片
CN206422076U (zh) 一种太阳能电池组件
CN206301818U (zh) 一种用于光伏组件的反射背板
US20140048134A1 (en) Concentrator solar receiver with improved homogenizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882628

Country of ref document: EP

Kind code of ref document: A1